Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

A generalized Minkowski problem with Dirichlet boundary condition

by

Oliver Schnürer

Preprint no.: 76 2000

A generalized Minkowski problem with Dirichlet boundary condition

Oliver C. Schnürer

November 7, 2000

Abstract

We prove the existence of hypersurfaces with prescribed boundary whose Weingarten curvature equals a given function that depends on the normal of the hypersurface.

1 Introduction

Let $\tilde{M} \in \mathbb{R}^{n+1}$ be a strictly convex smooth hypersurface and $0 < f \in C^{2,\alpha}(S^n)$. We denote by \tilde{M}_+ an open subset of \tilde{M} with smooth boundary $\partial \tilde{M}_+$ (with respect to \tilde{M}) and $\tilde{M}_+ \subsetneq \tilde{M}$. Let F be a curvature function as for example S_n , the Gauß curvature, or $S_k \cdot S_n$, $1 \le k \le n$, where S_k denotes the k-th elementary symmetric polynomial

$$S_k(\kappa_i) = \sum_{1 \le i_1 < \dots < i_k \le n} \kappa_{i_1} \cdot \dots \cdot \kappa_{i_k}. \tag{1.1}$$

A description of the curvature functions considered in this paper is given in section 2. We denote the principal curvatures of a hypersurface M by $\kappa_i(M)$, $1 \leq i \leq n$, and the outer unit normal of \tilde{M} by ν_M . Under these assumptions we prove the following

Theorem 1.1 If $F(\kappa_i(\tilde{M})) \geq f(\nu_{\tilde{M}})$ in \tilde{M}_+ then there exists a $C^{4,\alpha}$ -hypersurface M with

$$F(\kappa_i(M)) = f(\nu) \tag{1.2}$$

and $\partial M = \partial \tilde{M}_+$, where ν denotes an appropriately chosen unit normal of M.

More precisely, we look for a strictly convex hypersurface contained in the convex body determined by \tilde{M} , whose unit normal points inside the bounded component of $\mathbb{R}^{n+1} \setminus (\tilde{M}_+ \cup M)$ and $M \cup (\tilde{M} \setminus \tilde{M}_+)$ is the boundary of a strictly convex body.

The paper is organized as follows. In section 2 we introduce the curvature functions we are interested in, in section 3 we state our notations concerning differential geometry. A priori estimates are proved in section 4 and the more complicated ones are proved in section 5. Finally, we sketch in section 6 how these a priori estimates can be used for the existence proof.

The classical Minkowski problem has been solved for smooth functions in any dimension in [3]. A generalization for other curvature functions has been obtained recently in [6]. There are many papers that consider a Dirichlet problem for equations of prescribed curvature. The most useful ones for our estimates were [13] and [7]. We remark that the dependence of f on ν without imposing structure conditions on f besides positivity and smoothness seems to be new.

We wish to thank Prof. Dr. J. Jost and the Max-Planck-Institute for Mathematics in the Sciences, Leipzig, where this research was carried out, for their hospitality. We would also like to thank Prof. Dr. C. Gerhardt, Heidelberg, who brought the Minkowski problem to our attention.

2 Curvature functions

In this paper, we consider symmetric curvature functions defined in the positive cone $\Gamma_+ \subset \mathbb{R}^n$ which are of the class $C^{2,\alpha}(\Gamma_+) \cap C^0(\overline{\Gamma_+})$, positive homogeneous and satisfy

$$F_{i} = \frac{\partial F}{\partial \kappa_{i}} > 0 \text{ in } \Gamma_{+},$$

$$F|_{\partial \Gamma_{+}} = 0.$$
(2.1)

