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Abstract

The spectral problem where the field satisfies Dirichlet conditions
on one part of the boundary of the relevant domain and Neumann
on the remainder is discussed. It is shown that there does not exist
a classical asymptotic expansion for short time in terms of fractional
powers of ¢t with locally computable coefficients. MSC Classification:
58G25

1 Introduction

Let M be a compact m dimensional Riemannian manifold with smooth
boundary OM. Let D be an operator of Laplace type on the space of smooth
sections to a vector bundle V. Let Dy be the realization of D with respect
to the boundary conditions defined by a suitable local boundary operator B;
we assume Dy is self adjoint. In this paper, we shall study the heat trace
asymptotics.

We begin by reviewing the situation in the classical setting and refer
to [14, 16, 30] for further details. We suppose given a decomposition of
OM = CnyUC) as the disjoint union of two closed (possibly empty) sets. On
OM, let u,, be the covariant derivative of u with respect to the inward unit
normal; we use the natural connection defined by D — see [10] for details.
Let the boundary operator

Bu := U’|CD > (u;m + Su)|CN

define Dirichlet boundary conditions on C'p and Robin boundary conditions
on Cy. Let ¢ be the initial temperature distribution. The subsequent heat
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temperature distribution u := e~'P5¢ is defined by the equations:
(0 + D)u =0, u(0;x) = ¢(x), and Bu = 0.

Let {¢;, A;} be a discrete spectral resolution of Dg; the ¢; are smooth sections
of V' which form a complete orthonormal basis for L?(V') so that

Bo; =0 and D¢; = \;¢;.
The fundamental solution of the heat equation is trace class. We define
a(D, B)(t) := TrpeeP5 = ¥, e~th,

Theorem 1 Let Cy N Cp = 0. The heat trace a(D,B)(t) has a complete
asymptotic expansion ast | 0 of the form:

a(D,B)(t) ~ X,>0 an(D, B)tn—m)/2,

The asymptotic coefficients are locally computable as the integral of smooth
local invariants:

an(D.B) = [y an(w, D)z + [ ai (y, D, B)dy
—i—fCDa;(y,D,B)dy.

These invariants have been computed for n < 5, see for example [4, 5, 19,
23, 24]. There exists a canonical connection V and a canonical endomorphism
E so that D = —Tr(V? + E). If D is the Laplacian on p forms, then V is
the Levi-Civita connection and F is given in terms of the Riemann curvature
tensor R by the Weitzenbock formulas. Let indices 7, j range from 1 through
m and index a local orthonormal frame {e;} for the tangent bundle of M.
Near the boundary we choose an orthonormal frame so e, is the inward
unit normal; let indices a,b range from 1 through m — 1 and index the
induced frame for the tangent bundle of the boundary. Let LM be the
second fundamental form of OM C M. We adopt the Einstein convention
and sum over repeated indices.

Theorem 2
1. ao(D,B) = (4m)™™2 [,, Tr (Iy).
2. ay(D,B) = (4m)=™2L{ [ Te (Iy) — fo, Tr (Iv)}.

2



3. as(D,B) = (47)™™/2L{ [\, Tr (Rijjilv + 6E) + [, Tr (2L,o 0y + 125)

+ Jop, Tt (2Laalv) }
4. a3(D, B) = —(4m)=m/2 L { [, Tr (96E + 965 Ly, + 19252
+(16R;j5i — 8Rumma + 13Laa Loy + 2LapLap)Iv)

+ fCD Tr (96E + (16RZ]]Z - 8Ramma + 7LaaLbb - 10LabLab)IV)}-

In the classical setting, C'y N C'p is empty so the Neumann and Dirich-
let components do not overlap. There are, however, physically reasonable
settings where ¥ := Cp N Cy is a non—empty smooth submanifold of OM
of dimension m — 2. Drop a solid ball at initial temperature ¢ into icewa-
ter. Supposing it floats, the part of the boundary of the ball which is in
air satisfies Neumann conditions and the part underwater satisfies Dirichlet
conditions. Here, B is defined by complementary spherical caps about the
north and south poles of the ball which intersect in a circle of latitude.

