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AN OPTIMAL SCALING LAW FOR FINITE ELEMENT
APPROXIMATIONS OF A VARIATIONAL PROBLEM WITH

NON-TRIVIAL MICROSTRUCTURE

ANDREW LORENT

Abstract. In this note we give sharp lower bounds for a non-convex functional when
minimised over the space of functions that are piecewise affine on a triangular grid and
satisfy an affine boundary condition in the second lamination convex hull of the wells
of the functional.

1. Introduction

As shown in the pioneering work of Ball-James [1] and Chipot-Kinderleher [4] the
formation of microstructure is closely related to minimising sequences of non-convex
functionals for the form;

I (u) =
∫

Ω
φ (Du (x)) dLnx

where Ω ⊂ IRn is the reference configuration, u : Ω → IRn is the elastic deformation
and φ ≥ 0 is the stored energy density which captures the specific material properties.
Many features of minimising sequences can be understood by looking at the set K =
{F : φ (F ) = 0} of φ. Due to frame invariance this set is in general of the form K =
SO (n)U1∪. . . SO (n) Um where symmetric matrices U1,. . . Um are symmetry related and
depend on the symmetry of the phase transition and the transformation strains (see [2]
for detailed discussion). The simplest non-trivial problem is called the two well problem;
this correspond to the set

K = SO (2) ∪ SO (2) H

where H is a diagonal matrix with eigenvalues 0 < µ ≤ λ and λµ ≥ 1.
An important question was to determine the set Kmacro of macroscopically zero energy

states. By definition this consists of all F ∈ Mn×n for which there exists a sequence of
uniformly Lipschitz maps uj : Ω → IRn such that

uj (x) = Fx for all x ∈ ∂Ω∫
Ω

d (Duj (x) ,K) dLnx → 0 as j → ∞.

A covering argument shows that Kmacro is independent of Ω. In fact it agrees with the
so called quasiconvex hull Kqc (see [8] for an overview of the relevant notions) and has
been computed explicitly for the two well problem in [10]: Given a set of matrices A we
can form the first lamination convex hull of A as follows;

A(1) = {λG + (1 − λ)H : G,H ∈ K, G − H = a ⊗ m, for a,m ∈ IRn, λ ∈ [0, 1]} ,

the second lamination convex hull of A (denoted by A(2)) is just the first lamination
convex hull of A(1). It was shown in [10] that in the case det (H) = 1; Kqc = K(2).
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Following work of Luskin and coworkers there has been much interest in numerical
minimisation of multiwell problems and in optimal scaling laws for finite element approx-
imations (see [6] for a survey and, [3], [7] for more recent developments). In particular
it has been shown that for a quasiuniform triangulation τh, letting Ah denote the space
of functions u : Ω → IRn that are piecewise affine on the triangles of τh and satisfy affine
boundary condition; u (x) = F for all x ∈ ∂Ω where F ∈ K(2), then

inf
u∈Ah

∫
Ω

d (Du (x) ,K) dL2x ≤ Ch
1
3 .

This applies in particular to the two well problem. The goal of this paper is to show
that the scaling exponent 1

3 is sharp.

Theorem. Denote Ω = [0, 1]2, and let e1, e2 be the coordinate axis. Fix h ∈ (
0, 1

64

)
and let τh be a regular triangulation of the plane with mesh size h, with the property that
none of the mesh triangles has an edge parallel to the vector e1. Let

K = {U,L,R} ,

where:

U =
(

1 0
0 0

)
, L =

( −1 0
0 −1

)
, R =

( −1 0
0 1

)
.

Finally, let Ah denote the set of functions f : Ω → IR2 that vanish on the boundary of
Ω, and are Lipschitz continuous and affine on each triangle of τh intersecting Ω, then

inf
u∈Ah

∫
Ω

d (Du (x) ,K) dL2x ≥ ch1/3,

with some some constant c > 0 depending only on the choice of the triangulation τh.

In view of possible applications we make an attempt to keep the constant c within
reasonable numerical bounds. For a specific choice of grid, our reasoning will be carried
out for

c >
1

500000
.