For a positive definite symmetric matrix $(h_{ij}) \in \operatorname{Sym}^+(n, \mathbb{R})$ with eigenvalues κ_i , $1 \leq i \leq n$, we define

$$F(h_{ij}) := F(\kappa_i), \tag{2.2}$$

where the ambiguous notation should not cause any difficulties. As $F \in C^{2,\alpha}(\operatorname{Sym}^+) \cap C^0(\overline{\operatorname{Sym}^+})$, we can define

$$F^{ij} = \frac{\partial F}{\partial h_{ij}}, \quad F^{ij,kl} = \frac{\partial^2 F}{\partial h_{ij} \partial h_{kl}},$$
 (2.3)

so that for an appropriate interpretation of the RHS

$$F^{ij}\xi_i\xi_j = \frac{\partial F}{\partial \kappa_i}|\xi_i|^2 \quad \forall \, \xi \in \mathbb{R}^n$$
 (2.4)

and F^{ij} is diagonal if h_{ij} is diagonal.

We define the elementary symmetric polynomials by

$$S_k(\kappa) := \sum_{1 < i_1 < \dots < i_k < n} \kappa_{i_1} \cdot \dots \cdot \kappa_{i_k}, \quad 1 \le k \le n, \tag{2.5}$$

and furthermore

$$\tilde{S}_{k}(\kappa) := \frac{1}{S_{k}\left(\frac{1}{\kappa_{i}}\right)} = \frac{S_{n}(\kappa)}{S_{n-k}(\kappa)},$$

$$\sigma_{k} := (S_{k})^{1/k}, \quad \tilde{\sigma}_{k} := (\tilde{S}_{k})^{1/k},$$

$$\gamma_{k} := \left(\sum_{|\alpha|=k} \kappa^{\alpha}\right)^{1/k}, \quad \tilde{\gamma}_{k}(\kappa) := \frac{1}{\gamma_{k}\left(\frac{1}{\kappa_{i}}\right)},$$

$$(2.6)$$

where α is a multiindex.

In this paper we will consider curvature functions F of the form

$$F = \sigma^{\alpha} \cdot \gamma^{\alpha'}, \quad \text{where } \sigma^{\alpha} \equiv \prod_{k=1}^{n} \sigma_{k}^{\alpha_{k}},$$
 (2.7)

and we assume $\alpha_n > 0$ and $\alpha, \alpha' \geq 0$ in the sense of multiindices. These functions obviously fulfill the conditions for curvature functions from the beginning of this section and furthermore

$$\tilde{F}(\kappa_i) := \frac{1}{F\left(\frac{1}{\kappa_i}\right)} = \tilde{\sigma}^{\alpha} \cdot \tilde{\gamma}^{\alpha'}. \tag{2.8}$$

Defining an abstract class of curvature functions for which the existence proof can be carried out seems to require many restrictions, so we mention only these examples. The fact that F contains a positive power of the Gauß curvature is restrictive, but we have to ensure $F|_{\partial\Gamma_+}=0$ to preserve the convexity of the hypersurfaces appearing in our existence proof as well as a kind of concavity of F to deduce $C^{2,\alpha}$ estimates from the C^2 a priori estimates.

Lemma 2.1 For F as above

$$\hat{\tilde{F}} = \log \tilde{F} = -\log F\left(\frac{1}{\cdot}\right) \tag{2.9}$$

is concave and the following properties are equivalent provided $0 < c \le F \le \frac{1}{c} < \infty$

$$\kappa_1 \to 0,$$

$$\kappa_n \to +\infty,$$

$$\operatorname{tr} F^{ij} = F^{ij} \delta_{ij} \to +\infty,$$

$$(2.10)$$

when $0 < \kappa_1 \leq \ldots \leq \kappa_n$.

Proof: The concavity follows from the properties of curvature functions collected in [5] when we write the definition of the class (K) using the logarithm as in [4].

 $\kappa_1 \to 0$ and $F|_{\partial \Gamma_+} = 0$ force $\kappa_n \to \infty$, $\kappa_1 \ge c > 0$ and $\kappa_n \to \infty$ contradict $F \le \frac{1}{c}$. Here and below we use c to denote a positive constant that may change its value if necessary. $\operatorname{tr} F^{ij} \to \infty$ is impossible for κ in a compact subset of Γ_+ , so $\kappa_1 \to 0$ or $\kappa_n \to \infty$.

