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Abstract� We consider the spreading of a thin droplet of viscous liquid on
a plane surface driven by capillarity� The standard lubrication approximation
leads to an evolution equation for the �lm height h � which is ill�posed when
the spreading is limited by the no�slip boundary condition at the liquid�solid
interface� due to a singularity at the moving contact line� The most common
relaxation of the no�slip boundary condition removes this singularity but in�
troduces a new physical length scale� the slippage length b� It is believed that
this microscopic length scale only enters logarithmically in the e�ective �that
is� macroscopic	 spreading behavior�
In this paper� we rigorously show that the naively expected spreading rate is
indeed only altered by a logarithmic term involving b� More precisely� we prove
a scaling law for the diameter of the apparent �that is� macroscopic	 support
of the droplet in time� This is an intermediate scaling law� It takes an initial
layer to 
forget� the initial droplet shape � whereas after a long time� the
droplet is so thin that its spreading is governed by the physics on the scale b�
Our proof works by deriving suitable estimates for physically relevant integral
quantities� the free energy� the length of the apparent support and their respec�
tive rates of change� As opposed to matched asymptotic methods� this PDE
approach closely mimics a simple heuristic argument based on the gradient �ow
structure�
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� Introduction

This paper addresses the following question	 What is the rate by which a droplet
of a viscous liquid spreads on a plane
 solid surface driven by capillarity� This
question has attracted some attention in the physics community because of a failure
of the straight forward model
 as we shall see below� Mathematically speaking

this model comes in form of a degenerate parabolic equation of fourth order for
the �lm height h� With this work
 we hope to help to bridge the gap between two
communities	 the applied math community
 with its expertise in matched asymptotic
expansions and its focus on scaling laws
 on one side
 and the pde community
 with its
expertise in integral estimates
 on the other side� For simplicity
 we consider a two
dimensional setting throughout the paper� We hope to treat a threedimensional

radially symmetric setting in the same manner�

��� Energetics and kinetics

With respect to the energetics
 we assume that the spreading is driven by capillarity
alone
 no gravity e�ects are considered� More precisely
 we assume that we are in
the complete wetting regime with zero spreading coe�cient� This just means that
the three speci�c surface energies are related as follows	

� � speci�c surface energy liquid�vapor

� speci�c surface energy solid�vapor � speci�c surface energy solid�liquid�

According to de Gennes ���
 this relation is satis�ed whenever complete wetting
regime is considered on a �moist� surface� The consequence is that the equilibrium
contact angle is zero�

With respect to the kinetics
 we assume that the liquid is incompressible and viscous
with Newtonian viscosity �� Crucial is the noslip boundary condition for the liquid
velocity �u

�u � � on the solid�liquid interface� ���

Hence for su�ciently thin �lms
 the viscous friction coming from this noslip bound�
ary condition is so strong that the �ow is determined by a quasistatic balance
between surface tension and viscous forces�

��� The lubrication approximation

The lubrication approximation is based on a separation of lengthscales

typical vertical lengthscale � typical horizontal lengthscale� ���

In the lubrication approximation
 the �lm is described by

� the �lm height h
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� the vertical average u of the horizontal component ux of �u


both as functions of the horizontal coordinate x and time t �here and throughout
 a
superscript x �y� denotes the horizontal �vertical� component of a vector or tensor��
The incompressibility yields the kinematic relation

ht � �h u�x � �� ���

In the lubrication approximation
 the surface energy �up to an additive constant� is
given by

E � �
Z �

�
�hx�

� dx� ���

This expression comes from the expansion of the surface element
q

� � �hx�� dx� In
the lubrication approximation
 ux reduces to a slowly modulated Poiseuille �ow

ux �
�

�

�
�
y

h
� �

y

h
��
�
u�

characterized by
R h
� u

x dy � h u and the boundary conditions ux�y � �� � � and
uxy�y � h� � �� The viscous dissipation rate is given by

D � �
Z Z h

�
�uxy�

� dy dx � � �
Z �

h
u� dx� ���

Hence the balance of surface tension and viscous forces reduces to

� �
�

h�
u � � hxx�

so that we obtain from ���

� � ht � � �h� hxxx�x � ��

There are many possibilities to nondimensionalize horizontal length x
 vertical
length h and time t such that � � � � � �� We pass to such a nondimensional
setting	

ht � �h� hxxx�x � �� ���

��� Scale invariances

Equation ��� has �at least� two scale invariances

x � � �x� h � � �h and t �
��

��
�t�

and �at least� one conserved quantity

Z
h dx�
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If one of the scale invariances is used to �x the conserved quantity

Z
h dx � ��

there remains one scale invariance

x � � �x� h �
�

�
�h and t � �� �t�

This is usually a good indication that there exists a selfsimilar solution of the form

h�t� x� � t�
�

� H�xt�
�

� ��

Folklore suggests that the selfsimilar solution should describe the longtime be�
havior of all normalized solutions� Therefore
 naively
 one would expect that the
diameter S of the support and the energy E of a normalized solution scale as fol�
lows	

S � t
�

�

E � t�
�

�

�
for t su�ciently large� ���

��� The no�slip paradox

Unfortunately but interestingly
 such a selfsimilar solution does not exist ���� In
fact
 the situation is even worse
 as Huh � Scriven ��� and Dussan � Davis ��� �rst
pointed out	 independently of the contact angle
 motion of the contact line would
lead to a logarithmic divergence in the dissipation rate integral ���� That is
 as
explained in mythological terms in ���
 �� � � not even Herakles could sink a solid��
This phenomenon is also re�ected by nonexistence of advancing travelling wave
solutions to ���
 while receding ones must behave like � log�������� as � � x�ct� �

with an unbounded dissipation�

The consequence drawn by the physics community is to evoke more physics near
the contact line to remove the singularity� Many di�erent mechanisms have been
proposed for such a microscopic cuto�
 such as positive slippage
 the action of
long�range van der Waals forces
 or shearthinning rheologies� Let us also mention a
recent proposal by Barenblatt
 Beretta and Bertsch ���	 they postulate the existence
of a small and autonomous region near the contact line
 where for given external
conditions and material properties
 the �ow is universally determined by the velocity
of the contact line�

��� Finite slippage

In this paper
 we consider a class of �nite slippage models
 �rst proposed by Navier
himself ���� and then developed by many authors in the last decades �we refer to
the review paper of Oron
 Davis and Banko� ���� for a complete list of references��
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In its simplest version
 �nite slippage means the following relaxation of the noslip
boundary condition ���	

uy � �
ux � � b exy � �

�
on the solid�liquid interface�

where

exy �
�

�
�uxy � uyx�

is the xycomponent of the strain rate e� Observe that the parameter b has units of
length� it is called the �slip length�� This law
 also referred to as Navier s friction
condition
 has been recently obtained by J!ager and Mikeli"c �#� as the homogenization
limit of surface irregularities for twodimensional laminar viscous �ows� Within the
lubrication approximation
 Navier s condition has the following e�ect	 �u is a slowly
modulated Poiseuille �ow

ux �
�

�

�

� � � b
h

�
� �

y

h
�

b

h
�� �

y

h
��
�
u�

characterized by
R h
� u

x dy � h u and the boundary conditions �ux� b uxy��y � �� � �
and uxy�y � h� � �� The viscous dissipation rate now is given by

D � �

�Z Z h

�
�uxy�

� dy dx �
�

b

Z
�ux�� dx

�
� � �

Z �

h � � b
u� dx� ���

Hence one obtains

� � ht � � ��h� � � b h�� hxxx�x � ��

Di�erent types of relaxation of the noslip boundary condition lead more generally
to slippage models of the form

� � ht � � ��h� � b��nhn� hxxx�x � �

with � 	 n 	 ��

Again
 there are several ways to nondimensionalize this equation although now

one is forced to measure vertical length h in units of the sliplength b in order to
get the parameterfree form

ht � ��h� � hn� hxxx�x � �� �#�

��� The intermediate scaling law

In comparison with ���
 �#� looses one of the two scale invariances� The remaining
one is spent to normalize the conserved quantity

Z
h dx � �� ����
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In particular
 there is no selfsimilar solution and
 in turn
 no straightforward time
scale� Nevertheless
 as de Gennes pointed out
 �� � � there are reasons to believe
that the macroscopic laws are weakly �logarithmically� sensitive to these special
�microscopic� properties� �see x���
 and in particular ������ Indeed
 here we will
rigorously infer an intermediate scaling law for the diameter S of the support and
the energy E in time
 which shows a logarithmic slowdown of the naive scaling ����

What can we expect�

� We can only expect a scaling law for the diameter of the �apparent� support�

� We can only expect a scaling law for intermediate time scales�

Let us explain why� By apparent support
 we understand the region where h is of
the order or larger than the slippage length	 fh 
 �g in our nondimensionalized
setting
 where the choice of � instead of any other constant of order � of course is
arbitrary� Indeed
 the rate of spreading of the �microscopic� support
 i� e� fh 
 �g

is governed by the speci�c slippage model and depends on n� Hence only the rate
of spreading of the apparent support has a chance to be nindependent� In view of
the normalization ����
 the focus on the apparent support fh 
 �g means we are
interested in the regime S � � and hence E � �� But for large enough times
 the
energy will become much smaller than unity	 E � � and thus h � �� From then
onwards
 the slippage term hn in �#� and thus a �microscopic� behavior takes over�
Hence we cannot expect a scaling law for very large times� On the other hand
 it
takes a certain time to �forget� the speci�c shape of the initial data� Hence
 since we
look at the apparent support
 we cannot expect a scaling law for very small times�

��� A heuristic argument

We conclude the introduction by a heuristic argument which predicts the scaling
which we prove� It is based on the assumption that as long as S � �


� most of the volume and energy is contained in the apparent support fh 
 �g

� most of the energy is dissipated in the apparent support fh 
 �g �though near

its boundary��

The spreading of the apparent support is hindered by the extremely high friction
near the boundary of the apparent support fh 
 �g� Hence it is reasonable to expect
that
 after some initial layer which we disregard
 the fh 
 �gportion of the shape
h is in quasistatic equilibrium $ given its apparent support� In view of the speci�c
form ��� of the energy E
 this means that h is parabolashaped for h� �� Without
much loss of generality
 we may assume that the maximum is situated at x � ��
Then the volume constraint ���� enforces the Ansatz

h � �

S

�
��

�
x

S

��
�

for h � ��
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In particular
 we expect

E � �

S�
� ����

u � %S
x

S
for h � �� ����

From ���� we obtain for the rate of change of surface energy

� %E � �

S�
%S�

On the other hand

� %E � D where D �
Z

�h� � hn� �hxxx�
� dx �

Z �

h � hn��
u� dx� ����

and from ���� the rate of viscous energy dissipation is given by

D �
Z
fh��g

�

h
u� dx � � %S�� S� log

�

S
� ����

Since both quantities have to be equal
 we infer

%S � �

S�

�

log �
S

�

which thanks to S � � turns into

d

dt

�
S� log

�

S

�
� ��

that is

S� log
�

S
� S�

� log
�

S�
� t�

Appealing once again to ����
 we conclude

S �
�

t
log �

t

� �

�

E �
�

t
log �

t

�� �

�

������
�����

as long as S�
� log

�

S�
� t � �� ����

Hence we expect a logarithmic slowdown of the time scale when compared to the
naive scaling ����

In order to get a better intuition
 let us consider the time �t it takes to double S�
from ���� we infer

�t � S� log
�

S
as long as S � ��

In dimensional variables this turns into

�t � �

�

�

M�
log

M

bS
as long as S � M

b
� ����

where M denotes the �twodimensional� volume of the droplet� In view of ���
 the
lubrication approximation is expected to be valid as soon as S � p

M 
 so that
the regime we address here is characterized by

p
M � S � M

b
� It is not void

provided b�p
M �
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��	 Concluding remarks

