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Abstract

Consider two disjoint circles moving by mean curvature plus a forcing term
which makes them touch with zero velocity� It is known that the generalized
solution in the viscosity sense ceases to be a curve after the touching �the so�
called fattening phenomenon�� We show that after adding a small stochastic
forcing �dW � in the limit � � � the measure selects two evolving curves� the
upper and lower barrier in the sense of De Giorgi� Further we show partial
results for nonzero ��

� Introduction

The evolution of a hypersurface 	�t� in R
n which 
ows in time with normal velocity equal

to the mean curvature plus a continous forcing term has attracted a lot of attention since
Brakke de�ned in �� a notion of weak solution� Weak solutions are necessary for having
long time existence� because the 
ow starting from a smooth hypersurface might create
singularities� and the smooth solution might cease to exist� In addition to Brakke�s varifold�
based concept of weak solution which provides existence but no uniqueness� there are other
ways to de�ne the mean curvature 
ow beyond singularities�
One is the variational approach developed by Almgren� Taylor and Wang ��� and Luckhaus�
Sturzenhecker ����� and its possible generalizations by means of the minimizing movements
of De Giorgi ����
Another way is to de�ne the evolution of a function u�t� x� by a degenerate parabolic PDE in
such a way that each level set fx � R

n � u�t� x� � ag evolves by mean curvature as long as it
is a smooth hypersurface� see e�g� ����� Exploiting the maximum principle for this PDE� one
can de�ne a generalized solution� called viscosity solution� which requires only continuity
of u� However� the level sets of the viscosity solution may develop nonempty interior� This
phenomenon is called fattening� and it happens precisely when the solutions of Brakke type
are nonunique� see �����
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A third approach� the so�called barrier solutions� has been introduced by E� De Giorgi ���
and developed by G� Bellettini� M� Paolini and M� Novaga ��� ���� The idea is to consider the
set bounded by the surface instead of the surface itself� and to de�ne a unique upper and
lower evolution for this set� calledM��t� andM��t� respectively� For a brief summary of this
approach see Paragraph ���� Fattening of the viscosity solution corresponds toM��t�nM��t�
having nonempty interior� In the deterministic case� this approach turns out to be equivalent
to the viscosity level set method�
However� fattening is thought to be a rare phenomenon in the sense that it can only happen
for �few� initial surfaces� Among the levels of a given function� only a subset of measure
zero can fatten at any given time t� but for general initial conditions� the meaning of �rare�
is less clear�
Now consider probabilistic forcings� i�e the evolution

dp�t� x� � ��t� x� � ���t� x� � g�t��dt� �dW �t�� ���

where x is a point on a �xed reference manifold� p�t� x� the corresponding point on the
manifold 	�t� at time t� � the mean curvature and � the outer normal at this point� W is
the standard Brownian motion and � a small parameter� In this way a probability measure
is introduced and the conjecture that fattening is rare now takes the following form� for any
regular initial surface� fattening happens with zero probability�
Let us remark that de�ning mean curvature 
ow with a stochastic forcing has turned out
to be a di�cult problem in itself� In ���� Yip considered the case of the noise coming from
a regular random vector �eld� i�e� white in time but smooth in space� He used a time�
step procedure and showed tightness of the resulting probability measures as well as some
properties of the probability measures which are limit points of the approximating sequence�
Lions and Souganidis ����� ����� ��� give a de�nition of viscosity solution for fully nonlinear
stochastic PDEs with time dependent noise� and claim uniqueness and continuity in the
initial conditions for a class of equations which covers the motion of a graph by mean
curvature plus a stochastic forcing�
We avoid both approaches and show instead short�time existence for ��� in order to de�ne
upper and lower barriers in the sense of De Giorgi� We consider a particular example� two
disjoint circles in R

� moving accordingly to ���� where g is such that they touch with zero
velocity in the deterministic case �i�e� when � � ��� Under this assumption� fattening can
occur in the deterministic case� which was �rst studied by Bellettini and Paolini ���� Later
Koo ���� and Gulliver and Koo ���� extended the result to the case of two touching smooth
hypersurfaces of codimension �� and gave precise upper and lower bounds on the size of the
fat set�
In this paper we show that for any �xed � � � a partial nonfattening result holds �see
Lemma ����� the fat set �if there exists one� does not contain a ball around the point where
the circles touch� whereas in the deterministic case it contains a ball around the origin� as
it was shown in ����� Indeed� we expect that with probability � there is really nonfattening
in a small time interval �depending on the path� after the touching time�
Moreover� we show that for �� � the limits of the upper and lower barrier are the same� more
precisely they converge in the Hausdor� distance with probability ��� to the deterministic
upper barrier and with probability ��� to the deterministic lower barrier� This means the
stochastic forcing selects in the limit the extremal Brakke solutions �see Theorem ����
The key observation is that once the two circles touch� they have necessarily to cross� because
of elementary properties of Brownian paths� But once they have crossed� the expansion
coming from the mean curvature is for a short time stronger than the Brownian part� so the
inner barrier contains for some time a small ball around the origin�
A result similar to ours� and obtained independently� has been announced by P� Souganidis
and A� Yip�
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� Notation

In this section we introduce some notation that we shall use in the sequel� Given two sets
A�B � R

n we set

A�B �� �A nB� � �B nA��
dist�A�B� �� inf

x�A�y�B
jx� yj�

�Hausdor� distance� dH�A�B� �� sup
x�A

inf
y�B

jx� yj� sup
y�B

inf
x�A

jx� yj�

Given E � R
n and � � �� we set

E�
� �� fx � R

n � dist�x�Rn nE� � �g E�
� �� fx � R

n � dist�x�E� � �g�

For any R � �� we let BR �� fx � R
n � jxj � Rg�

Let ��� 	�P� be a probability space and W � � � C������� 
 � W ��� 
� measurable and
such that W �t� is a standard Brownian motion and W ��� � � almost everywhere� 	 is
assumed to contain sets of zero measure�
For simplicity� we shall often write �t� �xi � �xi�xj �� � i� j � n� instead of �

�t �
�
�xi

� ��

�xixj
�

Given a� b � R we set a 	 b �� minfa� bg� a 
 b �� maxfa� bg�
By f�t� � o�t� we mean that limt�� f�t� � ��

� Setting and main results

��� The Existence Theorem

In order to work with the barrier solutions� we need �rst to show short time existence of the

ow for su�ciently smooth initial surfaces�

Theorem ���� �Existence Theorem� Let 	 � R
n be a compact embedded hypersurface of

class C���� for some � � � � �� and let � � �� Then there exists a stopping time T �
�	� � ��
depending on the C����norm of 	� and a family of hypersurfaces 	��t�� t � ��� T �
��� of class
C��� such that for any X� � 	��� there exists a process X��� with X�t� 
� � 	��t� for P�
almost all 
 which solves the following Ito equation

dX � ��X�t� 
�� t���X�t� 
�� t�dt� ��X�t� 
�� t���dW � g�t�dt��

X��� � X�� ���

where ��t� and ��t� are respectively the mean curvature and the outer normal of 	�t� �so
we have to choose a component of Rn n 	 which is �the outside��� and g � C��������� is
a given function�
Moreover� 	�t� can be approximated by hypersurfaces 	��t� which solve ��� with forcing term
equal to g � d

dtW� � where W� is a smooth function which converges for almost all 
 to the
Brownian motion in C

�
� ����  �� �e�g� the convolution with a molli�er��

We defer the proof to Section ��
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��� Comparison lemmas

In order to apply the barrier method� we need a maximum principle for smooth evolutions�

Lemma ���� Let 	��t� and 	��t�� t � ��� T �� be two smooth solutions respectively of v �
�� dg�

dt �t� and v � �� dg�
dt �t�� g�� g� � C����� T ��� Assume also that

	���� � 	����� and �g��t�� g������ �g��t�� g����� � �c�t� t � ��� T � ���

and for some c�t� � �� c � C����� T ���
For any t � ��� T �� we de�ne D�t� �� dist�	��t��R

n n	��t��� If D��� � � we have

D�t� � D���� c�t�� t � ��� T 	 Tc�� ���

where Tc �� infft � ��� T � � c�t� � D���g� In particular� if c � � then 	��t� � 	��t� for any
t � ��� T ��
Proof� Fix t � � such that D�t� � � and assume that D�t� � jy� � y�j for some y� � 	��
y� � 	�� We compute

lim
����

D�t� ���D�t�

�
� ���

min
y� � 	�� y� � 	�

s�t� D�t� � jy� � y�j

����y�� �
d
�
dt

�t�� ����y���
d
�
dt

�t� � d
�
dt

�t�� d
�
dt

�t��

since ����y�� � ����y�� as a consequence of the fact that the function jy � zj� y � 	��
z � 	�� has a minimum for y � y�� z � y�� Integrating ��� we get the thesis�

If we approximate the Brownian motion with smooth functions as in Theorem ���� from
Lemma ��� we obtain the following result�

Corollary ���� Let 	���t� and 	���t�� t � ��� T �� be two solution of �	� and assume that
W �t� 
�� � W �t� 
�� � �c�t� for some c�t�� Then� if we de�ne the function D��� as in
Lemma 
�	� the inequality ��� holds�

��� De�nition of minimal barrier

We recall the de�nition of barrier and minimal barrier given by De Giorgi in ����

De�nition ���� Let 
 be a path such that the procedure of Section � works for every compact
C��� initial surface� i�e� a path which is H�older�continous� Let 	��t�� t � �a� b� be as in
theorem 
��� and let ���t�� t � �a� b� be such that 	��t� � ����t�� Let F� be the family
of all such regular set�valued functions� We say that for such a path 
 of the Brownian
motion a function �� � �t������ P�Rn �� t� � R� is a barrier with respect to F� if for any
	�t� � F�� t � �a� b� � R� 	�a� � ���a� implies 	�b� � ���b��

In the following we denote by B�F�� t�� the class of all barriers with respect to F� starting
at time t��

De�nition ��	� Let E � R
n and t� � R� The minimal barrier M��E� t�� 
� � �t����� �

P�Rn � for the path 
 starting from E at time t� is de�ned as

M��E� t�� 
��t� ��
�n

���t� � �� � B�F�� t��� ���t�� � E
o
�

We also de�ne the upper and lower regularized barrier as

M����E� t�� 
��t� ��
�
���

M��E
�
� � t�� 
��t� M�

��E� t�� 
��t� ��
�
���

M��E
�
� � t�� 
��t��

�



It is easy to check� see e�g� ���� that the minimal barrier M�E� t�� 
� �as well as the upper
and lower regularized barriers� satis�es a semigroup property in time� i�e�

M�E� t�� 
��t� �M�M�E� t�� 
��s�� s� 
�� t� � s � t� ���

In the following� when it is clear from the context� we drop the explicit dependence of M
�resp� M�� M�� on �t�� 
��

Proposition ��
� Let E � R
n and let 	�t�� t � ��� T �� be a family of compact hypersurfaces

of class C���� which evolve accordingly to ��� with � � � �i�e� deterministically�� Assume
also that 	��� � int�E� and let D � dist�	���� �E� � �� Then� if we let T� � � be the
maximal time such that 	�t� �M����E�
��t� for t � ��� T��� we have

T� � infft � ��� T � � �jW �s� 
� 	 �j � Dg� ���

Proof� Let F � E be the open set such that 	��� � �F � and let 	� � fx � R
n � dist�x� F � �

�g� for � � �� Then� if � is small enough� 	� is an hypersurface of class C
��� still contained

in int�E�� Let now 	��t�� t � ��� ��� be the solution of ��� given by Theorem ��� such that
	���� � 	� � By de�nition we haveM����E��t� � 	��t� for all t � ��� ���
Moreover� by Corollary ��� we also have dist�	�t��	��t�� � ��� sup���t� jW �s� 
�	�j� There�
fore

dist�	�t�� �M����E��t�� � D � � sup
���t�

jW �s� 
� 	 �j� t � ��� ���

Iterating the procedure and considering 	��� instead of 	��� we get the thesis�

The next result follows immediately from Proposition ���� by passing to the complementary�

Corollary ���� Let E� 	�t�� D as in Proposition 
�� and let F �t� be a family of open sets
such that 	�t� � �F �t�� Assume that E � int�F �� Then� letting T� � � be the maximal time
such that F �t� �M�

� �E�
��t�� t � ��� T��� inequality ��� holds with sup���t� jW �s� 
� 
 �j�

��� The Limit Theorem

Throughout this paragraph� we will restrict ourselves to the case of curves in R
� � i�e� we

consider the case of two disjoint circles� Fix L � r� � �� � � � and let R��t� be the process
which solves

dR� �

�
� �

R�
� g�t�

�
dt� �dW �t� t � ��� T��
��� R���� � r�� ��

where ��� T��
�� is the maximal interval of de�nition� For � � �� this is of course a deter�
ministic ODE whose solution and maximal interval of de�nition do not depend on 
�
Let 	� be the union of two two disjoint circles of radius r�� whose centers are in x� � ��L� ��
and x� � ��L� �� respectively�
De�ne the stopping time t�� �
� �� infft � T� � R��t� � Lg� Then for any � � t � t�� we have
	t � BR��t��x

�� � BR��t��x
���

Let g be of class C� in a neighbourhood of t� such that for � � � the circles touch in such
a way that the second derivative of R��t� is negative for t � t��� Let M

�
� �t� and M����t� be

the upper and lower regularized barrier for the 
ow starting from 	� �see De�nition �����
Let also T� � � be the �deterministic� time at which M��� shrinks to two points �M��� are
two circles shrinking after touching� whereas M�

� are two circles joining into a bean�ahaped
�gure and �nally shrinking to a point��

�



Further let

S�
� �� f
 � t�

e� �
� �� for all e� � �g
S�� �� f
 � t�

e� �
� �� for all e� � �g
Moreover we de�ne

S� ��
n
lim
���

h
dH�M�

� �	�� 
��t��M�
��	���t��

� dH�M����	�� 
��t��M�
��	���t��

i
� � for all t � ��� T��

o
�

S� ��
n
lim
���

h
dH�M�

� �	�� 
��t��M����	���t��

� dH�M����	�� 
��t��M����	���t��
i
� � for all t � ��� T��

o
�

Now we are able to formulate our main theorem�

Theorem ���� �Limit Theorem� We have P�S�� � �
� and P�S�� �

�
� � As the two sets

are disjoint� this means that almost surely the evolution converges pointwise to one of the
two extremal deterministic solutions and lim��� P�S

��S�
� � � �� lim��� P�S��S�� � � ��

The theorem will be the consequence of Lemma ���� Proposition ���� and Proposition ����
below�
First we will approximate S�� and S�

� for �� � by sets which do not depend on � and have
probability �

� by construction�

Lemma ��� We have

lim
���

P�S�� � � lim
���

P�S�
� � �

�

�
� ���

Proof� We shall prove that there exists a centered Gaussian random variable R��t� 
� such
that

lim
���

�
P�S�� ��R��t

�
�� 
� � ��� � P�S�

� ��R��t
�
�� 
� � ���

�
� ��

which gives ����
The idea is to expand the stochastic ODE for R� in powers of �� following Wentzel�Freidlin
����� As the equation gets singular for R� � �� we have to modify it by a smoothed version
near this singularity�
Choose a � � Rmin �� r� and a smooth function b�R� � R � R� such that b�r� � � �

r on
�Rmin����� and b�r� � const on ���� Rmin��� and replace � �

r in �� by b�r�� which gives

d eR� � b� eR��dt� gdt� �dW� eR���� � r�� ����

Let R� be the solution of �� and eR� the solution of ����� then R� and eR� coincide for
t � inffs � R��s� � Rming�
Now we expand

eR��t� 
� � R��t� � �R��t� 
� �R����t� 
�� ����

where R� solves �� with � � �� R� solves the linear stochastic ODE

dR� �
d

dr
b�r�jr	R��t�R��t�dt� dW� R���� � �� ����

�



and R��� is de�ned as the remainder� Fix T � �� then by Doob�s L��inequality

E

�
sup
���T �

jR��s�j�
�
� �E jR� �T �j� � C�Rmin� T �� ����

Further from expanding b� eR�
� � �R� �R���� in the equation ����� and using ����� we get an

equation for R���� where the dW �expressions cancel� From this and Gronwall�s inequality�
we derive

jR����t� 
�j � C�T���
� sup
���T��

jR��s� 
�j�� ����

From ���� and ���� we get E
�
sup���T � jR����t�j

	
� C�T�Rmin��

�� Note in particular that if

for a �xed 
� for some � � �� and for some � � � � �� the right hand side of ���� is smaller
than ����� � then this holds for all � � ���
Next observe that R��t� is H�older�continous for any � � � � ���� Fix such a � and some
� � � � � and de�ne

A��� �� �� f
 � kR����
�kL����T � � ����g�
A��� �� �� f
 � kR��
�kC����O�T � � ��

�
� g�

then by the Markov inequality P�A��� ��� � ����� and� e�g� by the embedding of fractional
Sobolev�spaces in H�older spaces� lim��� P�A��� ��� � ��

Set I��� �� �� �t� � �
���
� � t� � �

���
� � Now note that due to the nonvanishing of the second

derivative of R� in t�� we have

inf
���T �nI�����

�L�R��s�� � C�����
�
� �

Hence either eR��s� � L on ��� T � n I��� ��� or we are on A��� �� A��� �� � A��� �� for � small
enough�
Further observe that� unless 
 � A��� ��� we have

sup
s�I�����

jR��s�� R��t
�
��j � ���

���
� ����

�
� � ���

������
� �

So we have for small �

f
 � sup
���T �

R��s� � Lg � f
 � R��t
�
�� � ��� � �

������
� g �A���� ����

So P�S�
� n �R��t

�
�� 
� � ��� � � for any �� �Remember that the S�

� are increasing in ���
Now assume R��t

�
�� 
� � �� but 
 �� S�

� � Then there is some e� � � such that R��e��t
�
�� �

�e�R��t
�
�� 
�� hence 
 � A�e���f� � R��t

�
�� � e��g� and the probability of the right hand side

clearly tends to � for �� �� So �R��t
�
�� 
� � �� � S�

� �N� where P�N��� ��
As S�

� and S�� are disjoint and P��R��t
�
�� 
� � ��� �R��t

�
�� 
� � ��� � �� we immediately get

P�S�� n �R��t
�
�� 
� � ���� ��

If 
 � �R��t
�
�� 
� � �� n S�� � then there is e� � � such that R

e��t� � L for some t� By �����

 � A�e�� � ��o��� � R��t

�
�� � ��� and probability of this set tends to ��

As R� has symmetric Lebesgue density� the result follows�

Proposition ����� For almost any 
 � S��� S
�
� and for any � � � we have

lim
���

sup
t����T����

dH
�
BR��t��xi�� BR��t��xi�

�
� � i � f�� �g� ����

�



Proof� We reason as in the proof of Lemma ��� and we choose Rmin such that R��T�� �� �
Rmin� Now the claim follows directly from the expansion ���� and the estimates ���� and
�����

From the proof of Lemma ��� we get the following result�

Corollary ����� For almost any 
 � S��� S
�
� we have lim��� t

�
� � t���

In the sequel of the paper� we will prove the following proposition� which together with
Lemma ��� and Proposition ����� gives Theorem ���

Proposition ����� For almost any 
 � S��� S
�
� we have

lim
���

�
dH�M�

� �	���t� 
��M�
��	���t�� � dH�M����	���t� 
��M�

��	���t��
�
� �� ����

Proposition ���� means that� on the set of paths where the two circles cross� the upper and
lower barrier have the same limit� which coincides with the deterministic upper barrier �i�e�
two circles merging into a bean�shaped curve�� The proof of Proposition ���� is postponed
to the end of Section ��

� Proof of the Existence Theorem

In order to de�ne a pathwise solution of ��� for such paths that W �t� 
� is H�older�continous�
we reason as in ���� Section ���� �� Without loss of generality� we shall assume � � �
and g � � in ���� Indeed� for g � C� the path W �t� 
� is H�older�continous if and only iffW �t� �� �W �

R t
� g�s�ds has this property�

In the following we denote by k � k the C����norm� Let D � 	 be a bounded open set with
boundary of class C��� and such that d� � C����D�� where d� is the signed distance function
from 	� Reasoning as in ����� ���� we can write the evolution equation ��� in the form

�td �
�Pn

j	�
	j

��d	j

	
dt� dW � f�d�D�d�dt� dW in D � ��� T �

jrdj� � � on �D � ��� T �

d��� � d� in D � f�g�
where �j are the eigenvalues of the matrix D

�d and

f�u� q� � Tr�q�I � uq�����

which is analytic for juj and jqj small enough�
Now we set u�t� x� �� d�t� x� �W �t�� then u solves

�tu � f�u�W �t�� D�u� in D � ��� T �

jruj� � � on �D � ��� T � ���

u��� � d� in D � f�g�
As W is H�older�continous� ���� Theorem �������� ���� Theorem ����� applies in the same
way as it is used in in ���� Section ���� � and gives a local C���
������solution� The existence
time of this solution depends on the C����norm of d� and on the C

�
��norm of W �t� 
�� We
brie
y sketch the proof�
We de�ne an operator  � Y � C���
��������� ���D�� Y �  �eu� �� w� where w solves the
following problem

�



�tw � A�u��w �


f�eu�W �t�� D�eu��A�u��eu� in D � ��� T �

�rd� � rv � �� jreuj� � �rd� � reu on �D � ��� T �

v��� � d� in D � f�g�
Y is chosen as a ball in C���
����� of radius R around the initial value u�� and A is the
linearization around u�� i�e� we take the derivatives of f at ��� x� u�� D

�u��� The boundary
condition is also derived by linearization�
Using the maximal regularity property of A in C���
������ one can show that for � and R
small enough  is a contraction on Y� So by the Banach �xed point theorem there is a unique
�xed point u � Y and it clearly solves ���� hence d � u�W is the distance function�
Reasoning as in ���� Chapter �� one can actually show that both d�t� x� and u�t� x� belongs to
Ck�D� for any k � N and for any t � ��� T �� where T � � is the maximal interval of de�nition
for a solution �observe that the spatially constant W disappears from the equation� when
considering di�erence quotients��
In order to prove that the solution is a signed distance function it remains to show that

jruj � � in D� Since u��� t� � C
�� for any t � ��� T �� �xiu solves on any D� s�t� D
� � D

�t �xiu�z�
	�xid

� �xi �f�d�D
�d���

Hence w �� jrdj� � � solves the same parabolic equation as in the deterministic case and
we conclude as in ���� that jruj � jrdj � � on D�
Consider now the stochastic ODE in the Ito sense

dX�t� � �f�d�t�X�t��� D�d�t�X�t���rd�t�X�t��dt �rd�t�X�t��dW�

X�t�� � x� � 	t� �
As D�d � D�u is Lipschitz in x� this is uniquely solvable for short times�
In order to show that X�s� preserves the zero level of d� have to show that � � u�t�X�t���
u�t�� x�� �W �t� �W �t��� We can apply the Ito�formula to u� which is of class C� in time�
Thus� using that derivatives of d and u are the same�

u�t�X�t�� � u�t�� x�� �

Z t

t�

d�u�s�X�s���

�

Z t

t�

�

�
�xixju�s�X�s�� �xiu�s�X�s���xju�s�X�s��ds

�

Z t

t�



f�d�s�X�s��� D�d�s�X�s���ds�ru�s�X�s��dX�s��

Using the fact jruj � � and the de�nition of dX� the second integral is exactly ��W �t� �
W �t���� The fact that jruj � � implies

