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Abstract

In this paper we study the nonlinear equation of elastodynamics where the free energy functional is allowed to

be nonconvex� We de�ne the notion of Young measure solutions for this problem and prove an existence theorem

in this class� This can be used as a model for the evolution of microstructures in crystals�

We furthermore introduce an optional coupling with a parabolic equation and prove existence of a Young measure

solution for this system�
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� � YM�SOLUTIONS FOR AN ELASTICITY EQUATION

� Introduction

A crucial assumption to obtain existence of weak solutions for nonlinear elasticity equations

in the static case is the polyconvexity of the underlying free energy potential �see �Bal���	�

However in many cases the polyconvexity of the potential is not appropriate to re
ect the physical

situation� Therefore a weaker concept for solutions has been introduced� the so�called Young

measure solutions �YM�solutions	� This concept can be applied to crystals where nonconvex

elasticity equations can be used to describe the development of microstructures �which are

important especially for shape memory alloys	 as has been pointed out in the fundamental

paper �BJ���� �For further information and references consider e�g� �Ped��� �M�ul��	

The equation of elastodynamics

utt�x� t	 � div S�ru�x� t		 � �

is even more di�cult to handle� Global existence results for weak solutions have been found

only in one space dimension in �DiP���� �She��� Under certain convexity assumptions Dafermos

�Daf��� proved local existence of smooth solutions� for global solutions for small initial data

consider �Rac���

The concept of YM�solutions has been applied to dynamic problems in �Sle��� �KP�� and

�Dem�� �in the context of the forward�backward heat equation	 and was applied to the wave

equation by �MNRR�� and �Dem���

A �rst approach to the dynamic elasticity equation �with some additional assumptions on the

free energy� valid in particular for antiplane sheer	 was presented in �Rie��� using the method

of discretization in time� A similiar result was obtained in �DST�� where �in a di�erent context	

existence was proved in arbitrary space dimensions for the polyconvex case under some growth

conditions�

In the �rst part of this article we prove the existence �globally in time� for large initial data	 of

Young measure solutions for nonconvex elasticity equations in arbitrary space dimensions under

some growth conditions on the free energy� In contrast to �DST� we have to assume that the

Andrews�Ball condition �see below	 is satis�ed� but we do not need polyconvexity�

In the second part we study a model problem where we couple a nonconvex elasticity equation

with a parabolic equation �possibly of forward�backward type	� The physical motivation is

to study crystals consisting of di�erent types of atoms� where solid state di�usion occurs and

in
uences the elastic properties of the material� The mathematical structure is also similiar to

thermoelastic problems� We extend the concept of YM�solutions to this hyperbolic�parabolic

system and prove existence�

� YM�solutions for an elasticity equation

In this section we prove the existence of Young measure solutions for nonconvex elasticity equa�

tions� Let p � � be a �xed constant� �Later p will denote the growth rate of the free energy at

in�nity�	 By p� we denote its conjugate� i�e� �
p � �

p� � ��

Throughout this article we denote by M a positive generic constant depending only on the initial

data� By jj � jj we denote the L���	�norm�

For an open bounded set � � RI n with Lipschitz boundary� T � �� g � W ��p��� RI m	 and a

function u � � � RI m we study the following initial boundary value problem�



�

utt�x� t	 � div S�ru�x� t		 � �� �x� t	 � �� ��� T 	

u��� �	 � u��

ut��� �	 � z��

u � g on ��� ��	

with S � r� and � � C��RI m�n� RI �	 satisfying the following growth conditions �for positive

constants M�� M�	�

jS�A	j �M��jAjp�� � �	�

M��jAjp � �	 � ��A	 �M��jAjp � �	� ��	

and S satisfying the Andrews�Ball condition for some R � ��

�S�F�	 � S�F�		 �F� � F�	 � � for all F� � RI m�n� F� � RI m�n� jF�j� jF�j � R� ��	

An interpretation of this condition is that for �large� values the potential � is assumed to be

convex� We can relax this condition slightly� It is su�cient to assume that there exists a constant

M � � such that for all F�� F� � RI m�n�

�S�F�	� S�F�		 �F� � F�	 � �M jF� � F�j�� ��	

We now want to de�ne what we will call a Young measure solution� Therefore we introduce a

measure � expressing the probability distribution of the deformation gradient at a certain point

�x� t	 � � � ��� T 	� For �classical� solutions this measure will be a Dirac measure concentrated

in ru�

De�nition ��� �YM�solutions for elasticity� A pair �u� �	 is a Young measure solution of

the system ��� if for �xed T � ��

u �W ������� T 	� L���		� u� g � L����� T 	�W ��p
� ��		�

� � ��x�t	x�t is a probability measure�Z T

�

Z
�
h�� S��	ir� � ut�t dx dt � � �� � C�� ���� T 	 � �	�

ru�x� t	 � h�x�t� Idi a�e�

Here h�� S��	i is de�ned as dual pairing of S with the measure �� i�e�� h�� S��	i ��
R
S�A	 d��A	�

In this section we prove the following existence theorem�

Theorem ��� �Existence of YM�solutions� Assume � � C�� that the growth conditions ���

are satis�ed� and that one of the conditions ��� or �	� are valid� Furthermore let u� � g �
W

��p
� ��	� z� � H�

� ��	� Then there exists a Young measure solution �u� �	 of problem ����

To prove this we use a viscosity regularization� based on an idea of ��SN�� Under the assumptions

stated above the following viscoelastic equation �together with the standard initial and boundary

conditions	 has a weak solution �see �FD�� or consider �Dem� for more general viscosity terms	�

u�tt�x� t	 � div S�ru��x� t		 � ��u�t �x� t	 � ��



� � YM�SOLUTIONS FOR AN ELASTICITY EQUATION

More precisely there exists

u� �W ������� T 	�W���p���		 	W ������� T 	�W �����		 	W ������� T 	� L���		�

u� � g � L����� T 	�W ��p
� ��		�

such that for all T � � and for all � � C�� ���� T 	 � �		�Z T

�

Z
�

�S�ru�	 � �ru�t 	r� � u�t�t dx dt � �� ��	

Furthermore we have the inequality�

�

�
jju�t jj� � jjru�jjp

Lp���
�

Z T

�
jjp�ru�t jj� dt �M�

where M � � is independent of � and t� To get this estimate we can follow �FD��� where we

simply add an � to the viscosity term� Additionally we use the growth condition on ��

These bounds on u� imply that there exists a subsequence� again denoted by u� with�

u�
�
� u� in L����� T 	�W ��p��		 	W ������� T 	� L���		�

and �ru���� t		� generates for every �xed t � ��� T 	 a Young measure ���t�

Now we claim� that �u� �	 is a Young measure solution of the elasticity equation� To prove this

we consider the convergence of the terms in the viscoelastic equation �taking subsequences� if

neccessary	� First we observe that by the convergence proved above and the H�older inequality�

u�t
�
� ut in L����� T 	� L���			�

Thus
R T
�

R
� u

�
t�t dx dt �the third term in the weak equation ��		 converges to

R T
�

R
� ut�t dx dt�

On the other hand
R T
�

R
� �ru�tr� dx dt converges for �� � to zero as the following calculation

�using the Cauchy�Schwarz inequality	 proves�

Z T

�

Z
�
�ru�tr� dx dt �

�
�

Z T

�
jjp�ru�t jj� dt� �z �

�M

�����Z T

�
jjr�jj� dt� �z �
�const�

����

� ��

It remains to consider the term
R T
�

R
� S�ru�	r� dx dt� If we de�ne ���t for all t � ��� T 	 as the

gradient Young measure generated by the sequence ru���� t	 �for a de�nition and an existence

proof consider e�g� �KP��� �M�ul� or �Ped��	� we can see that S�ru���� t		 converges for all

t � ��� T 	 weakly in Lp����	 to hS� ���ti�
On the other hand a subsequence of S�ru�	 converges weakly�	 in L����� T 	� Lp

�

��		� since the

bounds from the energy estimate together with the growth condition imply�

sup
t
jjS�ru�	jjp�

Lp� ���
� M sup

t

Z
�

�� � jru�jp��	p� dx

� M sup
t

�
� �

Z
�
jru�j�p���p�

�
dx

� M sup
t

�
� � jjru�jjpLp���

�
dx

� M�

Hence the term S�ru�	 converges weakly�	 in L����� T 	� Lp
�

��		 to hS� �i� and since r� �
C�� ���� T 	 � �	 � L����� T 	� Lp��		 we have derived that �u� �	 is a Young measure solution of

the elasticity equation� proving Theorem ���� �



�

� Hyperbolic�parabolic systems

If we want to consider a coupling between elasticity and di�usion or if we want to study ther�

moelastic problems� we have to couple a parabolic equation �possibly of forward�backward type	

to the elasticity equation� For this purpose we study the following model problem� where

� � RI n is a domain with Lipschitz boundary� T � �� �x� t	 � � � ��� T 	� g � H���� RI m	�

u � �� ��� T 	 � RI m and c � �� ��� T 	 � RI d�

utt�x� t	 � div S�ru�x� t	� c�x� t		 � ��

ct�x� t	 � divK�rc�x� t	� u�x� t		 � ��

u��� �	 � u��

ut��� �	 � z��

c��� �	 � c��

u � g on ���


nK�rc� u	 � � on ��� ��	

with S � r�� and K � r�� �r� denoting the derivative with respect to the �rst variable	� By


n we denote the outward normal on ���

To make things easier we only consider the case p � �� i�e� we assume that S and K are of

linear growth in the �rst variable and �� � � C� are positive and of quadratic growth in the

�rst variable� More precisely there are constants M�� M� � �� such that for all A � RI m�n�

B � RI n�d� b � RI d and a � RI m the following estimates hold�

M��jAj� � �	 � ��A� b	 �M��jAj� � jbj� � �	�

M��jBj� � �	 � ��B� a	 �M��jBj� � jaj� � �	�

S�A� b	 �M��jAj � jbj � �	�

K�B� a	 �M��jBj� jaj � �	�

Furthermore we assume that S and K are globally Lipschitz continuous�

We want to remark� that ��	 is only a model problem for studying some typical mathematical

di�culties� A realistic model for di�usion phenomena should include at least a ru�dependence

of the di�usion tensor K rather than a u�dependence�

We extend the notion of YM�solutions to the coupled system� where the measure � describes

the probability distribution of the gradient of u �in the same way as in the last section	 and the

measure � describes the probability distribution of the gradient of c�

De�nition ��� �YM�solutions for an hyperbolic�parabolic system� We call the quadru


ple �u� �� c� �	 a Young measure solution of the system ��� if for T � ��

u �W ������� T 	� L���		� u� g � L����� T 	�H�
� ��		�

c �W ������� T 	� L���		 	 L����� T 	�H���		�

� � ��x�t	x�t� � � ��x�t	x�t� probability measures�Z T

�

Z
�
h�� S��� c	ir� � ut�t dx dt � � �� � H�

� ���� T 	 � �	�Z T

�

Z
�
h��K��� u	ir� � ct� dx dt � � �� � H�

� ���� T 	 � �	�

ru�x� t	 � h�x�t� Idi a�e��

rc�x� t	 � h�x�t� Idi a�e�
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In the rest of this section we prove the following existence theorem�

Theorem ��� �Existence of YM�solutions� For u��g � H�
� � z� � H�

� � c� � H�� 
nK�rc�� �	 �

� there exists a Young measure solution �u� �� c� �	 of our problem under the assumptions stated

above�

To prove this theorem we apply the same methods as in the previous section� We �rst prove the

existence of a weak solution for our system equipped with additional dissipation terms� i�e� we

study �for � � �	�

u�tt�x� t	 � div S�ru��x� t	� c��x� t		 � ��u�t �x� t	 � ��

c�t �x� t	 � divK�rc��x� t	� u��x� t		 � ��c�t �x� t	 � ��

u���� �	 � u��

u�t ��� �	 � z��

c���� �	 � c��

u� � g on ���


n�K�rc�� u�	 � �rc�t 	 � � on ��� ��	

For this system we can prove the following theorem�

Theorem ��� For every T � � and u� � g � H�
� � z� � H�

� � c� � H�� 
nK�rc�� �	 � � there

exists a weak solution �u�� c�	 of the system ���� i�e��

u� � L����� T 	�H�
� ��		 	W ������� T 	� L���		 	W ������� T 	�H���		

	W ������� T 	�H����		�

c� � W ����RI �� L���		 	 L��RI ��H���		

and� Z T

�

Z
�
S�ru�� c�	r� � �ru�tr� � u�t�t dx dt � � �� � H�

� ���� T 	 � �	� ��	Z T

�

Z
�
K�rc�� u�	r� � �rc�tr� � c�t� dx dt � � �� � H����� T 	 � �	� �	

Furthermore we have the following inequality�

�

�
jju�t jj� � jju�jj�H� � jjc�jj�H� �

Z T

�
jjp�ru�t jj� dt �

Z T

�
jjp�rc�t jj� dt �M� ���	

For the proof of this theorem we apply the methods introduced by �KP�� for the heat equation

and �Dem�� for the wave equation� These methods were used for viscoelasticity by �Dem� and

�FD���

First we discretize with respect to time� To make life easier we drop the � in the notation of u�

and c� and use u and c instead� We denote the discretized variables by �uh�j	h�j� �c
h�j	h�j� �Often

we will drop the h�	 For j � �� �� � � � we will construct �weak	 solutions of these discretized

equations �together with the standard boundary conditions	�

uh�j � �uh�j�� � uh�j��

h�
� div S�ruh�j� ch�j��	 � �

�uh�j ��uh�j��

h
� �� ���	

ch�j � ch�j��

h
� divK�rch�j� uh�j��	� �

�ch�j ��ch�j��

h
� �� ���	

uh�� � u�� uh��� � u� � hz�� ch�� � c��



�

It is convenient to de�ne the �discretized velocity �

vh�j ��
uh�j � uh�j��

h
�

We now want to derive an a priori estimate for the discrete energy�

Ej �� Eh�j ��

Z
�
��ruh�j� ch�j��	 � ��rch�j � uh�j��	 �

�

�
jvh�j j� dx�

where  � � will be choosen later�

We formulate the following lemma�

Lemma ��	 �Discrete energy� Let T � �� jh � T and � � ��� �	� Then for every positive

h � h���	 the following inequality holds�

Ej �

�X
j��

h

�

Z
�

��� �	jrvh�j j�dx �

�X
j��

h

�

Z
�

��� �	

				rch�j �rch�j��
h

				� dx �M

To prove this we exploit that the nonconvex energy densities � and � are �convexi�ed� by the