The logarithmic correction to the naive scaling was actually well understood
 either
via matched asymptotic analysis ��rst by Tanner ���� and Hocking ���� or via quasi
selfsimilar solutions �Bertsch
 Dal Passo
 Davis and Giacomelli ����� The novelty of
our study lies in the fact that such correction is proved for a general class of solutions
�we just assume measfh� 
 �g � �� rather then inferred from the construction of
a special approximate solution� This is the consequence of a di�erent approach	 we
base our analysis on estimates for relevant integral quantities �free energy
 dissipa�
tion
 and a relaxed notion of support�
 following as close as possible the previous
heuristic argument� In particular
 the procedure depends upon the microscopic be�
haviors essentially through the �particularly simple� form of the crossover �h � b�

with no appeal to analysis of the �inner� region� In fact
 the possibility to infer in�
termediate scaling laws by PDE methods is probably the key mathematical insight
of the work
 which may �nd applications to other problems which do not possess
selfsimilar solutions�

� The rigorous result

The closest our rigorous result comes to the heuristically expected is formulated in
the following corollary	

Corollary � There exists a constant C 
 �� independent of h� and t� such that if
the initial data h� satisfy

diamfh� 
 �g � C���

we have

C��

�
t

log �

t

� �

� � measfh 
 �g � C
�

t
log �

t

� �

�

C��

�
t

log �

t

�� �

� � E � C
�

t
log �

t

�� �

�

as long as

C diamfh� 
 �g� log
�

diamfh� 
 �g � t � C���

The constant C is uniform as n varies on compact subsets of ��
�
� ���

From here on
 we will adopt a more compact and physically intuitive notation

writing

f
�� g whenever f � C g�

f � g whenever C�� g � f � C g�

f � g whenever C f � g
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for a suitable constant C 
 � which does not depend on h� and t
 and is uniform as
n varies on compact subset of ��

�
� ��� With this understanding
 Corollary � may be

rephrased as follows	

Assume that
diamfh� 
 �g � ��

Then we have

measfh 
 �g �
�

t
log �

t

� �

�

E �
�

t
log �

t

�� �

�

as long as

diamfh� 
 �g� log
�

diamfh� 
 �g � t � ��

��� Outline of the proof

The fundamentals is a pair of Sobolev type inequalities �Proposition � in section ��
which extend Bernis ones ��� to the critical case n � �	 for n � ��

�
� ��

Z 	

�

h�

logh

hn��

��
� jhxxj� dx ��

Z �
h�

hn

�
�hxxx�

� dx�

Z 	

�

�
h log� h

hn��

��
� �hx�

� dx
��
Z �

h�

hn

�
�hxxx�

� dx�

Here and throughout we use the simpli�ed notation�
f��	�
f��	�

�
�

�
f��	� 	 � �
f��	� 	 � �

�
�

As a consequence
 in the regime under consideration we are able to relate the energy
E
 the dissipation

� %E � D �
Z

�h� � hn��hxxx�
�

and the apparent support S �measfh 
 �g via a triplet of di�erential inequalities
�Proposition � in section ��
 which formally reads as follows	

�
�� E S��

E� �� �� %E�S log
�

S
� ddt

�
S log

�

S

� �� �� %E�
�

� log
�

� �� %E��

This triplet turns out to constitute a closed system as far as decay rates are concerned
�Proposition � in section ��
 and these rates are just the ones stated in the Corollary�
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The main di�erence to the heuristically expected ���� lies in the asymmetry in the
treatment of the initial pro�le and later pro�les with respect to the support	 For
the initial data
 we need the diameter of the microscopic support
 whereas for later
pro�les
 we only get the measure of the apparent support� In fact
 Corollary � is
derived from the completely symmetric Theorem �
 which makes use of a generalized
notion of diameter of apparent support� This notion will be introduced now�

��� The relaxed notion of apparent support

Given a height function h
 we introduce Lagrange coordinates X through

Z X�V �

��
h dx � V�

Because of the normalization ����
 V ranges in the unit interval ��� ��� We �rst
observe that the diameter of the microscopic support fh 
 �g can be expressed as

diamfh 
 �g � X����X����

We now introduce a relaxation S�V�� of this notion
 which depends on the cuto�
parameter V� � �

�
	

S�V�� �
�

log �
V�

Z �

�

�
g�V� V�� �X��� V ��X�V �� dV�

where the weight g is de�ned by

g�V� V�� �

	���

����

�

V
�

�
� V

�

�

for � 	 V � V�

�

V
for V� � V � �

�

�����
���� � ����

The exponent �
�

of the cuto� scaling is just a convenient choice and not dictated
by the problem� The prefactor �

log �

V�

is chosen such that

lim
V���

S�V�� � X����X��� � diamfh 
 �g� ����

We are now in the position to de�ne the mentioned generalized notion of diameter
Sapp of the apparent support�

De�nition �

Sapp � max
�
V

�

�
�

 V� � �

�
and S�V�� 
 V

�

�
�

�
�

This notion allows us to formulate the more symmetric result behind Corollary ��
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Theorem � Assume the initial data are such that

Sapp� � �� ��#�

Then we have

Sapp �
�

t
log �

t

� �

�

E �
�

t
log �

t

�� �

�

�����
����

as long as �Sapp� �� log
�

Sapp�

� t � ��

All we need to pass from Theorem � to Corollary � is contained in the following
chain of inequalities �Proposition � in section 	�	

E� �

�
�� measfh 
 �g �� Sapp

�� diamfh 
 �g�

��� Proof of Theorem �

We start with the observation that

S�V�� � V
�

�
� � � �� Sapp � V

�

�
� � ����

Indeed
 S�V�� is monotone decreasing in the cuto� V�� Hence if V �
� � V� we have

