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Abstract

We prove the existence of hypersurfaces with prescribed boundary
whose Weingarten curvature equals a given function that depends on
the normal of the hypersurface.

1 Introduction

Let M € R be a strictly convex smooth hypersurface and 0 < f €
C2(S™). We denote by M, an open subset of M with smooth boundary
OM, (with respect to M) and M, C M. Let F be a curvature function as
for example S, the Gaufl curvature, or Sy - S,, 1 < k < n, where Si denotes
the k-th elementary symmetric polynomial

Sk(liz) = Z Rip = oot Ry, (11)

1< << <n

A description of the curvature functions considered in this paper is given in
section 2. We denote the principal curvatures of a hypersurface M by x;(M),
1 <i < n, and the outer unit normal of M by vy;. Under these assumptions
we prove the following

Theorem 1.1 If F(k;(M)) > f(vy) in M, then there exists a C*°-
hypersurface M with

F(ri(M)) = f(v) (1.2)
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and OM = 3J\Z/+, where v denotes an appropriately chosen unit normal of

M.

More precisely, we look for a strictly convex hypersurface contained in the
convex body determined by M, whose unit normal points inside the bounded

component of R*1\ (M, U M) and MU(M\M,) is the boundary of a strictly
convex body.

The paper is organized as follows. In section 2 we introduce the curvature
functions we are interested in, in section 3 we state our notations concerning
differential geometry. A priori estimates are proved in section 4 and the more
complicated ones are proved in section 5. Finally, we sketch in section 6 how
these a priori estimates can be used for the existence proof.

The classical Minkowski problem has been solved for smooth functions in
any dimension in [3]. A generalization for other curvature functions has been
obtained recently in [6]. There are many papers that consider a Dirichlet
problem for equations of prescribed curvature. The most useful ones for our
estimates were [13] and [7]. We remark that the dependence of f on v without
imposing structure conditions on f besides positivity and smoothness seems
to be new.

We wish to thank Prof. Dr. J. Jost and the Max-Planck-Institute for Mathe-
matics in the Sciences, Leipzig, where this research was carried out, for their
hospitality. We would also like to thank Prof. Dr. C. Gerhardt, Heidelberg,
who brought the Minkowski problem to our attention.

2 Curvature functions

In this paper, we consider symmetric curvature functions defined in the pos-
itive cone I'; C R™ which are of the class C**(I';) N C%(T'y), positive homo-
geneous and satisfy

OF .
Fi=go > 0inly, (2.1)
Flyp, = 0.



For a positive definite symmetric matrix (h;;) € Sym™(n, R) with eigenvalues

ki, 1 <1 < mn, we define
F(hij) == F(ki),

(2.2)

where the ambiguous notation should not cause any difficulties. As F' €

C?*(Sym™) N C? (Sym+), we can define
OF i _ _OF

FU = — = —
ahi]’ ’ 8hij8hkl ’
so that for an appropriate interpretation of the RHS
i = S |6l* VEeR
Ki

and F* is diagonal if h;; is diagonal.
We define the elementary symmetric polynomials by

Sk(k) == Z Kiy* - Kip, 1<k<n,

1< <..<ip<n

and furthermore

Sk(/{) = =

O — (Sk)l/k, 5’k = (Sk) y

1/k
e = K™ , k(R) = Y
! (mZk ) ! Tk (:)

where « is a multiindex.

In this paper we will consider curvature functions F' of the form

n
!
F=0%-~%, where 0® = [] op*,
k=1

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

and we assume «, > 0 and a, ¢’ > 0 in the sense of multiindices. These
functions obviously fulfill the conditions for curvature functions from the

beginning of this section and furthermore

- 1 /
F(K/Z) = @ Ao

(2.8)



Defining an abstract class of curvature functions for which the existence proof
can be carried out seems to require many restrictions, so we mention only
these examples. The fact that F' contains a positive power of the Gauf
curvature is restrictive, but we have to ensure F|6F+ = 0 to preserve the
convexity of the hypersurfaces appearing in our existence proof as well as
a kind of concavity of F to deduce C*“ estimates from the C? a priori
estimates.

Lemma 2.1 For F' as above
a - 1
F =logF = —logF <—> (2.9)

1s concave and the following properties are equivalent provided 0 < ¢ < F <
1
= < o0

) (2.10)
Kp — 00,
tI'Fij = Fijéij —  +00,

when 0 < k1 < ... < Ky.