viscosity term� We start by considering the energy di�erence in one time step�

�Ej �� Ej�� �Ej

�

Z
�

�
��ruj��� cj	 �

�

�
jvj��j� � ��rcj��� uj	

�

�
�
��ruj � cj��	 �

�

�
jvj j� � ��rcj � uj��	

�
dx

�

Z
�

�
��ruj��� cj	� ��ruj � cj��	

�
�

h
jruj�� �rujj� � �

h
jruj�� �ruj j� � �

h
jruj �rujj�� �z �

��

���rcj��� uj	� ��rcj � uj��	
�

�

h
jrcj�� �rcjj� � 

�

h
jrcj�� �rcj j� � 

�

h
jrcj �rcj j�� �z �

��

�
�

�
jvj��j� � �

�
jvj j�

�
dx

Before we proceed by estimating this expression� we �rst state the following auxiliary lemma�

Lemma ��
 Let r� s � � and � � C��RI r�s�RI �	� Assume that either � satis�es for every F��

F� � RI r�s the inequality�

�r��F�	 �r��F�		�F� � F�	 � �M jF� � F�j�� ���	

where M � � is a constant�

or that r� satis�es the Andrews
Ball condition� see ����

Then for every A � RI r�s the function

g � F 
�� ��F 	 �
�

h
jF �Aj�

is convex for every h � h���	�

Furthermore for every F�� F� � RI r�s and h � h���	 the following estimate holds��
��F�	 �

�

h
jF� �Aj�

�
�
�
��F�	 �

�

h
jF� �Aj�

�

�
�
r��F�	 �

��

h
�F� �A	

�
�F� � F�	� ���	
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To prove the convexity of g we apply ���	� which itself is a consequence of the Andrews�Ball con�

dition �for a proof see e�g� �FD��	� By the convexity of g we get� g�F�	�g�F�	 � rg�F�	�F��F�	

and this gives ���	� �

We apply this lemma twice� once with F� �� ruj��� F� �� ruj � A �� ruj and ��X	 �� ��X� cj	

and once with F� �� rcj��� F� �� rcj � A �� rcj and ��X	 �� ��X�uj	� Furthermore we use

the global Lipschitz continuity of S and K in the second variable �with Lipschitz constant L	

to derive�

�Ej �
Z
�

�
r���ruj��� cj	 �

��

h
�ruj�� �ruj	

�
�ruj�� �ruj	

� �

h
jruj�� �rujj� � Ljcj � cj��j� �



�
r���rcj��� uj	 �

��

h
�rcj�� �rcj	

�
�rcj�� �rcj	

��

h
jrcj�� �rcjj� � Ljuj � uj��j�

�
�

�


jvj��j� � jvj j�� dx�
By rearranging the terms we get�

�Ej �
Z
�

�
r���ruj��� cj	 �

�

h
�ruj�� �ruj	

�
�ruj�� �ruj	

��� �

h
jruj�� �rujj� � Ljcj � cj��j�

�
�
r���rcj��� uj	 �

�

h
�rcj�� �rcj	

�
�rcj�� �rcj	

��� �

h
jrcj�� �rcj j� � Ljuj � uj��j�

�
�

�


jvj��j� � jvj j�� dx� ���	

Before we continue with our estimate we now consider equation ���	 with � �� uj�� � uj �or

to be precise a smooth sequence �k converging to uj�� � uj and considering the limit k � �	

which gives us the following expression�Z
�
S�ruj��� cj	�ruj�� �ruj	 dx

�

Z
�
��vj�� � vj	vj�� � �

h
jruj�� �rujj� dx�

Using the same ideas for equation ���	 we get�Z
�
K�rcj��� uj	�rcj�� �rcj	 dx

�

Z
�
��

h
jcj�� � cj j� � �

h
jrcj�� �rcj j� dx�

We insert these equations into ���	 and use the Poincar!e inequality for uj�� � uj to get the

following estimate�





Ej�� �Ej �
Z
�
��vj�� � vj	vj�� �

�

�


jvj��j� � jvj j��
��� �

h
jruj�� �rujj� � �

h
jruj�� �rujj� �

�

h
jruj�� �rujj�

��� �

h
jrcj�� �rcj j� � �

h
jrcj�� �rcj j� �

�

h
jrcj�� �rcj j�

�Ljuj � uj��j� � 

h
jcj�� � cj j� � Ljcj � cj��j� dx

�
Z
�
��

�
jvj�� � vj j� � �� �

�h
jruj�� �rujj� � 

�� �

h
jrcj�� �rcjj�

�
�
�� �

�h
M � L

�
juj�� � uj j�

�

h
jcj�� � cj j� � Ljcj � cj��j� dx�

If we choose  � ���
�

M
L � h � min


 �
L � �

�
and sum over all j � �� then we get�

Ej �E� � �
jX

i��

��� �	
h

�
jjrvijj� �

jX
i��

��� �	
h

�

				
				rci �rci��

h

				
				� � M�c�	�

This gives the statement of the lemma� �

The following inequality is an easy corollary of Lemma ����

Corollary ��� For every T � kh � � there exists a constant M � � such that�

sup
j

�
jjruh�jjj� � jjrch�j jj� � jjvh�jjj�

�
�

T
hX

j��

hjjrvh�j jj� �

T
hX

j��

h

				
				rci �rci��

h

				
				� �M ��

For the proof one simply applies the growth conditions for � and � and Lemma ���� �

We are now able to prove the existence of solutions �uh�j� ch�j	 of our time�discretized system�

We �rst solve the time�step problem with the help of a variational ansatz� i�e� we consider the

functional�

W h�j�u� c	 ��

Z
�
��ru� ch�j��	 � ��rc� uh�j��	

�
�

�h
jru�ruh�j��j� �

�

�h�
ju� �uh�j�� � uh�j��j�

�
�

�h
jrc�rch�j��j� �

�

�h
jc� ch�j��j� dx�

The functional W h�j is weakly lower semicontinuous since its integrand is convex in �ru�rc	�
which is true since the �critical� terms ��ru� ch�j��	 � �

�h jruj� and ��rc� uh�j��	 � �
�h jrcj� are

convex for su�ciently small h � ��

Since W h�j is also bounded from below by zero� there exists a �not neccessarily unique	 mini�

mizer �u� c	� By a standard calculation one can show� that �u� c	 solves the time�step problem�

We de�ne �uh�j� ch�j	 �� �u� c	� By induction we get the existence of a time�discretized solution

to the discrete problem�

In the next step we interpolate this discrete approximation �uh�j � ch�j	 in time� Here it is con�

vinient to use two di�erent approximation schemes� i�e� the piecewise constant and the piecewise

a�ne interpolation�
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We de�ne for h � �� � � j � T
h and the characteristic function �h�j �� ��hj�h�j���	�

� wh�t	 ��
P

j �
h�j�t	v

h�j���vh�j

h �step function approximation of utt	�

"vh�t	 ��
P

j �
h�j�t	

�
vh�j � vh�j���vh�j

h �t� hj	
�

�its primitive	�

� vh�t	 ��
P

j �
h�j�t	vh�j�� �step function approximation of ut	�

"uh�t	 ��
P

j �
h�j�t	



uh�j � vh�j���t� hj	

�
�its primitive	�

� uh�t	 ��
P

j �
h�j�t	uh�j�� �step function approximation of u	�

� dh�t	 ��
P

j �
h�j�t	 c

h�j���ch�j

h �step function approximation of ct	�

"ch�t	 ��
P

j �
h�j�t	

�
ch�j � ch�j���ch�j

h �t� hj	
�

�its primitive	�

� ch�t	 ��
P

j �
h�j�t	ch�j�� �step function approximation of c	�

We have choosen the notation in such a way that the step functions are each labeled with

di�erent characters �w� v� u resp� d and c	 depending on the order of derivative they are ap�

proximating� Their primitives are denoted with the character of the corresponding lower order

terms and an additional squiggle� e�g� the primitive of wh is denoted as "vh� Later we will show

that the interpolations denoted with and without a squiggle of the same character �i�e� terms of

the same order	 coincide in the limit h� � and converge to our solution or its derivatives�

To prove convergence for these sequences we use Corollary ��� and the growth conditions �in the

cases where the H���norm is involved we also use the discretized partial di�erential equations	

to prove the following bounds �uniformly in h	 for �xed T � ��

sup
��t�T

jjuh�t	jj�H�
�

� M�u�� z�� c�	�

sup
��t�T

jj"uh�t	jj�H�
�

� M�u�� z�� c�	�

sup
��t�T

jjvh�t	jj� � M�u�� z�� c�	�

Z T

�
jjvh�t	jj�H�

�

dt � M�u�� z�� c�	�

sup
��t�T

jj"vh�t	jj� � M�u�� z�� c�	�

Z T

�
jj"vh�t	jj�H�

�

dt � M�u�� z�� c�	�

sup
��t�T

jjwh�t	jj�H�� � M�u�� z�� c�	�

sup
��t�T

jjS�ruh	jj� � M�u�� z�� c�	�

sup
��t�T

jjch�t	jj�H� � M�u�� z�� c�	�

sup
��t�T

�
jj"ch�t	jj� � jjdh�t	jj�H��

�
� M�u�� z�� c�	�

Z T

�
jjdh�t	jj�H� dt � M�u�� z�� c�	�

From these bounds we get the following weak convergence results �again choosing subsequences	�

uh
�
� u in L�



��� T 	�H���	

�
�

"uh
�
� "u in L�



��� T 	�H���	

� 	W ���


��� T 	� L���	

� 	W ���


��� T 	�H���	

�
�

vh
�
� v in L�



��� T 	� L���	

� 	 L�


��� T 	�H���	

�
�

"vh
�
� "v in L�



��� T 	� L���	

� 	 L�


��� T 	�H���	

� 	W ���


��� T 	�H����	

�
�



��

wh �
� w in L�



��� T 	�H����	

�
�

ch
�
� c in L�



��� T 	�H���	

�
�

"ch
�
� "c in W ���



��� T 	�H����	

�
�

dh
�
� d in L�



��� T 	�H���	

�
�

Additionally we deduce by applying Corollary ��� and the growth conditions on S and K� that

there exists "S and "K� such that for c � L����� T 	� L���� RI d		� u � L����� T 	� L���� RI m		�

S�ruh� c	 �
� "Sc in L�



��� T 	� L���	

�
�

K�rch� u	
�
� "Ku in L�



��� T 	� L���	

�
�

We now have to make sure� that the di�erent interpolations we have choosen converge to the

same limit� For this we use a standard lemma �see e�g� �KP��	�

Lemma ��� Suppose that �fh�j	h�j is bounded in L���	� that fh�t	 is its step function interpo


lation� gh�t	 its continuous and piecewise ane interpolation� Assume furthermore that fh � f

and gh � g in L�
loc��� RI �	� Then we have� f � g�

Sketch of the proof We show the equivalence after testing with a smooth function� Therefore

we only need to consider test functions of the  separated form w�x	z�t	� Let �h�t	 be the step

function approximation of z�t	 and �h�t	 be the piecewise a�ne approximation of z�t	� Then

w�x	�h�t	 and w�x	�h�t	 converge strongly to w�x	z�t	� If we now test fh�t	 with w�x	�h�t	

and gh�t	 with w�x	�h�t	 we get the same result� and this equation holds also for h � �� �See

�KP�� for the complete proof�	 �

We can apply this lemma to deduce u � "u� v � "v and c � "c� This is nearly enough to consider

the limit h � � in our equation� but the nonlinearities S and K cannot be handled in this

way� since weak convergence of ruh to ru is not enough to get weak convergence of S�ruh� c	
to S�ru� c	� �And the analogous statement holds for K�	 Fortunately we can prove strong

convergence of ruh� r"uh� rch and r"ch in L�


��� T 	� L���	

�
as h� ��

We �rst need some lemmata� where we state only simpli�ed counterparts of the corresponding

lemmata in �FD��� The proofs can also be found there�

Lemma ��� �Aubin type result� Let Xs �� W �����	� X �� L���	 and Xw �� W������	�

Then the imbedding of L� ���� T 	�Xs		W ��� ���� T 	� Xw	 equipped with the natural norm jj�jjL��Xs�

� jj�t � jjL��Xw� into L� ���� T 	�X	 is compact�

The next lemma is giving a closer connection between the two kinds of interpolations we have

used�

Lemma ��� Let X be a Banach space and ffh�jgj���h�� a collection of elements in X� Let fh

be the piecewise constant and "fh be the piecewise linear interpolation of ffh�jg de�ned �as usual�
by�

fh�t	 ��
X
j

�j�t	f
h�j�

"fh�t	 ��
X
j

�j�t	

��
j � t

h

�
fh�j�� �

�
t

h
� �j � �	

�
fh�j

�
�

where �j is the characteristic function of �jh� �j � �	h	�

Assume that supj jjfh�jjj� �M� and for some � � ��

T
hX

j��

h

				
				fh�j � fh�j��

h�

				
				� �M��
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Then for all f � L� ���� T 	� X	 with supt jjf�t	jj� �M� we have the following estimate�Z T

�
jjfh � f jj� dt � �

Z T

�
jj "fh � f jj� dt � �hM� �

�

�
h��M��

We also use the following fact following from the de�nition of weak convergence and compactness�

Lemma ���� Let G � RI N be open� ffhgh � L���	� fh � � in L���	 as h � � and let K be

a compact subset of L���	� then�

sup
	�K

				
Z
G
fh� dx

				� � as h� ��

Now we have collected all ingredients for the proof of the strong convergence of ruh� r"uh� rch
and r"ch� First we consider ruh and r"uh� later we will apply the methods introduced there to

prove the strong convergence of rch and r"ch�

We start with the following time�integrated version of our elasticity equation� having the property

that the test function � does not need to be di�erentiable in time�Z T

�

Z
�

�
S�ruh� ch�� � h		 � �rvh

�
r� � vh

���� h	 � �

h
dx dt

�
�

h

Z T

T�h

Z
�
vh���� h	 dx dt� �

h

Z �

�h

Z
�
v���� � h	 dx dt � �� ���	

We consider the limit h� � in equation ���	� where we use that ch���h	 � c in L����� T 	� L���		�

Using the de�nition of "Sc we get�Z T

�

Z
�

"Scr� � �rutr� dx dt

�

Z T

T�h

Z
�
ut� dx dt � �� ���	

We insert � �� uh�u in ���	 and � �� "uh�u in ���	 and substract the resulting equations� �To

be exact we have to approximate uh � uh�� � h	 and "uh � u by sequences of smooth functions�	