S�V �
�� � S�V�� � V

�

�
� � �V �

��
�

� and thus Sapp 	 �V �
��

�

� by de�nition of Sapp� On the

other hand
 if V �
� � V� we have S�V �

�� 
 S�V�� � V
�

�
� � �V �

��
�

� and thus Sapp 
 �V �
��

�

�

by de�nition of Sapp� This establishes �����

We set for notational convenience

V� � �Sapp� �� so that Sapp� � S��V���

and introduce the timedependent cuto�

V� �

	�

��

V� for t � S��V��
� log �

S��V���
t

log �

t

� �

�

for S��V��
� log �

S��V��
� t � �

���
�� � ����

For notational convenience
 we will drop the speci�cations t � S��V��
� log �

S��V��

and S��V��
� log �

S��V��
� t � � in the sequel� In view of remark ����
 it is enough

to show

S�V�� �
�

t
log �

t

� �

�

E �
�

t
log �

t

�� �

�

�����
���� as long as �S��V���

� log
�

S��V��
� t � ��

The �rst crucial observation is the following	 In Lagrangian coordinates


Xt � u where u � �h� � hn��� hxxx�
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Hence in case of a timeindependent V�
 we obtain for the rate of change of the
relaxed diameter

j %S�V��j � U�V�� where U�V�� �
�

log �
V�

Z �

�
g juj dV� ����

where g has been extended as an even function w� r� t� �
�
� Since g is decreasing in

the cuto� parameter V� and since V� is increasing in time
 we obtain

d

dt

�
S�V�� log

�

V�

� ����

� U�V�� log
�

V�
� ����

In the regime

S�V�� � �V
�

�
� log

�

�

��n
��n

�

V�
�

	��

���

V
�

�

� log
�

�

��n
��n �

V��
t

log �

t

� �

�

log
�

�

��n
��n �

t

����
��� � ����

energy
 dissipation and support are related as follows	 According to Proposition �

section �


�
�� E S�V��

�� ����

E� �� DS�V�� log
�

S�V��
� ����

U�V�� log
�

V�

�� D
�

� log
�

� D ����

Hence from ���� and ����

d

dt

�
S�V�� log

�

V�

�
�� D

�

� log
�

� D� ����

Let the time horizon T 
 � be so small that ����


S�V�� � V�
�����

	�

��

V��
t

log �

t

� �

�

���
�� ��#�

and

S�V�� �
�
V�
	V�

��

� �����
	�

��

���
t

log �

t

� �

�

log
�

�
�
t

���
�� ����

are satis�ed for t � ��� T �� The conditions ��#� and ���� are such that ���� turns
into

d

dt

�
S�V�� log

�

S�V��

�
�� D

�

� log
�

� D� ����
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Indeed


d

dt

�
S�V�� log

�

S�V��

�
�

�
log

�

S�V��
� �

�
%S�V��

�

�
log

�

S�V��
� �

�
�

log �
V�

�
d

dt

�
S�V�� log

�

V�

�
�

%V�
V�

S�V��

�

��
�
��

log �
S�V��

log �
V�

�
D

�

� log
�

� D �
%V�
V�

S�V��

�

����
�� D

�

� log
�

� D �
%V�
V�

S�V���

Now according to ���� and ����
 we have

D
�� �

S�V���� log �
S�V��

so that D
�

� log
�

� D
�� �

S�V���
�

Hence ���� implies

D
�

� log
�

� D
��

%V�
V�

S�V���

which establishes �����

Since D
����
� � %E
 estimates ����
 ���� and ���� constitute a system of di�erential

inequalities	 In Proposition � �section �� we show that they imply

S�V�� �
	�

��

S��V���
t

log �

t

� �

�

���
�� � ����

E �
�

t

log �
t

�� �

�

for S��V��
� log

�

S��V��
� t � � ����

on the time interval ��� T �
 provided

S��V�� � � and T � ��

The second crucial observation is that ���� is strong enough to ensure ����
 ��#� and
���� as long as T � � �for small times this follows from ��#��� Hence ���� and ����
hold for t� �
 and the proof is complete�

� The ode argument

In this section we show how the scaling law can be obtained via an ODE argument
from the estimates available� It inherits the same crucial features of the heuristic
argument	 the slow relaxation of the support

dS

dt
� �

S� log �
S

�
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and the fast relaxation of the energy given the apparent support

� � S�E�

This last relation imposes some constraints on the shape of the solution
 for instance
preventing h from having either too many connected components or too high peaks�
Actually
 it may be interpreted as a qualitative version of claiming that the solution
is parabolashaped� Indeed
 while �

�� E S� is just a Poincar"etype inequality
 the
reverse implies that h can not be too far from the minimizer of the energy for given
mass and support
 which is just our Ansatz in the heuristic argument	

h � �

S

�
��

�
x

S

��
�
�

Proposition � Assume that

�
�� E S�� ����

E� �� �� %E�S log
�

S
� ����

j�S log
�

S
��j �� �� %E�

�

� log
�

� �� %E� ����

hold as long as S � �� Then we have for S� � �

S � S� for t�S�
� log �

S�
�

S �
�

t
log �

t

� �

�

for S�
� log �

S�
� t���

E �
�

t
log �

t

�� �

�

for S�
� log �

S�
� t���

Remark � � Thanks to ���� and ����� S � � implies � %E � �� so that ��	� makes
sense�

We split the proof of Proposition � into three Lemmas�

Lemma �

E S� ��
	

�

E S�
� for E� �

S�
�

� for �
S�
�

�E� �

��
� � ����

Lemma �

E
��

	���

����

�
�
t
S� log �

S�

� �

� for t�S�
� log �

S��
t

log �

t

�� �

�

for S�
� log �

S�
� t���

�����
����
� ����

Lemma �

S

	�

��
� S� for t�S�

� log �
S�

��
�

t
log �

t

� �

�

for S�
� log �

S�
� t���

���
�� � ��#�
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Proof of Lemma �� Since E is strictly monotonically decreasing in t
 we can
regard S as a function of E � ��� E��� Since by assumption S� � �
 there exists a
possibly small time horizon T 
 � such that