The article is organized as follows. Section 2 contains the proof of our theorem, for
the convenience of the reader, we have divided it into several steps. In Section 3 we
discuss a potential application of results of our type to the problem of determining the
quasiconvex hull of a three well problem in three dimensions related to the cubic to
tetragonal transition.

2. Proof of the Theorem

Strategy of proof: Figure 1 shows a second order laminate having derivatives mostly
in the wells K and vanishing on the boundary, we will refer to this as function D. By
taking the function in D̃ ∈ Ah that approximates D (i.e. for every triangle T in τh, D̃
on T is equal to the affine function given by the interpolation of the values of D at the
corners of the triangle). Note that for each crease in the function D (i.e. each line where
there is a jump in the derivative of D) the function D̃ will have a line of triangles some
distance away from the wells, in this way, our functional is in some sense the sum of a
surface energy term and a bulk energy term 1. With this observation it is possible to
see that

∫
Ω d (Du (x) ,K) dL2x < Ch

1
3 . The strategy of the proof is motivated largely

by this example.

1I would like to thank G. Dolzmann for pointing this out to me
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Figure 1

If we have a function u ∈ Ah with
∫
Ω d (Du (x) ,K) dL2x < ch

1
3 then for many triangles

we must have that Du is close to the wells K, so in particular the derivatives of the
coordinate functions u1 = u · e1 and u1 = u · e1 are very restricted. Just from the fact
that for most triangles

∣∣∣∂u1
∂x2

∣∣∣ is small, by integrating from the boundary we have the L1

norm of the function u2 can’t be too big, this forces the function u to oscillate in some
sense like the first laminate of the function D. More specifically, we define vertical blocks

of squares that are h
1
3 in width and 1 in height and we show that |u2| is less that h

1
3

50 for
most of these blocks. The next step is to try and show u oscillates in these blocks on a
scale of roughly h

2
3 , i.e. that u oscillates like the second lamination of D. This can be

done by using carefully the specific properties of the coordinate functions u1 and u2 on
the squares for which Du is close to K. We will define minirows in our blocks which are
just horizontal rows of

[
1

h
2
3

]
squares and by simple counting arguments we will obtain a

set of at least c1

[
1

h
2
3

]
minirows all spaced out from each other by at least

[
1

h
2
3

]
squares

with the property that on each minirow the function u1 has a set A of at least c2

[
1

h
2
3

]
squares for which ∂u1

∂x1
≈ 1 and a set B of at least c2

[
1

h
2
3

]
squares for which ∂u1

∂x1
≈ −1.

Now we consider the rectangle of squares which is
[

1

h
1
3

]
squares in height whose base

is the minirow. Either for half the squares θ ∈ A, the line of squares in the rectangle
above θ have ∂u1

∂x1
≈ 1 or for half there is some square in the line for which u has a change

of derivative. Since a change in derivative forces there to be at least one triangle on
which Du is not close to K, the latter possibility gives us c2

2

[
1

h
2
3

]
such triangles. Now as

we have proportionally the same amount or error inside a rectangle of the same size on
function D̃, too many rectangles of this type will give us the lower bound. On the other
hand if this doesn’t happen for the set A and the set B then since ∂u1

∂x1
≈ 1 =⇒ ∂u2

∂x2
≈ 0

and ∂u1
∂x1

≈ −1 =⇒ ∂u2
∂x2

≈ 1 or ∂u2
∂x2

≈ −1, coupled with the fact that ∂u2
∂x1

≈ 0 for all
triangles with Du close to K, integrating in the e2 direction inside our rectangle gives
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that the error inside the rectangle is at least c3h
4
3 . So in either case adding up the error

inside each rectangle gives us the lower bound, this is the strategy of the proof.

Step 1. To simplify the arguments, we prove our result for a specific choice of the
triangulation τh, it is not difficult to see that the same reasoning could be carried out
for any other mesh that satisfies the hypothesis of the theorem.

