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SOME FINE PROPERTIES OF CURRENTS AND
APPLICATIONS TO DISTRIBUTIONAL JACOBIANS

CAMILLO DE LELLIS!

ABSTRACT. We study fine properties of currents in the framework of
geometric measure theory on metric spaces developed by Ambrosio and
Kirchheim in [5] and we prove a rectifiability criterion for flat currents
of finite mass. We apply these tools to study the structure of the dis-
tributional Jacobians of functions in the space BnV, defined by Jerrard
and Soner in [9]. We define the subspace of special functions of bounded
higher variation and we prove a closure theorem.

1. INTRODUCTION

In this paper we generalize some tools of geometric measure theory on
metric spaces developed by Ambrosio and Kirchheim in [5] and we apply
them to the space BnV. This space, which has been defined by Jerrard and
Soner in [9], is composed, roughly speaking, by those functions such that
their weak Jacobians are measures.

If u € C1(R™,R"), with m > n, then the Jacobian of u can be seen as
the differential form w = duj A ... Adu,. Of course this notion can be easily
extended to functions u € W1 but the main idea for a broader extension
is based on the fact that w = d(uidus A ... A duy). Indeed we need less
summability on the derivatives of u to handle the form v = uidus A ... Adu,
and we can define the weak Jacobian of u as the exterior derivative of v in
the distributional sense. A lot of attention has been devoted to this notion
in the last years and we refer to [9] for an account of its applications and of
the main papers on the argument.

In this work we propose to think of uidus A ... A du,, as a current T via
the natural action

T(dwi A... \Ndwp—ni1) =

/ uy det(Vug, ... , Vuyp, Vwr, ... , Vwpy_py1)dL™.

Thus we can define the weak Jacobian [Ju| as the boundary of T' and the
space BnV can be identified with those u such that [Ju] is a normal current.
Instead of working in the framework of classical geometric measure theory
we prefer to use the “metric currents theory” of [5] because we think that
it is much easier to use and provides more powerful tools for studying the
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structure of weak Jacobians. The main idea of this approach, suggested by
De Giorgi in [6], is to replace the duality with differential forms with the
duality with (k£ + 1)-ples of Lipschitz functions. We hope to show that in
this way we simplify notations and proofs. In the last section we define a
new class of functions, called SBnV, that is a generalization of the space of
special functions of bounded variations (see [1], [3]). We prove for SBnV a
closure theorem which is a generalization of the closure theorem for SBV
(see Theorem 5.5 and Theorem 5.7).

The definition of SBnV is induced, as a particular case, by a more general
decomposition of flat currents of finite mass, which is proposed in section
3. Indeed we show that it is possible to decompose every k-dimensional flat
metric current 71" of finite mass into two currents of finite mass 1) and T,
such that:

(a) Tj is concentrated on a H*- rectifiable set S;
(b) the mass of T} is absolutely continuous with respect to H¥LS;

(¢) T, neglects all H* o-finite sets.

One of the consequence of this decomposition is the following criterion of
rectifiability for flat metric currents:

(A) a flat k-dimensional current 7' of finite mass on F is rectifiable if and
only if for every Lipschitz function 7 : E — R¥ almost every slice of T with
respect to 7 is composed of atoms (see Theorem 3.3).

This criterion has been already proved by Ambrosio and Kirchheim in [5]
for normal metric currents, and by White in [13], with a different approach,
for flat currents on Euclidean spaces with coefficients in normed groups.

The paper is organized as follows.

The next section contains the basic definitions and theorems (available
in the first part of [5]) of geometric measure theory on metric spaces. We
develop the main tools for proving criterion (A) and we introduce the notion
of BV functions that take values in metric spaces (first defined by Ambrosio
in [2]).

In the third section we define the decomposition of currents and we prove
that the lower dimensional part of a flat current is rectifiable. In order
to prove this fact we need a basic BV-estimate on the slicing of currents
(first due to Jerrard and Soner in the Euclidean case and then developed by
Ambrosio and Kirchheim).

In the fourth section we apply to BnV the tools just developed. Taken
a function v € BnV we single out a “lower dimensional part” [Ju]; of the
Jacobian and we prove that it is a rectifiable current. The remaining part
of the Jacobian (namely [Ju] — [Ju];) can be split further into two currents:
one that is absolutely continuous with respect to the Lebesgue measure and
the other that is singular (which we call Cantor part, in analogy with the
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case of functions of bounded variation). Thanks to its flatness the lower
dimensional part of [Ju| can be represented as

([Julp,w) = | m(z)(1(z), w(z))dH™ ™"
S
where S; is a HF-rectifiable set, 7(z) is its approximate tangent space in x
and w is any smooth (m — n)-form.

Then we analyze the structure of the absolutely continuous part of the
Jacobian and extending a result of Miiller (see [11]) we prove that it can be
represented as

[Jule = H(dup A ... Aduy) L™

where H is the Hodge star operator. Thus [Ju]; + [Ju], can be represented
as vdu, where v is a simple covector and y is a measure. We conjecture that
even the Cantor part has a similar structure but we are not able to prove it.

In the last section we define the functions of special bounded higher vari-
ation as those BnV functions whose Jacobian has zero Cantor part. Finally
we prove that under suitable conditions (i.e. equiintegrability of the abso-
lutely continuous part and equiboundedness of the Hausdorff measure of the
singular supports) a closure property holds for SBnV.

2. METRIC CURRENTS

Throughout the paper (E,d) is a complete metric space and Lip,(FE)
is the space of Lipschitz and bounded real functions on E. We denote
by DF(E) the set of all (k + 1)-ples (f,g1,...,gx) of functions such that

fs915--- sgr € Lipy(E) and we refer to it as the space of k-dimensional
differential forms (or simply k-forms). For every k-form w = (f,g1,... ,9k)
we define its exterior derivative as the (k + 1)-form

(]-) dw:(lafagla"' 7g/€)'

If $: F — E is Lipschitz and bounded (and F' is a complete metric space),
we define the pull-back of w as the k-form on F' given by

(2) pfw=(fog.giog,... .gxod).

Ifwy =(f,91,--- ,9n) and wy = (w, hy,... , hi) then their exterior product
is the (n + k)-form

w1 Awg = (fw, g1, yGn,h1,...  hg).
Let us fix w = (f, 91,... ,9,) € D"(E). For every i we define

Ci := {C open| g; is constant in every connected component of C'}.

After setting C; := E\ (U{U € C;}) we define the closed set
(3) supp (w) = supp (f) N ) Ci
i=1

and we refer to it as support of w.
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Definition 2.1. Let k € N. A k-dimensional current in E is a functional
T : D¥(E) — R such that

(a) limiT(f,gZi,... ,gfc) =T(f,91,--- s k) ifgfC — g pointwise and
(Lip (g,)) is bounded for every k;

(b) T is multilinear with respect to (f,q1,-.. ,9k);

(c) T(f,915--- ,9r) = 0 if supp ((f, 91, - .- , gx)) = 0.
We denote by My(E) the vector space of k-dimensional currents.