This gives for t � ��� T 	�

� �

Z t

�

Z
�
S�ruh� ch�� � h		�ruh �ru	� "Sc�r"uh �ru	 dx dt� �z �

�
T�

��

Z t

�

Z
�
rvh�ruh �ru	�rut�r"uh �ru	 dx dt� �z �

�
T�

�
Z t

�

Z
�
vh
�
vh�� � h	 � "u�� � h	 � u

h

�
� ut

�
�"uh	t � ut

�
dx dt� �z �

�
T�

�

Z
�

Z t

t�h
vh�uh�� � h	 � u��� h		 � ut

�
"uh � u

�
dt dx� �z �

�
T�

�
Z
�
v�

�

h

Z �

�h
uh�� � h	 � u��� h	 dt dx� �z �

�
T�

�



��

where we have de�ned the terms T������T� which we will estimate in the following calculation�

To simplify notation we denote all terms converging to zero as h� � �uniformly in t	 by ��h	�

We start by estimating T�� where we use the global Lipschitz continuity of S giving us for a

certain M � � and every F�� F� � RI m�n and #c � RI d the inequality�

�S�F�� #c	 � S�F�� #c	�F� � F�		 � �M jF� � F�j��

�This corresponds to condition ��	 in the last section�	

T� �

Z t

�

Z
�

�
S�ruh� ch�� � h��� S�ru� ch�� � h��

�
�ruh �ru� � S�ru� ch�� � h���ruh �ru�

� �Sc�r�uh �ru� dx dt

� �M

Z t

�

Z
�

jruh �ruj� dx dt� sup
t����T �

�����
Z T

�

Z
�

�
������t� �Sc

�
�r�uh �ru� dx dt

�����
�

�

Applying Lemma ���� we can show that the last three terms converge to zero for h� �� i�e��

T� � �M
Z t

�

Z
�
jruh �ruj� � ��h	�

Applying Lemma �� we �nally get�

T� � ��M

Z t

�

Z
�
jr"uh �ruj� � ��h	�

We can use the same calculations as in the purely viscoelastic case �see �FD�� �	 to derive�

�T� � ��

�

Z
�
jr"uh�t	 �ru�t	j� dx �

�

�

Z
�
jr"uh��	 �ru��	j�� �z �

��

dx � ��h	�

where the discrete energy estimate proved above is used� This �together with the estimate for

T�	 is the key step to the desired strong convergence result� since at the end we want to apply

the Gronwall Lemma to the inequality we get by estimating these terms� Therefore we need

that the terms T��T� are �well behaved�� i�e� that they are simply ��h	�

In fact by applying Lemma ��� combined with Lemma �� we can prove this�

T� � ��h	� T � ��h	� T� � ��h	�

Taking everything together we have the inequality�

�t

Z t

�

Z
�
jr"uh �ruj� dx dt � �M

�

Z t

�

Z
�
jr"uh �ruj� dx dt � ��h	�

Now we can apply the Gronwall Lemma to get�Z T

�

Z
�
jr"uh �ruj� dx dt � ��h	

�

�M
e
�MT
� �

and this converges to zero for h� �� hence�

r"uh �ru in L�


��� T 	� L���	

�
�

�Remember the slightly di�erent notation in their article�
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Due to Lemma �� the same convergence result holds for ruh� This ensures that "S�c � S�ru� #c	�
Now we are ready to apply the same methods to prove "K�u � K�rc� #u	� First we consider the

following weak formulation of ���	�Z T

�

Z
�
K�rch� uh�� � h		r� � �

rch �rch�� � h	

h
r� �

ch � ch�� � h	

h
� dx dt � �� ���	

Then we consider the limit h� � in equation ���	 to get�Z T

�

Z
�

"Kur� � �rctr� � ct� dx dt � �� ��	

We insert � �� ch � c in ���	 and � �� "ch � c in ��	 and substract the resulting equations� �To

be exact we have to approximate ch � ch�� � h	 and "ch � c by sequences of smooth functions�	

This gives�

� �

Z T

�

Z
�
K�rch� uh�� � h		r�ch � c	 � "Kur�"ch � c	

��
rch �rch�� � h	

h
r�ch � c	 � �rctr�"ch � c	

�
ch � ch�� � h	

h
�ch � c	 � ct�"c

h � c	 dx dt� ���	

Now we consider the three terms in ���	� We start with the third one� We want to prove that�Z T