Denote Si,j := [(j − 1) he1, jhe1] ⊗ [(i − 1) he2, ihe2] the (i, j)-th square in Ω, and let
Di,j be the equilateral diamond inside Si,j whose corners touch the midpoints of the sides
of the square. If we cut Di,j vertically down the center we get two triangles, the left
hand one denoted by T

(1)
i,j and the right hand one by T

(2)
i,j ; let now T

(3)
i,j be the triangle

obtained as the union of the bottom left triangle of Si,j\Di,j and the top left triangle of
Si−1,j\Di−1,j . Finally, T

(4)
i,j stands for the triangle obtained as the union of the bottom

right triangle of Si,j\Di,j and the top right triangle of Si−1,j\Di−1,j . Our triangulation
τh is given by

τh :=
{
T

(k)
i,j : k ∈ {1, 2, 3, 4} , i, j ∈ IN

}
.

Suppose the result was not true and thus we could find grid size h and a function
u ∈ Ah with the property that

(1)
∫

Ω
d (Du (x) ,K) dL2x < ch1/3,

for some c < 1
500000 . Define the set of “bad squares”

B =

{
Si,j :

∫
Si,j

d (Du (x) ,K) dL2x >
h2

100

}
and the set of “good squares”

G = {Si,j : Si,j �∈ B} .

Note that card (B) h2

100 ≤ h
1
3

500000 , so consequently

(2) card (B) <
h

1
3

5000h2
=

1

5000h
5
3

.

Let N =
[
h−1

]
and let n0 =

[
Nh

1
3

]
. We split the set Ω into

[
N
n0

]
blocks of touching

columns

Bk =
⋃

i∈{1,...,N}
j∈{(k−1)n0,...,kn0}

Si,j, for k = 1, 2, . . . ,
[

N

n0

]
.

In the following steps we will obtain information from the properties of the coordinate
functions u1 and u2 of the vector valued function u,

u (x) =
(

u1 (x)
u2 (x)

)
.

Step 2. In this step we will use estimate (1) to show that the function u1 does not grow
”too big” over most of the blocks of Ω. Note first that Du (x) ∈ K implies:

∂u1

∂x1
∈ {1,−1} and

∂u1

∂x2
= 0.

Let γ : [0, Nh] → IR be defined by

γ (x) = sup {|u1 (z)| : z ∈ {xe1 + 〈e2〉} ∩ Ω} ,
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and let P1 stand for the projection of IR2 onto the 〈e1〉 axis.
We are going to show that for most blocks Bk, the average of γ over P1 (Bk) is “not

too big”. To make this more precise, define

T =

{
k ∈

{
1, 2, . . . ,

[
N

n0

]}
:
∫

P1(Bk)
γ (x) dL1x >

h
2
3

50000

}
.

For any fixed k ∈ T and any t ∈ P1 (Bk) we can find zt ∈ {te1 + 〈e2〉} ∩ Ω such that
|u1 (z)| = γ (t) and hence

γ (t) = |u1 (z)| =
∣∣∣∣∫ z

0

∂u1

∂x2
(x) dL1x

∣∣∣∣ ≤ ∫ z

0

∣∣∣∣∂u1

∂x2
(x)

∣∣∣∣ dL1x

≤
∫

P−1
1 (t)∩Ω

d (Du (x) ,K) dL1x.

Using the Fubini theorem,∫
P1(Bk)

γ (y) dL1y ≤
∫

Ω∩P−1
1 (P1(Bk))

d (Du (x) ,K) dL2x.

As the sets Ω ∩ P−1
1 (P1 (Bk)) are pairwise disjoint we have that

card (T ) · h
2
3

50000
≤

∫
Ω

d (Du (x) ,K) dL2x

≤ h
1
3

500000
,

and consequently

card (T ) ≤ 1

10h
1
3

,

as claimed.
Define

Φ1 =
{

n ∈
{

1, 2, . . . ,
[

N

n0

]}
: n �∈ T

}
.

Note that

(3) card (Φ1) ≥ N

n0
− 1

10h
1
3

≥ 9

10h
1
3

.

From this point on we work inside the blocks of the set Φ1; refining onto regions of Ω
that are well controlled will be a continuing theme.

Step 3. Now we refine the mini-rows inside the blocks indexed by Φ1. Let

Rk,i = {Sk,j : j ∈ {(i − 1) n0, . . . , in0}}
be the k-th minirow in the i-th block. Now for any i ∈ Φ1, let

Oi =
{
k ∈ {1, . . . N} : card (B ∩ Rk,i) ≥ n0

500

}
.