Let $F = \sigma^{\alpha} \cdot \gamma^{\alpha'}$ as above.

$$\operatorname{tr} F^{ij} \ge \frac{\alpha_n}{n} \cdot \sigma^{\alpha} \cdot \frac{1}{\kappa_1} \cdot \gamma^{\alpha'} \ge \frac{\alpha_n}{n} \cdot c \cdot \frac{1}{\kappa_1}, \tag{2.11}$$

so $\kappa_1 \to 0$ implies $\operatorname{tr} F^{ij} \to +\infty$.

We may assume that F is positive homogeneous of degree one.

When we consider a hypersurface M with induced metric g_{ij} we compute the eigenvalues of h_{ij} with respect to g_{ij} or equivalently we compute the eigenvalues of $h_{ik}g^{kj} \equiv h_i^j$, $(g^{ij}) = (g_{ij})^{-1}$. Then the chain rule yields ([11])

$$\frac{\partial F}{\partial g_{ij}} = -F^{ik}h_k^j. \tag{2.12}$$

3 Notations

In Euclidean coordinate systems the induced metric g_{ij} and the inverse g^{ij} of the induced metric of graph u are given by

$$g_{ij} = \delta_{ij} + u_i u_j,$$

$$g^{ij} = \delta^{ij} - \frac{u^i u^j}{v^2},$$

$$u^i = u_j \delta^{ij},$$

$$v = \sqrt{1 + |Du|^2} = \sqrt{1 + u_i u^i},$$
(3.1)

where Latin indices range from 1 to n and refer to quantities of graph u besides r, s and t which only range to n-1 and refer to a n-1 dimensional boundary. The Einstein summation convention is always used. Greek indices range from 0 to n and refer to \mathbb{R}^{n+1} .

Let x^{α} be a coordinate system for \mathbb{R}^{n+1} , ν^{α} the "upwards pointing" unit normal of graph u, Γ ; the induced Christoffel symbols and h_{ij} its second fundamental form. We will choose coordinates such that h_{ij} is positive definite for a strictly convex hypersurface. These quantities are related by the Gauß formula (x_{ij}^{α}) indicate covariant derivatives, u_{ij} and x_{ij}^{α} denote partial derivatives)

$$x_{,ij}^{\alpha} = -h_{ij}\nu^{\alpha},$$

$$\nu^{\alpha} = \frac{1}{v}(-u^{i}, 1),$$

$$x_{,ij}^{\alpha} = x_{,ij}^{\alpha} - \Gamma_{ij}^{k}x_{k}^{\alpha},$$

$$\Gamma_{ij}^{k} = \frac{1}{v^{2}}u^{k}u_{ij},$$

$$h_{ij} = -\left(u_{ij} - \Gamma_{ij}^{k}u_{k}\right) \cdot v = -\frac{u_{ij}}{v}.$$

$$(3.2)$$

As M is strictly convex, $M \ni z \mapsto \nu(z)$ is a diffeomorphism from M to $\nu(M) \subset S^n$. For $x \in \nu(M)$ we define the supporting function u - the ambiguous use of u should not cause any difficulties - by

$$u(x) = x^{\alpha} \delta_{\alpha\beta} \left(\nu^{-1} \right)^{\beta} (x) = \langle x, \nu^{-1}(x) \rangle, \tag{3.3}$$

i. e. the scalar product is the usual scalar product in \mathbb{R}^{n+1} . We remark that the original hypersurface can be recovered from the support function ([3]). The eigenvalues of

$$(u_{ij} + u\sigma_{ij})(x), x \in S^n, \tag{3.4}$$

with respect to the standard metric σ_{ij} of S^n are the inverses of the principal curvatures of M at $\nu^{-1}(x)$, where $u_{;ij}$ denotes covariant derivatives with respect to the metric σ_{ij} . For covariant derivatives on S^n we have

$$u_{:ijkl} = u_{:klij} + 2u_{:ij}\sigma_{kl} - 2u_{:kl}\sigma_{ij} + u_{:kj}\sigma_{il} - u_{:il}\sigma_{kj}.$$
(3.5)