�

Z
�

ch � ch�� � h	

h
�ch � c	� ct�"c

h � c	 dx dt� � as h� ��

But this is true for the �rst part� since


"ch
�
t

is bounded in L����� T 	�H����		 and ch
�
� c in

L����� T 	�H���		� and it is true for the second part� since ct � L����� T 	�H���		 and "ch
�
� c

in W ����H����		�

We now rewrite the �rst term in ���	 denoted by T� and estimate it as follows�

T� ��

Z t

�

Z
�

�
K�rch� uh�� � h		 �K�rc� uh�� � h		

�
r�ch � c	

�K�rc� uh�� � h		r�ch � c	

� "Kuh���h�r�"ch � c	 �
�

"Kuh���h� � "Ku

�
r�"ch � c	 dx dt

� �M
Z t

�

Z
�
jr"ch �rcj� dx dt � ��h	�

So we get�

T� � �M
Z t

�

Z
�
jr"ch �rcj� dx dt � ��h	� ���	

It remains to estimate the second term in ���	� Here we apply the methods we had used to

estimate T�� This gives the following inequality�

��
Z T

�

Z
�

rch �rch�� � h	

h
�rch �rc	 �rct�r"ch �rc	

� ��

�

Z T

�

Z
�
jr"ch�t	 �ru�t	j� dx dt � ��h	� ���	



��

If we insert ���	 and ���	 into ���	 and apply the Gronwall Lemma in the same way as before

we derive� Z T

�

Z
�
jr"ch �rcj� dx dt � ��h	

�

�M
e
�MT
� �

and this is converging to zero for h � �� Therefore r"ch is converging to rc strongly in

L����� T 	� L���		� And due to Lemma �� this also holds for rch� Hence for h� � the nonlinear

term K�rch� uh	 converges to K�rc� u	�

Taking everything together we have proved that the solutions of the time�discretized equations

converge to solutions of the hyperbolic�parabolic system ��	�

To prove Theorem ��� it only remains to prove the energy inequality�

E�t	 � M�u�� v�� c�	� �

Z t

�

Z
�
jrutj� � jrctj� dx dt�

where E�t	 ��
R
� ��ru�t	� c�t		 � ��rc�t	� u�t		 � �

� jut�t	j� dx and M�u�� v�� c�	 is a constant

depending only on the initial values u�� v�� c��

To prove this we start from the discrete energy inequality �Lemma ���	� telling us that for  � �

su�ciently small� h � min


�� �L

�
and � � ��� �	 the following inequality holds for every t � ��� T 	�Z

�
��ruh� ch�� � h		 dx � 

Z
�
��rch� uh�� � h		 dx

�
�

�

Z
�
jvhj� dx � ��� �	

Z t

�

Z
�
jrvhj� � jrdhj� dx dt � M�u�� v�� c�	�

Now we notice that we can apply these convergence results�

vh�t	 � ut�t	 in L���	 for a�e� t � ��� T 	�

rvh � rut in L����� T 	 � �	�

rdh � rct in L����� T 	 � �	�

By the weakly lower semicontinuity of the L����� T 	 � �	�norm we get for a�e� t � ��� T 	�

lim sup
h��

Z
�
��ruh� ch�� � h		 dx �  lim sup

h��

Z
�
��rch� uh�� � h		 dx

�
�

�

Z
�
jutj� dx � ��� �	

Z t

�

Z
�
jrutj� � jrctj� dx dt � M�u�� v�� c�	� ���	

Now we apply the strong convergence of ruh�t	 to estimate�Z
�
��ru� c	 dx �

Z
�

�
��ru� c	 �

M

�
jruj�

�
dx�

Z
�

M

�
jruj� dx

� lim sup
h��

Z
�

�
��ruh� ch�� � h		 �

M

�
jruhj�

�
dx�

Z
�

M

�
jruj� dx

� lim sup
h��

Z
�
��ruh� ch�� � h		 dx � lim sup

h��

Z
�

M

�
jruhj� dx�

Z
�

M

�
jruj� dx

� lim sup
h��

Z
�
��ruh� ch�� � h		 dx�

Similiar we get applying the strong convergence of rch�t	�Z
�
��rc� u	 dx � lim sup

h��

Z
�
��rch� uh�� � h		 dx�
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If we insert these estimates into ���	 and take the limit � � �� then we get�Z
�
��ru� c	 dx � 

Z
�
��rc� u	 dx �

�

�

Z
�
jutj� dx

��

Z t

�

Z
�
jrutj� � jrctj� dx dt � M�u�� v�� c�	�

for a�e� t � ��� T 	�

By adjusting the constant M we get the desired estimate ���	� This completes the proof of

Theorem ���� �

No we apply this to prove Theorem ��� by considering � � � in the same spirit as in the

previous section� First the energy inequality ���	 gives the following weak convergence results

�for subsequences	 as �� ��

u�
�
� u in L����� T 	�H�

� ��		�

c�
�
� c in L����� T 	�H�

� ��		�

u�
�
� u in W ������� T 	� L���		�

Furthermore for a�e� t � ��� T 	 the sequence ru��t	 generates the Young measure ���t and rc��t	
generates the Young measure ���t�

For a subsequence we can consider the limit of the viscoelastic equations for �� � by using the

growth conditions on S and K and the strong convergence of u� and c� in L�� The Neumann

boundary condition on c� is converging to the Neumann boundary condition on c� This calcu�

lation concludes the proof of the existence Theorem ���� �
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