Since by (2), card (Oi) · n0
500 ≤ 1

5000h
5
3
, then

card (Oi) ≤ 1

10n0h
5
3

.
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Together with n0 > h− 2
3 − 2, this yields

card (Oi) ≤ 1

10
(
h − 2h

5
3

) ≤ 1
30
4 h

=
4

30h
.

Denote
Mi = {1, 2, . . . N} \Oi,

Qi =
{

k ∈ Mi : sup {d (Du (x) ,K) : x ∈ Rk,i} <
1

5000h
2
3

}
.

Note that, card (Mi) ≥ 26
30h .

For each k ∈ Qi, since u is piecewise affine, there exists at least one triangle on which
the derivative of u is at least 1

5000h
2
3

away from the wells K. Thus∫
Rk,i

d (Du(x),K) dL2x >
h2

40000h
2
3

and

card (Qi)
h2

40000h
2
3

<
h

1
3

500000
,

as well as card (Qi) < h
1
3

10h
4
3

= 1
10h . Finally, denoting Ni = Mi\Qi, we get

card (Ni) ≥ 26
30h

− 1
10h

=
23
30h

.

Introduce another refinement to the minirows inside the block Bi

Ji =

{
k ∈ Ni :

∫
Rk,i

d (Du (z) ,K) dL2z <
h

4
3

50000

}
.

Since card (Ni\Ji) · h
4
3

50000 < h
1
3

500000 , then card (Ni\Ji) < 1
10h and thus

(4) card (Ji) ≥ 2
3h

.

Now we apply a final refinement of the mini-rows, to distinguish only those mini-rows
for which |u1| does not “get too big”. For any i ∈ Φ1 let

Hi =

{
j ∈ Ji : sup {|u1 (z)| : z ∈ Rk,i} ≤ h

1
3

50

}
.

Our claim is that Ji\Hi = ∅.
Suppose not and let i ∈ Φ1 be such that there exists a number k ∈ Ji\Hi. Take

x ∈ Rk,i such that
|u (x)| = sup {|u1 (z)| : z ∈ Rk,i} .

Now x belongs so some square Sk,j and so for any other point z ∈ Sk,j there holds

u1 (z) > u1 (x) − Lip (u) |x − z| > u1 (x) − Lip (u) h.

As k ∈ Qi so Lip (u) < 1

2500h
2
3

and it follows that

u1 (z) >
100h

1
3

5000
− 2h

5000h
2
3

=
98h

1
3

5000
.
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Note moreover that for any horizontal line l through our minirow Rk,i, (that is l =

Rk,i ∩ {λe2 + 〈e1〉} for some λ ∈ IR) we have that sup {|u (z)| : z ∈ l ∩ Rk,i} > 98h
1
3

5000 .

Let x ∈ l be such that |u (x)| > 98h
1
3

5000 . Since i ∈ Φ1,∫
l
|u1 (t)| dL1tx <

h
2
3

50000
,

so there exists a point y ∈ B
h

1
3

200

(x) ∩ l for which u1 (y) ≤ h
1
3

200 . Hence

73h
1
3

5000
≤ |u1 (y) − u1 (x)| =

∣∣∣∣∫ y

x

∂u1

∂x1
(z) dL1z

∣∣∣∣
≤

∫ y

x

∣∣∣∣∂u1

∂x1
(z)

∣∣∣∣ dL1z,

and ∫ y

x

∣∣∣∣∣∣∣∣∂u1

∂x1
(z)

∣∣∣∣ − 1
∣∣∣∣ dL1z ≥

∫ y

x

∣∣∣∣∂u1

∂x1
(z)

∣∣∣∣ − 1dL1z

≥ 73h
1
3

5000
− |x − y| ≥ 73h

1
3

5000
− 25h

1
3

5000

≥ 48h
1
3

5000
.

(5)

Finally ∫
l
d (Du (x) ,K) dL1x ≥

∫ y

x

∣∣∣∣∣∣∣∣∂u1

∂x1
(z)

∣∣∣∣ − 1
∣∣∣∣ dL1z

≥ 48h
1
3

5000
,

which is true for every horizontal line through Rk,j. The Fubini theorem yields now∫
Rk,j

d (Du (z) ,K) dL2z ≥ 48h
4
3

5000
,

contradicting the fact that k ∈ Ji and proving our claim.