The setting where ¥ is not empty is known in the literature as the N/D
problem. It has been investigated extensively from the functional analytic
point of view [20, 25, 26, 29]. However, there are only some preliminary
results [2, 3, 6] available concerning the heat trace asymptotics. It is natural
to conjecture that Theorem 1 can be generalized to this setting by adding
an extra integral over X of some suitably chosen local invariant. The point
of this note is to indicate that the situation is not quite so simple. More
specifically, we will show that the following conjecture is false.

Conjecture 3 Let CyNCp be a smooth hypersurface in OM. The heat trace
a(D, B)(t) has a complete asymptotic expansion ast | 0 of the form:

a(D,B)(t) ~ X,>0 an(D, B)tn—m)/2,

The asymptotic coefficients are locally computable as the integral of smooth
local invariants:

an(DJ B) = fM an('ra D)dl‘ + fCN aj{(ya DJ B)dy
+ Jep a5 (y, D, B)dy + 5 a3 (2, D, B)dz.
Here is a brief outline to the paper. We shall suppose that Conjecture 3

holds and argue for a contradiction. In §2, we discuss some of the functorial
properties which the invariants a> would have. In §3, we use the local index



formula in a specific situation to show Conjecture 3 is false at the as level. In
§4 we present some results using a perturbation expansion around an exactly
soluble, but restricted, case which also relate to this question. In §5 we
conclude by suggesting an alternative form that the expansion might take.

2 Properties of the local invariants

We use dimensional analysis to study these invariants; this involves studying
the behavior of the heat trace under rescaling. Let {2 be the curvature tensor
of the connection determined by D. We assign weight 2 to the tensors R,
2, and E. We assign weight 1 to the tensors S and L. We increase the
weight by 1 for each explicit covariant derivative which appears. It then
follows that the integrands which can be used to compute the invariants
(aM,ax,a>) are universal polynomials which are weighted homogeneous of
degrees (n,n—1,n—2). For example, Theorem 2 expresses as in terms of an
interior integral of Tr (R;;;;[v +6F) and boundary integrals of Tr (2L,,) and

Tr (2L4, + 125); these expressions have weights (2,1,1). Thus we see that
ay =0, a =0, and a = ¢ dim(V).
Calculations of Avramidi [2, 3] and of Dowker [6] suggest that
co = —%(4#)_’”/2.

We shall work with the a3 coefficient to show Conjecture 3 fails. Let
L* be the second fundamental form of ¥ C Cy. Any invariant which is
homogeneous of weight 1 can be expressed linearly in terms of the tensors
{S,L*, L?M}. Thus, in particular, the geometry of the operator D does not
enter into ay. We choose a local frame field on X so that e,_; is the unit
normal of ¥ C Cy and so that e, is the unit normal of C'y C M. Thus the
structure group is O(m —2). Let 1 < u < m —2. We use H. Weyl’s theorem
[31] on the invariants of the orthogonal group to see there exist universal
constants ¢; so that

a(z,D,B) = Tr {(c. LS, + e, LM 4 ¢ 1°M Vv + ¢S} (1)

m—1,m—1

Let M = M, x My where M, is a closed manifold. Let D := D ®1+1Q D,
where the operators D; are operators of Laplace type over M;. We use a
suitable boundary condition B; for D; to induce a corresponding boundary
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condition B for D. The discrete spectral resolution for (D, B) is given by the
tensor product of the corresponding discrete spectral resolutions for (D, B;)
and D,. Therefore

a(D, B)(t) = a(Dy, B1)(t) - a(Ds)(t) so (2)
an(% D) = Zp+q=n ap(wh DI)GQ(*T% D2)7

ay (Y, D, B) = ¥y gon @5 (y1, D1, Br)ag(w2, D), and
a>(z,D,B) =% a’(z1, Dy, By)ay(xa, Dy).

p+g=n ""p

A priori, the constants ¢; of equation (1) could depend on the dimension
m but the usual trick of dimension shifting using equation (2) and taking
product with a circle shows the constants ¢; are dimension free modulo a
multiplicative normalizing factor involving suitable powers of 4.

