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Abstract

We prove the existence of hypersurfaces with prescribed boundary

whose Weingarten curvature equals a given function that depends on

the normal of the hypersurface�

� Introduction

Let �M � Rn�� be a strictly convex smooth hypersurface and � � f �
C����Sn�� We denote by �M� an open subset of �M with smooth boundary
� �M� �with respect to �M� and �M� � �M � Let F be a curvature function as
for example Sn� the Gau� curvature� or Sk �Sn� � � k � n� where Sk denotes
the k�th elementary symmetric polynomial

Sk��i� 	
X

��i������ik�n

�i� � � � � � �ik � �����

A description of the curvature functions considered in this paper is given in
section 
� We denote the principal curvatures of a hypersurface M by �i�M��
� � i � n� and the outer unit normal of �M by �M � Under these assumptions
we prove the following

Theorem ��� If F ��i� �M�� � f�� �M� in �M� then there exists a C����

hypersurface M with

F ��i�M�� 	 f��� ���
�

�



and �M 	 � �M�� where � denotes an appropriately chosen unit normal of

M �

More precisely� we look for a strictly convex hypersurface contained in the
convex body determined by �M � whose unit normal points inside the bounded

component of Rn��n� �M� �M� andM�� �Mn �M�� is the boundary of a strictly
convex body�

The paper is organized as follows� In section 
 we introduce the curvature
functions we are interested in� in section � we state our notations concerning
di�erential geometry� A priori estimates are proved in section  and the more
complicated ones are proved in section �� Finally� we sketch in section � how
these a priori estimates can be used for the existence proof�

The classical Minkowski problem has been solved for smooth functions in
any dimension in ���� A generalization for other curvature functions has been
obtained recently in ���� There are many papers that consider a Dirichlet
problem for equations of prescribed curvature� The most useful ones for our
estimates were ���� and ���� We remark that the dependence of f on � without
imposing structure conditions on f besides positivity and smoothness seems
to be new�

We wish to thank Prof� Dr� J� Jost and the Max�Planck�Institute for Mathe�
matics in the Sciences� Leipzig� where this research was carried out� for their
hospitality� We would also like to thank Prof� Dr� C� Gerhardt� Heidelberg�
who brought the Minkowski problem to our attention�

� Curvature functions

In this paper� we consider symmetric curvature functions de�ned in the pos�
itive cone �� � Rn which are of the class C��������C

������ positive homo�
geneous and satisfy

Fi 	
�F

��i
� � in ��� �
���

F j��� 	 ��






For a positive de�nite symmetric matrix �hij� � Sym��n�R� with eigenvalues
�i� � � i � n� we de�ne

F �hij� �	 F ��i�� �
�
�

where the ambiguous notation should not cause any di�culties� As F �
C����Sym�� � C�

�
Sym�

�
� we can de�ne

F ij 	
�F

�hij
� F ij�kl 	

��F

�hij�hkl
� �
���

so that for an appropriate interpretation of the RHS

F ij�i�j 	
�F

��i
j�ij

� � � � Rn �
��

and F ij is diagonal if hij is diagonal�

We de�ne the elementary symmetric polynomials by

Sk��� �	
X

��i������ik�n

�i� � � � � � �ik � � � k � n� �
���

and furthermore

�Sk��� �	
�

Sk

�
�

�i

� 	
Sn���

Sn�k���
� �
���

�k �	 �Sk�
��k� ��k �	

�
�Sk

���k
�

	k �	

�
� X

j�j�k

��

�
A
��k

� �	k��� �	
�

	k
�
�
�i

� �

where 
 is a multiindex�

In this paper we will consider curvature functions F of the form

F 	 �� � 	�
�

� where �� �
nY

k��

��kk � �
���

and we assume 
n � � and 
� 
� � � in the sense of multiindices� These
functions obviously ful�ll the conditions for curvature functions from the
beginning of this section and furthermore

�F ��i� �	
�

F
�
�
�i

� 	 ��� � �	�
�

� �
���

�



De�ning an abstract class of curvature functions for which the existence proof
can be carried out seems to require many restrictions� so we mention only
these examples� The fact that F contains a positive power of the Gau�
curvature is restrictive� but we have to ensure F j��� 	 � to preserve the
convexity of the hypersurfaces appearing in our existence proof as well as
a kind of concavity of F to deduce C��� estimates from the C� a priori
estimates�

Lemma ��� For F as above

��F 	 log �F 	 	 logF
�
�

�

�
�
���

is concave and the following properties are equivalent provided � � c � F �
�

c
�


�� � �� �
����

�n � �
�

trF ij 	 F ij�ij � �
�

when � � �� � � � � � �n�

Proof� The concavity follows from the properties of curvature functions col�
lected in ��� when we write the de�nition of the class �K� using the logarithm
as in ���

�� � � and F j��� 	 � force �n � 
� �� � c � � and �n � 
 contradict

F � �

c
� Here and below we use c to denote a positive constant that may

change its value if necessary� trF ij � 
 is impossible for � in a compact
subset of ��� so �� � � or �n �
�

Let F 	 �� � 	�
�

as above�

trF ij �

n

n
� �� �

�

��
� 	�

�

�

n

n
� c �

�

��
� �
����

so �� � � implies trF ij � �
� �

We may assume that F is positive homogeneous of degree one�





When we consider a hypersurface M with induced metric gij we compute
the eigenvalues of hij with respect to gij or equivalently we compute the
eigenvalues of hikg

kj � hji � �g
ij� 	 �gij�

��� Then the chain rule yields ������

�F

�gij
	 	F ikhjk� �
��
�

� Notations

In Euclidean coordinate systems the induced metric gij and the inverse gij

of the induced metric of graphu are given by

gij 	 �ij � uiuj� �����

gij 	 �ij 	
uiuj

v�
�

ui 	 uj�
ij�

v 	
q
� � jDuj� 	

q
� � uiui�

where Latin indices range from � to n and refer to quantities of graphu
besides r� s and t which only range to n	 � and refer to a n	 � dimensional
boundary� The Einstein summation convention is always used� Greek indices
range from � to n and refer to Rn�� �

Let x� be a coordinate system for Rn�� � �� the �upwards pointing� unit
normal of graphu� ��

�� the induced Christo�el symbols and hij its second
fundamental form� We will choose coordinates such that hij is positive def�
inite for a strictly convex hypersurface� These quantities are related by the
Gau� formula �x��ij indicate covariant derivatives� uij and x��ij denote partial
derivatives�

x��ij 	 	hij�
�� ���
�

�� 	
�

v
�	ui� ���

x��ij 	 x��ij 	 �k
ijx

�
k �

�k
ij 	

�

v�
ukuij�

hij 	 	
�
uij 	 �k

ijuk
�
� v 	 	

uij
v
�

�



As M is strictly convex� M � z � ��z� is a di�eomorphism from M to
��M� � Sn� For x � ��M� we de�ne the supporting function u � the am�
biguous use of u should not cause any di�culties � by

u�x� 	 x����
�
���
��

�x� 	 hx� ����x�i� �����

i� e� the scalar product is the usual scalar product in Rn�� � We remark that
the original hypersurface can be recovered from the support function ������
The eigenvalues of

�u�ij � u�ij��x�� x � Sn� ����

with respect to the standard metric �ij of S
n are the inverses of the principal

curvatures of M at ����x�� where u�ij denotes covariant derivatives with
respect to the metric �ij� For covariant derivatives on Sn we have

u�ijkl 	 u�klij � 
u�ij�kl 	 
u�kl�ij � u�kj�il 	 u�il�kj� �����

� Preliminary a priori estimates

We assume that M is a prospective solution and prove a priori estimates for
this solution� Later�on we will deform our problem and use these estimates�
Therefore we will have to ensure especially that M lies inside the convex
body determined by �M � This can be achieved if we approximate f such that
�M is a strict supersolution�

F ��i� �M�� � f�� �M�� ����

In view of our a priori estimates we may afterwards choose a subsequence of
solutions of the modi�es problems that converge to a solution of the original
problem�

��� C�� and C��estimates

It is possible to represent M as a graph over an appropriately chosen part

of a small sphere with center in �M n �M�� graph uj	 	 M � such that juj� is
bounded� The C� bounds follow from the geometric setting and the convexity

�



of M � the C� bounds follow as the angle between each half�line starting
from the center of the small sphere and M in an intersection point is a
priori bounded from below� In our setting� this follows by simple geometric
reasoning� a proof for a much more general situation can be found in �����

��� A special coordinate system

In view of the uniform C��estimates we may rotate our original Euclidean
coordinate system appropriately so that we have the following situation� An
arbitrary but �xed point x� of � �M� is the origin of our coordinate system�

Furthermore� we have a function � �
��Br � R�

��Br �	 fx�� � Rn�� � jx��j � rg�

���� 	 �� D���� 	 �� such that M �
�
�Br � R

�
	 graph uj	� where

�Br �	

fx� � Rn � jx�j � rg� � �	 �Br�f�x
�� xn� � xn � ��x��g and u is an appropriate

function whose graph locally coincides with M � r � � is uniformly bounded
from below by a positive constant which is especially independent of x� and
the second fundamental form ofM � � and its derivatives are a priori bounded
as well as juj�� The function u is as smooth as M but its derivatives of order
greater than one are not yet a priori bounded� In the same way as M is
locally represented as graph u� we may assume that �M 	 graph �uj	� but
the derivatives of �u are a priori bounded� Furthermore� we may assume
u��� 	 �u��� 	 � and ur��� 	 �ur��� 	 �� � � r � n	 ��

��� Tangential C��estimates at the boundary

We choose a coordinate system as described above� On �� u and �u coincide�
so we may di�erentiate

��u	 u��x��� ��x���� 	 � ��
�

twice and obtain in view of D���� 	 � for � � r� s � n	 � in the origin

urs 	 �urs � ��u	 u�n�rs� ����

All terms on the right�hand side are bounded� so jursj� i� e� the tangential
derivatives of u� are a priori bounded�

�



� A priori estimates

Compare this proof to the respective ones in ���� �
�� ���� ���� ���� and �����

��� Mixed C��estimates at the boundary

We consider the situation for a �xed point of �M in a coordinate system as
described in section �
�

We di�erentiate the equation

F �hij� gij� 	 f���� � f�ui� ����

with respect to xk and use

hij�k 	 	
�

v
uijk �

�

v

ululkuij� �����

thus

fpiuik 	 	
�

v
F ijuijk �

�

v�
Fululk 	 F ilhjl �uikuj � uiujk�� �����

Therefore we de�ne the linear operator L by

Lw �	
�

v
F ijwij 	

�

v�
Fulwl � F ilhjl �ujwi � uiwj� � fpiwi �����

and for t � n

T �	
�

�xt
�Btrx

r �

�xn
	 Br

t xn
�

�xr
� �����

where

��x�� 	
�



Brsx

rxs �O
�
jx�j


�
� x� 	 �x�� � � � � xn���� �����

Br
t � Bts�

rs� xn 	 xi�in and r� s and t run from � to n	 � as usually�

From the de�nition of L and the homogeneity it is easy to see that

jLT �u	 �u�j � c �
�
� � trF ij

�
� ������

where � here and in the following � c is bounded from above by estimated
quantities�

�



Furthermore we have in view of the C��estimates

jT �u	 �u�j � c in � ������

and due to the de�nition of T

jT �u	 �u�j � c � jxj� on ��� ����
�

We consider the function

 �	 ��u	 u� � 
d	 �d�� ������

in a domain �� �	 � � B����� where d is the distance function from �� in
Rn � and show that it satis�es a nice di�erential equation for 
� � � � small
and � large�

As graph �u is strictly convex� we �x � � � such that 	�uij � ��ij in the matrix
sense� We compute

L � 	
�

v
trF ij 	 
�

�

v
F ijdidj � c� �
� ��� � c �

�
� � trF ij

�
� �����

We use 	F rsdrds � �� � � r� s � n 	 �� as well as jF nrj � �
�
trF ij and

di � �in� so

L � 	
�

v
trF ij 	 �

�

v
F nn � c� �
 � ���

�
� � trF ij

�
� ������

From Lemma 
�� we infer that for su�ciently large �xed � the constant c
can be absorbed by the �rst two terms on the RHS� For small 
� � � � we
obtain

L � 	
�

�

�

v
trF ij� ������

Furthermore� when 
 � � is small�

 � � on ���� ������

We consider the function

� �	 A �Bjxj� � T �u	 �u�� ������

We �x B � �� get � � � on ���� and deduce from Lemma 
�� trF ij � �

c
� ��

so L� � � for A � B� The maximum principle yields � � � in ��� As
���� 	 �� we have �n��� � � which in turn gives immediately jutn���j � c�
� � t � n	 ��

�



��� Normal C��estimates at the boundary

We may assume that the in�mum of the invariantly de�ned function

�� � x � inf
���	�Tx�	

hij�
i�j�x�

gij� i�j�x�
������

equals h���x���g���x�� and �x a coordinate system around x� as in section
�
� We choose smooth vector �elds �i� � � i � n� around x� such that �n
equals the inner unit normal to ��� ���x�� 	 e��x�� and the vectors �i are
pointwise orthonormal with respect to the Euclidean metric�

From �u	 u 	 � on �� we deduce along �� the well�known relation ������

� 	 �ir�
j
s��u	 u�ij � �in��u	 u�i

�
	�ir�

j
s�jk

�
�kn
�
i

�
���
��

� rrs��u	 u� � ��u	 u�
Crs�

We wish to estimate 	r��u�x�� from below by a positive constant� If
	r��u�x�� � 	�

�
r���u�x��� we have such an estimate� otherwise we deduce

from ���
�� that C�� is locally bounded from below by a positive constant�
As jr��uj is already bounded on ���

�� � x � 	r��u� ajxj� ���
��

attains its in�mum in x� near x� 	 � for a� �� thus

c�x�� � 	r��u�x�� � ajx�j
� � 	r��u�x� � ajxj�� x � ��� ���

�

or in view of ���
�� for x � ��

u
�x� � C��
�� �x� � �r���u�x� � c�x��	 ajxj�� � �u
�x� ���
��

� 	 � C�� j	j� � c� ���
�

For � �	 A�Bjx	 x�j
�	 	�x� � u
�x�� when 	 is extended appropriately�

we deduce as in section ��� that 	rnnu�x�� is bounded from above� Lemma

�� implies a positive lower bound for 	r��u�x��� thus also for 	r��u�x���
h���x���g���x�� and h		�g		� � � T��� In view of Lemma ��
 in �
� �or Youngs
inequality� and Lemma 
�� we deduce a bound for the second derivatives of
u on �� and � � �

c
� �i � c for all eigenvalues �i of hikg

kj�

��



��� Interior C��estimates

We proceed as in ��� and transfer the situation to Sn via the Gau� map
M � x � ��x� � Sn�

For the estimates here indices denote covariant derivatives with respect to
�ij� u is the support function of M and we remark that

F �hikg
kj� 	

�
�F ��uik � u�ik��

kj�
���

� ���
��

�F ��uik � u�ik��x� 	 �f�x����� x � ��M� � Sn�

On �M the eigenvalues of the second fundamental form are a priori bounded
from below and from above� Assume that

�

���M�
� � � ��

�

�n�M�
	 �ij�uij � u�ij� � �ijwij ���
��

attains its maximum at an interior point ����x�� of M � so we have there

� � ��ijwij�kl ���
��

	 �ij�uijkl � ukl�ij�

	 �ij�uklij � 
uij�kl 	 ukl�ij � ukj�il 	 uil�kj�

	 ��ukl� � 
�u�kl 	 nukl

	 ��wkl�	 nwkl � �ijwij�kl�

where indices are lifted with respect to �ij and ���� 	 �ij���ij� De�ne

��F kl 	
� ��F

�wkl
�wij�� ���
��

As ��F ij is positive

� � ��F kl��ijwij�kl ���
��

	 ��F kl��wkl�	 n ��F klwkl � �ijwij
��F kl�kl� ������

�F is homogeneous of degree one� so

��F klwkl 	
�
�F

� �F

�wkl
wkl 	 �� ������

��



We di�erentiate ��F �wik�
kj� 	 	 log f�x� and use the concavity

�ij ��F klwkl�ij � 	� log f�x� ����
�

and so we obtain

� � 	� log f 	 n� ��ijwij� �
��F kl�kl� ������

As ��F kl�kl is bounded from below by a positive constant �show that this
quantity tends to in�nity when an eigenvalue of wij approaches zero as in
the proof of Lemma 
��� and f is a given function� we conclude that �ijwij

is a priori bounded� i� e� �i�M�� � � i � n� is bounded from below by a
positive constant� and in view of Lemma 
�� also from above� This proves
the a priori estimate for the eigenvalues of the second fundamental form and
for the second derivatives of a function representing M locally as a graph in
coordinate systems as in the sections �� or �
�

��� C���� and further estimates

We consider a curvature function of the form

F 	 �� � 	�
�

� �����

If we take the N �th power� FN 	 fN � for a su�ciently large N so that

i � N � � and 
�

i � N � �� � � i � n� for 
i �	 � resp� 
�
i �	 �� As

mentioned in ���� the functions �k and 	k� � � k � n� are concave and
monotone increasing� This remains true for the ��th power� � � �� and for
products of them� Now� we de�ne G�u� 	 	FN �	u� and observe that G
is uniformly elliptic and strictly concave due to our a priori estimates� So
we can apply Krylov�Safanov theory� chapter ���� in ��
� and deduce C��� a
priori estimates� Finally� we deduce C��� a priori estimates by using Schauder
theory�

� Existence

To prove the existence of the hypersurface M we are looking for� we may
proceed as in ��� or ���� and deform our problem into a local problem such

�




that M and �M� are representable as graphs in a single Euclidean coordinate
system� During this step we represent solutions of the deformed problem in a
coordinate system as in section ��� If this deformation is carried out appro�
priately� the degree mod 
 implies that it su�ces to solve the local problem�
The maximum principle yields that solutions of the deformed problem ful�ll
analogous geometric conditions as stated next to the main theorem� In view
of the uniqueness of a prospective solution of the local problem and the a
priori estimates� a standard continuity method yields the existence for the
local problem� This in turn yields a solution of our original problem via
degree mod 
 theory�
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