4 Preliminary a priori estimates

We assume that M is a prospective solution and prove a priori estimates for this solution. Later-on we will deform our problem and use these estimates. Therefore we will have to ensure especially that M lies inside the convex body determined by \tilde{M} . This can be achieved if we approximate f such that \tilde{M} is a strict supersolution,

$$F(\kappa_i(\tilde{M})) > f(\nu_{\tilde{M}}). \tag{4.1}$$

In view of our a priori estimates we may afterwards choose a subsequence of solutions of the modifies problems that converge to a solution of the original problem.

4.1 C^0 - and C^1 -estimates

It is possible to represent M as a graph over an appropriately chosen part of a small sphere with center in $\tilde{M} \setminus \overline{\tilde{M}_+}$, graph $u|_{\Omega} = M$, such that $|u|_1$ is bounded. The C^0 bounds follow from the geometric setting and the convexity

of M, the C^1 bounds follow as the angle between each half-line starting from the center of the small sphere and M in an intersection point is a priori bounded from below. In our setting, this follows by simple geometric reasoning, a proof for a much more general situation can be found in [10].

4.2 A special coordinate system

In view of the uniform C^1 -estimates we may rotate our original Euclidean coordinate system appropriately so that we have the following situation: An arbitrary but fixed point x_0 of $\partial \tilde{M}_+$ is the origin of our coordinate system. Furthermore, we have a function $\omega: \hat{B}_r \to \mathbb{R}, \ \hat{B}_r:=\{x'' \in \mathbb{R}^{n-1}: |x''| < r\},\ \omega(0)=0,\ D\omega(0)=0,\ \text{such that}\ M\cap (\hat{B}_r\times\mathbb{R})=\text{graph}\ u|_{\Omega},\ \text{where}\ \hat{B}_r:=\{x'' \in \mathbb{R}^n: |x'| < r\},\ \Omega:=\hat{B}_r\cap\{(x',x^n):x^n>\omega(x')\}\ \text{and}\ u \text{ is an appropriate}\ \text{function}\ \text{whose}\ \text{graph}\ \text{locally}\ \text{coincides}\ \text{with}\ M.\ r>0\ \text{is uniformly}\ \text{bounded}\ \text{from below}\ \text{by a positive constant}\ \text{which is especially independent}\ \text{of}\ x_0\ \text{and}\ \text{the second}\ \text{fundamental}\ \text{form}\ \text{of}\ M.\ \omega\ \text{and}\ \text{its}\ \text{derivatives}\ \text{are}\ \text{a priori}\ \text{bounded}\ \text{as}\ \text{well}\ \text{as}\ |u|_1.$ The function u is as smooth as M but its derivatives of order greater than one are not yet a priori bounded. In the same way as M is locally represented as graph u, we may assume that $\tilde{M}=\text{graph}\ \tilde{u}|_{\Omega}$, but the derivatives of \tilde{u} are a priori bounded. Furthermore, we may assume $u(0)=\tilde{u}(0)=0\ \text{and}\ u_r(0)=\tilde{u}_r(0)=0,\ 1\leq r\leq n-1.$

4.3 Tangential C^2 -estimates at the boundary

We choose a coordinate system as described above. On $\partial\Omega$ u and \tilde{u} coincide, so we may differentiate

$$(\tilde{u} - u)(x'', \omega(x'')) = 0 \tag{4.2}$$

twice and obtain in view of $D\omega(0) = 0$ for $1 \le r, s \le n-1$ in the origin

$$u_{rs} = \tilde{u}_{rs} + (\tilde{u} - u)_n \omega_{rs}. \tag{4.3}$$

All terms on the right-hand side are bounded, so $|u_{rs}|$, i. e. the tangential derivatives of u, are a priori bounded.

5 A priori estimates

Compare this proof to the respective ones in [1], [2], [8], [7], [13] and [11].