We say that an operator A : C°(Vy) — C*(V3) is of Dirac type if the
associated second order operators D' := A*A and D? := AA* are of Laplace
type. We assume given boundary conditions B’ so that A intertwines the
spectral resolutions of Dy, and Dz.. We define:

index(A) := dim ker(Dg.) — dim ker(Dj,).
The cancellation argument of Bott then shows
am(DY, BY) — a,,(D? B*) = index(A) and (3)
an (D', B') — a,(D* B?) = 0 if n # m.
We shall apply this observation in §3 to the de Rham complex with abso-
lute or relative boundary conditions. McKean and Singer [21] used equation

(3) to prove the Gauss-Bonnet theorem if m = 2; we refer to [11] for a
discussion of the higher dimensional setting.

3 An example on the cylinder

Let M :=[0,1] x S? be the cylinder with the standard product metric. We
consider the de Rham complex and let A®° be the bundle of even and odd
differential forms. Let D®° be the associated Laplacians. Let x € [0, 1] be
the normal variable and let © € S? be the angular variable. We then have
natural decompositions:

A, = A @ dae AAN2, DS, = (=02 + AL @ (=02 + A%)
A, =A@ dr ANS, DY = (=02 + A2) @ (—0% + A%). (4)
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If ¢; € C°(Ag) are differential forms on M taking values in Ag, then absolute
and relative boundary conditions are defined by the operators:

Bo(¢1 + dx A ¢g) := {0:(41) ® ¢2} and
B (¢1 + dx A ¢2) = {0:(d2) © ¢1}.

We have

(d+8)p (1 + dx A ¢o)
={=0;02+ (d+ ) sp1 } + dx AN {0s1 — (d+ )52}

Suppose that A¢ = Ap on M. If B*¢» = 0 on an open subset O C 0M, then

0 —0:02 + (d+ 6)sh1 o
= (—Ags + M{d2]o} + (d + 0)s{d,h1]0} = 0 and
{0:¢1 — (d+6)sda}|o = —(d + d5){d2]0} =0

so B*{(d+ 6)¢} = 0 on O. Similarly if B"¢ = 0 on O, then

{=0:02 + (d+6)st1}|o = (d+ 6s){d1|lo} = 0 and
0:40:01 — (d+0)sh2}|o
= (As = M{¢1lo} — (d+ 0)s{0p2]0} =0

so B'{(d + )¢} = 0 on O. Thus (d + 0) preserves the eigenforms of the
Laplacian with either absolute or relative boundary conditions.

Let B~ denote pure Dirichlet and B* pure Neumann boundary conditions.
The structures decouple and we may decompose

(Dip, Ba) = (=02 + A, BY) @ (=0; + Ag, B7)
(D4, B,) = (=92 + A%, B )@(W+A B
(DS, B,) = (—0> + A%, B™) @ (—0* + A, +)
(D%, B,) = (—0> + A%, BY) @ (9% + A%, B).

The interior invariants vanish if n is odd. Thus for dimensional reasons,
asz(D5;)(z,©) = 0 and a3(D},)(z,0) = 0. (5)
We use Theorem 2 (2) to see that

ai (y, —02,B%) = £1 for y € 9]0, 1).
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The Dirichlet and Neumann boundary conditions for A decouple on S2. Since
the structures on M are product, we may apply equation (2) with n = 3,
p =1, and ¢ = 2 to the decompositions of display (4) to compute:

ag™ (Diy, Ba)(y, ©) = 1{a (0, A%) — a5(0,A%)},
a3™ (D5, Ba)(y,©) = 1{—0a5 (0, A%) + a5 (6, A%)},
ag™ (D5, B)(y,©) = 1{—a5 (0, A%) + a5 (0, A%)},
ag™ (D3, B,)(y, ©) = 1{a5 (0, A%) — a5(0, A%)}

for y € 0{[0,1]}. McKean and Singer [21] showed that
a3 (0,A5) — a3 (0, Ag) =

7T

this also follows from Theorem 2 since E = 0 for A§ while Tr F = —2R;;j;
for AZ. Consequently, we compute the index densities:

{as™ (D3, Ba) — a5™ (D3 B}y, ©) = 4
{as™ (Dfy, By) — a5™ (D3, By)}(y,0) = — - (6)

Let Cps C S? and C, 5 C S? be complementary spherical caps about the
north and south pole in S%. Let Cy 5y := {0,1} xCy s and C, s := {0,1} xC, ¢
give a corresponding decomposition of the boundary of M. Let B be the
boundary condition B, on C, s and B, on C; . The decompositions of
display (4) induces corresponding decompositions of B as the sum of two
boundary conditions of the form we have been considering:

B(¢Z) = ¢i|Ca,M ) (ax@) Cr it and
B(dz N ¢i) = (0:9i)lc, . @ dilc,

As the metric is product, L2 = 0. Since S = 0, the only non-zero term in a3
given in equation (1) is clquTr (I). This term is sensitive to the normal of
¥ C OM. When studying DS, or D%, we have D/N boundary conditions on
half the bundle and N/D boundary conditions on the other half the bundle.
Thus this term cancels and we have

az (Djy, B)(z,0) = 0 and a5 (D5, B)(z,0) = 0. (7)
We may therefore use equation (5), equation (6), and equation (7) to see
az(D5y, B) — a3(D3y, B) = 5={vol(Cqnr) — vol(Cyar) }-
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Thus this difference is not an integer if the spherical caps are not hemispheres.
On the other hand, since d + ¢ intertwines the eigenvalues of the Laplacian
with either absolute or relative boundary conditions, we can use equation (3)
to see that

as(DS,;, B) — a3(D3,, B) = index(d + 6, B) € ZL.

This contradiction shows that Conjecture 3 is false.

4 Special cases and perturbative expansions

The special case of the N/D wedge has been considered locally by Avramidi
[3] and globally by Dowker [6], where the N/D hemisphere problem was also
introduced. In this section we first enlarge on this last example for which
the N/D problem can be solved explicitly in terms of known functions, and
then perturb it to give a more general geometry.

Consider the hemisphere placed at y > 0 such that its boundary is at
¢ =0 and ¢ = 7 with 6 € [0,7]. The metric in the standard (6, ¢) polar
coordinates and the Laplacian are given by:

1 02 1 0 . 0
— — ———sinf—.
sin“ 0 0p?  sinf 00 00
We are interested in the eigenfunctions Y (¢, #) which satisfy the N/D bound-
ary condition. To get an idea of the crucial difference between these condi-
tions and the classical Dirichlet and Neumann ones, we will provide details
for all of them.

The starting point is the separation of variables, Y (p,0) = ®(¢)=(0),
which leads to the usual differential equations:

0 = @"(p)+p®(p)
0 = sinf(sind Z'(0)) + (A\*sin® 0 — p*)Z(0).

With the substitution £ = cosf, =(0) = u(&), one finds

ds® = df* + sin® 0dy?® and A = —

2

0 = (1= - 26+ (¥ - ) ute)
The general solution for ® is ®(¢) = asin(up)+bcos(uy), with a, b € €. The
equation for u is the differential equation of the associated Legendre func-
tions. Which eigenfunctions survive as being linearly independent depends

8



on the value of p and thus on the boundary condition. We refer to [27] for
further details.

4.1 Dirichlet boundary conditions mean that ®(0) = ®(7) = 0 and hence
p € IN. Independent solutions are P/(§) and Q!'(§) with [ > p, I € IN, and
eigenvalues \? = [(I+1). Imposing square integrability on the eigenfunctions
shows that the discrete spectral resolution is given by the functions:

Y(p,0) = Nisin(up)Pf(cost), p €N, l=n+p, nelNy  (8)

with A} a normalization constant. For § — 0 and 6§ — 7, which is the limit
to the north and south poles, we see that

Pl (cosf) ~ (1 — cos? 0)/? = (sin f)*
and so the eigenfunctions are differentiable at the poles, which of course,

must be the case. We refer to [15] for further details.