Remark 2.2. We could replace D¥(E) with D¥(E), namely the set of dif-
ferential forms with compact support, and we could define as well a k-
dimensional “local current” as a linear functional that satisfies conditions
(b), (c) above and condition (a’) below:

(a7) Lm; T(f, 9%, ,9;) = T(f,91,--- »9x) if g = gr pointwise, (Lip (g},))
is bounded for every k and supp ((f,gi,--- ,g})) is contained on a com-
pact subset K for every 1.

All the definitions and theorems of this paper work as well with slight mod-
ifications. Moreover in the applications to distributional Jacobians we will
use local currents.

Definition 2.3. Let T be a k-dimensional current. If there exists a o-finite
positive measure p such that

k

(4) T ) < [[Lin (o) [ 15l

i=1 R

then we say that T is of finite mass. We call mass of the current T the
minimal p that satisfies (4) and we denote it with |T||. We say that T is
concentrated on a Borel set B if |T|(E\B) = 0.

We denote by My (FE) the vector space of k-dimensional currents of finite
mass.

From now on, given a current T of finite mass we will denote by M(T')
the total variation of ||T|| in E. If T has not finite mass we set M(T") = co.

Remark 2.4. We will always assume that ||T|| is concentrated on a o-
compact set. However, as observed in [5], this fact can be proved if E is
separable or if the cardinality of E is a Ulam number. The assumption that
the cardinality of any set E is a Ulam number is consistent with the standard
ZFC theory.

Definition 2.5. Given a sequence (T,,) C My(E), we say that
(5) T,—T € My(E)

if Tp(w) = T'(w) for every w € D*(E).
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Sometimes we will write (T',w) for T'(w). As we can see in [5] from the
assumptions of definition 2.1 it follows that a k-dimensional current is always
alternating in (gi,...,gx); hence we use for differential forms the usual
notation

fdgi N ... Ndgy.

Sometimes, for sake of simplicity, we will denote by g the n-tuple (g1, ... ,gn)
and we will write fdg for fdg; A...Adg,. A trivial computation shows that
if w e D"(E), v € DF¥(E) and T € M, x(E), then

TdwAv)) =T(dw Av)+ (=1)"T(w Adv).
Moreover every current satisfies the usual chain rule
T(fdgi A...Ndgn) +T(g1df A...Ndgp) =T1d(fg1) A-...NAdgp).
If T € My(RF), then for every g € C}(R¥,R*) and f € Lip (R¥) we have
T(fdgi A ... Ndg,) =T(f det(Vg)dzi A ... Adzy,)

(with z; we denote the projection on the i-th coordinate of the canonical
system of R¥).

We can define a boundary operator 0 : My — Mjy_1 with the duality
relation 0T (w) := T'(dw); it is not difficult to see that 0T satisfies conditions
(a), (b) and (c) of 2.1, but it can fail to be of finite mass, even if T itself has
finite mass.

Definition 2.6. If T' and 0T are currents of finite mass then we call T
normal. We denote by N*(E) the vector space of normal currents.

Remark 2.7. Given T € N*(E) we can define
1T w = [TI[(E) + [|oT || (£).

It is easy to check that N*(E) endowed with the norm || - ||y is a Banach
space.

Definition 2.8. Let T be a k-dimensional current on . We define the flat
norm F(T') as

inf{M(T — 0S) + M(95)|S is a (k + 1)-dimensional current}.

Definition 2.9. Let T be a k-dimensional current. We say that T is o flat
current if there exists a sequence of normal currents (1)) such that

lim F(T, — T) = 0.

n—oo

It is easy to see that a current T of finite mass is flat if and only if there

exists a sequence of normal currents (7),) such that M(T,, —T') — 0. Indeed
one implication is trivial because, for every current S, we have F(S) < M(S).

Moreover if T is a flat current of finite mass then for every n there exist
T, € Ni(E) and S;, € M (E) such that

M(T — T, — 0S,) + M(9S,) <

S |-
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So we have that T} := T,, + 0S,, is a normal current and M(T — 7)) < 1/n.
A useful consequence of the 1111last statement is that for every current T
we can find a sequence of normal current 7}, such that

(6) lim M (T — ZTn> =0
i=1

(7) 3 M(T) < o
=1

If (6) and (7) hold we simply write

[0}
T = ZTH.
=1

Definition 2.10. We say that a k-dimensional current T of finite mass is
rectifiable if it is concentrated on a k-dimensional rectifiable set and |T|| <<
HE.

As for the notion of boundary, we can define by duality the push-forward
of currents. Indeed, given a Lipschitz and bounded map ¢ : £ — F and a
k-dimensional current 7" on E it is not difficult to check that ¢4T defined
by

(8) (ppT,w) = T(¢*w)
is a k-dimensional current. Moreover if T' is a current of finite mass, then
¢4 T has finite mass and

(T < d#IT||-
(We recall that if p is a measure then its push forward ¢4 p is defined by
Ppp(U) = p(¢ 1(V)).)

From these definitions one can develop a self-contained theory of normal
currents in £ which is equivalent to the classical theory in the Euclidean
case. Hereafter we study the aspects that are useful for our purposes. We
begin with the definitions of restriction and slicing.

Definition 2.11. Let T € My(E) and w € D"(E), with h < k. We define
the restriction of T' to w as the (k — h)-dimensional current given by

TLw(v):=T(wAv).
Remark 2.12. If T is a current of finite mass, then we can extend its action
to the (k + 1)-ples (f,g1,...,9gx) such that g; € Lip,(E) and f is bounded

and Borel measurable. Indeed, T'L_dg is a 0-dimensional current of finite
mass and so there exists a finite measure p4 such that

9) (T,wdg) = (T'Ldg,w) = / wdfg for every w € Lipy(E)
E
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and
k
igllvar < T Ldg|l(E) < (H Lip(gz')) 1T]|(E).
i=1

Using equation (9) the action of T'Ldg can be easily extended to every Borel
measurable and bounded function. Of course, if f¥ — f uniformly, g% — g¢;
pointwise and (Lip (¢¥)) is bounded for every i, then

(T, fldgt A ... Ndgt) — (T, fdgi A ... A dg).

From this last last remark it follows that if T is a current of finite mass
then for every Borel set A we can define the current T'L A:

Moreover ||[T'L xall < [T

Theorem 2.13. Let T be a k-dimensional normal current in E and 7 a
Lipschitz function from E to R", with h < k. Then there exist normal
(k — h)-dimensional currents (T, m,x) such that:

(i) (T, 7, x) and (T, 7, x) are concentrated on ENw (z);
(ii) for every ¢ € C.(R),

(10) /Rh (T, 7, z)p(x)dL" = T (¢ o 7)dm;

(iii)
(11) / (T, 7, 2)||dCh = || T Ldnr].
R
We refer to [5] for the proof. Such a map (T, 7, x) is called slicing of

T with respect to w. The previous theorem can be easily extended to flat
currents.