5.1 Mixed C^2 -estimates at the boundary

We consider the situation for a fixed point of ∂M in a coordinate system as described in section 4.2.

We differentiate the equation

$$F(h_{ij}, g_{ij}) = f(\nu^{\alpha}) \equiv f(u_i) \tag{5.4}$$

with respect to x^k and use

$$h_{ij,k} = -\frac{1}{v}u_{ijk} + \frac{1}{v^3}u^l u_{lk}u_{ij}, \tag{5.5}$$

thus

$$f_{p_i}u_{ik} = -\frac{1}{v}F^{ij}u_{ijk} + \frac{1}{v^2}Fu^lu_{lk} - F^{il}h_l^j(u_{ik}u_j + u_iu_{jk}).$$
 (5.6)

Therefore we define the linear operator L by

$$Lw := \frac{1}{v} F^{ij} w_{ij} - \frac{1}{v^2} F u^l w_l + F^{il} h_l^j (u_j w_i + u_i w_j) + f_{p_i} w_i$$
 (5.7)

and for t < n

$$T := \frac{\partial}{\partial x^t} + B_{tr} x^r \frac{\partial}{\partial x^n} - B_t^r x_n \frac{\partial}{\partial x^r}, \tag{5.8}$$

where

$$\omega(x') = \frac{1}{2} B_{rs} x^r x^s + O(|x'|^3), \quad x' = (x^1, \dots, x^{n-1}), \tag{5.9}$$

 $B_t^r \equiv B_{ts} \delta^{rs}$, $x_n = x^i \delta_{in}$ and r, s and t run from 1 to n-1 as usually.

From the definition of L and the homogeneity it is easy to see that

$$|LT(u - \tilde{u})| \le c \cdot \left(1 + \operatorname{tr} F^{ij}\right), \tag{5.10}$$

where - here and in the following - c is bounded from above by estimated quantities.

Furthermore we have in view of the C^1 -estimates

$$|T(u - \tilde{u})| \le c \quad \text{in } \overline{\Omega} \tag{5.11}$$

and due to the definition of T

$$|T(u - \tilde{u})| \le c \cdot |x|^2$$
 on $\partial \Omega$. (5.12)

We consider the function

$$\vartheta := (\tilde{u} - u) + \alpha d - \mu d^2, \tag{5.13}$$

in a domain $\Omega_{\delta} := \Omega \cap B_{\delta}(0)$, where d is the distance function from $\partial\Omega$ in \mathbb{R}^n , and show that it satisfies a nice differential equation for α , $\delta > 0$ small and μ large.

As graph \tilde{u} is strictly convex, we fix $\varepsilon > 0$ such that $-\tilde{u}_{ij} \geq \varepsilon \delta_{ij}$ in the matrix sense. We compute

$$L\vartheta \le -\frac{\varepsilon}{v} \operatorname{tr} F^{ij} - 2\mu \frac{1}{v} F^{ij} d_i d_j + c + (\alpha + \delta \mu) \cdot c \cdot \left(1 + \operatorname{tr} F^{ij}\right). \tag{5.14}$$

We use $-F^{rs}d_rd_s \leq 0$, $1 \leq r,s \leq n-1$, as well as $|F^{nr}| \leq \frac{1}{2}\mathrm{tr}\,F^{ij}$ and $d_i \approx \delta_{in}$, so

$$L\vartheta \le -\frac{\varepsilon}{v} \operatorname{tr} F^{ij} - \mu \frac{1}{v} F^{nn} + c + (\alpha + \delta \mu) \Big(1 + \operatorname{tr} F^{ij} \Big). \tag{5.15}$$

From Lemma 2.1 we infer that for sufficiently large fixed μ the constant c can be absorbed by the first two terms on the RHS. For small $\alpha, \delta > 0$ we obtain

$$L\vartheta \le -\frac{1}{3} \frac{\varepsilon}{v} \operatorname{tr} F^{ij}. \tag{5.16}$$