Proof: The concavity follows from the properties of curvature functions col-
lected in [5] when we write the definition of the class (K') using the logarithm
as in [4].

k1 — 0 and F|ar+ = 0 force Kk, — 00, k1 > ¢ > 0 and k,, — oo contradict
F < % Here and below we use ¢ to denote a positive constant that may
change its value if necessary. tr F'’ — oo is impossible for x in a compact
subset of Iy, so k; — 0 or Kk, — o0.

Let F = 0®.~* as above.

. 1 , 1
trFZ]Z%'O—a'_"yaZ%'C'_, (211)

n K1 n K1
so k1 — 0 implies tr FV — 4o0. O

We may assume that F'is positive homogeneous of degree one.



When we consider a hypersurface M with induced metric g;; we compute
the eigenvalues of h;; with respect to g;; or equivalently we compute the
eigenvalues of hyrg" = hl, (¢") = (g;;)~". Then the chain rule yields ([11])

oOF
agij

= —F*p], (2.12)

3 Notations

In Euclidean coordinate systems the induced metric g;; and the inverse q"
of the induced metric of graph u are given by

9ij = 6ij + uuy, (31)
LV — 1 _

g - (5 UZ ’

ut = ujéij,

vo= \/1+|Du|2: \/1+uiui,

where Latin indices range from 1 to n and refer to quantities of graphu
besides r, s and ¢ which only range to n — 1 and refer to a n — 1 dimensional
boundary. The Einstein summation convention is always used. Greek indices
range from 0 to n and refer to R**!,

Let 2% be a coordinate system for R**!, v® the “upwards pointing” unit
normal of graphu, I'. the induced Christoffel symbols and h;; its second
fundamental form. We will choose coordinates such that h;; is positive def-
inite for a strictly convex hypersurface. These quantities are related by the

Gauf formula (25, indicate covariant derivatives, u;; and %, denote partial

derivatives)
o Q
1 .
vt = —(—u',1),
v
« _ « k .«
v = vy — Lk,
1
ko 1k
I‘ij = Uzu Usj,
u..
_ k _ ]
hz] = — (uij — szuk) vV = —7



As M is strictly convex, M > z — v(z) is a diffeomorphism from M to
v(M) C S™ For x € v(M) we define the supporting function u - the am-
biguous use of u should not cause any difficulties - by

u(@) = 200 (1) (@) = (&0 (), (3.3)

i. e. the scalar product is the usual scalar product in R**'. We remark that
the original hypersurface can be recovered from the support function ([3]).
The eigenvalues of

(wyij + uoij)(x), x € S", (3.4)

with respect to the standard metric o;; of S™ are the inverses of the principal
curvatures of M at v~'(z), where u,;; denotes covariant derivatives with
respect to the metric 0;;. For covariant derivatives on S™ we have

Usijhl = Uiklij + 2Uy 0k — 2Up 045 + Uk jOi — UsitOgj- (3.5)

4 Preliminary a priori estimates

We assume that M is a prospective solution and prove a priori estimates for
this solution. Later-on we will deform our problem and use these estimates.
Therefore we will have to ensure especially that M lies inside the convex
body determined by M. This can be achieved if we approximate f such that
M is a strict supersolution,

F(ri(M)) > f(vyy). (4.1)

In view of our a priori estimates we may afterwards choose a subsequence of
solutions of the modifies problems that converge to a solution of the original
problem.

4.1 (C° and C'-estimates

It is possible to represent M as a graph over an appropriately chosen part
of a small sphere with center in M \ M, graph u|, = M, such that |u|; is
bounded. The C° bounds follow from the geometric setting and the convexity



of M, the C! bounds follow as the angle between each half-line starting
from the center of the small sphere and M in an intersection point is a
priori bounded from below. In our setting, this follows by simple geometric
reasoning, a proof for a much more general situation can be found in [10].

4.2 A special coordinate system

In view of the uniform C'-estimates we may rotate our original Euclidean
coordinate system appropriately so that we have the following situation: An
arbitrary but fixed point zo of M, is the origin of our coordinate system.
Furthermore, we have a function w : B, = R, B, := {2 e R* ! : |2"| < r},
w(0) = 0, Dw(0) = 0, such that M N (Er X R) — graph ul,, where B, :=
{a/ e R : |2'| <}, Q:= B,n{(z',2") : 2" > w(z')} and u is an appropriate
function whose graph locally coincides with M. r > 0 is uniformly bounded
from below by a positive constant which is especially independent of zy and
the second fundamental form of M. w and its derivatives are a priori bounded
as well as |u|;. The function u is as smooth as M but its derivatives of order
greater than one are not yet a priori bounded. In the same way as M is
locally represented as graph u, we may assume that M = graph ulg, but

the derivatives of u are a priori bounded. Furthermore, we may assume
u(0) = 2(0) =0 and u,(0) =4,(0) =0,1 <r <n-—1.