Theorem 2.14. Let T be a k-dimensional flat current of finite mass on
E and © : E — R" a Lipschitz function (with h < k). Then there exist
(k — h)-dimensional flat currents (T, m,x) of finite mass such that:

(i) (T,n,z) is concentrated on E N7~ (z);
(ii) for every ¢ € C.(RM),

(12) /Rh (T, 7, z)p(x)dL" = T L (¢ o )dm;

(13) / (T, 7, o)A = |TLdn].
Rh
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Proof Let T}, be a sequence of normal currents such that

o
T=> T,
=1

From Theorem 2.13 we have that there exist normal (k — h)-dimensional
currents (7,7, z) that verifies conditions (a), (b) and (c) above. Let us
think of (T}, 7,z) as an L' function of z that takes values on the Banach
space My_p(E) (endowed with the norm M). Condition (c) and inequality
(7) imply that

o0
(14) S (T, )

i=1
is a totally convergent series in L'(R", My_j;(E)). We define (T, T, -) as the
sum of (14). It is easy to check that T verifies conditions (i), (ii) and (iii).
Moreover we can extract a subsequence Tj,) such that for Ll-ae e R

nh_}rgloM ((T,w,x) - Z<Tj(n)’7r’x>> =0.

i=1
We conclude that, for £" a.e. =, (T, 7, z) is a flat current of finite mass.
O
As we will see at the end of this section the slicing map of a normal current
has a remarkable property. In order to state it we need the definition of map
of bounded variation from an open set of R" to a weakly separable metric
space (M,d) (see [5] and [2]).

Definition 2.15. We say the metric space (M,d) is weakly separable if
there exists a countable family F C Lipy(M) such that

(15) d(z,y) = Suglso(w) —o(y)  for every x,y € M.
pe

Definition 2.16. Let {u;}icr be a family of positive measures p on E. Then
for every Borel subset of E we define

\/ wi(B) := sup {ZMZ(BZH B; are pairwise disjoint and U B; = B}
el i€J ieJ
where J runs through all countable subsets of I.

Definition 2.17. Let U C RF be an open set, (M,d) a weakly separable
metric space and u : U — M. We say that u is of metric bounded variation
if

(a) pou is of locally bounded variation for every ¢ € F;

(b)

IDullarsv = \/ |D(pou)|(£2) < oo.
pEeF
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We remark that this definition does not depend on the choice of F and
that

IDullypy = \/  ID(pou)()
@€Lipy(M)

(see [5] for the proofs). From now on we will denote by ||Du| the measure
VID(pou).

The key of the proof of Theorem 3.2 in the next section is the fact that
the slicing map of a k-dimensional normal current 7" with respect to © €
Lip(E,R¥) is a map of metric bounded variation if we endow Mg (E) with
the flat norm

F(T) = sup{(T, )¢ € Lipy(F), Lin(¢) < 1}.

This observation, due to Jerrard and Soner in the case of weak Jacobians
([9]), has been developed by Ambrosio and Kirchheim ([5]) in the framework
of normal currents. (With a little effort one can see that the last definition
of flat norm coincide with that given in Definition 2.9 when £ = R".)

Theorem 2.18. Let E be a weak separable metric space, T a normal n-
dimensional current in E and 7 : E — R"™ a Lipschitz map. Then the
slicing map

S:R">z = (T,m,z) € My(E)
is metric bounded variation if we endow Mq(E) with the flat norm. More-
over the M BV semi-norm of (T, 7, x) is bounded by the norm of T in Ni(E).

Proof. With little effort one can see that there is a countable family
F C Lipy(E) such that

F(T) = sup{{T’ )¢ € 7}
and Lip(¢) <1 for every ¢ € F. We can think of ¢ € F as a Lipschitz real
function defined on M. Then (recall Definition 2.17) we will show that
(a) for every such ¢, ¢ o S(z) = (S(x), ¢) is a function of locally bounded

variation (as real-valued function of z);

(b)
V ID(S 0 §)| < nmy|IT|| +nmg| T
PEF

Indeed, fix a bounded ¢ such that Lip(¢) < 1. If we consider a test function
1 € CLH(R™), then

(=) [ S(¢(x))dsp(z)da (—1)"'TLdn(¢p it o )

R”

T(¢pd(sp o m) A di)
= 0T (¢(¢p om)dm;) — T (¢ o wdep A d7ty)
< |0T[[( o ) + |IT'||(4) o ),
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where di = dmy A ... ANdm;_1 ANdmipi Ao . Admty— . Then ¢o S is a function
of locally bounded variation and

[D(¢ 0 8)| < nmy|[T[| + nmy | OT||-

3. DECOMPOSITION OF CURRENTS AND RECTIFIABILITY THEOREM

Given a k-dimensional current 7" of finite mass we can find a H* o-finite
set L such that:

|IT||(F) = 0 whenever H*(F) < oo and EN F = ).
We construct this set a follows. Let us consider

K = sup{||T||(L)|L is H* o-finite}.

We choose a sequence (L,) of H¥ o-finite sets such that ||T'||(L,) 1 K and
we put L7 = UL,. Then we have that Ly is H* o-finite and ||T||(L7) = K:
hence L7 has the desired properties.

Definition 3.1. Let T be a k-dimensional current of finite mass and Lt be
defined as above. Then we define

T, := TL(E\L7)
(16) { T TU(Lr)

and we refer to T as lower dimensional part of T'.

Of course ||T,|| and ||T;|| are mutually singular and 73, +7; = T'. Moreover
ITull < ||IT|| and || ;]| < ||T)|. If E is HP o-finite for some p > k then we
define ||T"||, as the absolutely continuous part of ||7'|| with respect to HP. Of
course ||T||, and ||T;|| are mutually singular and so there exists a Borel set
Ay disjoint from Ly such that |T||L Ap = ||T||, . Therefore we can define

T, =T, Ay
T.=T,L(E\Ar)

and we refer to T, and T, as, respectively, absolutely continuous part and
cantor part of T. Notice that T, +T1,.+ 1, =1T.

When T is a flat current of finite mass it is easy to see that there is a
Borel set Ry such that ||7;|| is absolutely continuous with respect to the
measure H¥ L Rp. The main result of this section is that in this case 7} is a
rectifiable current: for proving it we need only check that Ry is rectifiable.

(17)

Theorem 3.2. If E is separable and T is a k-dimensional flat current of
finite mass on E, then Tj is a rectifiable current.

A consequence of this fact is the following criterion of rectifiability, ob-
tained in another framework by White in [13].

Theorem 3.3. Let T be a k-dimensional flat current of finite mass on a
separable metric space E. Then T is rectifiable if and only if for every
Lipschitz function = : E — R* and for £* a.e. x € RF the sliced current
(T, 7, x) is supported on a finite number of points.
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We remark that one implication is trivial. Indeed if T is rectifiable and
7 : E — R¥ is Lipschitz, then (T,7,z) is concentrated on 7' ({z}), which
for almost every x consists of a finite number of points.

