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Abstract

Let © C R" be a bounded domain and F : @ x R — R. In this paper we consider
functionals of the form

I(u) ::/Q<%|Du|2 +F(a:,u)> da,

where the admissible function w belongs to the Sobolev space of vector-valued functions
Wh2(Q; RY) and is such that the integral on the right is well defined. We state and prove a
sufficiency theorem for L" local minimizers of I where 1 < r < co. The exponent 7 is shown to
depend on the dimension n and the growth condition of F' and an exact expression is presented
for this dependence. We discuss some examples and applications of this theorem.

1 Introduction

Let Q C R™ be a bounded domain (open connected set) and let F':  x RV — R. We consider
functionals of the form

1 .
I(u) :/ <§|DU|Z+F(3:,U)> d, (1.1)
Q
where the admissible u belongs to the class of vector-valued functions
Fi={ue W"(Q;RY) : the integral (1.1) is well defined} .

By well defined we mean that F(z,u(z)) is a measurable function on Q and at least one of the
functions F* := max{F(-,u(-)),0} or F~ := min{F(-,u(-)),0} has a finite integral. It is therefore
to be understood that I : F — R := RU {—00, +oc}. To specify the growth of F' we assume that
there are constants C > 0 and p > 1 such that

F(z,u) > —=C(1 + |u|P)

for all z € Q and all u € RY.

Throughout this paper we assume that 2 has a Lipschitz boundary 99 with 9Q2 = 9Q; U9, UN
where 0€); and 99, are disjoint relatively open subsets of 992 and H"!(N) = 0. Here H" ()
stands for the (n — 1)-dimensional Hausdorff measure. We denote the unit outward normal to the
boundary at a point = by v(x).

Functionals of the form (1.1) and their corresponding Euler-Lagrange equation appear in many
contexts. Because of their relatively simple structure they have attracted much attention and there
is a considerable literature on issues such as existence and multiplicity of their critical points. In
this paper we shall be mainly concerned with the nature of such critical points. More specifically we
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aim to classify such points as various local minimizers and hence understand the “local geometry”
of I. For this let us assume that ug € F is given and 02, is as described and set

Au (0Q1) :={u € F: (u—wo)|ag, =0},

where the boundary values are to be interpreted in the sense of traces. We can now state the
following

Definition 1.1. Let 1 <r < co. The function ug € F is said to be an L" (respectively W) local
minimizer of I if and only if there exists € > 0 such that

I(up) < I(u)
for all u € Ay, (01) satisfying ||u — uol| r(;r~) < € (respectively ||u — ug||w1.r(;r~) < €)-

We shall also borrow a standard terminology from calculus of variations. By a weak local min-
imizer we mean a W' local minimizer whereas a strong local minimizer refers to an L* local
minimizer. It can be easily checked that if F is of class C? and ug € F is a weak local minimizer
of class L (Q; RY) in A, (0Q4) then

. d C d?
(1) o0I(ug,p) = EI(UO +tp)i=o =0 and (ii)” 6%I(ug,p) := ﬁf(uo + to)|t=0 > 0,

first for all variations ¢ € C>(Q; RY) satisfying ¢|sq, = 0, and then by a density argument for
all o € WH2(Q; RY) satisfying ¢|sqn, = 0. Condition (i) is known as the Euler-Lagrange equation
and is equivalent to ug being a weak solution of the semi-linear elliptic system

Au = F,(z,u) in Q,
‘g—fj =0 on 0.

We often call a solution to this system a critical point of I. Condition (i¢)~ simply states that the
first eigenvalue of the linear operator —A+ Fy,, (x, ug) subject to zero Dirichlet boundary conditions
on 0y is nonnegative. By slightly strengthening condition (i7)~, that is

(i4) There exists 7 > 0 such that 6*I(uo, ) > YI|@l[3y1.2 g.r) for all o € WH2(; RY) satisfying
¢lon, =0,

we can achieve the following (cf. Theorem 2.1)

(i) and (i) = wog is an L" local minimizer of I in A,,(0) ,

where r := max(1, &(p — 2)).

It is well known that conditions (i) and (i¢) imply wug to be a weak local minimizer in A, (0€1).
Appealing to the special structure of I, in Proposition 3.1 we improve this to 1y being a strong
local minimizer and then by the use of a truncation operator and an inequality proved in Lemma
3.1 we establish the result for the correct L".

In general one can not get the above conclusion without imposing any restrictions on the growth
of F' from below. As an example consider the case where F(z,u) = —/\e|“‘2/2 with A > 0 and
assume that 0 # 0. It can then be verified that for any choice of A < A; where Ay = A1(0Q;) > 0
denotes the first eigenvalue of the Laplacian with zero Dirichlet boundary conditions on 92, the
function up = 0 is a strong local minimizer of I in A,,,(9€) (cf. Proposition 3.1). However ug s
not an L local minimizer of I for any r < co. The proof of this claim is similar to that of Lemma
3.2; for any such r we can construct a sequence . — 0 in L"(Q; RY) such that I(p.) < I(0). It
is clear that here F' does not satisfy any growth of the type mentioned in the theorem.