S � �
����
�� E � � for t � ��� T �� ����

We have

d�S log �
S

�

dE
�

��S log �
S

��

� %E
����
�� � log

�

� �� %E�

�� %E�
�

�

����
�� �S

�

�

E
�

�

�
log

�

S

� �

�

�
log

E�

S log �
S

� �

�

� �S
�

�

E
�

�

�
log

�

S

� �

�
�

� logE � log
�

S
� log log

�

S

� �

�

����� �S
�

�

E
�

�

�
log

�

S

� �

�

�logE�
�

� � ����

which turns into the separated form

d

dE

�
S

�

� log
�

�
�

S

�
����� �

S
�

� log
�

�
�
S

d�S log �
S

�

dE

����
�� � log

�

� E

E
�

�

����� d

dE

�
� log

�

� E

E
�

�

�
A �

Hence we obtain

S
�

� log
�

�
�

S
�� S

�

�

� log
�

�
�

S�

�
log

�

� E

E
�

�

� ����

Since

S
�

� log
�

�
�

S

	�

��

��
�
�

���
��

log
�

� E

E
�

�

����� S�

	�

��

��
�
�

���
��

�

E
�

���� turns into

S� ��
	

�

S�
� for E � �

S�
�

�
E

for E � �
S�
�

��
� � ����

provided
 we stay in the time interval ��� T �� But according to ����
 E � � implies
S � �
 so that this time interval is only limited by the constraint E � �� We obtain
���� from ���� by multiplication with E�
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Proof of Lemma �� Since the r� h� s� of ���� is always � �
 we may restrict
ourselves to the case of E � �� Since E is monotonically decreasing in time
 this is
satis�ed on an interval ��� T �� According to Lemma � we thus have

E � � and S � � for all t � ��� T ��

Hence we may apply ����
 which we write as

� %E
�� E�

S log �
S

�

and Lemma �
 which we write in form of

S
�� max

�
S��

�

E
�

�

�
�

From both we obtain

� %E
�� min

	

� E�

S� log �
S�

�
E

��

�

logE

��
� �

Hence we have

d

dt
max

�
S� log �

S�

E�
�
logE

E
�

�

�
E��� max

�
S� log �

S�

E�
�

logE

E
��

�

�
�� %E�

�� �

and thus

max

�
S� log �

S�

E�
�
logE

E
�

�

�
�� t�

which thanks to t� �� E � � turns into

E
�� max

	

�
�

�

t
S� log

�

S�

� �

�

�

�
t

log �
t

�� �

�

��
�

in ��� T �� Later we have E � O���
 and the proof is complete�

Proof of Lemma �� Since by assumption S� � � there exists a possibly small
time horizon T 
 � such that

S � � and thus by ���� E � � for t � ��� T �� ����

Time integration of ����
 which we write as

E
�� max

	

�
�

�

t
S� log

�

S�

� �

�

�

�
log �

t

t

� �

�

��
� �

yields Z t

�
E d�

�� t max

	

�
�

�

t
S� log

�

S�

� �

�

�

�
log �

t

t

� �

�

��
� � ����
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Since the function

&�r� � r
�

� log
�

� r for r � �

is concave 
 we obtain from Jensen s inequality

Z t

�
� &�� %E� d� �

�Z t

�
� d�

�
&

�
�R t

� � d�

Z t

�
� �� %E� d�

�

� t� &
�

�

t�

Z t

�
� �� %E� d�

�
� ����

Since & is monotone increasing
 the inequality

Z t

�
� �� %E� d� � �t E �

Z t

�
E d� �

Z t

�
E d�

is preserved	

&
�

�

t�

Z t

�
� �� %E� d�

�
� &

�
�

t�

Z t

�
E d�

�
� ����

Since ���� turns into

�
t���E��� �

t�

Z t

�
E d�

�� �

t
max

	

�
�

�

t
S� log

�

S�

� �

�

�

�
log �

t

t

� �

�

��
� �

we have in particular

log
�

�

t�

Z t

�
E d�

� t��
�� log

�

t

and thus

&
�

�

t�

Z t

�
E d�

�
��
�

log �
t

t

� �

�

max

	

�
�

�

t
S� log

�

S�

� �

�

�

�
log �

t

t

� �

�

��
�

�

�

� ����

From ����
 ���� and ���� we infer

Z t

�
� &�� %E� d�

�� t
�

� log
�

�
�

t
max

	

�
�

�

t
S� log

�

S�

� �

�

�

�
log �

t

t

��

�

��
�

�

�

� ��#�

Since according to ��#�


I 	�
Z t

�
� &�� %E� d�

satis�es limt��
�
t
I � �
 we obtain from an integration by parts

Z t

�
&�� %E� d� �

Z t

�

�

�

�
� &�� %E�

�
d� �

�

t
I �

Z t

�

�

� �
I d��
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Hence ��#� turns into

Z t

�
&�� %E� d�

�� t
�

� log
�

�
�

t
max

	

�
�

�

t
S� log

�

S�

� �

�

�

�
log �

t

t

��

�

��
�

�

�

� max

	

�
�
t log� �

t

� �

��
�
S� log

�

S�

� �

��

�
�
t log� �

t

� �

�

��
� � ����

According to ����
 we haveS log
�

S
� S� log

�

S�

 ��
Z t

�
&�� %E� d�

����
�� max

	

�
�
t log� �

t

� �

��
�
S� log

�

S�

� �

��

�
�
t log� �

t

� �

�

��
� �

Since �
t log� �

t

� �

��
�
S� log �

S�

� �

�� � S� log �
S�

t���S���� t � S�
� log �

S�

S� log �
S�

�
�
t log� �

t

��

� t���S���� t � S�
� log �

S�
�

this implies ��#�
 provided we stay in a time interval ��� T � such that ���� holds� But
according to ��#�
 S � � as long as t � �� Hence the time interval for which ����
holds is of order one�

� Support and Energy

In this section
 we relate the support and the energy and their respective rates of
change by nonlinear interpolation estimates� We recall that
 in Lagrangian coordi�
nates
 �#� turns into

Xt � u where u � �h� � hn��� hxxx�

and that the rate of change of energy is given by

� %E
����
� D where D �

Z
�h� � hn� �hxxx�

� dx �
Z �

h � hn��
u� dx�

Proposition � In the regime

V� � � and S�V�� � V
�

�
� log

�

�

��n
��n

�

V�
� ����

we have
i� �

�� E S�V��
��

ii� E� �� DS�V�� log �
S�V��

�

iii� U�V�� log �
V�

�� D
�

� log
�

� D�
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Except for the logarithms
 it is not so di�cult to predict the inequalities by di�
mensional considerations� On the other hand
 in order to get agreement with the
heuristics we also need sharp evaluation of the logarithmic corrections
 which can
not be inferred by simple scaling arguments� In fact
 this is the most interesting
aspect of the result
 which ultimately relies in the optimality of the extended Bernis 
estimates �cf� next section��
The proof of Proposition � is split into four Lemmas�

Lemma � For V� � � we haveZ �

�

�

h
�

�

dV
�� S�V��

�

� �

Lemma � For V� � � we have

�
�� E S�V��

��

Lemma � For V� � � and S�V�� � � we have

E� �� DS�V�� log
�

S�V��
�

Lemma � For V� � � and D � � we have

U�V�� log
�

V�

�� D
�

�

�
BB�log

�

� D �
��

D
�

� V�
�� ��n

��n

�
CCA �

Proof of Lemma �� We introduce G via

G�V� V�� �

	����

�����

�
�

�
V
V�

��

� for � 	 V � V�
�
�

� log V
V�

for V� � V � �
�

G��� V� V��
�
�
	 V 	 ��

G is constructed such that

GV � g for V � ���
�

�
�� G 
 � and G � � for V � f�� �g� ����

We start by CauchySchwarz

Z �

�

�

h
�

�

dV �
�Z �

�

�

G
dV

Z �

�
G

�

h
dV
� �

�

� ����

Since �
h

� dX
dV


 we obtain from an integration by parts for the second factor of ����

Z �

�
G

�

h
dV

����
� �

Z �

�
GV X dV

�
Z �

�

�
GV �X��� V ��X�V �� dV

����
�

Z �

�

�
g �X��� V ��X�V �� dV� ����
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The �rst factor of ���� can be estimated by hand

Z �

�

�

G
dV � �

Z �

�

�

�

G
dV

� �V�

�
�Z �

�

�

�

�
�
�V

� �

�

d �V �
Z �

� V�

�

�
�
�

� log �V
d �V

�
A

V���� �

log �
V�

� ����

Hence we obtain from ����
 ���� and ���� as desired

Z �

�

�

h
�

�

dV
��
�

�

log �
V�

Z �

�

�
g �X��� V ��X�V �� dV

� �

�

� S�V��
�

� �

Proof of Lemma �� We observe that

� �
Z �

�
dV � �sup h�

�

�

Z �

�

�

h
�

�

dV�

In view of Lemma �
 it remains to show

sup h
�� E

�

� �

This is a standard argument which is reproduced for the convenience of the reader�
We have for any x�

h�x��
� � �

Z x�

��
h hx dx

� �
�Z x�

��
h� dx

Z x�

��
�hx�

� dx
� �

�

�
�

�
Z
h� dxE

� �

�

�

so that

�sup h�� �
�

�
Z
h� dxE

� �

�

�
�

� sup h
Z
h dxE

��

�

� �� sup hE�
�

� �

which yields

�sup h�
�

� � ��E�
�

� �
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Proof of Lemma �� We start by an integration by parts
 then apply H!older s
inequality and use Bernis estimate �Proposition �
 section ��	

E
���
� ��

�

Z
hxx h dx

� �

�

�
�Z

	

�

h�

log h

hn��

��
� �hxx�

� dx

�
A

�

�
�
�Z

	

�

h
�

� log
�

� h

h
��n
�

��
� dx

�
A

�

�

����
�� D

�

�

�
�Z

	

�

h
�

� log
�

� h

h
��n

�

��
� dx

�
A

�

�

� ����

In order to estimate the integral on the r� h� s� of ����
 we change variables according
to dx � �

h
dV 	

Z 	

�

h
�

� log
�

� h

h
��n
�

��
� dx �

Z �

�

	

�

�

h
�
�

log
�

� h

h
��n
�

��
� dV ����

We write the integrand as

	

�

�

h
�
�

log
�

� h

h
��n

�

��
� �

	

�

���h�
�

� log
�

�
�

���h�
�
�

����h�
�

� �n��

��
� �� &����h�

�

� ��

where

&�r� �
�

r for r� �

r log
�

�
�
r

for r� �

�
�

Since & is concave
 we obtain by Jensen s inequality

Z �

�

	

�

�

h
�
�

log
�

� h

h
��n

�

��
� dV

�� &
�Z �

�

�

h
�

�

dV
�
� ����

We now apply Lemma �� Since by assumption
 we are in the regime S�V�� � �
 and
since & is monotone increasing
 we obtain

&
�Z �

�

�

h
�

�

dV
�

�� S�V��
�

� log
�

�
�

S�V��
� ��#�

The estimates ����
 ���� and ��#� combine to

Z 	

�

h
�

� log
�

� h

h
��n
�

��
� dx

��
�
S�V�� log

�

S�V��

� �

�

�

Together with ����
 we obtain as desired

E
�� D

�

�

�
S�V�� log

�

S�V��

� �

�

�
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Proof of Lemma �� We start by expressing our control in V integrals instead of
xintegrals� We have on one side

D
�����

Z 	

�

�
h

�
hn��

��
�u� dx �

Z �

�

	

�

�
h�

�
hn��

��
�u� dV ����

and on the other side
 according to the logarithmic extension of Bernis estimates
�Proposition ��


D
��
Z 	

�

�
h log� h

hn��

��
� �hx�

� dx �
Z �

�

	

�

h�

log� h

hn�

��
� �hV �� dV� ����

We now tackle the estimate� We have by CauchySchwarz

U�V�� log
�

V�
�

�
�Z �

�

	

�

�
h�

�
hn��

��
� u� dV

Z �

�
g�
�

h�

hn��

�
dV

�
A

�

�

����
�� D

�

�

�Z �

�
g�
�

h�

hn��

�
dV

� �

�

� ����

We now estimate the r� h� s� integral of ���� against the r� h� s� of ����� To this
purpose
 it is convenient to write

D
����
��
Z �

�

	

�

h�

log� h

hn�

��
� �hV �� dV �

Z �

�
�yV �� dV where y �

	�

��

h
�
�

log
�
� h

h
n��

�

���
�� � ����

In terms of y
 the r� h� s� integral of ���� turns into

Z �

�
g�

	

�

y
�

� log
�

� y

y�
n��
n��

��
� dV� ����

Hence we have to estimate the term ���� against the r� h� s� of ����� It is convenient
to split the term ���� as follows

Z �

�
g�

	

�

y
�

� log
�

� y

y�
n��
n��

��
� dV

�
Z �

�
g�

	