Before proving Theorem 3.2 and the other implication of Theorem 3.3 we
need some tools.

Theorem 3.4. Let E be a separable metric space and let us endow My(E)
with the norm

F(T) = sup{(T, $)|¢ € Lipy(E), Lip(¢) <1}
If S € MBV(R* E) and K C E is a compact set then there exists an LF-
negligible set A € R¥ such that

S:={y e K||S)|({y}) >0 for some x € RF\ A}
is countably H*-rectifiable.

Before proving this theorem we introduce the notion of maximal function
for M BV mappings. Given a function € M BV (RF, M), where M is a
weakly separable metric space, we set

[ Dul[(By ()

MDu(z) := sup -

p>0 Wrp
(M Duw is known in the literature as the mazimal function of the measure
||Dwl|). It is not difficult to see that this function is finite for almost every z:
in fact we can estimate £¥({M Du > A} from above with a constant times
|Dul|(R*)/X. As it happens for classical real-valued functions of bounded
variation, M Du provides a Lipschitz property for w.

Lemma 3.5. Let (M,d) be weakly separable and S:RF — M a map of
metric bounded variation. Then there exists N C RF of measure zero such
that

(18) d(S(x),S(y) < (MDS(x) + MDS(y))|lz —y|,  Va,y € RM\N
where ¢ depends only on k

Proof Let us choose a family F of weakly dense Lipschitz functions. Then
for every ¢ € F we define L, as the set of Lebesgue points of ¢ o S (which
is a real function on RF). For every z,y € L, we claim that inequality (18)
holds with w = ¢ o § in place of S.

Indeed, let us choose a ball B of radius R = |z —y|/2 centered at (z—y)/2;
we obtain

0(@) — w(y)] = R,c/'“)m_y| Ay,

|w(z / [w(z) — w(y)]
_ka’“/ Ix—zl G +ka’“ 2 =yl +

1 w(e) —w(z)| w(y) ~w(z)]
<o (/Bm 2= 2] “/Bm(y) vy d)
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Moreover we have

_ lo(@) —w@)|, " Dwl(Bir(z) e
wi(2R)* /Bm(z) |z — 2| d S/0 wr(tR)F) dt < MDw(z),

and the claim easily follows.

Now, if we consider ) Los, recalling that

pEF
d(8(x),S(y)) = sup |p o S(z) — o S(y)|
pEF

and
| DS|[(By())

MDS(z) = sup -

p>0 Wrp

[1D(p 0 S)I(By(x))
k

Y

sup — MD(p 0 S)(x).

p>0 Wgp
we obtain (18).

Proof of Theorem 3.4 First of all we set
A:= N U{z € R¥|MDS(z) = o0},
where Nj is the set of measure zero that plays the role of N in Lemma 3.5.

Of course H¥(A) = 0.
Following [5] we define Z. 5 as the set of points z € R¥\ A such that

(a) MDS(z) < 1/(2¢);

(b) for every z € K such that ||S(z)||({z}) > ¢ there holds
18 (2)[1(Bss (z)\{z}) < /3.
Next we define R, 5 := {z € E|||S(2)||({x}) > € for any z € Z. 5}. Ob-

serving that
S = U RE,(57
£,0

we will prove that for each €,6 the set R, s is HF-rectifiable. Indeed, for
every =,z € R, and every z,2' € Z, 5 such that

(1) IS()I({z}) = &, [S(2)[[({z"}) = &,

(i) d(z,a) <34,
it holds

3c(0+1)

(19) d(z,z') < |z — 2|

Before proving this estimate we remark it implies that R, s B is the image
of a Lipschitz function whenever diam (B) < §: indeed for any z € Z. ;N B
there is an only one z = f(z) € R.; such that ||S||(z) > €; moreover f is
Lipschitz and, if D is the domain of f, f(D) = BN R, 5.

Now we complete the proof by showing that (19) holds. Let us set d =
d(z,z') and consider a Lipschitz function ¢ : E — R such that
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(a’) ¢(y) = d(y, ) for every y € By(z);
(b’) ¢ =0 in R™\ Bys(z);

(¢’) sup|¢| = d and Lip(¢) < 1.
We have |(S(2))(¢)| < ed/3 and |(S(2'))(¢)] > €6 —ed/3, so we get
%d($7$1)| < |(S(N))(¢) = (8(2))(#)] < (6 + DF(S(2) — S(2'))
< ¢(6+1)(MDS(z) + MDS(2"))|z — 2|

Recalling that M DS(z) < 1/(2¢), we obtain the desired estimate.
O
Proof of Theorem 3.2 We need only prove that 7} is concentrated on
a HF o-rectifiable set. First let us fix a Lipschitz function = : E — R,
We want to prove that T;L drn is concentrated on a rectifiable set. We set
Sp(z) = (T, dr, ) and we claim that

(S) there exists a set N C R* such that £¥(N) =0 and
Sy :={y € E|||S:(2)|[({y}) >0 for some z € R*\N}

is countably rectifiable.
For proving it let us choose a sequence T, of normal currents such that
(i) M(T —Ty,) — 0;

(ii) there exists a set N° C R¥ such that £¥(N>°) =0 and
lim M(S(z) — (T, m,z)) =0
n— 00

for every z € RF\N.

To simplify the notation we write S,(z) = (T, 7,xz). We remark that if
(up) is a sequence of finite measures and there exists a measure p such that
lttn, — t]lwar — O, then the set of atoms of u is contained in the union of the
sets of atoms of u,. Recalling that M(E) can be represented as the space
of finite measures on E, we conclude that for almost every z € R¥\N>

{2llSx(2)ll(z) > 0} < (JL=llISa(2)(2) > 0}.

Using Theorem 3.4 we infer that for every i there exists a set N* C R¥ of
measure zero such that

St:={z € B|||Si(z)||(z) >0 for some z € R*\N;}
is countably rectifiable. If in statement (A) we set

N:NOOUUN,-
7
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then we have -
S-c s
i=1

We conclude that S, is countably rectifiable.
Now, let us prove that

(20) |73 Ldr[(E\S,) = 0.

Recalling Definition 3.1 we must only check that |7 dn||(A) = 0 for every
H* o-finite set A such that AN S, = 0.

Since A is H* o-finite, for a.e. € R¥, (771{z}) N A contains at most
a countable number of points; this fact combined with AN S; = @) implies
that, for a.e. z € R¥, ||S;(x)|/(4) = 0. Then we have

1T Ldr||(A) :/Rn 157 (2) | (A)dL* (z) = 0

and this proves (20).