The study of local minimizers can be ultimately related to the study of dynamical stability for
equilibrium points of special class of dynamical systems. The connection is based on the application
of Lyapunov type arguments. Indeed following a result of Ball and Marsden [2] an equilibrium point
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of a dynamical system endowed with a Lyapunov function is (nonlinearly) stable if it furnishes a
local minimizer for the given Lyapunov function. Let us note that the actual statement of this
result involves the notion of a potential well instead of a local minimizer however as we shall see
later (cf. Remark 2.2) the local minimizers obtained by the application of Theorem 2.1 do lie in
potential wells. We refer the reader to [1] and [2] for a detailed discussion on this.

In [6] Brezis and Nirenberg study functionals similar to (1.1) for the case N = 1. To give a brief
description of their result let us assume that f : 2 x R — R is a given Carathéodory integrand.
In addition let there be constants C' > 0 and ¢ > 1 with ¢ < (n+2)/(n —2) for n > 3 and ¢ < o
for n < 2 such that

|F(@,u)] < C(1+ [u]?)
for a.e. x € Q and all v € R and let

Fla,u) = /Ou F(z,s) ds.

Then any weak local minimizer of I in A,,(99) is a W2 local minimizer.

The proof is by contradiction. If ug is not a W2 local minimizer there would exist a sequence
u®) — g in WH2(Q) such that I(u®)) < I(ug). Using elliptic regularity theory they show that the
convergence of this sequence (or a more regular sequence retaining the property I(u®)) < I(ug))
can be “improved” to u¥) — wug in W(Q) giving the desired contradiction. This idea has also
been used in an earlier work by De Figueiredo [8].

Our hypotheses in Theorem 2.1 are stronger than that of [6] both in terms of the smoothness
of F' and the starting assumption of ug being a weak local minimizer (conditions (i) and (i7)).
Nevertheless the result here is stated for vector-valued functions for which the argument in [6]
does not seem to extend. Moreover we specify the local minimizers in L™ and present an exact
expression for 7 in terms of p and n. Finally we do not impose any upper bound on the exponent
D-
As a simple application of Theorem 2.1 let us consider the case where N =1 and F' = F(u) is a
usual double-well potential with two local minima occuring at v = @ and u = b (Fig. 1). As F'is
bounded from below here F coincides with the Sobolev space W12().

F
A

Figure 1: The double-well potential F'.

It is obvious that us = b is the global minimum of I over . We would however like to know
about the critical point u; = a. According to Theorem 2.1 u; is an L' local minimizer of I in
Ay, (0) (which is clearly not a global minimizer). This is surprisingly independent of how deep the
second well is, i.e. how large the quantity F'(a) — F'(b) might get. To check this we only need to
verify condition (i7) of the theorem as condition (i) is automatically satisfied by any critical point
of F' (cf. Section 4 for a refinement of this argument). But

1) = [ (96 + " (@)e*) do 2 allelfip o
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for all ¢ € W12(Q) where y = min(1, F" (a)) > 0.

It is also worthwhile noting that the third critical point of F', namely the local maximum could
still correspond to a local minimizer of I depending on the size of Q and F’ (¢), though we definitely
need to restrict the competing functions to coincide with ug = ¢ on some sufficiently large portion
of the boundary. We discuss this fact more in Section 4.

We end this introduction by noting that in [16] we establish sufficient conditions for L™ local
minimizers (with 1 <7 < o) for a larger class of functionals using a somewhat different method.
The proof of Theorem 2.1 as presented here can be viewed as an alternative way of achieving the
results in [16] (cf. also [15]).

2 Statement of the main result

In this section we state the main result of this paper. The proof will be presented in Section 3. Let
us recall from the previous section that 2 C R"™ is a bounded domain with Lipschitz boundary 0f).
Moreover 92 = 91 U 905 U N where 01 and 91 are disjoint relatively open subsets of 92 and
H"~1(N) = 0. Corresponding to the functional (1.1) and a given function ug € F we associate the
class

Ao (0021) :=={u € F: (u— uo)|ag, = 0}.
We can now state the following

Theorem 2.1. Let F € C?*(Q2 x RY;R) and assume that there are constants C > 0 and p > 1
such that

F(z,u) > —C(1+ [u]?) (2.1)
for all x € Q and all u € RN. Furthermore let ug € F be of class L=(Q;RN) and satisfy
(i) OI(uo,p) =0 and (i) &°I(uo,) > Ygllfyr2orn)

for all o € WH2(Q; RY) with ¢|oq, =0 and some v > 0. Finally let r = r(n,p,2) = max(1, %(p—
2)). Then there exist o,p > 0 such that

() = Iu0) > ol = ol 2amv)
for all u € Ay, (0) satisfying ||u — uo|| L (;ry) < p-

Remark 2.1. It is clear that for the choices of 1 < p < 2+ %, the corresponding r(n,p,2) = 1,

and so the conclusion of the theorem would not be affected if we replace the growth condition in
2

this case by F(z,u) > —Co(1 + |u|*T=) where Cy > 0 is such that

~O(1+ [uf’) = =Co(1+ [u*+).
Therefore there is no loss of generality in assuming p > 2 + %

Remark 2.2. Following Ball and Marsden [2] we say that ug € F lies in an L" potential well of I
if and only if for every € > 0 sufficiently small there exists § > 0 such that

I(u) = I(uo) = 6

for all u € Ay, (0Q1) such that ||u — uol|pr(@ry) = €.