Furthermore, when $\alpha > 0$ is small,

$$\vartheta \ge 0 \quad \text{on } \partial\Omega_{\delta}.$$
 (5.17)

We consider the function

$$\Theta := A\vartheta + B|x|^2 \pm T(u - \tilde{u}). \tag{5.18}$$

We fix $B \gg 1$, get $\Theta \geq 0$ on $\partial \Omega_{\delta}$, and deduce from Lemma 2.1 tr $F^{ij} \geq \frac{1}{c} > 0$, so $L\Theta \leq 0$ for $A \gg B$. The maximum principle yields $\Theta \geq 0$ in Ω_{δ} . As $\Theta(0) = 0$, we have $\Theta_n(0) \geq 0$ which in turn gives immediately $|u_{tn}(0)| \leq c$, $1 \leq t \leq n-1$.

5.2 Normal C^2 -estimates at the boundary

We may assume that the infimum of the invariantly defined function

$$\partial\Omega \ni x \mapsto \inf_{0 \neq \zeta \in T_x \partial\Omega} \frac{h_{ij} \zeta^i \zeta^j(x)}{g_{ij} \zeta^i \zeta^j(x)}$$
 (5.19)

equals $h_{11}(x_0)/g_{11}(x_0)$ and fix a coordinate system around x_0 as in section 4.2. We choose smooth vector fields ξ_i , $1 \le i \le n$, around x_0 such that ξ_n equals the inner unit normal to $\partial\Omega$, $\xi_1(x_0) = e_1(x_0)$ and the vectors ξ_i are pointwise orthonormal with respect to the Euclidean metric.

From $\tilde{u} - u = 0$ on $\partial\Omega$ we deduce along $\partial\Omega$ the well-known relation ([13])

$$0 = \xi_r^i \xi_s^j (\tilde{u} - u)_{ij} + \xi_n^i (\tilde{u} - u)_i \left(-\xi_r^i \xi_s^j \delta_{jk} \left(\xi_n^k \right)_i \right)$$

$$\equiv \nabla_{rs} (\tilde{u} - u) + (\tilde{u} - u)_{\nu} C_{rs}.$$

$$(5.20)$$

We wish to estimate $-\nabla_{11}u(x_0)$ from below by a positive constant. If $-\nabla_{11}u(x_0) \geq -\frac{1}{2}\nabla_{11}\tilde{u}(x_0)$, we have such an estimate, otherwise we deduce from (5.20) that C_{11} is locally bounded from below by a positive constant. As $|\nabla_{11}u|$ is already bounded on $\partial\Omega$,

$$\partial\Omega \ni x \mapsto -\nabla_{11}u + a|x|^2 \tag{5.21}$$

attains its infimum in x_1 near $x_0 = 0$ for $a \gg 1$, thus

$$c(x_1) \equiv -\nabla_{11}u(x_1) + a|x_1|^2 \le -\nabla_{11}u(x) + a|x|^2, \quad x \in \partial\Omega,$$
 (5.22)

or in view of (5.20) for $x \in \partial \Omega$

$$u_{\nu}(x) \geq C_{11}^{-1}(x) \cdot (\nabla_{11}\tilde{u}(x) + c(x_1) - a|x|^2) + \tilde{u}_{\nu}(x)$$
 (5.23)

$$\equiv \gamma \in C^2, \quad |\gamma|_2 \le c. \tag{5.24}$$

For $\Theta:=A\vartheta+B|x-x_1|^2-\gamma(x)+u_\nu(x)$, when γ is extended appropriately, we deduce as in section 5.1 that $-\nabla_{nn}u(x_1)$ is bounded from above. Lemma 2.1 implies a positive lower bound for $-\nabla_{11}u(x_1)$, thus also for $-\nabla_{11}u(x_0)$, $h_{11}(x_0)/g_{11}(x_0)$ and $h_{\zeta\zeta}/g_{\zeta\zeta}$, $\zeta\in T\partial\Omega$. In view of Lemma 1.2 in [2] (or Youngs inequality) and Lemma 2.1 we deduce a bound for the second derivatives of u on $\partial\Omega$ and $0<\frac{1}{c}\leq\kappa_i\leq c$ for all eigenvalues κ_i of $h_{ik}g^{kj}$.