Now we recall that ||| is concentrated on a o-compact set; because of
this fact it can be proved (see [5], Lemma 5.4) that there exists a countable
set D C Lip(#) NLipy(E) such that

(21) 1Tl = \/{IT Ldr|, ... ,m € D}.
If we take the countably rectifiable set
S = U{Sﬂ|7r1,... , 7 € D},

then from (21) it follows that | T;||(E/S) = 0.
O
Notice that if we are in the hypotheses of Theorem 3.3, then we can
reason as in the previous case. In fact we have that for every w, T'Ldr is
concentrated on a H* rectifiable set. Then it follows that T" is concentrated
on a H* rectifiable set and coincides with 7j.

Remark 3.6. Assuming that every set has a cardinality that is a Ulam
number, we can drop the assumption that E is separable (see Remark 2.4).

4. DISTRIBUTIONAL JACOBIANS AND BNV FUNCTIONS

In this section we are going to transpose some definitions and concepts
from [9] in the language introduced above. We will work with differential
forms with compact support and local currents, but this does not create
any problem, as observed in Remark 2.2. Finally we recall that what we
call differential forms in this paper are not the usual Lipschitz differential
forms: in terms of the classical theory D¥(R™) is the set of Lipschitz simple
differential forms with compact support.

Definition 4.1. We define the k-dimensional local current Hy, in RF as

Hy(fdg) = /kadet(Vgl,...,ng)dﬁk.
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The continuity axiom (Definition 2.1, condition (c)) is satisfied because
the Jacobian determinant is weakly* continuous in W1*°. We remark that
the classical Hodge star-operator assigns to every w € DF(R") the local
(n — k)-dimensional current given by H,L w.

In the definition of H, L w the regularity assumptions on w can be weak-
ened. In particular, let us suppose that w = fdg satisfies

1. felLpP
2. g € WH(R"* RF);

3. 1/p+k/qg=1/r <1
Then it is well known (see for example [10] or [8]) that the map
F:Wh=(R" R"*) — L"(R") given by
F(U) = fdet(v.gla ooy Vi, Vug, ... ,V’Un_k)

is continuous if we endow L"(R"™) with the weak topology and
Whee(R", R"*) with the weak* one. Even in this case, with a slight abuse
of notation, we define Hy, L w as the k-dimensional local current T' given by

T(fdg) = . fdet(Vagi,... , Vi, Vui, ... ,Vu, )dL".

We will see below that this is a crucial point in the definition of weak Jaco-
bians. In the rest of this section U will denote an open set.

Definition 4.2. Let u € W,-P(U,R") N L*® with U CR™, p > n —1 and

loc
m > n (oru € Whmn/(m+1)) We define j(u) as the (m—n+1)-dimensional
local current (—1)"H,, L(u' Adus A ... A duy).

Definition 4.3. Let u be as in the previous definition. Then we define
[Ju] := 0j(u).
We say that u € BnV(U,R") if j(u) is a normal local current.

The last definition is motivated as follows. Let us put v = uidusA. . . Aduy,
and suppose that v is sufficiently regular (i.e. Lipschitz). Then we have

(Jul,w) = (j(u),dw) = (=1)"Hp(v A dw)
= (1) Ho(— 1) d( A w) — dv Aw)))
= —0H,,(v ANw) + Hp,(dv AN w)
= H,Ldv(w).
We remark that in view of this fact we could have defined j(u) as
sign (7) Hyp, I_(uw(l)duw(Q) VAR duﬁ(n)),

where 7 is any permutation of the set {1,... ,n}. Indeed , if u is a smooth
function, then

(—D)"O(HpLurdug A ... ANduy) = HypLd(urdug A ... A duy,)
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= Hp, L(duy ANdug A ... A duy,)
= H,,Lsign (W)(duﬂ(l) A duﬁ(z) VAN duﬂ(n))
= (—1)"sign (7)Hp, Ld(uﬂ(l)duﬂm) VANRAN duﬂ(n))

(22) = (—=1)")sign (7)0(Hp, L tr(1)ydnz)y A--- A duw(n)).

These equalities follows from the fact that, if 7' is a k-dimensional local
current and w is an h-dimensional form with £ < h — 1, then

T w=(0T)Lw—TLdw.

Now, approximating every u € BnV by convolutions with standard molli-
fiers, we obtain the identity (22) in its full generality. Indeed it is easy to see
that if u, — w in the strong Sobolev topology and |luy|lec < ¢, then j(uy)
converges to j(u) as local current.

Actually j(u) satisfies a stronger continuity result: appropriate weak con-
vergence of the functions induces weak convergence on the Jacobians. More
precisely

Theorem 4.4. Suppose that (uy,),u satisfy the conditions of Definition 4.2
and

1,p1 .

(a) up—u weakly in W, ;

p2 .,
loc?

(b) ug — u strongly in L

(©) (n=1)/p1+1/p2 <1

, 1,n—1
(or up—u in W, "

1o 5 up € C(U) and u, — u uniformly on compact sets).

Then j(uy,) — j(u) as local current.

(For the proof of this theorem we refer to the weak continuity of Jacobian
determinant maps, [10], [8]). If the hypotheses of the previous theorem hold
then we have

([Jun),w) = (0j(un),w) = (j(un), dw) — (j(u), dw) = ([Ju],w).

Now let us see how the local current [Ju] behaves with respect to slicing
when u € BnV. Let us consider a projection m of R onto a subspace of
dimension m — k < m — n. For the sake of simplicity we choose a system
of coordinates and we suppose that 7 is the projection on the first m — k
coordinates: we will adopt the notation R™ 3 z = (z,9) € R™ ¥ x Rk,

We notice that, for a.e. z € R™* j(u(z,-)) is a (z1k—n+1) dimensional
local current in R”: indeed, because of the Fubini-Tonelli Theorem, for a.e.
x the map u(z,-) belongs to the appropriate Sobolev space that allows us
to define

j(u(z,-)) = (=1)"HpLu(z, ) dyi(z, ).

Definition 4.5. We denote by i® the natural identification between R* and
the affine subspace {z} x RF of R™.
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Theorem 4.6. Let u be as in Definition 4.2 and 7 : R™™F x RF — R™—F
a projection, with k > n. Then we have

(23) (j(u),dm,2) = (=1)' (%) gj (ulz, ),
(24) ([Ju],dm,z) = (=1)" (%)% [Ju(z, )]
with | = (m —k)(n—1) and r = (m — k)n.
Proof We use the notations of the previous paragraph to simplify the
calculations. We observe that
ju)ldr = Hy L (urdug A ... Adug ANdxy ... ANdXpy, ).
So, for every fdg € DF—"*! we have
Hp, L (uydug A ... Aduy Adr)(fdg)
(25) = fupdet(Vug, ... ,Vup,e1,... ,em_Vgi,... ,Vgk—_ni1,dz
Rm

= (=)= PE=D [ fuy det(en, ..., e, Vi, Vg) dz,
Rm
where ey, ..., e, are the first m — k vectors of the canonical basis and u
denotes the vector (ug, ..., upy).