It follows immediately from Theorem 2.1 that for n > 3 when p < 2* := % (and for n < 2

when p < o0), ug lies in an L" potential well of I for r = r(n,p,2). Indeed if this were not true
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(consider the case n > 3) for some sequence {u®} and gy > 0 satisfying ||u*) — uo||Lr(;RN) = €0,
we would have

1
alju™ — uollfyrz @urry < I(u®™) = I(uo) < =
and so u®) — uy in WH2(Q; RY). Hence since p < 2* implies r < 2*, u®) — g in L"(;RY), a
contradiction. The case n < 2 is similar. O

Remark 2.3. The key point in restricting the graph of F' to lie above the graph of —C'(1+|u?) is
to avoid certain “spike-shaped” functions having energies lower than that of ug. Indeed in Lemma
3.2 we use this idea to construct a counterexample whenever the choice of the topology L" is
incompatible with the growth of F', namely r < max(1,n(§ — 1)).

Remark 2.4. In the case when F = F(u) it is shown in [7] that if 2 C R™ is convex then every
sufficiently smooth weak local minimizer of I in A,,, (() is necessarily a constant function. Of course
this claim is not true when F' depends on x or when the domain €2 is non convex. A particular
counterexample for the latter case is constructed in [13].

In the case where condition (ii) of the theorem fails we still have the following (cf. [14] and [16])

Proposition 2.1. (Local stability of critical points) Let Q, I and F be as in Theorem 2.1
and let ug € F be of class L=(Q;RYN) and satisfy condition (i). Then for every xo € Q there
exist 8(zo), p(zo) > 0 such that for any variation @ € Wy>(Q; RN) vanishing outside Bs(xo) and
satisfying ug + ¢ € F we have

I(uo) < I(uo + )

provided ||| 1 (B;(ao)RN) < P-

By imposing an upper bound on the exponent p we can obtain a result similar to that of Brezis
and Nirenberg [6], namely:

Proposition 2.2. LetQ, I and ug be as in Theorem 2.1 where F' now satisfies the growth condition
(2.1) with 1 <p < 2* whenn >3 and 1 < p < oo when n < 2. Then ug is a W2 local minimizer
of I in Ayy(0801) .

The proof of this proposition is an immediate consequence of Theorem 2.1 and the continuity of
the imbedding W2(Q; RN) — L"(; RN) for r < 2* when n > 3 and r < oo when n < 2. More
precisely there exists a constant C' > 0 (cf. [10] pp. 138, or [18] pp. 56) such that ||u||L-@ry) <
Cllu|lwr.2r~)- We recall that r < 2* whenever p < 2*.

Closely connected to this is the following

Proposition 2.3. Let F : @ x RY — R be a Carathéodory integrand and assume that there are
constants C > 0 and p > 1 such that

Fz,u) 2 =C(1 + [uf?)

for a.e. x € Q and all u € RN. Let ug € F be of class L>®(Q;RYN) and assume I(ug) < +o0.
Then if ug is a W12 local minimizer of I in Ay, (0Q) it is an L" local minimizer where r is as in
Theorem 2.1.

Note that here we do not impose any a priori regularity on F. Also the exponent p is not
bounded from above.

Proposition 2.4. Assume n > 3 and let F € C?(Q x RY;R) with its second derivative with
respect to u satisfying the following Hélder type condition

|Fuw(z,u) — Fyy(z,0)] < C (1 + JuP727 4 |v|p_2_°‘) lu —v|* (2.2)
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for all z € Q, all u,v € RN and for some C > 0,2 < p <2* and 0 < a < min(l,p — 2). Let
ug € WH2(Q; RN) be such that
(Z) 61(“0780) =0 and (”) 52[(“07@) Z 7||<)0||%4/12(Q,RN)

for all p € WH2(Q, RYN) satisfying ¢|sa, = 0 where v > 0. Then ug is an L" local minimizer of 1
in Ay, (0Q1) where r is as in Theorem 2.1.

3 Proofs

In this section we prove the main results in this paper. In our analysis an important role is played
by the functional

() = / (1Du]? + [u]? - Auf?) de,
Q
defined over W4(Q; RN) where 1 < p,q and A > 0. We shall start by studying the local geometry

of J in a neighbourhood of the point ug = 0. Having a proper understanding of this we then
proceed to the original functional given by (1.1).

Lemma 3.1. Let 1 < q < p and define
n
ri= T(napa q) = maX(L E(p - q)) (31)
Then for given A > 0 there exists € > 0 such that

1
J(u) > §||U| |(11/Vl,q(Q;RN)7

for all w € WH4(Q; RN), satisfying l|ullpriry) <e.