Step 4. In this step we use a covering theorem to refine the minirows in each block
indexed by Φ1 to a subset containing only minirows that are pairwise spaced out from
each other by at least

[
2

h
1
3

]
squares.

The family of intervals
{[

jh − h
2
3 , jh + h

2
3

]
: j ∈ Ji

}
forms a covering of the set

A =
⋃
j∈Ji

[(j − 1)h, jh] .

As in view of (4),

L1 (A) ≥ 2
3h

h ≥ 2
3
,

the 5r Covering Theorem (see for example [9] Theorem 2.1) provides us with a set Vi ⊂ Ji

with the following two properties:

• A ⊂ ⋃
j∈Vi

[
jh − 5h

2
3 , jh + 5h

2
3

]
.
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• The intervals
[
jh − h

2
3 , jh + h

2
3

]
, j ∈ Vi are pairwise disjoint.

The first point above implies immediately that 10h
2
3 card (Vi) ≥ 2

3 and so

card (Vi) ≥ 2

30h
2
3

.

Fix a square Sk,j ∈ G. Since u is piecewise affine on each T
(1)
k,j and T

(2)
k,j and Du on

this square stays “close” to the wells so on both sides of the diamond Dk,j the gradient
Du must be close to the same well, as e2 is not a rank one connection for the wells. Thus
either

(6) sup
{∣∣∣∣∂u1

∂x1
(z) − 1

∣∣∣∣ : z ∈ Dk,j

}
<

1
25

or sup
{∣∣∣∣∂u1

∂x1
(z) + 1

∣∣∣∣ : z ∈ Dk,j

}
<

1
25

.

Denote

P1 =
{

Si,j ∈ G : sup
{∣∣∣∣∂u1

∂x1
(z) − 1

∣∣∣∣ : z ∈ Di,j

}
<

1
25

}
,

D1 =
{

Si,j ∈ G : sup
{∣∣∣∣∂u1

∂x1
(z) + 1

∣∣∣∣ : z ∈ Di,j

}
<

1
25

}
.

Take j ∈ Φ1 and i ∈ Vj, we consider the minirow Ri,j. Let a0 =
(
(j − 1) n0h,

(
i + 1

2

)
h
)

be the center point at the left of the minirow. Also, for k = 1, 2, . . . , n0 set ak =(
((j − 1) n0 + k)h,

(
i + 1

2

)
h
)
. Define

M =
{
k ∈ {1, 2, . . . , n0} : Si,(j−1)n0+k ∈ P1

}
,

L =
{
k ∈ {1, 2, . . . , n0} : Si,(j−1)n0+k ∈ D1

}
,

R = {1, 2, . . . , n0} \M ∪ L.

Since G = P1 ∪ D1 we get card (R) ≤ n0
500 and

u (an0) − u (a0) =
n0∑

k=1

u (ak) − u (ak−1) =
n0∑

k=1

∫ ak

ak−1

∂u1

∂x1
(z) dL1z

=
∑
k∈M

∫ ak

ak−1

∂u1

∂x1
(z) dL1z +

∑
k∈L

∫ ak

ak−1

∂u1

∂x1
(z) dL1z

+
∑
k∈R

∫ ak

ak−1

∂u1

∂x1
(z) dL1z

≥ card (M) h

(
1 − 1

25

)
− card (L)h

(
1 +

1
25

)
+

∑
k∈R

∫ ak

ak−1

∂u1

∂x1
(z) dL1z.

On the other hand by the choice of k ∈ Hi there holds

u (an0) − u (a0) ≤ |u (an0)| + |u (a0)| ≤ h
1
3

25
.