�

�
D�u�t�X�t�� � ru�t�X�t�� � �

�
rjruj� � ��

so the claim is shown�
In order to show convergence of evolutions forced by pathwise smooth approximationsW� of
the noise W � we need an estimate for the di�erence of two solutions starting from di�erent
but close initial values and �formally� forced by di�erent H�older� continous functions dW�

and dW��

�



Lemma ���� Let ui� i � �� � be two solutions of ���� with two di�erent integrated forcings
W� and W� with W���� � W���� � �� and let them start from two di�erent initial values
u����� u����� which ful�ll jrui���j� � � and assume further that rui is not tangent to the
boundary�
Then� there are positive constants C�� C�� � where C�� C� depend only on the C����norm of
�D and �ku����kC���� ku����kC���� and  depends also on jW�j� jW�j� such that

sup
���� �

ku��t� x��u��t� x�kC����C�

�
ku��t� ���u��t� ��kC����kW��W�kC �

� ����� ��

	
�

Proof� Let v �� u� � u�� then v solves

�tv �
P

ij aij�t� x��xixjv � c�t� x��v �W� �W�� in D � ��� T �X
�i�t� x��xiv � � on �D � ��� T �

v��� � u����� u���� in D � f�g�

where

aij�t� x� �

Z �

�

�f

�qij



	�u��t� x� �W��t�� D

�u��t� x��

���� 	��u��t� x� �W��t�� D
�u��t� x��

�
d	

c�t� x� �

Z �

�

�f

�u



	�u��t� x� �W��t�� D

�u��t� x��

���� 	��u��t� x� �W��t�� D
�u��t� x��

�
d	

�i�t� x� � �xiu��t� x� � �xiu��t� x��

since �ru� �ru���ru� �ru�� � jru�j� � jru�j� � � � � � �� We can �nd a  as in the
statement of the lemma such that on ���  � the boundary condition is nontangential and the
C�����
������norm of �i and the C�
����norms of aij � c are bounded� Further the initial
value ful�lls the boundary condition �compatibility��
The result now follows from ���� Theorem ������� �optimal regularity for time�dependent
coe�cients��

The following corollary is a straightforward application of the previous lemma to distance
functions� provided the surfaces are so close that we can �nd a common domain D for the
two distance functions�

Corollary ���� Let 	��i� i � �� � be two C����hypersurfaces where 	� evolves as in ����
whereas for 	� the forcing �dW in ��� has been replaced by a smooth forcing �g�� Let also
di��� t� be the signed distance function from 	i�t�� Then� there are positive constants C��
C�� � where C�� C� depend only on �kd����kC��� � kd����kC���� and  depends also on
j�W �

R
gj� j R �g � �g��j� such that if dist�	����	���� � C� then

sup
���� �

kd��t� x��d��t� x�kC����C�

�
kd��t� ���d��t� ��kC����

�����W �t��
Z t

�

�g��s�ds

����
C

�
� ����� ��

�
�

�	



Lemma ���� Assume a forcing of the type g�t���dW� If the initial surface 	� is symmetric
under rotation around the x��axis� then so is 	�t�� If 	�t� is on a open set �t�� t�� � ��

obtained by rotating the graph of a function h�t� x�� around the x��axis� then h solves for all
x� and a�a� 


dh �

�
h��

� � ��

� h
��

� � h��
� n� �

h
�
p
� � h��g�t�

�
dt� �

p
� � h�� dW� ����

which corresponds to the Stratonovich equation

�h �

�
h��

� � h��
� n� �

h
�
p
� � h��g�t�

�
dt� �

p
� � h���W� ����

where h� denotes di�erentiation with respect to x��

Proof� The �rst claim follows easily from the fact that the eigenvalues of D�u are invariant
under orthogonal transformations� So the distance function d�t� x� depends only on t� r �p
x�� � � � �� x�n and on x��

Let G�t� r� x�� �� d�t� r�x�� x�� � �W �t�� then this is di�erentiable in time hence for any x�
the Ito�formula can be applied to G�t�eh�t� x��� x��� where the process eh�t� x�� solves for any
�xed x� the following Ito�equation

deh�t� x�������Grr

�G

r

�
f�G�W�D�G�

Gr

�
�t�eh�t� x��� x��dt� �

Gr
�t�eh�t� x��� x���dW�g��

where ur �� �ru� Hence we have dG � �dW� This means d�t�eh�t� x�� x� � � on the time
interval ��� T � which implies the relations

�Gr� Gx�� �
p
� � �h���

��
���� h��

� � Gx�x� �Grr �Gr
n� �

r

Grr � Gx�x��h
����

�Here we used that j�Gr � Gxi�j��eh�x��� x�� � � to get a relation between Grx� � Grr and

Gx�x� �� All derivatives are taken at �t�
eh�t� x��� x��� This implies

��Grr

�G

r

�
�

�
�h����

�
�

Gr
� n� �

r

�
�

so we get �����

� The case of touching circles

In this Section we set n � �� and we consider the case when the two evolving circles collide
at a time t�� � ���
As �rst result� we shall show in Lemma ��� that the minimal barrierM��� starting from two
touching circles contains an expanding ball with center in the origin� This means that the
expansive tendency of the large curvature at the origin is stronger than the driving noise�
which is not able to bring the set back to the origin�

��



In order to show that the minimal barrier contains such a ball� it is enough to show that
a sequence of barriers starting from a family of sets f�ngn� having smooth boundary and
approximating the two touching circles� contains a ball which does not depend on n�
Let �n� n � N� be a family of compact connected sets �beans� with smooth boundary such
that�

�� �n � �m� if n � m!

��
T
n �n � �t�� �� BL�x�� � BL�x��� dist��n� BL�x�� � BL�x��� � dn � �!