4.3 Tangential C*-estimates at the boundary

We choose a coordinate system as described above. On 0f2 u and @ coincide,
so we may differentiate

(@ —u)(z",w(@") =0 (4.2)
twice and obtain in view of Dw(0) =0 for 1 <7, s <n — 1 in the origin
Ups = Ups + (U — 1) pWrs. (4.3)

All terms on the right-hand side are bounded, so |u,s|, i. e. the tangential
derivatives of u, are a priori bounded.



5 A priori estimates

Compare this proof to the respective ones in [1], [2], [8], [7], [13] and [11].

5.1 Mixed C%-estimates at the boundary

We consider the situation for a fixed point of M in a coordinate system as
described in section 4.2.

We differentiate the equation
F(hij, gi5) = f(v°) = [(u) (5.4)

with respect to z* and use

1 1
hij,k = _;uijk + ﬁululkuij, (55)
thus . .
fpiuik = —;F”uijk + ﬁFululk — FZlhg (uikuj + Uink). (56)
Therefore we define the linear operator L by
L Lo ilyj
Lw = ;F w;j — ﬁFu wy + FUh (ujw; + ujw;) + fp,w; (5.7)
and for t <n p p p
T:=— +Byx'— — B/x,——, 5.8
8wt+ o ox™ t? ox" (58)
where ]
w(a') = 5 Bra’a® + 0 (l1*), o' =(@',...,a""), (5.9)
B! = B;,6", ¥, = 2'0;, and r, s and ¢ run from 1 to n — 1 as usually.
From the definition of L and the homogeneity it is easy to see that
LT(u )| <c- (14t FY), (5.10)

where - here and in the following - ¢ is bounded from above by estimated
quantities.



Furthermore we have in view of the C''-estimates

T(u—a)|<c inQ (5.11)
and due to the definition of T’
T(u—a)| <c-|z[* on Q. (5.12)
We consider the function
V= (i — u) + ad — pd?, (5.13)

in a domain € := QN Bs(0), where d is the distance function from 02 in
R", and show that it satisfies a nice differential equation for «;, 6 > 0 small
and p large.

As graph « is strictly convex, we fix ¢ > 0 such that —u;; > €d;; in the matrix
sense. We compute

LY < —Ste FU — 2= Fiidyd; + ¢ + (a + 0p) - ¢ - (1+0F7).  (5.14)
v v
We use —F"*d,d; < 0, 1 < 7,5 < n—1,as well as [F™| < Str F¥ and
d; = 0;p, SO
c N 1 g
LY < ——trFY — = F™ f e+ (a+ p) (L + e F9). (5.15)
v v

From Lemma 2.1 we infer that for sufficiently large fixed p the constant ¢
can be absorbed by the first two terms on the RHS. For small o, 6 > 0 we
obtain

le y
LY < —=—tr FY. 5.16
< -3t (5.16)
Furthermore, when a > 0 is small,
9 >0 on 00;. (5.17)

We consider the function
O = AY + Blz|> £ T(u — a). (5.18)

We fix B > 1, get © > 0 on 99, and deduce from Lemma 2.1 tr F¥ > 1 > 0,
so LO < 0 for A > B. The maximum principle yields © > 0 in 5. As
©(0) = 0, we have ©,,(0) > 0 which in turn gives immediately |u,(0)] < ¢,
1<t<n-1



5.2 Normal C%-estimates at the boundary

We may assume that the infimum of the invariantly defined function

weldi
00N>z inf ﬁgﬁﬁjﬁ) (5.19)
0£CET 00 gijC’CJ(m)

equals hi1(z9)/g11(z) and fix a coordinate system around xy as in section
4.2. We choose smooth vector fields &;, 1 < ¢ < n, around z, such that &,
equals the inner unit normal to 02, & (o) = e;(xy) and the vectors & are
pointwise orthonormal with respect to the Euclidean metric.

From @ —u = 0 on 02 we deduce along 02 the well-known relation ([13])
0 = &&(—u)iy+& (@ —u) (-6E0 (&) (5.20)
= V(i —u)+ (2 —u),Chs.