Step 5. For our chosen minirow Ri,j we are going to show the following inequality

card (M) ≤ card (L) +
n0

5
.
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Suppose the converse inequality was true. Then

h
1
3

25
≥

(
card (L) +

n0

5

)
h

(
1 − 1

25

)
− card (L)h

(
1 +

1
25

)
−

∑
k∈R

∫ ak

ak−1

∂u1

∂x1
(z) dL1z

= −card (L)
2h
25

+
n0h

5

(
1 − 1

25

)
+

∑
k∈R

∫ ak

ak−1

∂u1

∂x1
(z) dL1z,

and using card (L) ≤ n0 we receive

3h
1
3

25
≥ n0h

5
24
25

+
∑
k∈R

∫ ak

ak−1

∂u1

∂x1
(z) dL1z

≥
(
h− 2

3 − 1
)

h
24
125

+
∑
k∈R

∫ ak

ak−1

∂u1

∂x1
(z) dL1z

≥
(
h

1
3 − h

) 24
125

+
∑
k∈R

∫ ak

ak−1

∂u1

∂x1
(z) dL1z

≥ 3
4
h

1
3

24
125

+
∑
k∈R

∫ ak

ak−1

∂u1

∂x1
(z) dL1z,

and

60h
1
3

500
− 72h

1
3

500
≥

∑
k∈R

∫ ak

ak−1

∂u1

∂x1
(z) dL1z.

Let R̃ ⊂ R be the set of these k ∈ R such that∫ ak

ak−1

∂u1

∂x1
(z) dL1z ≤ 0,

note that we have ∂u1
∂x1

(z) < 0 for all z ∈ [ak−1, ak] for k ∈ R. Now

−12h
1
3

500
≥

∑
k∈R̃

∫ ak

ak−1

∂u1

∂x1
(z) dL1z,

but ∑
k∈R̃

∫ ak

ak−1

∣∣∣∣∂u1

∂x1
(z) + 1

∣∣∣∣ dL1z ≥
∑
k∈R̃

∫ ak

ak−1

∣∣∣∣∂u1

∂x1
(z)

∣∣∣∣ − 1 dL1z

≥ 12h
1
3

500
− card

(
R̃

)
h ≥ 11h

1
3

500
.

(7)

Now since u is piecewise affine on each triangle T
(1)
k,j , T

(2)
k,j then if we let t

(1)
k,j and t

(2)
k,j be

respectively the centers of T
(1)
k,j and T

(2)
k,j we obtain

∂u1

∂x1

(
t
(i)
k,j

)
=

∂u1

∂x1
|
T

(i)
k,j

for i = 1, 2,∫ ak

ak−1

∣∣∣∣∂u1

∂x1
(z) + 1

∣∣∣∣ dL1z =
h

2

(∣∣∣∣∂u1

∂x1

(
t
(1)
k,j

)
+ 1

∣∣∣∣ +
∣∣∣∣∂u1

∂x1

(
t
(2)
k,j

)
+ 1

∣∣∣∣) .
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Thus∑
k∈R̃

∫
Sk,j

d (Du (x) ,K) dL2x ≥
∑
k∈R̃

∫
Dk,j

d (Du (x) ,K) dL2x

≥
∑
k∈R̃

h2

4

∣∣∣∣∂u1

∂x1

(
t
(1)
k,j

)
+ 1

∣∣∣∣ +
h2

4

∣∣∣∣∂u1

∂x1

(
t
(2)
k,j

)
+ 1

∣∣∣∣
=

∑
k∈R̃

h

2

∫ ak

ak−1

∣∣∣∣∂u1

∂x1
(z) + 1

∣∣∣∣ dL1z

≥ 11h
4
3

1000
,

contradicting the fact that the minirow Ri,j belongs to Jj and proving our claim.

Note that by a similar reasoning we can get

card (L) ≤ card (M) +
n0

5
.

Since card (R) ≤ n0
500 it follows

card (L) = n0 − card (M) − card (R)

≥ n0 − card (L) − n0

5
− n0

500
,

(8)

so 2 · card (L) ≥ 500n0
500 − 100n0

500 − n0
500 = 399n0

500 and hence

card (L) ≥ 15n0

40
and card (M) ≥ 15n0

40
.

Step 6. In this step we utilize some properties of touching squares and set up certain
refinements from which we argue the final step.