�� �x� y� � �n i� jyj � �n�x�� where �n is a positive function de�ned for jxj � an����
smooth for jxj � an��� and such that limjxj�an��� �n�x� � �!

�� �n is even and has only one local minimum in x � � �except for jxj � an����!

�� the curvature of ��n has a maximum in x � �� a minimum in jxj � an���� and no
other critical point�

For any n � N� let t�n � t�n�
� be the maximal time of existence of the solution of in the
sense of theorem ��� starting from �n� Notice that� by Lemma ���� �n�t� is symmetric with
respect to the coordinate axes� and can be written as a subgraph of a function �n�t� x��
jxj � an�t�� Denote by �n�� and �n�� the surface and the graph starting from �n but
evolving with a smooth forcing term f� �� g � � d

dtW�� where W� � C� and W� � W in

C�
�� The functions �n�� and �x�n�� satisfy

�t�n�� �
�xx�n��

� � ��x�n����
�
q
� � ��x�n����f� ����

���x�n��� �
�xx�x�n��

� � ��x�n����
� �

�x�n����xx�n���
�

�� � ��x�n������
�

�x�n���xx�n��p
� � ��x�n����

f�

Denote by �n�� �
�xx�n���p

����x�n����
�� the curvature of ��n��� The function �n�� satis�es the

equation

�t�n�� �
�xx�n��

� � ��x�n����
�

�x�n��p
� � ��x�n�����

�x�n��f� � ��n����n�� � f���

Applying the Sturmian Theorem ��� to �x�n�� and to �x�n�� we get that �n���t� has only
one neck �i�e� a point where �x�n�� � �� for x � �� and the curvature has a global maximum
in x � � and global minimum in jxj � an���t�� As �n���t�� �n�t� in C��� by corollary ����
the curvature �n of the limit �n has the same properties�
Since �n�t� � BR��t�

�x���BR��t�
�x��� it follows that �n��� t� is greater than or equal to the

curvature of the circle which is tangent to both BR��t�
�x�� and BR��t�

�x��� and whose center

is equidistant from x� and x� �see Figure ���

Hence �n��� t� � � R��t���n�t�
L����n�t��R

�
� �t�

� which implies

�n��� t��� �n��� t�� �
Z t�

t�

�
�

R��s�� �n�s�

L� � ��n�s��R�
� �s�

� g�s�

�
ds� �

�
W �t���W �t��

�
� ����

After the initial smooth evolution ceases to exist� we construct another evolution starting
from a new curve whose height above the origin is larger or equal to the height of the previous
bean� and which in turn exists until a time t�n � t�n� In this way we �rst obtain a �possibly
�nite� sequence of sets �kn and an increasing sequence of existence times tkn �Lemma �����
and later we show that there is a  � �
� � � independent of n� such that tn �� supk t

k
n � 

�Lemma ����� In the following we let DR �� BR�x�� �BR�x��� for any R � ��

��
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Figure �
 construction of the comparison sets �n

Lemma 	��� For any n � N and �n as above� we can construct a sequence of smooth
evolutions �kn�t� for ���� de�ned on �tkn� t

k��
n �� such that

� ��
n�t� �� �n�t� and DR��t� � �kn�t� �M���n� t

�
� ��t�� t � �tkn� tk��n ��

� Letting e�kn be the height of �kn above the origin� the function e�n�s� �� e�kn�s� for
s � �tkn� tk��n � is upper semicontinous on �t�� � tn�� it is continuous on �t

k
n� t

k��
n � and can

jump only above at the times tkn� i�e�
e�n�tkn� � limt�tkn

e�n�t��
� When R��t

k
n� � L� the curvature above the origin ��tkn� �� of ��

k
n ful�lls

C�L�

�e�n�tkn��� 	 d�n � ��tkn� �� � �
L� e�n�tkn��e�n�tkn��� � ����

where C�L� is a positive constant depending only on L and dn �� dist�BL�x�� �
BL�x��� ��n� � ��

� The C����norm �and hence the maximal existence time� of the evolution starting from

�kn�t
k
n� depends only on the height above the origin e�n�tkn� and on dn�

Remark As a consequence of these properties� inequality ���� holds for e�n on �t�� � t�� Indeed�
between the tkn it is the graph of a smooth bean containing the two circles� and at t

k
n it can

only jump above�

Proof� For the proof� we will use the fact that dist�BR��t��x���BR��t��x���R
�
� nM���n� t

�
� ��t��

is nondecreasing in t� so in particular it is always greater than dn�
Since ��

n is already constructed� we proceed inductively� assuming that �k��n has already

been constructed and exists until a time tkn�We let
e�k��n �tkn� �� limt�tkn

e�k��n �t� �which always

exists�� If e�k��n �tkn� � � or e�k��n �tkn� � L�� we stop the construction� if L�� � e�k��n �tkn� � �
we proceed as follows� Let us distinguish two cases�
Case � R�tkn� � L�

��



De�ne e� as the set which contains BR��tkn�
�x���BR��tkn�

�x�� and whose boundary is of class

C��� and is contained in
�
�BR��tkn�

�x�� � �BR��tkn�
�x�� � �C� � �C�

�
� where C� is a circle

as in Figure �� i�e a circle of radius r ��
L��R�

���
e�k��
n ��

��R��e�k��
n �

�tkn� and center in ���
e�k��n �tkn� � r��

whereas C� has same radius and center in ����e�k��n �tn�k� � r�� From the monotonicity
properties of the curvature of ��k��n �tkn�� which follow from the Sturmian Theorem� it is
easy to check that e� � �k��n �tkn� �M���n� t

�
� ��t

k
n��

We now de�ne �kn by regularizing e� in such a way that the C����norm of �kn is bounded
by a constant depending only on dn and r� This is possible since the distance between
�M���n� t