5.3 Interior C^2 -estimates

We proceed as in [6] and transfer the situation to S^n via the Gauß map $M \ni x \mapsto \nu(x) \in S^n$.

For the estimates here indices denote covariant derivatives with respect to σ_{ij} , u is the support function of M and we remark that

$$F(h_{ik}g^{kj}) = \left(\tilde{F}((u_{ik} + u\sigma_{ik})\sigma^{kj})\right)^{-1}, \qquad (5.25)$$

$$\tilde{F}((u_{ik} + u\sigma_{ik})(x) = (f(x))^{-1}, \quad x \in \nu(M) \subset S^n.$$

On ∂M the eigenvalues of the second fundamental form are a priori bounded from below and from above. Assume that

$$\frac{1}{\kappa_1(M)} + \ldots + \frac{1}{\kappa_n(M)} = \sigma^{ij}(u_{ij} + u\sigma_{ij}) \equiv \sigma^{ij}w_{ij}$$
 (5.26)

attains its maximum at an interior point $\nu^{-1}(x_0)$ of M, so we have there

$$0 \geq (\sigma^{ij}w_{ij})_{kl}$$

$$= \sigma^{ij}(u_{ijkl} + u_{kl}\sigma_{ij})$$

$$= \sigma^{ij}(u_{klij} + 2u_{ij}\sigma_{kl} - u_{kl}\sigma_{ij} + u_{kj}\sigma_{il} - u_{il}\sigma_{kj})$$

$$= \Delta(u_{kl}) + 2\Delta u\sigma_{kl} - nu_{kl}$$

$$= \Delta(w_{kl}) - nw_{kl} + \sigma^{ij}w_{ij}\sigma_{kl},$$

$$(5.27)$$

where indices are lifted with respect to σ_{ij} and $\Delta(\cdot) = \sigma^{ij}(\cdot)_{ij}$. Define

$$\hat{\tilde{F}^{kl}} = \frac{\partial \hat{\tilde{F}}}{\partial w_{kl}}(w_{ij}). \tag{5.28}$$

As \hat{F}^{ij} is positive

$$0 \geq \hat{F}^{kl}(\sigma^{ij}w_{ij})_{kl} \tag{5.29}$$

$$= \hat{F}^{kl} \Delta(w_{kl}) - n \hat{F}^{kl} w_{kl} + \sigma^{ij} w_{ij} \hat{F}^{kl} \sigma_{kl}. \tag{5.30}$$

 \tilde{F} is homogeneous of degree one, so

$$\hat{\tilde{F}}^{kl}w_{kl} = \frac{1}{\tilde{F}}\frac{\partial \tilde{F}}{\partial w_{kl}}w_{kl} = 1.$$
 (5.31)

We differentiate $\hat{\tilde{F}}(w_{ik}\sigma^{kj}) = -\log f(x)$ and use the concavity

$$\sigma^{ij} \hat{F}^{kl} w_{kl;ij} \ge -\Delta \log f(x) \tag{5.32}$$

and so we obtain

$$0 \ge -\Delta \log f - n + (\sigma^{ij} w_{ij}) \cdot \hat{F}^{kl} \sigma_{kl}. \tag{5.33}$$

As $\hat{F}^{kl}\sigma_{kl}$ is bounded from below by a positive constant (show that this quantity tends to infinity when an eigenvalue of w_{ij} approaches zero as in the proof of Lemma 2.1) and f is a given function, we conclude that $\sigma^{ij}w_{ij}$ is a priori bounded, i. e. $\kappa_i(M)$, $1 \leq i \leq n$, is bounded from below by a positive constant, and in view of Lemma 2.1 also from above. This proves the a priori estimate for the eigenvalues of the second fundamental form and for the second derivatives of a function representing M locally as a graph in coordinate systems as in the sections 4.1 or 4.2.