Proof. We shall consider three distinct cases.
(i) 1 < ¢ <mnandp>q. It follows from the Sobolev embedding Theorem that W14(2; RY) can
be continuously imbedded in L4 (Q; RY). This means that there is a constant C' = C(n, q), such
that

l[ull Lo (@mn) < Cllullwra@ry)
for all u € WH4(Q; RY). Furthermore, an application of Holder’s inequality implies that

9

/|u|pdm:/ Wl fur~tde < </ |u|Q<n"q>dx> " (/ |u|Z<H>dx>"
Q Q Q Q
< Cl||u||(II/I/1aQ(Q;RN)||u||i_%q(p7q)(Q;RN)'
Therefore
J(u) = ||u||%vl,q(Q;RN)_)‘HUHIE,p(Q;RN)
> ullaqsy (1= ACIIE o g ) (32)

and the result follows.
(ii) 2 < n < g and p > q. Setting s = n"—fq it can be checked that s* = ¢gand 1 < § < s < n for
the given range of ¢. Thus

/Q|u|pdm = /Q(|u|§)qdac
C (/Q (|u|§s+|u|‘%"8|pu|8) dx>5,

IN
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where we have applied the embedding W'#(Q) < L9() to the function |u[?/? (note that p > q).
Using Hélder’s inequality we can now write

/|u|58dm = /mwﬁ lu|777 da
Q Q

(/ |u|q(pQ)dx> </ |u|qd:c> .
Q Q

P—4q n "Lﬂ "Lﬂ
/|u|TS|Du|5dm§ </ |u|?(p_q)dac> (/ |Du|qdm> .
Q Q Q

/Q |U|P dzx < C ||U||L‘1,V1,q(Q;RN)||u||i_%q(P—GJ(Q;RN)’

IN

Similarly

Therefore

and so the result follows similar to that of (3.2).
(iii) n = 1 and p > ¢q. Without loss of generality let Q& = (0,1). If ¢ = 1 the proof is trivial so
assume g > 1. We can now write

1 1
/ lulP do = / |u|§(pw) |u|p*§(pfq) dx
0 0

1
|||u|p—%(p—q)||Lm(071)/ |u|%(p—q)dm‘
0

IN

Applying the embedding W1:1(0,1) < L*°(0,1) to the function |u|p_%(p_q) (again p — %(p —q) =
p(1— %) +1 > 1) and using a Holder inequality we have

1 1 1 q 1 %
/ |ulP de < C </ |u|%(p_q) dm) </ |ul? dm) (/ (Ju]? + |uz]?) dac) ,
0 0 0 0

and so the result follows immediately. O
The main question that arises now is if the exponent r defined by (3.1) is sharp. Regarding this
we can state the following

Lemma 3.2. Under the assumptions of Lemma 3.1 the exponent r given by (3.1) is sharp.

Proof. Let r < 2(p — ¢). We construct a sequence . — 0 in L™ (; RY) satisfying J(p.) < 0

when ¢ is sufficiently small. For this, choose ¢ € C§°(R"; RY) with suppy C B where B denotes
the unit ball in R"”, and take zg € ). Define

e(z) =% <m _5%)

for some o > 0 to be specified later. It can be seen that ¢, — 0 in L"(Q; RY) if r < 2. Also

o) = /Q (D] + et — Ne|?) dx
5nfq(a+1) / (|D<p|‘1 +6q|(p|q _ /\6‘170‘(”7‘1)|<,0|p) dr.
B

Hence by selecting
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which is possible according to our assumption on r, J(p.) < 0 for ¢ sufficiently small. The proof
is thus complete. O

It is clear that the case 1 < p < ¢ is of no interest. Indeed taking the sequence ¢. = ep where
€ C&°(;RY) it follows that ug = 0 is not even a weak local minimizer of .J. Now to see how
the conclusion of Lemma 3.1 is affected when p = ¢, consider the functional

7w = [ (IDu = Au)da

over {u € WH2(Q; RYN) : ulspq, = 0} where we also assume that 02 # 0. It is clear that J(u) > 0
if and only if A < A\; where as before A\; = A1 (9€;) > 0 denotes the first eigenvalue of the Laplacian
over () with zero Dirichlet boundary condition on 9. As loosely speaking, A\; increases as L£™(2)
decreases, given A > 0 (no matter how large) we can always assure J > 0 by requiring £"(2) to
be sufficiently small. We can however prove a more general statement, namely

Lemma 3.3. Let 1 < q and A > 0 be given. Then there exists 6 > 0 such that
/(|Du|q — ANu|!)dz >0
Q

for any u € WHa(Q; RYN) satisfying L({x : u(z) #0}) < 6.

Proof. If not, there would exist A > 0 and a sequence of nonzero functions {u(¥)} such that

/ |Du™ |9da < /\/ lu®)|?dz,
Q Q

and L"({z : u®(z) £ 0}) < . Setting vk = u(k)/Hu(k)HLq(Q;RN) it follows that for all k

||U(k)||Lq(Q;RN) =1,
/ |Dv®|%de < A,
Q

and £"({z : v®(z) # 0}) < 1/k. Using the compactness of the imbedding W4(Q; RN) —
L1(Q2; RYN) we deduce that there exists v € L4(Q2; RY) such that by passing to a subsequence if
necessary v*) — v in LY(Q; R”) and so |[v]|La(or~) = 1. This is a contradiction as v*®) — 0 in
measure. d

Remark 3.1. Note that in the above lemma the choice of the boundary values of u is irrelevant.