Note that since none of the matrices in the set {U,L,R} have rank one connections on
the edges of our equilateral diamonds Di,j, then for any couple of neighboring squares
Si,j and Si+1,j which are both in G there holds either

Si,j ∈ P1 and Si+1,j ∈ P1

or
Si,j ∈ D1 and Si+1,j ∈ D1.

The above means that for any “good” square we can build up a vertical interval of only
“good” squares going up within P1 or Q1 until we hit a “bad” square. Also, given an
i ∈ Φ1 and k ∈ Vi since the minirow Rk,i is at least distance h

2
3 away from any other

minirow indexed by Vi, we thus can build up an interval of
[
h− 1

3

]
squares going up (and

starting from a “good” square in Rk,i) without crashing into any other minirow of Vi.

Let G̃ ⊂ G be the set of squares Si,j for which we can find an unbroken line of
[
h

1
3

]
“good” squares in G vertically above and including Si,j. Let Ui ⊂ Vi be the subset of
minirows of Rk,i which contain at least 65n0

80 squares in G̃.
Define

Φ2 =
{

i ∈ Φ1 : card (Ui) ≥ card (Vi)
2

}
.

Now for i ∈ Φ2\Φ1 we have card (Ui) < card(Vi)
2 and hence for any j ∈ Vi\Ui there are at

least 15n0
80 “bad” squares, within

[
h− 1

3

]
squares starting from some square in Rk,i. Since
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the minirows indexed by Φ2\Φ1 are more than
[
h− 1

3

]
squares apart, we conclude that

there are at least card (Vi\Ui) groups of at least 15n0
80 “bad” squares, that is at least

card (Vi)
2

· 15n0

80
“bad” squares in the block Bi. In view of card (Vi) ≥ 2

30h
2
3
,

card (Φ2\Φ1)
1

30h
2
3

15

160h
2
3

≤ card (Φ2\Φ1)
1

30h
2
3

15n0

80

≤ 1

5000h
5
3

,

so
card (Φ2\Φ1) ≤ 320

1000h
1
3

,

(9) card (Φ2) ≥ 9

10h
1
3

− 32

100h
1
3

≥ 5

10h
1
3

.

On the other hand, for every i ∈ Φ2 there are at least 1

30h
2
3

minirows indexed by Ui.
Thus for each k ∈ Ui there holds

P1 ∩ Rk,i ≥ 15n0

40
and D1 ∩ Rk,i ≥ 15n0

40
,

and by definition of Ui we can find 15n0
80 squares in P1 ∩ Rk,i which launch intervals of

squares in P1 of length
[
h− 1

3

]
going up. In a similar fashion we find 15n0

80 squares in

D1 ∩ Rk,i which launch intervals of squares in D1 of length
[
h− 1

3

]
going up. Note that

the intervals launched from squares in Rk,i will be disjoint from those launched from Rl,i

for any k �= l ∈ Ui.

Step 7. In this step we use the particular properties of the coordinate function u2.
Because u is piecewise affine on the triangles T

(1)
i,j , T

(2)
i,j we know that for any Si,j ∈ G

(10) sup
z∈Di,j

∣∣∣∣∂u2

∂x1
(z)

∣∣∣∣ <
1
25

.

Also, when Si,j ∈ P1 then

(11) sup
z∈Di,j

∣∣∣∣∂u2

∂x2
(z)

∣∣∣∣ <
1
25

,

and when Si,j ∈ D1 then

sup
z∈Di,j

d

(
∂u2

∂x2
(z) , {−1, 1}

)
<

1
25

.

Fix an i ∈ Φ2. For any k ∈ Ui we can distinguish two groups of 15n0
80 squares that

launch intervals of length
[
h− 1

3

]
, contained in P1 and D1 respectively, all starting from

the minirow Rk,i. On every interval in P1, the function u2 must remain within h
2
3

25
distance from a constant. On the other hand along any interval in D1, the derivative
∂u2
∂x2

(z) cannot change its sign because all the squares along this interval are “good”.
Thus the difference in value at one of the the endpoints of the interval must be at least
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1 − 1

25

)
h

2
3 . We can hence find some horizontal line l of length at least h

2
3

4 such that for
each x ∈ l ∫ x+oxe1

x

∂u2

∂x1
(z) dL1z ≥ h

2
3

10
,

with some ox ∈
(
0, h

2
3

)
.