4.2 Neumann boundary conditions mean that ®'(0) = ®'(7w) = 0. This
yields the quantization condition, ;1 € INy and, arguing as before, we see that
the discrete spectral resolution is given by the functions:

Y (p,0) = Nycos(up)Pl(cos), pweNy, [=n+p neN,.

Again, these are differentiable everywhere, including the poles.
4.3 N/D boundary conditions mean that ®(0) = &'(r) =
quently g =n+1/2, n € Ny, or, stated differently, p = m/2, m
Thus the discrete spectral resolution is given by the functions:

0. Conse-

Y(p,0) = Nssin(up) P "(cosl), p="%, m=13,5,., nelNg,

with [ = n + p. The vital difference is that now p is a half-integer for which
the limiting behaviour of the eigenfunctions near the poles, i.e. the edge, is

me/z(cos 0) ~ (sin)™/?2,

so that the eigenfunctions are not differentiable at the edge. This is the
crucial difference between the N/D problem and the classical problems, and
is responsible for the non-standard small-¢t behaviour of the heat-trace.
Having given the eigenfunctions for the hemisphere, for which the bound-
ary extrinsic curvature vanishes, we now provide a perturbation approach
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which allows account to be taken of the influence of an extrinsic curvature
at a boundary. Some general developments are given first and applied to the
hemisphere later.

Assume the unperturbed situation Agy = A\?¢, with ¢|[,,, = 0 with non-
degenerate eigenvalues. Parametrise the boundary by y and take s(y) to be
the geodesic distance from it. We define the perturbed boundary oM, by the
function es(y) with € very small and call the resulting manifold M,. Then,
to order €, the perturbative formulation of the problem reads as follows,

Atpg = @™o, Palgp, =0,
where the initial ansatz for the eigenfunctions and eigenvalues is given by:
Vo = dr+€dl, o =\ + en,.
The perturbation of the eigenvalues, 7,, is determined by:
Na = fa/vte ¢fxan¢§ - fa/vte ¢§an¢'

with the exterior normal 0,; see, for example, [22]. For Dirichlet conditions

one can use the identity ¢'|gp, = —%¢A|3ME together with the expansion
¢/\|8M€ = ¢/\|8M - Gs(y)an¢A|aM + ..
= —€5(y)0ndrlgp + --- to see 9)
Na = —% fa/\/le ¢/\an¢f\ = - faME ¢§an¢l fa/vt 3(y)|an¢A|2d?J- (10)

It is important to note that the expansion (9) is well defined for the Dirichlet
and Neumann eigenfunctions (8).

In the case of degenerate eigenvalues, which is needed here, the situation
is slightly more complicated. Let j index the degeneracy. In this case one
can obtain the secular equation

Ej Cij(niy&cj + B,g) = 0, with (11)
Bl = = Joam(9.05)5(4)(9.8%). (12)

Similarly, when considering Neumann conditions and when perturbing
the shape of the boundary, the equation analogous to (11) becomes

> cij(midk; + BRY) = 0, with
B = Jom 3 s(y)(0:6))- (13)
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Some of these formulae are implicit in the work of Frohlich, [8], but can
be traced back to Rayleigh, [28]. The extensive discussion in Morse and
Feshbach, [22], contains all that one needs. A more mathematical treatment
is given by Garabedian and Schiffer, [9] Chap.V, based on Green’s theorem
and Hadamard’s formula.

We apply these developments to the hemisphere. It seems natural to dis-
place the entire boundary by an amount, say €, perpendicular to the equator,
i.e. the rim, thus making the new manifold a cap. Geometry shows that the
extrinsic curvature, L%, of the perturbed boundary equals e. Then the
relevant integrals for the eigenvalue perturbations are,

BY, = —2NEpup LM [ %= P (cos 0) P! (cos#), and (14)
BY, = —2NZp2L?M [ 45 Pl (cos ) P (cos ).

The behaviour of the Legendre functions for § — 0,7 shows that these
integrals exist and, although an explicit evaluation is tedious (they are sur-
prisingly not listed in standard references like [1, 13]), in principle this deter-
mines the eigenvalues to order € and undoubtedly would reproduce the correct
leading heat kernel expansion. We have not pursued this calculational check.