We wish to estimate —Vijju(zy) from below by a positive constant. If
—Viu(zy) > —%VH@(I‘O), we have such an estimate, otherwise we deduce
from (5.20) that Cy; is locally bounded from below by a positive constant.
As |Vy1u] is already bounded on 02,

00>z +— —Vyu+alz (5.21)
attains its infimum in z; near ¢y = 0 for a > 1, thus
c(x1) = —Vyu(z) +az,* < —Vyu(z) +alz)?, z €09, (5.22)
or in view of (5.20) for z € 00

CH (@) - (Via(z) + (1) — alz)?) + @, (z) (5.23
yeC? |y <e (5.24)

u, ()

v

For © := AY + Blz — x1|* — v(z) + u,(z), when 7 is extended appropriately,
we deduce as in section 5.1 that —V,,,u(z) is bounded from above. Lemma
2.1 implies a positive lower bound for —Vyju(x;), thus also for —Vju(x),
hi1(z0)/g11(z0) and hee/gec, ¢ € TORQ. In view of Lemma 1.2 in [2] (or Youngs
inequality) and Lemma 2.1 we deduce a bound for the second derivatives of
© on 0 and 0 < % < k; < ¢ for all eigenvalues &; of h,g*.
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5.3 Interior C?-estimates
We proceed as in [6] and transfer the situation to S™ via the Gaufl map
M >z —v(x)e S
For the estimates here indices denote covariant derivatives with respect to
0ij, u is the support function of M and we remark that
: - -1
F(hig") = (F((Uz'k—i-uaik)ak])) ) (5.25)
F((ug +uoy)(z) = (f(=)7', =ew(M)cC s

On OM the eigenvalues of the second fundamental form are a priori bounded
from below and from above. Assume that

—+ = aij(uz-j + UO'Z']') = aijwz-j (526)

+ ...
k1 (M) fin (M)
attains its maximum at an interior point v~!(xq) of M, so we have there

0 > (6"wij)u (5.27)
0" (Uit + Ur0i;)
= 0" (uptij + 2uijOk — U0 + UkjOy — UiO;)
= A(ug) + 2Auoy — nug

ii
= A(wkl) — NWg + 0 ]wijakl,

where indices are lifted with respect to o;; and A(+) = 6% (-);;. Define

Fkt = ;jﬂ (wyj). (5.28)
As FAZ'J' is positive
0 > FH(giw,), (5.29)
FA’“A(wM) — nﬁklwkl + aijwijﬁklakl. (5.30)
F is homogeneous of degree one, so
Fhly, = %;T};w“ — 1. (5.31)
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We differentiate l%(wz-ka’“j) = —log f(z) and use the concavity
o PRy, > —Alog f(x) (5.32)
and so we obtain

0 Z —Alogf -n+ (aijwij) : F:klO'kl. (533)

As F*gy, is bounded from below by a positive constant (show that this
quantity tends to infinity when an eigenvalue of w;; approaches zero as in
the proof of Lemma 2.1) and f is a given function, we conclude that o w;;
is a priori bounded, i. e. k;(M), 1 < i < n, is bounded from below by a
positive constant, and in view of Lemma 2.1 also from above. This proves
the a priori estimate for the eigenvalues of the second fundamental form and
for the second derivatives of a function representing M locally as a graph in
coordinate systems as in the sections 4.1 or 4.2.

5.4 (% and further estimates

We consider a curvature function of the form

F=o0%7%. (5.34)
If we take the N-th power, F'Y = f¥, for a sufficiently large N so that
a-N > 1land of - N > 1,1 < i < n, for a; # 0 resp. o) # 0. As
mentioned in [5], the functions oy and 7, 1 < k < n, are concave and
monotone increasing. This remains true for the $-th power, # > 1, and for
products of them. Now, we define G[u] = —F"[—u] and observe that G
is uniformly elliptic and strictly concave due to our a priori estimates. So
we can apply Krylov-Safanov theory, chapter 14.13 in [12] and deduce C?¢ a
priori estimates. Finally, we deduce C*® a priori estimates by using Schauder
theory.

6 Existence

To prove the existence of the hypersurface M we are looking for, we may
proceed as in [9] or [10] and deform our problem into a local problem such
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that M and M+ are representable as graphs in a single Euclidean coordinate
system. During this step we represent solutions of the deformed problem in a
coordinate system as in section 4.1. If this deformation is carried out appro-
priately, the degree mod 2 implies that it suffices to solve the local problem.
The maximum principle yields that solutions of the deformed problem fulfill
analogous geometric conditions as stated next to the main theorem. In view
of the uniqueness of a prospective solution of the local problem and the a
priori estimates, a standard continuity method yields the existence for the
local problem. This in turn yields a solution of our original problem via
degree mod 2 theory.
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