We remark that the matrix (e1,... , e, k, Vi, Vg) can be written as

Id Vi Vg
0 Vi Vg

(where Id is the identical k£ x k matrix, 0 is the (m — k) x k null matrix).
Therefore (V,4, Vyg) is a (k x k) matrix and

det(er, ..., em_k, Vi, Vg) = det(Vya, Vyg);
this means that (25) is equal to

@) (0 ) a9y, Vet ) dy da.

Then the expression

[ £t det(9, it ). Voo, ) dy

can be read as

(%) (ulz,-)), f dg).
We conclude from (26) that
R' 32 = S(2) = (-1)'(i") i (ulz, "))

is the slicing for j(u) with respect to d.
Notice that

[Tu]Ldr = (=1)""*(9(j(u) L dr) — j(u)Ld(dm)) = (=1)"*8(j(u)L dr);

hence (—1)"(4%)x[Ju(z,-)] is a slicing map for [Ju].
U
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For the sake of simplicity from now on we will identify the local current
[Ju(z,-)] and its push-forward via i”.

Using the decomposition defined in the previous section, when u € BnV
we can consider [Ju],, [Ju]. and [Ju];; moreover from theorem (3.2) it follows
that [Ju]; is a rectifiable local current. From now on we define S, as the set
on which [Ju]; is concentrated.

From the classical theory we know that there exists a Borel function v
from R™ to the linear space of m — n covectors A,,_,(R™) such that

(27) ([Ju],w) = /m<l/($),W($)>dIIJUII

(where ||Ju|| is the mass of [Ju]). Of course similar representations hold for
the three parts of [Ju]:

(o w / 2))d||Tull,

R™

([Ju]e,w / x))d||Ju||.

R™
([Jul;,w / ))dH™ ",

In fact we can say a little more: from the fact that [Ju] is a flat current it
follows that

vi(z) = m(z)7(z) for H™" a.e. x,

where 7(x) is the approximate tangent plane to S, in z and m is a Borel
measurable real-valued function.

Even for the absolutely continuous part we have a similar property. Indeed
from a result of Miller ([11]) we know that if u € BuV(U,R") with U C R",
then det(Vu) € L}, and [Ju), = det(Vu)L". In theorem 4.8 we will prove
a slight generalization of this result, namely that for a general BnV function
u we can represent [Jul, as

(28) [Julg = Hp L(duy A ... A duy).

Lemma 4.7. Let v € BnV(U,R"), with U C R", and let us choose a
pointwise representative @ of u. Then det(Vu) is summable and

(29) ([Ju]a,w) :/mw(w) det(Vu(z))dL™

Proof We follow the proof of Miiller in [11] and to simplify notations we
identify u and 4.

We know that [Ju], acts on 0 dimensional forms, i.e. on bounded measur-
able functions (recall Remark 2.12 and the fact that [Ju], has finite mass).
So we can write

(Tl f) = | v(@)f(@)ac”

n
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where v € L], _(R™): we only have to check
v(z) = det(Vu(z)) for a.e. x.

Therefore let us fix zy € R"™ such that
(a) zo is a Lebesgue point for v, |[VulP and u (where p depends on the
Sobolev space chosen in Definition 4.2);
(b) ,
gl_rf(l) 8_n||Ju||s(Bs(w0)) =0

(we recall that ||Ju||s is the singular part of ||Jul|).
Without loss of generality we can suppose that g = 0 and u(z) = 0 and
we define the rescaled functions

[—

u® = 6u(f;‘ac).

We observe that they are BnV and they converge strongly (in the appropriate
Sobolev space) to the linear function given by Vu(0), which we denote by
u®. So we have that [Ju®] converges to [Ju®] as local current and this

implies that
(30) giir(l)unE],w) = ([Ju™],w) = /m wdet(Vu(0))zldL™

for every Lipschitz function w with compact support.
On the other hand, for every fdg = w € D!, we also have

(j(u?), fdg) = / éf(x)ul(ex) det(Vug(ex), ..., Vuy(ex), Vg(x))dL™

and, by change of eriables,
— = | W) ) et (Tualo). ..., Tunly). Vatu/e)dy.
Thus we have obtained
(3(0°), ) = (i), wly/e))
from which it follows that
(L70],0) = (i (u) . d)
= 4w, (@) (y/)
= (), (/o)) = S (1 Tulw(y/e))
From condition (b) we have
Lip (w)
671

lim | (ul,,wly/e))| < lim

e—0 g™

[[Julls (e supp (w)) = 0.
So we can write

lim ([Jue], ) = lim ([ Jula, w(y/e))

e—0 e—0 M
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—tim = [ vy wly/e)dy

e—0 gl
= lim v(ex) w(z) dz.
e—0 R"

Since 0 is a Lebesgue point for v, v(ey) converges in L . to the function
v(0). Recalling (30) we have

/ (0)wis = / det(Vu(0)Jw d

for every Lipschitz function w with compact support. Then we conclude
that v(0) = det(Vu(0)).
Now we remark that £" a.e. z satisfies (a) and (b) and this completes
the proof.
O

Theorem 4.8. Let u be a BuV function and let us choose a pointwise rep-
resentative G of u. Then there ezists a Borel function vg : R™ — Ay, (R™)
such that

(31) ([Jula, w) = / Ava(2),w(z))dL™
and
(32) vo(z) = duy(z) A ... ANdiy, for £¥ a.e. z € R™,

Before proving the theorem we put on the space of covectors A, ,(R™)
the norm

v = sup{(, fi A~ A fu) |fi € R™ and || < 1}.

From the classical theory of currents we know that |v,(z)| € L'(R™). This
fact and equation (32) imply that

det(Vui,... ,Vun,Vgi, ... ,Vgm-n) € L}(R™)

for every (m — n)-tuple of Lipschitz functions (g1,... , gm—n)-
Proof First we choose a Borel function v/, such that

([Jula,w) =/m<l/fz($)=w($)>dllJUIla

Recalling that ||Ju||, is absolutely continuous with respect to L™ we set
_ dlJulla
0 = .
acm ¢
Using Lemma 4.7 and the slicing techniques introduced abovexl we will
prove that v, satisfies equation (32). To simplify notations we will identify
u and @ and we put m =n + k.