�
� � and the �four� points where �

e� is not of class C��� is greater than dn�
Case 	 R��t

k
n� � L� Here the problem is to control the curvature of the constructed curve�

because the radius r de�ned above could be �� We shall use the fact that two circles of radius
R��t

k
n��dn�� are still contained inM���n� t

�
� ��t

k
n�� because the distance of �M���n� t

�
� ��t

k
n�

from DR��tkn�
is at least dn� Call h ��

p
R��tkn�

� � L��

Subcase � Assume that e�k��n �tkn� �
p
�h� Proceeding as above� we get

r � �e�k��n �tkn��
�

��L� e�k��n �tkn��
�

which gives the �rst inequality in ����� recalling that e�k��n �tkn� � L��� The second inequality
in ���� is obvious since R��t

k
n� � L�

Subcase 	 Assume that e�k��n �tkn� �
p
�h� In this case we de�ne the new height as follows

e�k��n �tkn� ��

�
lim
t�tkn

e�k��n �t�

�


��

h�
dn
�

�
	 �h

�
�

If we don�t introduce any discontinuity in the function e�n� the inequalities ���� follow as

in Subcase �� Otherwise the inequality e�k��n �tkn� �
p
�h gives the second inequality in �����

whereas the fact that e�k��n �tkn� � h � dn
� implies r � d�n��

p
�L�� which gives the �rst

inequality in ����� Notice also that DR��tkn��dn
�
� e� � M���n� t

�
� ��t

k
n�� and the distance

at the four points where the smoothing takes place is larger than dn���

The following result states that the curves ��n�t� do not intersect the origin for a time
interval  independent of n �even if it depends on the path 
��

Lemma 	��� For any ��� � �� � ��� and for almost any 
� there exist �
� ��� � �
and c�
� � � such that M�����n� t

�
� ��t

�
� � s� contains a ball of radius c�
�s�

�

for all s �
��� �
� �����

Proof� Fix  � � and choose ��� � � � �� � ���� We set i �� ��i� �i �� c����c
i
� �i � N��

where � � c��� � bc������� for some � � �� � � and some bc� � � and c� � ��� for some
� � �� � �� The constants bc�� �� and �� can be calculated explicitly at the end of step ��
The �i� i � �� � depend on � and ���
We divide the rest of the proof into �ve steps�

Step �� We want to show that� for any i � N� there exists ti � ti�
� � �t�� � t�� � ��i� such that

R��s� � L on �ti� ti � ��i�
�
� ��i� with probability �� o���

Indeed� let us de�ne ti as follows

ti �� ��i 	 inffs � t�� � R��s��R��t
�
� � � ��i

p
��ig�

��



By applying twice the strong Markov property we get

P�ti � ��i� R� � R��t
�
� � on �ti� ti � ��i�

�
� ��i��

� P

�
inf

n
R��s�

���s � �ti� ti � ��i�
�
� ��i�

o
� L

���ti � ��i

	
P�ti � ��i�

� P

�
inf

n
R��s��R����

���s � ��� ��i� �� ��i�o � ���i
p
��i

���R���� � L
	
� P�ti � ��i�

� P� sup

�����i�
�
� ���i�

�W �t� � c ��i
p
��i�P

�
sup

������i�

�W �t� � c ��i
p
��i

�
� �� "c

�
��i � exp�������i �

	
�

for some positive constants c� "c� We can estimate the probabilities for R� against
those for the ��Brownian motion �W � because on the set f
 � infs��t�� �t������i�fR��s��
R��t

�
� �g � L

� g� which has probability ��o����� the absolutely continous part of R��t�
is uniformly Lipschitz�continous� In particular� on time intervals of length ��i� it is
of smaller order than �i

p
��i� The estimate for the Brownian motions follows directly

from the fact that max���t�W �s� has the distribution of jW �t�j�
Step 	� We want to show that with probability ��o�� the following holds� e�n�s� � c�s�ti��

for s � �ti� ti��
�
�

i �
�i� and for some constant c � �� whenever �ti� ti��

�
�

i �
�i� � �t�� � tn��

Indeed� the �kn in lemma ��� are constructed in such a way that ���� holds on �t
�
� � tn��

Hence we get by ���� for any ti � s � t � ti � �
�
�

i �
�i

e�n�t�� e�n�s� �
Z t

s

�
�
L� e�n�r�e��n�r� � g�r�

�
dr � ��W �t��W �s��� ����

e�n��� � ��

We have to check that the function ���c�s� � c�s� ti�
�� ��W �s��W �ti���

R s
ti
g�r�dr

is a subsolution of ���� on �t���  	 t� with probability �� o��� i�e�

���c�t�� ���c�s� �
Z t

s

�
�
L� ���c�r�

����c�r�
� g�r�

�
dr � ��W �t��W �s���

Fix ��� � � � �� and choose c � ��L�
�
� � We have that jW �t� � W �ti�j � c
jt �

tij� with probability � � o�c��
 � for �xed � �this follows directly from the fact that
EkW �s�kH��p ����t�� � C�	� p� for 	 � �

� � the embedding theorems and the Markov
inequality�� Hence� �notice that the Brownian terms on both sides of ���� cancel��

���c�s�
� � c�t� ti�

� for t� ti � c��c� kg 	 �kC��c
�

���


 � ����

Therefore� using again the H�older�continuity of the paths of the Brownian motion�

we have that e�n�s� � c�s � ti�
� for all s � �ti� ti � �

�
�

i �
�i�� whenever this interval is

contained in �t�� � tn�� and c
 is so small that ���� holds for the chosen � which happens
with probability �� o��� In particular� we have

e�n�ti � �
�
�

i �
�i
� � c�i��

�i�
� �

Step 
� We know that the second derivative in � of �n��� s� is nonnegative for all s � �t�� � tn� n
�kftkng� so for s � �ti � �

�
�

i �
�i� tn� we have

e�n�s� � �


W �s��W �ti � �

�
�

i �
�i�

�
� c�i��

�i�
� �

��



Hence we have e�n�s� � c
��i��

�i�
� for s � �ti� ti �

�
c�

� �i�
�
i ��

�i�
����

�
i� � �t�� � tn� on a

set �i with P��i� � �� exp�����i ��

We can now determine bc�� �� and �� �and thus �i� in such a way that the following
conditions hold�

� �
c�

� �


i �

�����������i

�
� �� so e�n�s� � c

��i��
�i�

� in �t�� � ��i� �t
�
� � ��i��� 	 tn��

� �i��
�i�

� � ���i���
�� �

Now we can argue by iteration to show that e�n�s� � c�s� t���
�� for s � �t�� � �t�� ����	

tn� on a set of probability of order �� o���

This implies that for almost any path 
 there exists �
� � � such that the thesis
holds for the interval �t�� � �t

�
� � ��� 	 tn� instead of �t�� � t�� � ��

Step �� On the interval �t������ �t�� ��	tn� we argue as follows� By the H�older�continuity of
the Brownian motion we know that �L��R�

��s��
� � c
�
���s�t�� ���c��g� L��s�t����
However on ���� � we have

��s� t�� �
� � c��� ��s � t�� �

�� � c��� � � ������� �

Hence we can estimate the denominator in ���� against c��
���s�t�� ���
�

by arguments
as in step � for the �
� already �xed in the previous step� and we conclude that there
is c���
�� such that ����c� is a subsolution for ���� on this interval�

Remark� Actually c� can be chosen independent of � This comes from the fact that
we need step � only for  � �� and that we can assume �� �� close to �����

Step �� We conclude the proof of the lemma� It remains to show that tn � �
�� From Step

	 it follows that on �t�� � tn� we have
e�n�s� � c�
��s� t�� �

� hence the existence time of

the smooth evolutions �kn depends only on n as long as t
k
n � �
� and e�n�tkn� � L���

Hence tn � �
� � �� provided that e�n�t� � L�� for t � �t�� � tn� �which is always
satis�ed for �
� small enough��

We are now in the position to prove Proposition �����

Proof� Fix 
 � S
��� S

�
� such that Corollary ���� holds� We set for simplicity M�

� �t� ��
M�

� �	���t�� M����t� �� M����	���t�� M�
��t� �� M�

��	���t�� We divide the proof into four
steps�

Step �� Let t � t��� Reasoning exactly as in Proposition ����� we get that

lim
���

sup
s����t�

dH
�
BR��s��xi�� BR��s��xi�

�
� � i � f�� �g� ����

which implies �����

Step 	� Let t � �t��� T��� We want to prove that�
	

�
�	

M�
� �t� �M�

��t�� ����

Consider the family of sets 	n de�ned at the beginning of this section� We recall that
for any bounded set A � R

� and a family of sets An � R
� such that An � A� we have�

n

M�
��An� �M�

��A��

��



which implies together with ���

M�
��t� �

�
n

M�
��	n� t

�
���t�� t � t���

In order to obtain ����� it is enough to prove for any n � N��
	

�
�	

M�
� �t� �M�

��	n� t
�
���t�� ���

Indeed� from the regularity of M�
��	n� t

�
���t� �which we get for example from the

gradient estimates in ���� it follows that

lim
��t��

M�
��	n� ��t� �M�

��	n� t
�
���t� t � t���

Therefore� recalling that t�� � t�� for �� � by Corollary ����� we obtain�
	

�
�	

M�
��	n� t

�
� ��t� �M�

��	n� t
�
���t��

Moreover� from Corollary ��� we get that for any n � N there exists ��n� such that

M�
� �t� �M�

��	n� t
�
� ��t�

for all � � ��n�� hence �
	

�
�	

M�
� �t� �

�
	

�
�	

M�
��	n� t

�
� ��t��

and ��� follows�

Step 
� Let t � �t��� T��� We want to show that�
	

�
�	

M����t� �M�
��t�� ����

Given � � r � L� denote by Er be the union of the two tangent circles of radius
r� having centers in the segment �x�� x�� and containing the origin� Recall that� by
parabolic rescaling� we get

M�
��t� �

�
r�L

M�
��Er� t

�
���t�� t � t��� ����

By Lemma ��� and recalling ��� there exists �� � � such that for any � � �� we can
�nd � � � independent of � such that

M����t� � B����� t � t�� � � �

Since r � L� we can also assume thatM����t
�
� � �� � Er �B����� Applying Proposi�

tion ���� it follows that� for � small enough �depending on ��� we have

M����t� �M�
��Er� � t

�
� � ���t�� t � t�� � � � r

� � r� ����

Letting � � � and using the continuity in the variable s of M�
��Er� � s��t� for s � t

�which follows from the regularity of �M�
��Er� � s��t� ����� inclusion ���� becomes�

	

�
�	

M����t� �M�
��Er� � t

�
� � ���t�� t � t�� � � � r

� � r�

which gives the result letting � � �� and recalling �����

��



Step �� Let us consider the case t � t��� Since M����t� � BR��t��x�� � BR��t��x�� for any
� � � and t � ��� T��
��� and since BR��t��xi� � BR��t��xi�� i � f�� �g� uniformly on
compact subsets of ��� T��� it follows that ���� also with t � t���

We have to prove that also ���� holds� Indeed� assume by contradiction that there
exists a point

z �
��

	

�
�	

M�
� �t

�
��

�
nM�

��t
�
��� ����

By Step �� for any s � ��� t��� there exists ��s� such thatM�
� �s� � BL�x���BL�x�� for

any � � ��s�� Let now r �� dist�z�BL�x�� � BL�x����� and let 	 �� �Br�z�� Let also
	s��t�� t � �s� s� ��  � �� be the evolution starting from 	 at time s� which solves ���
letting � be the unit normal pointing inside Br�z�� Since 	

s
��t� converges� for �� ��

to the deterministic evolution starting from Br�z�� we can take  independent of s
and �� Moreover� it is easy to check from the de�nition of minimal barrier that

M�
��t� � 	s��t� � � t � �s� s�  �� ����

If we choose s � t�� such that t
�
� � �s� s� �� from ���� we get

z ��
��

	

�
�	

M�
� �t

�
��

�
nM�

��t
�
���

which contradicts �����
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