�

y
�

� log
�

� y

�

��
� dV �

Z �

�
g�

	

�

�

y�
n��
n��

��
� dV

����

�
Z �

�

�
�

V ���V �

��	
�
y
�

� log
�

� y

�

��
� dV �

Z �

�
g�y�

n��
n�� dV ����

We start with the �rst term in ����
 which we treat by the HardyLittlewood trick�

Since the antiderivative of
�

�
V ���V �

��
is estimated by �

V ���V �

 and since

�
y
�

�
van�

ishes in a neighborhood of V � f�� �g
 we obtain from an integration by parts and
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H!older s inequality

Z �

�

�
�

V ���V �

��	
�
y
�

� log
�

� y

�

��
� dV

��
Z �

�

�
V ���V �

	

�

y
�

� log
�

� y

�

��
� jyV j dV

�
�
�Z �

�

�
V ���V �

	

�

log
�

� y

�

��
� dV

�
A

�

�
�
�Z �

�

�
�

V ���V �

��	
�
y
�

� log
�

� y

�

��
� dV

�
A

�

�

�
�Z �

�
�yV �� dV

� �

�

�

so that by ���� and ����

Z �

�

�
�

V ���V �

��	
�
y
�

� log
�

� y

�

��
� dV � D

�

�

�
�Z �

�

�
V ���V �

	

�

log
�

� y

�

��
� dV

�
A

�

�

� ����

In order to estimate the r� h� s� integral of ����
 we observe that by H!older and ����

y�V � � V
�

�

�Z �

�
�yV �� dV

� �

� �� D
�

� V
�

� � ����

This implies that	

�

log
�

� y

�

��
� � � in ���

�

D
�

�

� � ��� �

D
�

�

� �� and sup

	

�

log
�

� y

�

��
� � log

�

� D�

so that

Z �

�

�
V ���V �

	

�

log
�

� y

�

��
� dV � log

�

� D
Z ��D�

�
�

D�
�
�

�
V ���V �

dV
�� log

�

� D� ����

Hence we have shown

Z �

�

�
�

V ���V �

��	
�
y
�

� log
�

� y

�

��
� dV

����
�� D

�

�

�
�Z �

�

�
V ���V �

	

�

log
�

� y

�

��
� dV

�
A

�

�

��
�

� D
�

� log
�

� D� ��#�

We now consider the second term in ����� because of symmetry we can restrict

ourselves to
R �

�

� dV � We have according to ���� and the de�nition ���� of g

Z �

�

�
g� y�

n��

n�� dV
����

� D
n��
n��

Z �

�

�
g� V � n��

n�� dV

����
� D

n��
n��

�
� �

V
��

�
�

Z V�

�

�

V
�

�

V � n��
n�� dV �

Z �

�

V�

�

V �
V � n��

n�� dV

�
A �
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Since on one side
� n��
n�

� �
�

� � � ��n
��n��

�

and on the other side
� n��
n�

� � � � � �� ��n
�n

	 ��

we obtain Z �

�
g� y�

n��

n�� dV
�� D

�

�

�
D

�

� V�
�� n��

n��
�� �� D

�

�

�
D

�

� V�
�� ��n

��n � ����

Lemma � now follows from ����
 ����
 ��#� and �����

Proof of Proposition �� It remains to show part iii�� Part iii� follows from
Lemma � provided that V� � �
 D� � and

log
�

� D �
�
D

�

� V�
�� ��n

��n � D � �

V�
�

�

log
�

�

��n
��n �

V�

� ����

According to Lemma � and Lemma � we have
 provided that V� � �
 S�V�� � �


D
�� E�

S�V�� log �
S�V��

�� �

S�V���� log �
S�V��

�

Hence ���� follows from

�

S�V���� log �
S�V��

� �

V�
�

�

log
�

�

��n
��n �

V�

� S�V�� � V
�

�
� log

�

�

��n
��n

�

V�
�

and the latter is just the condition ���� we impose�

� Logarithmic Bernis estimates

From the evolution equation �#� we see via two integrations by parts that the energy
��� dissipates as

%E � �
Z

�h� � hn� �hxxx�
� dx�

In the case of a homogeneous mobility with exponent n � ��
�
� ��
 Bernis ��� has shown

that the dissipation rate
 which controls the third derivatives of h in a nonlinear

averaged way
 also controls the second and �rst derivatives in a nonlinear average
fashion	 Z

hn��jhxxj� ��
Z
hn�hxxx�

�� ����Z
hn���hx�

� ��
Z
hn�hxxx�

�� ����

The homogeneous expressions are dictated by scale invariance in h and x� In case
of the critical exponent
 logarithms pop up
 which cannot be inferred by a simple
scaling argument�
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Proposition � For every n � ��
�
� ��� it holds


i� Z 	

�

h�

log h

hn��

��
� jhxxj� dx ��

Z �
h�

hn

�
�hxxx�

� dx ����

ii� Z 	

�

�
h log� h

hn��

��
� �hx�

� dx
��
Z �

h�

hn

�
�hxxx�

� dx ����

Remark � � The estimate ���� is sharp for Tanner�s prole

h � x log
�

� x for x� ��

in the sense that both integrands scale alike and are non�integrable for this expres�
sion�

Proof� We prove the inequalities for a smooth function with compact support� Let
us �rst consider the case n 
 �

�
� We de�ne	

f�h� 	�

	

�

�
h log� h

hn��

��
� � f��h� 	�

Z �

h
f�h�d��

f��h� 	�
Z h

�
f����d��

f��h� 	�
Z h

�
f����d��

m�h� 	�

�
h�

hn

�
�

Integrating by parts	Z
f�h��hx�

� � �
Z
f��h��hx�

�hxx

� ���
Z
f��h��hx�

��hxx�
� � �

Z
f��h��hx�

�hxxx�

The �rst integral on the right�hand side is positive� the second can be estimated via
Cauchy�Schwarz	 henceZ

f�h��hx�
� �

Z
f��h��hx�

��hxx�
� ����

��
�Z

f�h��hx�
�
� �

�
�Z

f �
� �h��f�h�����hxxx�

�
� �

�

�

Since

f��h� �
�

h
log�h�

hn��

�
�
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it holds	
f �
� �h�

f�h�
�
�
h�

hn

�
�

Then ���� follows immediately from ����
 and in additionZ
f��h��hx�

��hxx�
� ��

Z
m�h��hxxx�

�� ����

To prove ����
 we �rst observe that

f��h� �
	

�

h�

log h

hn��

��
� � ����

Integrating by parts	Z
f��h�jhxxj� �

Z
f��h�jhxxjhxxhxx

� �
Z
f��h��hx�

�jhxxjhxx �
Z
f��h�hxjhxxjhxxx�

The �rst integral on the right�hand side is estimated by ����� for the second one
 we
apply H!older inequality	