First we choose an orthogonal system z1, ... ,z,+x and a particular par-
tition of {1,... ,n + k} into two disjoint sets I = {iy,... ,ix} and J =
{iks1,-+ ,lgyn}. We call yi,...,y, the k coordinates z;,...,z; and
Z1,--- ,2n the remaining n; moreover we denote by m; be the projection
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on the coordinates y, ... ,y,. From Lemma 4.7 we know that equation (32)
holds when m = n; hence for a.e. y € R¥ we have

(33 (Ul e f0) = [ det(Vouly, 2)f (. 2)dL" @),

Then, from the slicing property of the Jacobians applied to 7, it follows
that

([JuloLdmp, f) = (—1)"k/ ([July, as £ (y,-))dL" (y)
Rk
= / / (=1)™ det(V,u(y, 2)) f (y, 2)dL™ (z) dLF (y)
Rk n

= /Rn+k f det(VUl, - ,Vumeil" . eik)d£"+k,

Of course this means that det(Vui,...,Vu,,e;,...¢€;) is an L' function.
Moreover this fact is true for every choice of I and, from the multilinearity
of the determinant, we argue that

det(Vuy,... ,Vu,, Vgi,... ,Vgi)

is summable for every Lipschitz and bounded k-tuple (g1, ... ,gx). The con-
tinuity of [Ju], L dn; for every choice of I and the multilinearity of the de-
terminant give the continuity (as k-dimensional local current) of H,, L du,
which is defined by

(HpyrLdu, fdg) = / fdet(Vuy,... ,Vu,, Vgi,... ,ng)dﬁ"“C .
Rn+k
Of course Hy, ;L du is the same local current as [Ju]q.
O

Unfortunately we are not able to prove that something similar holds for
the Cantor part, i.e. that v.(z) is a simple covector for |[Jul. a.e. x.

5. SBNV

In analogy with the case of SBV functions (see [1], [3]) we can define the
space SBnV of special functions of bounded higher variation.

Definition 5.1. We say that a map u € BnV(U,R") is a “special function
of bounded higher variation” if [Ju]. = 0.

The next proposition provides an equivalent definition of SBnV functions.

Proposition 5.2. Let Ind be the collection of all subsets I of {1,... ,m}
such that the cardinality of I is m — n. For every I € Ind we denote by 7y
the projection on the coordinates {x;|i € I}. A function v € BnV(U,R") is
in SBnV if and only if:

(A) for every set of indices I := {iy,... ,im—n} € Ind and for L " a.e.
x, w(xiy, ..., i, ,Y) is a SBnV function of y.
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Proof The “only if” part is an easy consequence of the slicing of cur-
rents. So let us suppose that (A) holds. Then for every I € Ind we have
[JulcLdr = 0. If w is an n-form, we can write

w= Z grdmy
I€nd
and so we obtain [Ju|.Lw = 0. We conclude that [Ju]. =0 O

An interesting fact is that the special functions of bounded higher varia-
tion satisfy a closure theorem similar to that proved in [1] for SBV.

Remark 5.3. From now on when v is a k-covector we denote by |v| the
standard norm induced by its action on k-vectors (see the proof of Theorem
4.6).

First of all we prove the closure theorem in a particular case.

Theorem 5.4. Let us consider (uy) C BuV(U,R") and u € BnV(U,R"),
with U C R™. Let us suppose that:

(a) ug—u weakly in VVlifl, up — u strongly in LV? . and
n—1 1
+ —<1
P p2

(or u—u in Wllo’ffl, up € C(U) and up — u uniformly on compact
sets);

(b) if we write
[Juy] = mg(z)HOL By, + H, Lvy(x),

then |vg| are equiintegrable and H°(Ey) < C < oc.
Then v € SBuV(U,R") and

[Jukle — [Julq
[Juk]l — [JU,][

Proof We follow the ideas of the proof of SBV closure in [1]. First we
notice that in this particular case the weak Jacobians [Ju,] are distribu-
tions. From the fact that the functions v, are equiintegrable, we can find a
subsequence that converges weakly in L' to a function v. To simplify the
notation we will suppose that the whole sequence () converges to v.

We recall that, from the continuity of the Jacobians, [Jug] — [Ju] (which
means

lim ([Jug],w) = ([Ju],w)

k—00

for every Lipschitz function w with compact support). We notice that

[Juk|; = [Juk] — [Juk]o—[Ju] — vL"
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in the sense of distributions. Moreover we can write, for some integer N,

N
[Juk]l = Z aﬂcvémzfv
i=1

Then we can find a subsequence uy(,) such that (possibly reordering each
k(r) k(r)y

set {z]"’,...,zy '} in a proper way):

(B) for every j € {1,...,N} either x?m converges to z; € U or |w§(r)|

tends to infinity.

Recalling that [Ju] —vL" is the limit of [Juy,)]; we obtain that its support
is a finite number of points. But we know that [Ju] — vL" is a measure: so
it is the sum of a finite number of Dirac masses. We can conclude that [Ju]
is the sum of an absolutely continuous measure and a finite number of Dirac
masses.

Moreover we have that

(34) [Juglo—[Julq
and
(35) [Ju)i = [Jug)s—[Ju]s = [Ju];.

(Actually we have proved these last statements only for a subsequence. How-
ever we notice that from every subsequence of u;p we can choose another
subsequence such that (34) and (35) hold. Then (34) and (35) hold for the
whole sequence (ug)).
O
From the slicing property of [Ju] we are now able to prove the next
theorem.

Theorem 5.5. Let us consider (ux) C BuV(U,R") and v € BnV (U,R"),
with U C R™. Moreover suppose that

(a) up—u weakly in VVllo’fl, up, — u strongly in Ly and
n—1 1
+—<1
b p2

- 1,n—1
(or up—u in W,

sets);

, up € C(U) and ur, — u uniformly on compact

(b) if we write
[Juk] = my(z)7e (x)H" "L Ex + Hp Lk (),

then |vg| are equiintegrable and H™ " (E;) < C < oo.

Then u is of special higher bounded variation.
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During the proof we will use the representations of the previous section.
So the restriction of [Ju], to dg becomes

([Julaldg,w) =/ (va(2), w(w) A dg(w)) dL™ (w)

m

and the slicing map with respect to the projection 7 on the first m —n
coordinates is given by

S0 = [ el ndn(e) 42 )

From the slicing property of Jacobians we argue that for a.e. z we can find
a 0-covector valued function &(z,-) (i.e. a real function) such that

([J(u(z, -))]aw) =/ {€(z,y), wly))dL" (y)-

n

We denote &(z,y) by ve(z,y)Ldr and we reamrk that [£(z,y)| < |v(z,y)|
for a.e. (z,y)

Proof We will prove that statement (A) in 5.2 holds.
Let us fix I € Ind: without loss of generality we can suppose that

I={1,...,m—n}.

We denote by z the projection on the first m — n coordinates. Then we can
write, for a.e. z € R™™ ",

(36) [ (un(@,)]a = (vs(@, ) Ldz)H Lo x R”

(37) [ (ur(, )] = ma(z, )H’ L(Sy N2~ H{z})

and of course [Jug(z,-)]. = 0.
We split the proof into several steps.