We are now prepared to pass on to the general case, namely the functional I given by (1.1).
As pointed out earlier the positivity of the second variation at a sufficiently smooth critical point
would imply it to be a weak local minimizer. For the functional I however, this immediately implies
the critical point to be a strong local minimizer. The exact statement of this claim is presented in
the following

Proposition 3.1. Let Q, I and ug be as in Theorem 2.1 and F € C*( x RV;R). Assume (i)
and (ii) hold. Then there exist 0, o > 0 such that

() ~ Iu0) > ol = ol 2amv)
for all u € Ay, (01) satisfying ||u — uo|| g (;ry) < 0.

Proof. As ug € L®(Q; RY) it can be easily checked that

62[(“07@) = /Q (|D¢|2 +FU1,UJ (x,UO)QOl(p]) dz.
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Now setting u = ug + ¢ we can use the Taylor expansion of F' to write

I(ug + ) — I(up)

- /Q<%|D(uo+<,0)|2 +F(x,uo+cp)> d:c—/Q <%|Duo|2 +F(m,u0)> dz

1
= 5/9 (|D(p|2 +Fuiui(m7u0 -}—9(1’) 90)902'901') dx
1 1
2 5/9 (|D‘P|2 +FUin (1'7”0)‘102"101') dx — 9 /Q | Fuu(z,u0 +0¢@) — Fuu(m,u0)||<p|2d$

i 2
2 Z||<P||W1>2(Q;RN)

where 0(z) takes values between 0 and 1 and the last inequality holds provided ||¢||Le qrx~) is
sufficiently small. The proof is thus complete. O

We shall now focus on proving Theorem 2.1. The main idea here is to “truncate” a given function
u in such a way that the resulting w lies in a suitable L°° neighbourhood of ug. The issue is then to
use the growth condition on F' and the contribution of the gradient term to control the remaining
part and this is possible when ||u — uo||L~(q;r~) is sufficiently small. To put this in a more precise
form we shall proceed by giving the following

0 €t Qé\i o) We define the Truncation Map T(; ) : RY — Qé\i o) associated to the pair (1,0)
as

Definition 3.1. Let 7,0 € RY and let va o) = [m1,01] X .. X [T5, 0n]. Furthermore assume that
Tir0) (a) := max(7;, min(a;, 0;))
for 1 <i < N with a = (ay,...,an). We define the corresponding Truncation Operator

Tro) : L' (Q,RY) = L®(Q,RY)

by
T(T,a) (U) (l‘) = T(T,a) (U(l‘))

for a.e. x €.

Note that the operator T here is well defined in the sense that if u; = ug a.e. then T, ;) (u1) =
T(r,0)(u2) a.e.. Also it is clear that

||T(T7o-)(u)||Loo(Q;RN) S rnax{|7',-|, |Uz| 1 S Z S N}

Proof of Theorem 2.1. For a given u € A,,(001) we write u = ug + ¢ and denote p =
T(_se,0¢) () where e = (1,...,1) € RYN. It follows from the previous proposition that there exist
0,0 > 0 (we may suppose that o < 1) such that

I(uo + ) — I(uo) > ol[Bl[iy1.2(qurw)
for any ¢ such that ug + ¢ € A, (091). It can also be shown (cf. [10] pp. 129) that

— _f piy forae z€{|p;] <3}
YiiT 0 for a.e. z € {¢; > 6} U{yp; <o}

Hence
I(ug + ) — I(ug +P)
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10
= /Q@ (uo +¢)|* + F(a, uow)) dw—/g (%ID(uow)I”F(w,uOW)) dx
_ /Q@ (0 =B) + Fla,uo + ¢) F(x,uo+¢)> dz,
+ [ (D7 Dy %)+ Duo - Do~ ) da,
=/ <§|D(<p—¢)|2 + F(z,uo + ¢) — F(z,uo +7) — Fu(w,ug) - («p—@)) de,

where we have used condition (i) and the trivial identity D@ - D(¢ — @) = 0 for a.e. = € (.

Therefore
I(uo + ¢) — I(uo)
= I(uo+¢) — I(uo + @) + I(uo + @) — I(uo)
> /Q (BUDel + [p1*) + F(2,u0 + ) — F(x,u0 + P) — Fu(x,u0) - (¢ — 9)) dz
> Al samn) =C | lol da,

where 3 = min(3,0) > 0 and p > 2 (cf. Remark 2.1). The result now follows from Lemma 3.1. O

The idea of using a truncation operator in the proof of Theorem 2.1 is to some extent motivated
by the Weierstrass field theory of the calculus of variations. There to show that a given critical
point furnishes a strong local minimizer for the functional under study one has to imbedd the given
function into a field of extremals (or more generally a Mayer field). Then one tries to establish the
minimality properties by certain convexity arguments. We refer the interested reader to the books
of G. Bliss [4], O. Bolza [5] or the more recent books of M. Giaquinta and S. Hildebrandt [11] for

a detailed discussion on this.

Proof of Proposition 2.1. For ¢ € W, (Q; RN)
Fluog) = [ (Do + Py (o u)pigy) da
Q

(Dol - CleP) e
Bs

vV

where in the last inequality we have assumed that ¢ € WO1 ’Q(Q; RY) vanishes outside Bj(z) C 2
for some & = 0(zg) to be specified below and the constant C is such that |Fy,(z,ue(z))| < C.
It follows now from Lemma 3.3 that §2I(ug,) > 0 for ¢ # 0 provided § is sufficiently small.