Let Ψi,k denote the rectangle whose base is the line l and whose height equals h
2
3 . We

have ∫
Ψi,k

d (Du (x) ,K) dL2x ≥
∫

x∈l

∫ x+oxe1

x

∂u2

∂x1
(z) dL1z

≥ h
4
3

40
.

For every i ∈ Φ2, card (Ui) ≥ card(Vi)
2 ≥ 1

30h
2
3

so letting

Y = {(i, j) : i ∈ Φ2, k ∈ Ui}
we have

h
1
3

500000
≥

∑
(i,j)∈Y

∫
Ψi,k

d (Du (x) ,K) dL2x

≥ card (Y )
h

4
3

40
,

and card (Y ) ≥ card (Φ2) 1

30h
2
3
≥ 1

60h in view of card (Φ2) ≥ 1

2h
1
3
.

Finally we receive
1

60h
≤ card (Y ) ≤ 40

500000h
,

which is a contradiction implied by assuming (1). The proof is done.

3. An application

As we have mentioned in the Introduction, due to the very strong result of Šverák [10]
it is known that any matrix F in the quasiconvex hull of the set K = SO (2)∪SO (2) H
actually stays in the second lamination convex hull of these wells. From this result it
could be expected that minimizing the functional (i.e. I (u) =

∫
Ω d (Du (x) ,K) dL2x)

over the class of functions that are piecewise affine on a triangular grid and satisfy affine
boundary condition F , the energy scales like h

1
3 (where h is the size of the triangular

mesh). Suppose we were not aware of Šverák’s characterization and wanted to find it by
making numerical tests. Recall that the quasiconvex hull of K coincides with the set of
matrices F for which the two well functional can be minimised to zero over the function
class with affine boundary condition F (see [8] Theorem 4.10). Hence if we minimise the
functional over the function class Ah, we expect the energy to go to zero as we decrease
the triangulation size h if and only if F is in the quasiconvex hull of the wells. Now due
to Šverák’s result, for any grid size h the minimal of the functional is necessarily bounded
by Ch

1
3 . On the other hand if the conjectured lower bound for the energy is true then

we automatically know that numerical tests will not be able to improve on this; as we
move the grid size h up and down within the admissible ranges, we will see the energy of
the functional always staying of the order h

1
3 . From this we could reasonably conjecture
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that the quasiconvex hull of SO (2) ∪ SO (2) H is the second lamination convex hull (if
we didn’t already know it).

Let φ be now the functional having wells

K = SO (3) A1 ∪ SO (3) A2 ∪ SO (3) A3,

where the Ai are given by

A1 = diag

(
1
λ2

, λ, λ

)
, A2 = diag

(
λ1,

1
λ2

, λ

)
, A3 = diag

(
λ1, λ1,

1
λ2

)
.

Recall the Ai are exactly the zero energy gradients of the cubic to tetragonal phase tran-
sition. The quasiconvex hull of K is unknown. However if (as it might be expected) the
quasiconvex hull is equal to the m-th order laminate of K for some m, then by the argu-
ments sketched above we can conjecture that the energy of the functional when minimised
over the class of piecewise affine on a triangular grid functions to scale in a very specific
way as we move the grid size h up and down. (The edges of the triangles in the mesh
should not be in the set of rank one connection of {SO (3) A1, SO (3) A2, SO (3)A3}.)

Conversely if the energy of the functional over the considered function class has the
mentioned scaling, it would suggest a characterization of the quasiconvex hull of K. For
the sake of example, since it is known [5] that Id ∈ K(4) (the 4-th lamination convex
hull of K) we could take the guess that K(4) consists of the entire quasiconvex hull. In
this case by estimating the energy of the functional acting on a fourth order laminate,
the functional could be expected to scale like h

1
9 .

Since for even the biggest computers, the range of h for which we can carry out these
tests is quite small, in order to observe the above mentioned scaling, it is important
to have some reasonable numerical constant for c in the lower bound. In this note an
attempt to estimate c has been made; sharper estimates would require more careful
reasoning.

Acknowledgments. Georg Dolzmann read a preliminary version of this note and made
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