�
Z
f��h�hxjhxxjhxxx �

�Z
m�h��hxxx�

�
� �

�
�Z

f��h�jhxxj�
� �

�

�Z f��h��

m�h��
�hx�

�

� �

�

�

Observing that

f��h��

m�h��
�
	

�

�
h log��h�

hn��

��
� �� f�h��

using ���� we obtain

Z
f��h�jhxxj� ��

Z
m�h��hxxx�

� �
�Z

m�h��hxxx�
�
� �

�
�Z

f��h�jhxxj�
� �

�

�

In view of ����
 this proves i� and completes the proof of the theorem in the case
n 
 �

�
� If n 	 �

�

 one just has to observe that for n � �

�

 it holds

	

�

�
h log� h

hn��

��
�� hn�� �

	

�

�
h log� h

hn��

��
� �

	

�

h�

log h

hn��

��
�� hn�� �

	

�

h�

log h

hn��

��
� �

and �
h�

hn

�
� hn �

�
h�

hn

�
�

The result now follows combining the case n 
 �
�

with the homogeneous inequalities
����
 �����
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� Tightening the apparent support

In this section we show how to come back from the relaxed notion Sapp of apparent
support
 to the natural one measfh 
 �g� this is in fact all we need to pass from
Theorem � to Corollary ��

Proposition � In the regime Sapp � �� we have

E� �

�
�� measfh 
 �g �� Sapp

�� diamfh 
 �g�

The proof of the proposition is completely independent of the di�erential equation�
It requires two Lemmas
 whose proof is straight forward�

Lemma �

S�V�� �
�

log �
V�

Z �

�
G�V� V��

�

h
dV �

�

log �
V�

Z
G�V� V�� dx�

where

G�V� V�� �

	����

�����

�
�

�
V
V�

��

� for � 	 V � V�
�
�

� log V
V�

for V� � V � �
�

G��� V� V��
�
�
	 V 	 ��

��#�

Lemma 	 Z
maxfh� �� �g dx ��

�
meas�fxjh 
 �gE

��

� �

Proof of Proposition �� The estimate

Sapp � diamfh 
 �g

follows immediately from the de�nition of Sapp via the monotonicity of S�V�� in the
cuto� V� and the limiting relation ����� For the two other estimates
 we start by
observing that by Lemma � and the de�nition of Sapp


Sapp � S��Sapp��� �
�

log �
�Sapp��

Z
G�V� �Sapp��� dx

�
�

log �
�Sapp��

Z �

�
G�V� �Sapp���

�

h
dV�

����

We start by the proof of the estimate

measfxjh 
 �g �� Sapp for Sapp � �� ����

We set for notational convenience

M � measfxjh 
 �g ����
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and observe that thanks to
R
h dx � � we have M � �� We also have

measfxjV � M
�
� h 
 �g �

Z
V�M

�

h dx � M
�
�

measfxjV 
 �� M
�
� h 
 �g �

Z
V	��M

�

h dx � M
�

����
��� ����

so that

measfxjV � �M
�
� �� M

�
�g 
 measfxjV � �M

�
� �� M

�
�� h 
 �g

�
����
��


 M � M
�
� M

�
� M

�
�

Hence Z
G�V� �Sapp��� dx 
 M

�
G�M

�
� �Sapp���� ����

Since Sapp � �
 we may w� l� o� g� assume M � �Sapp�� �otherwise ���� is trivial�

so that

G�M
�
� �Sapp���

����� log
M

�Sapp��
� ����

Hence we obtain

Sapp log
�

Sapp
�
���

Z
G�V� �Sapp��� dx

�
��
�� M G�M

�
� �Sapp���

�
��� M log
M

�Sapp��
�

Writing this estimate in form of

M

�Sapp��
log

M

�Sapp��
�� �

Sapp
log

�

Sapp
�

we see that it implies �����

In order to establish the remaining estimate
 we have to show that there can t be
much volume in the region where the �lm is small	

Z
fh��g

h dx
�� Sapp for Sapp � �� ����

We set for notational convenience

M �
Z
fh��g

h dx � measfV jh 	 �g� ����

We observe that because of ����
 M � �� On the other hand
 since Sapp � �
 we
may w� l� o� g� assume M � �Sapp�� �otherwise ���� is trivial�� Therefore

�Sapp�� � M � �� ����
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We have

Sapp
�
��
�

�

log �
�Sapp��

Z �

�
G�V� �Sapp���

�

h
dV


 �

log �
�Sapp��

Z
fh��g

G�V� �Sapp��� dV


 �

log �
�Sapp��

�
Z �

�
M

�
�
Z �

�� �

�
M

�G�V� �Sapp��� dV�

where for the last inequality we have used ���� and the monotonicity of G�	� V�� in
��� �

�
�� The chain of inequalities continues as follows	

Sapp
����
�� �

log �
�Sapp��

Z �

�
M

�Sapp��
log

V

�Sapp��
dV

�

�� �

log �
�Sapp��

M log
M

�Sapp��

or
M

�Sapp��
log

M

�Sapp��
�� �

Sapp
log

�

Sapp
�

which implies �����

We are now in the position to prove the remaining estimate

E� �

�
�� measfxjh 
 �g� ��#�

According to the two estimates above
 most of the volume is in the part of the �lm
above height �	Z

maxfh� �� �g dx �
Z
h dx�

Z
fh��g

h dx�measfxjh 
 �g
������
����
��

�� �� Sapp � Sapp
Sapp��

�� ��

Together with Lemma #
 this yields ��#��
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