Moreover selecting 0 < a < A1 (0Bs(z)) — C, we have

| (Dol ~Clel) daza [ Jof da,
Bg BS

for all ¢ € Wy ?(Bs(x0); RY). Thus for ¢ > 0 sufficiently small

[ ieParra- [ <|D<P|2 W)
B; B;

e [—,

62[(”07 (ID)

v

vV

where 0 < 8 < min(e, §(1—¢)). The result is now a consequence of Theorem 2.1 with Q = Bs(x0).

O
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Proof of Proposition 2.3. Assume first that n > 3 and consider the following three distinct
cases.

Case (1) 1 < p <2+ 2. As for any p within this range r = 1, without loss of generality we can
take p = 2 + % As surne now that the conclusion of the proposition were false. Then for some
sequence {u®} in A,, (09;) we have u®) — ug in L'(Q; RY) and

I(w®) < I(ug). (3.3)

From the growth condition on F' and the assumption ug € L>®(Q; RY) it follows that there exist
C, 3 > 0 such that

Fz,u) > =C (1+u = uo(@)[*+) + flu — uo()l?,
for a.e. z € Q and all u € RM. Using (3.3) and the fact that I(ug) < +0o we can write

) |ut® — uo||%v1’2(Q;RN) - C/ [u® — o>t do + / Dug - D(u™® — ) de < Cy

for some constant Cy where v = rn1n( ,B) > 0. Applying Lemma 3.1 and recalling the convergence
u®) = ug in L' (Q; RY) implies that

Y (k
§||U(k) - uo”%/VL?(Q;RN) - ||Du0||L2(Q;RN><")||U(k) = uol|lwrzomy) < C1

for sufficiently large k. Thus the sequence {u(®} is bounded in WH2(Q; RN). As p < 2%, it
follows from the compactness of the imbedding W12 (Q; RY) < LP(Q; RY) that by passing to a
subsequence u®) — ug in WH2(QRY), u® — g in LP(Q; RY) and u®) — ug a.e. in Q.

If u® — ug in WH2(Q; RY) the contradiction is immediate. If not, there would exist € > 0 such
that by passing to a further subsequence ||u(®) — ug|lw12(qryy > 26. Taking into account the
convergence u'f) — ug strongly in L?(Q; RY) and weakly in W2(Q; R") we can rewrite this as

/|Du0|2dm+sg/|pu<k>|2dm (3.4)
Q Q

for k large enough. Applying Fatou’s lemma to F(z,u) + C |u|2+% which is clearly bounded from
below we obtain
F (z,up) dz < 11n11nf F(z,u™) dz.
Q
This together with (3.4) irnphes that
I(ug) < hm inf I(u®))
k—o0
which is a contradiction

Case (2) 24 2 < p < 2% The argument in this case is similar to that of case (1). Indeed let

{u®} be a sequence satisfying u®) — wp in L"(Q;RYN) and I(u®) < I(ug). Proceeding in a
similar way as in case (1), it follows that {u(®)} is bounded in W'2(Q; RN) and thus by passing
to a subsequence u(®) — ug in W2 (Q; RY). Now if this convergence is not strong, by passing to
a further subsequence I(ug) < liminfy_,o I(u®)) and this clearly is a contradiction.

Case (3) p > % The main difference between this case and the other two cases is that the

boundedness of the sequence {u*)} in TW12(Q; RY) alone, does not provide any information about

the sequence lying in LP(Q; R”). However here p < Z(p — 2) = r(n,p,2) and hence u®) = ug in

L™ (Q; RY) implies u®) — wug in LP(Q;RY) which is all we need. The proof proceeds now as in

cases (1) and (2).

The case n < 2 is similar and so we shall not reproduce the proof. a
Using a similar argument as in the proof of this proposition we can state the following;:
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Proposition 3.2. Assume , I and F are as given in Proposition 2.3 and that F satisfies the
growth condition F(z,u) > —C(1 + |ulP) for a.e. € Q, all u € RN and some p < 2*. Let {u®}
be a sequence such that u®) — ug in WH2(Q;RY) and I(u®) — I(ug) where I(ug) < +o0o. Then
u®) = ug in WH2(Q; RY).

In other words the convergence of the functional improves the mode of convergence (cf. [9] and
[17]). Note that the choice of the exponent p in this proposition is optimal in the sense that in

general the result would not hold if n > 3 with p > 2*. To show thislet p=2*, N =1, Q=8B
and consider the sequence

u® (@) = k*7 p(ka),
where the nonzero function ¢ € C§°(R"™) with supp ¢ C B. Then

/|Vu(k)|2dx:/ |Ve|? dz
B B

which is a positive constant and therefore {u®)} is bounded in W?(B) and u¥) — 0 (but not
strongly) in W'2(B). Setting F(x,u) = —Clu|*" it follows that

1 men
1) = [ (3196 = 0k R ) da

But then for the choice of C = (% [, |V|*dz) / ([ |¢]* da) > 0 wehave I(u¥)) — 1(0). However
it is not the case that «(*) — 0 in W?(B). a

Proof of Proposition 2.4. Setting v = 0 in (2.2) it follows that |Fy, (z,u)| < C(1 + |u|* ~2) for
all z € Q and all v € R”Y. Integrating this twice it follows that the functional I is well defined
(and finite) over W12(Q;RY). As in Remark 2.1, there is no loss of generality if we assume
p>2+ % Indeed if 2 < p <2+ %, we can replace the constant C' by a suitable Cy > 0 such that
C(1+ |ufP=2= 4 [p]P=27%) < Co(1 + [u]# =% + [v] 7).