It seems reasonable to apply the same perturbative approach to the N/D
problem. In this case the N and D parts contribute additively to the secular
equation,

Zcij(ﬂgékj + B]Z + Bé\;) == 0,
J

where the definitions (12) and (13) still hold but involving the eigenfunctions
of the N/D problem. As one soon realizes, all integrals exist, ezcept the ones
with = ' = —1/2. The reason may be found in the use of (9) which cannot
be applied for these modes because it leads to divergences at the edges of the
manifold. To avoid the use of (9) we revert to (10) and evaluate just these
awkward modes on the perturbed boundary, OM,, directly.

We return to Dirichlet conditions, where everything is well defined, to
illustrate the situation. The boundary 0 M, can be parametrised by noting
that along it, y = € = sinfsin ¢, i.e.

¢ =sin™! < ‘

sin 0

- ), x>0, andcpzﬂ—sin_1<
sin 6

), x < 0.
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To leading order in €, the geometrical quantities (normal derivative and vol-
ume element) on OM, agree with those on OM and, up to irrelevant correc-
tions, one finds

1 7= db '
D _ 2 17 OM
B,, = —2N{i'L E/e ﬁPf‘(COS )P} (cos ) x
sin [,u sin ! 1;0 Ccos [,u' sin ! sirele] : (15)

To the relevant order, the integration limits can be set to 0 and 7 and com-
parison of (14) with (15) shows that the expansion with respect to € of the
eigenfunctions evaluated at d M, leads to the occurrence of a factor ¢/ sin 6
to give agreement with the perturbation form.

Turning to the N/D problem, we are therefore led to consider integrals
of the type

ST 555 P (cos 0) Py " (cos6)
which are well defined in the limit ¢ — 0 for all values of u, ' except p =
p' = 1/2. For these “critical subspaces”, using the explicit Gegenbauer
representation [13],

v 7 sin 0 v

Pf_ll//22 (cosf) = 2__sin(vf)
the relevant integrals have the form

fgrfe desin2s[i(r7113+91)9}7
which behaves like loge = log L% as € — 0. All other eigenfunctions yield
an O(e) term to leading order and will not change this log behaviour. These
remarks suggest the existence of a term LM log L% in the heat trace ex-
pansion which is an indirect indication, via dimensional arguments, of the
appearance of logt terms as well (see § 5).

Thinking about higher order perturbation theory, it is expected that
modes which are differentiable only (k — 1) times, k£ € IN, lead to the occur-
rence of €¥loge with associated logt terms in the heat trace expansion.

We stress that, for the perturbed geometry, the extrinsic curvature
does not vanish at the edge and this is the cause of the trouble. When the
boundary perturbation, s(y), vanishes at the edges, the perturbation is well
defined and we expect the standard trace expansions to hold.

L(?M
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5 Conclusions

We have shown that if there is an asymptotic expansion of the heat trace for
the N/D problem, then it is not as simple as in the standard setting. It is
possible that logt terms enter, the generic behaviour for singular situations.
There is one setting where such terms are known to arise. If instead of
local boundary conditions, spectral conditions are imposed, one has a partial
asymptotic expansion of the form,

a(D,B)(t) = 3 an(D, Bt/ 4 O(t7%),

n<m

Again the invariants are locally computable and we refer to [7, 12] for formu-
lae if n < 3. However, the complete asymptotic expansion involves non-local
and log terms [17, 18]. Thus perhaps Conjecture 3 should be replaced by an
asymptotic expansion of the form

a(D,B)(t) ~ X0 (an(D, B)logt + a,(D, B))t(n—m)/2

where the leading term a,(D,B) = [xa>(z, D,B)dz is locally computable
and where the difference

an(D, B) — [y an(w, D)dx — [, a, (y, D, B)dy — [, a} (y, D, B)dy

is a non-local invariant determined by the behavior of D and B near ¥. As we
have argued in Section 4, log? terms may occur to compensate the log LM
terms present in the perturbed hemisphere example. Further study of the
heat trace asymptotics of the D/N problem seems indicated.
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