5.4 $C^{2,\alpha}$ - and further estimates

We consider a curvature function of the form

$$F = \sigma^{\alpha} \cdot \gamma^{\alpha'}. \tag{5.34}$$

If we take the N-th power, $F^N=f^N$, for a sufficiently large N so that $\alpha_i\cdot N\geq 1$ and $\alpha_i'\cdot N\geq 1$, $1\leq i\leq n$, for $\alpha_i\neq 0$ resp. $\alpha_i'\neq 0$. As mentioned in [5], the functions σ_k and γ_k , $1\leq k\leq n$, are concave and monotone increasing. This remains true for the β -th power, $\beta\geq 1$, and for products of them. Now, we define $G[u]=-F^N[-u]$ and observe that G is uniformly elliptic and strictly concave due to our a priori estimates. So we can apply Krylov-Safanov theory, chapter 14.13 in [12] and deduce $C^{2,\alpha}$ a priori estimates. Finally, we deduce $C^{4,\alpha}$ a priori estimates by using Schauder theory.

6 Existence

To prove the existence of the hypersurface M we are looking for, we may proceed as in [9] or [10] and deform our problem into a local problem such

that M and \tilde{M}_+ are representable as graphs in a single Euclidean coordinate system. During this step we represent solutions of the deformed problem in a coordinate system as in section 4.1. If this deformation is carried out appropriately, the degree mod 2 implies that it suffices to solve the local problem. The maximum principle yields that solutions of the deformed problem fulfill analogous geometric conditions as stated next to the main theorem. In view of the uniqueness of a prospective solution of the local problem and the a priori estimates, a standard continuity method yields the existence for the local problem. This in turn yields a solution of our original problem via degree mod 2 theory.

References

- [1] L. Caffarelli, L. Nirenberg, J. Spruck: The Dirichlet Problem for Nonlinear Second-Order Elliptic Equations I. Monge-Ampère Equation, Comm. Pure Applied Math., 37 (1984), 369-402.
- [2] L. Caffarelli, L. Nirenberg, J. Spruck: The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261-301.
- [3] S.-Y. Cheng, S.-T. Yau: On the Regularity of the Solution of the n-Dimensional Minkowski Problem, Comm. Pure Appl. Math. 29 (1976), 495-516.
- [4] C. Gerhardt: Hypersurfaces of prescribed curvature in Lorentzian manifolds, to appear in Indiana Univ. Math. J..
- [5] C. Gerhardt: Closed Weingarten hypersurfaces in Riemannian manifolds, J. Diff. Geom. 43 (1996), 612-641.
- [6] B. Guan, P. Guan: Convex hypersurfaces of prescribed curvature, preprint, 2000.
- [7] B. Guan: The Dirichlet problem for Monge-Ampère equations in nonconvex domains and spacelike hypersurfaces of constant Gauß curvature, Trans. Amer. Math. Soc. 350, No. 12, (1998), 4955-4971.

- [8] B. Guan, J. Spruck: Boundary-value problems on \mathbb{S}^n for surfaces of constant Gauss curvature, Ann. Math. 138 (1993), 601-624.
- [9] N. M. Ivochkina, F. Tomi: Locally convex hypersurfaces of prescribed curvature and boundary, Calc. Var. 7 (1998), 293-314.
- [10] T. Nehring: Hypersurfaces of prescribed Gauß curvature and boundary in Riemannian manifolds, J. reine angew. Math. **501** (1998), 143-170.
- [11] O. C. Schnürer: The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds, to appear in Math. Z..
- [12] M. E. Taylor: Partial differential equations. III. Nonlinear equations, Applied Mathematical Sciences, 117, Springer, New York, 1997, xxii+608 pp.
- [13] N. S. Trudinger: On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995), 151-164.

OLIVER C. SCHNÜRER

Max-Planck-Institut für Mathematik in den Naturwissenschaften,

Inselstr. 22-26, D-04103 Leipzig, Germany

E-mail address: Oliver.Schnuerer@mis.mpg.de