We now claim that the second variation of I at a point u € W2(Q; RY) is given by

(521(U,(p) = /Q (|D(P|2 +Fulu] (x,u)(Pz‘(Pj) dz.

To justify this we calculate explicitly the expression < * I(uttp)|i—o for an arbitrary ¢ € Wh2(Q; RN).
As the dependence on the gradient in I is quadratic (and therefore the corresponding part in this
expression has a simple form) we shall concentrate on the second term only. We first compute the
first variation

d

—/ F(z,u+ tp) dz|i=o
Q

a L[ Flau e tp) = F,w)

t—0 Jq t

dx

= lim QF (@, u + ta(z)p)e; de,

/ Fy;(z,u)pjdx
Q

where 0 < a(z) < 1, and in the last step we have used Lebesgue’s theorem on dominated conver-
gence as |F,(z,u)] < C(1+|u/*>~1) and u € L* (Q; RY). In a similar way

¥TEl / F(z,u+ tp)dz|i= = / Fuu; (z,u)pip; de.

We now claim that I : W2(Q; RY) — R is of class C%. To show this we need only verify

sup{ |62 (u; @) — 821 (v; )| : llollwr2@myy <1} — 0
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as v — u in WH2(Q; RY). But this is a consequence of the Holder condition (2.2).
We shall now proceed by showing the positivity of the second variation in an L" neighbourhood
of ug. Indeed

52[(“’7(10) Z 52[(“’07()0) - |52I(’U,,(p) _52I(u07()0)|
> el = [ Pl = Fuulouo) o do
2 ’V”(AOH%/VLQ(Q;RN) - C/Q (1T + JulP 727 + |uo P>~ Ju — uo|* || da.

Applying a generalized Holder’s inequality with the exponents
*

b3 = o

n (p—2) n
2 v -2), a

P=3p—2-a0 "7
3 -1
(>o;—1p;i =1), we have

1w, ) > Aol mre

1
P1
-C ((/ (14 [ufP727% 4 |ug|[P~2~*)P1 d$> [lu — uol|T» ||<P||iz*>
Q

NeelByra@mm) (1= Crlle = wollgrqmm) )

vV

i
2 §||<10||%/I/1>2(Q;RN)

provided |lu — uol|pr(rn) is sufficiently small. The result now follows by writing the Taylor
expansion of 1. O

4 Concluding remarks and some examples

In this section we consider some examples related to the functional (1.1) when F' = F'(u). We start
by considering a functional with no global minimum as it is unbounded from below.

Example 1. Let p1, p2 > 0 be given and 0 < p; < 2 < po. Consider the case where
F(u) = pful — pusful™.

Then ug = 0 is an L" local minimizer of I in A, (@) where r = r(n,p2,2).
To show this we first note that there exist vy, v > 0 such that

1
plulPt = Slul® = polul™ = wful™ — v lul™.

Therefore .
I(u) > / <§(|Du|2 + [ul?) + vy |ulPr — 1/2|u|p2> dz.
Q

The proof now proceeds as in Lemma 3.1. Notice that here F' does not have the required degree
of smoothness for the applicability of Theorem 2.1.

It is also worthwhile mentioning that in the case pu; = 0 although the point w = 0 represents
the global maximum of F', the function ug = 0 can be an L" local minimizer of I in A, (0%).
Here however we need to restrict to choices of 93 # (). This emphasises the fact that the
characterization of local minimizers depends not only on the topology L" but the nature of 9.
To make this more transparent consider the following
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Example 2. Let  be the unit ball in R2 and N =1. For 0 < 6 <1, let Fy : R = R denote a
one-parameter family of smooth functions having v = a as a critical point for all 6, starting from
a local minimum at 6 = 0 (F, (a) > 0) and deforming to a local maximum at § = 1 (F} (a) < 0)
in such a way that Fj'(a) is decreasing in §. As this can always be done within a compact subset
of R we can assume Fj to satisfy the same growth independent of 6. Let

1
Ip(u) :/ <—|VU|2 +F9(U)> dz,
o \2
and for 0 < s < 27 consider the boundary arcs

FO = Sl,
I's = {(cosf,sinf) : s < 6 < 2x}, for 0 < s < 2m,

where S! is the unit circle. Denoting by A;(s) > 0 the first eigenvalue of the Laplacian over (2

with zero Dirichlet boundary data on [, it is clear that A; : [0,27] — R is monotone decreasing
with A1 (0) > 0 and A\ (27) = 0.

0=0

Figure 2: A one-parameter family of potentials Fy at § = 0 and 6 = 1.