Step 1 First we suppose that up — u strongly in ijc and weakly in
Wll’pl. Let us fix an open set V CC U and set V,, = V Nz~ 'z}, Let us

oc
extract a subsequence uy of u,, such that

o
S [ ) = e luss vy do < oc.
k:1 m—"n
From the Monotone convergence Theorem we infer that for a.e. x

S lu(a,) — @, 1a)
k

is a convergent series: this implies that ug(z, ) — u(z,-) in LP2(V,) for a.e.
x. Let us choose a family of open sets V,, 1 V such that V,, CC V. We reason
as above for every V,, and we apply a diagonalization argument to conclude
that there is a subsequence (uy) such that ug(z,-) — u(z,-) strongly in L7”.
for a.e. z.
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Step 2 From Fatou Lemma we have that

/ lim inf [Jug (2, )|l 1e v,y dz < liminf/ luk(z, ) e v,y < oo
m—n k—00 Jj—o0

We conclude that for a.e. z we can extract a further subsequence (u)
(possibly depending on x) such that |lu;(z,-)|ly 1.1 (y,) < oo for every open
set V. CC U. Then, recalling that for a.e. = (ug(z,-)) converges strongly in
L¥? to u(z,-), we have that u(z,-) converges weakly in W,o"* to u(z, -).

Summarizing we have proved that for a.e. =z € R™ we can extract a
subsequence (uy) (possibly depending on z) such that

o up(z, )—u(r,) in Wllo’fl and ug(z,-) — u(x,-) strongly in L} . with
(n—1)/p1+1/p2 < 1.

In a similar way we can treat the case in which uy(z,-)—u(z,-) in W,
ug(z,+) = u(x,-) uniformly on compact sets as continuous functions.

Step 3 From the Dunford-Pettis Theorem on L' weakly compact se-
quences (see for example [4]) we know that || belong to some Orlicz space.
So there exists a real convex function ¢ with superlinear growth such that

d(|lve]) < K < 0.
Rm

Then we have

K

Y

lim sup d(|vkLdz])

k—o0 Rm

> lmsup [ B, y) L dz]) de dy
m—n Rn

k—00

2/ liminf/ d(|vk(z,y)Ldz|) dz dy.
R R"

m—-n k—00
This implies that for a.e. z we can find a subsequence k(r) such that
lim [ ¢(|vge)(z,y)Ldz]) de < oo,
k—oo Rn
which means that vy, (7, -) L dz are equiintegrable (we remark that the cho-
sen subsequence depends on ).

Step 4 Reasoning as in the previous cases we have

/ ) likrgglf(’}-[()(suk Nz Yz}))de < liminf/ (HO(Su, Nz {z}))

k—00

Then for a.e. & we can extract a subsequence (u;) (possibly depending on
x) such that

(HO(Su, Nz~ {x}))
is bounded.

Step 5 Now we want to put together all the informations of the previous
steps. We notice that the subsequence extracted on the first step does not
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depend on z, whereas the choices of the other steps depend on z. However
for a.e. z we can extract a subsequence that fulfills all the conditions. Indeed
let us define

fu(@) = HO(Sy, N2~ Hz}) + /R (|vk (2, y) Ldz])dy + [lug(z, )lwim v, )3
then we have

/ lim inf f(z)dz < lim inf/ fr(z)dx

k—o0 k—o0

(38) < lim inf <Hm"(suk) + [lukllwre +/ ¢(Vk)> < 0.
Rm

k—00

We conclude that for a.e. z we can choose a subsequence w, such that
(ur(z,-)) and u(z, -) satisfy all the hypotheses of Theorem 5.4. Then for a.e.
x the Cantor part of [J(u(z,-))] is zero and from statement (A) it follows
that v has no Cantor part.
O
We end this section by proving that, in the same hypotheses of Theorem
5.5 we have
[Jugli—[Ju];
[Juk]aé[Ju]a.
For doing it we need the next Lemma.

Lemma 5.6. Let (2, F,u) be a measure space with u(2) < oo and (vg) a
weakly compact sequence in L'(Q, u). Then vy—v if and only if

(39) / |lw + v|dp < liminf/ |w + v |dp Vw e LI(Q)‘

We refer to [1] for the proof.

Theorem 5.7. Let us consider (ux) C BnV(U,R") and ux € BnV (U,R"),
with U C R™. If conditions (a) and (b) of Theorem 5.5 hold then

[Juk]l—\[Ju]l

(40) [ugla—[ Tl

Proof We use the notations of Theorem 5.5 and we reduce to prove
(41) [Juk]al_dm—\[,]u]a Ldny

for every I € Ind (we recall that Ind is the collection of all subsets of
{1,...,n} that have cardinality (m — n)). Indeed from this fact we could
conclude that [Juy)o—[Ju], and

[Jugl; = [Juk] — [Jug)a—[Ju] — [Julq = [Ju];.

Therefore we suppose that I = {1,... ,m — n} and we split the proof into
several steps. To simplify the notation we suppose that U = R"™ and that
global convergence hold on (ug): the proof can been adapted easily to the
local case.
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Step 1 Let us fix a convex real function ¢ with superlinear growth and
a real number z such that

likminf d(|z + v Ldr|)dL™ < 0.

— 00 rRm™
For every z € R™ ™" let us put
Ji(u) = o ¢z +vLdr(z,y)|)dy
Iy (u) = llulz, ) llwre
JE(u) = HO(n H{z} N Suy)
and fix a positive real number ¢. From Fatou Lemma we have that

liminf J7 (ug) + ¢J5 (ug) + tJ5 (ug) = K(z) < 00
k—o0

for almost every z and reasoning as in the last step of Theorem 5.5 we infer
that

JT () < J7(u) + 83 (u) + 5 (u) < K(z).

Integrating this inequality with respect to = we obtain

/ #(|z +vldnr|)dL™ <
R™

k— 00

lim inf ( d(|z + v Ldn|)dL™ + t||lugllypie + t’Hk(Suk)> .
Rm

Letting ¢ | O we obtain

(42) / d(lz +vidr|)dL™ < liminf/ o(|z + v Ldr|)dL™.
R™ k—oo JRrm

We notice that the same arguments work if we replace R with an open set.
Let us denote by C the class of functions w € L'(R™) that can be written

as
h
w = E Qi X A;s
i=1

for some open sets Aq,... Ap. Hence, equation (42) holds for every function
z€C.

Step 2 We know that there exists a convex real function % with super-
linear growth such that

liminf/ P(jvpdr|) < oo.
R™

k—oo

Let us take a convex real function ¢ with superlinear growth such that
$(0) =0
P(t)

T
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We can easily conclude that the sequence ¢(|vgLdr]) is equiintegrable. Let

us put
1

3a(0) = (200)) vi.

The equiintegrability of ¢(|v; L dn|) and the fact that ¢,(¢) | ¢ imply that

liminf/ |y Ldr] = lim liminf/ On (v Ldr|).
m n—oo k—oo Jrm

k—00

From the previous step we easily conclude that
(43) / |z +vildnr| < / liminf |z + v, L dn|
Rm rRm k—oo

for every z € C.

Step 3 By a standard approximation argument we have that (43) holds
for every z € L'(R™). Then applying Lemma 5.6 we conclude that

v dr—vldnr.
O
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