It thus follows from Theorem 2.1 that up = a is an L" local minimizer of Iy in A (L) for all
0 <0 <1 (where r depends on the growth of Fy) if only

FLa(un,o) = [ (196 + F (@)¢?) do >0
Q

r, = 0, that is F, (a) > —;(s). Furthermore as 6 increases
(Fg” (a) becomes more and more negative) a larger A (s) is required to satisfy the inequality. This
in turn means that the competing functions have to coincide with ug = a on a larger portion of
the boundary.

for all nonzero ¢ € W12(Q) satisfying ¢

In the following two examples we consider situations in which condition (ii) in Theorem 2.1 fails,
but still the weaker form of this condition, that is (#4)~ hold (cf. Section 1). We show that the
critical point ug can still be an L" local minimizer but of course there is a price to pay.
Example 3. Let G € C(R";R) satisfy

(H1) There exists a > 0 such that G(u) = 0 for all |u] < a, and

(H2) There exist constants C' > 0 and p > 1 such that

G(u) 2 =C(1 +[ul?)

for all u € RN.
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Let Ay = A\ (0€2) > 0 and consider
1 2
F(u) = —5/\1|u| + G(u).

It is clear that the function ug = 0 is a strong local minimizer of I in A, (9€). We now claim that
ug is an L" local minimizer of I where r is as in Theorem 2.1.

To show this let us recall from spectral theory that the first and second eigenvalues of —A
subject to zero Dirichlet boundary condition on 9 satisfy 0 < A1 < As. Let ¢; denote the
principle normalized eigenfunction of the Laplacian. It is well known (cf. e.g. [12] pp. 214) that
01 € L®(Q;RN). Now for any u € W0172(Q;RN) we can write u = By + v where 8 =< u,¢; >
(here < -,- > stands for the W01’2(Q;RN) inner product) and v is the projection of u into the
orthogonal complement of the eigenspace corresponding to 1. We can write

MW -1w) = [ (5060 + 0 - GulBe +o +G(Bpr +0)) da

1 1
= / <§|Dv|2 — 5)\1|U|2 + G(Byr +v)> dx
Q

Y%

/Q (el Dof? + G(Bgr +0)) de

where in the last inequality we have used a similar argument as in the proof of Proposition 2.1 to
deduce that there exists € > 0 such that

/ (IDv]* = A\ |v)?) da > 2(—:/ | Dv|? dz
Q Q

for all v € WO1 2(Q; RN) satisfying < v, 1 >= 0. It follows from a simple application of Holder’s
inequality and the relation v = u— < u, 1 > 1 that for any r > 1 there exists C' > 0 such that
l|u||Lr(@;r~) < 6 implies that |[v]|z~qr~) < Cd. Hence as ¢y is uniformly bounded we can write

I(u) = I(uo)

vV

/ (e|Dof? — Clof?) de
Q

% /Q | Dv|? dx

where we have used Lemma 3.1. This justifies the claim.

vV

Example 4. Let F' € C(R";R) satisfy the assumptions (H1) and (H2) in Example 3 and assume
that n > 3. We claim that the function ug = 0 is an L" local minimizer of I in A,,(}) where r is
as in Theorem 2.1.

It follows from (H1) and (H2) that there exists Cy > 0 such that

/ Fu)dz > / F(u)dx > —Co/ |u|? dz
Q {lu[>a} {lul>a}

2
{lu|>a} {Ju|>a}

According to the Sobolev-Poincaré inequality (cf. e.g. [18]) there exists C; > 0 such that

(/ |U—UQ|%d$> ' < </ |Du|2d:c>
Q Q

vV
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for all uw € WH2(Q; RY) where uq = ([, udx) /L£™(£2). Moreover

n—2

n—2 —_—

(flu-ualas) ™ > (/ |u—uQ|%dx>
Q {lu[>a}

n—2

1 . o . A
2 </ Jul =2 dm) — L"{Jul > a})*F |ug|?
{Jul>a}

where we have used the triangle inequality for the L2 norm and the inequality (a — b)? >
(1 —e)a® — (L = 1)b? that holds for all a,b € R and £ > 0 (by setting e = 1). We can therefore
write

I(u) = I(uo)
> O </ lu — UQ|% d:c) T Co (/ u|%(P=2) d:c) </ |u| =2 d:c)
Q {lu|>a} {lul>a}
" = o2 o
> |u|»-2 dx =Cy — Cy |u| 2P~ dx
{lul>a} 2 {lul>a}

—CoL™({Jul > a})*F |ugl|®

n—2

1 2n " n—2
= 3@ ( [ dx) - CoL"({Jul > a}) "7 ugl?
{lul>a}

provided [|ul|zr(qr~) is sufficiently small. Hence

Iw) - Iw) > 3L ({Ju] > a})*F (0"~ 3lual’)
> TOL{] > a))

once again provided ||u||z-(q;r~) is sufficiently small. The claim is thus justified.

A close inspection of the lower bound on I(u) — I(up) in Examples 3 and 4 reveals that the
function ug = 0, although an L" local minimizer of I, does not lie in a potential well for this
functional. This is clearly due to the fact that uo does not satisfy condition (ii) in Theorem 2.1
and the lower bound achieved here is different from the one obtained in the theorem.
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