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Abstract
Let Q@ C R" be a bounded domain and let f : @ x RY x R¥*" — R. Consider the
functional

I(u) ::/Qf(ac,u,Du)dw,

over the class of Sobolev functions W4(Q; R") (1 < q < oo) for which the integral on the
right is well defined. In this paper we establish sufficient conditions on a given function wug
and f to ensure that uo provides an L" local minimizer for I where 1 < r < oo. The case
r = oo is somewhat known and there is a considerable literature on the subject treating the
case min(n, N) = 1, mostly based on the field theory of the calculus of variations. The main
contribution here is to present a set of sufficient conditions for the case 1 < r < co. Our proof
is based on an indirect approach and is largely motivated by an argument of Hestenes [17]
relying on the concept of “directional convergence”.

1 Introduction

Let @ C R” be a bounded domain (open connected set) and let f : 2 x RV x R¥*” — R. In this
paper we consider functionals of the form

I(u) = / f(x,u, Du) dx, (1.1)
Q
over the class of admissible functions
F1 = {u € WH(Q;R") : the integral (1.1) is well defined}, (1.2)

where 1 < ¢ < co. By well defined we mean that the integrand is a measurable function on  and
that at least one of the functions f* = max{f(-,u(-), Du(-)),0} or f~ = min{f(-,u(-), Du(-)),0}
has a finite integral. It is therefore clear that I : F¢ — R := R U {—o0,+oo}. The spaces
Wha(Q; RY) appearing in (1.2) are the usual Sobolev spaces of vector-valued functions defined
over ) and the terminology we use in this paper are in accordance with [1], [13] and [36].

Throughout this paper we assume that 2 has a Lipschitz boundary 992 with 0Q2 = 9Q; U9, UN
where 0€); and 99, are disjoint relatively open subsets of 992 and H"!(N) = 0. Here H"1()
stands for the (n — 1)-dimensional Hausdorff measure. We denote the unit outward normal to the
boundary at a point x by v(z). Let us also mention that unless otherwise stated we shall use the
summation convention on the indices.

A major question in calculus of variations is to formulate an appropriate set of sufficient condi-
tions on f and a given up € F? to ensure that ug provides a local minimizer for I. Of course the
notion of local minimizer depends very much on the choice of the topology. To make this clear let
us fix ug € F? and 909 as described above and set

AL (0) == {u € F?: (u —uo)|sn, = 0},

where the boundary values are to be interpreted in the sense of traces. We now proceed by giving
the following
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Definition 1.1. Let 1 <7 < co. The point ug € F9 is an L" (respectively W) local minimizer
of I if and only if there exists € > 0 such that

I(uo) < I(u)
for all u € A (0Q) satisfying
lu — uol|Lr(or~) <& (respectively ||lu — uollwrr(@myy <€)
It can be easily checked that if f is of class C? and the minimizer ug is of class C' then
(i) 51 (uo, @) = £1(uo + tp)|i=0 = 0,
()~ 8I(uo, ) = forl (uo +t9)l=0 > 0,

first for all variations ¢ € C™(Q; R") satisfying ¢|sq, = 0 and then by a density argument for all
o € WH(Q; RY) satisfying ¢|sqn, = 0. Condition (i) known as the Euler- Lagrange equation (or
the equation of first variation), is equivalent to ug being a weak solution to the system

%(fpij(l.?uiDu)) = fui(z,u,Du) inQ
fp,;(x,u, Du)v;(z) =0 on 08,

for =1, ..., N. We often call a solution to the above system a stationary point of 1.
Condition (i7)~ states that the quadratic form

/ (fPiijz (.Z', Uo, DUO)‘PL]“F’M + 2fPiju1e (3"7 Ug, DUO)‘PL]“P}; + fukuz (3"7 Uo, DUO)SDkQDl) dx,
Q

is nonnegative. It is well-known that if this condition is slightly strengthened, that is

(i7) There exists v > 0 such that 621 (uq, ) > 7”90”%4/112(9;}{1\’) for all o € W12(Q; RN) satisfying
¢log, =0,

then (i) and (i4) would imply ug to be a weak local minimizer in A} (9Q:). Recall that the
terms weak and strong local minimizers are standard in the calculus of variations and refer to local
minimizers in W> and L™ topologies respectively.

A sufficiency theorem for strong local minimizers of I in the case n = N = 1 was first properly
formulated and proved by Weierstrass. His proof is based on the novel idea of constructing a field
of extremals or what is known today as the field theory of the calculus of variations (cf. Bliss [7],
Bolza [8], Hestenes [16]). Since then there have been numerous attempts on the one hand to extend
the proof to higher dimensions i.e. n > 1 and on the other hand to find alternative ways to avoid
the construction of such fields. In [20] Levi gave a proof for the planar case (when n = N = 1)
that avoids the use of field of extremals. Levi’s method is refered to as an expansion method since
it is based on first expanding the total variation by application of the Taylor’s formula and then
showing it to be positive by the use of certain integral inequalities and properties of the Weierstrass
excess function. Motivated by some earlier work by other people, in [23] Morrey has outlined how
to extend Weierstrass’s ideas to the higher dimensional case n > 1 and N = 1. In particular he has
proved the existence of a field of extremals under the hypotheses in the theorem and has presented
the appropriate divergence free structure for the path independent integral.

Using a completely different technique in [16] Hestenes gave an indirect proof (proof by contra-
diction) for the case n = N = 1 and later extended this to the case n > 1 and N =1 [17]. The main
ingredients in his proof are the concept of directional convergence and certain integral inequalities
developed by McShane and later by Reid [24]. It is part of our aim to present an updated version
of Hestenes argument as firstly it largely motivates the proof of the main results in this paper, and
secondly because it seems to be quite unknown to the researchers in the field.

Let us fix N = 1 and recall the sufficient conditions to be satisfied by the stationary point
ug € C*(Q) to be a strong local minimizer for I in AL (0Q) when f is of class C?.
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e The pointwise positivity of the second variation: For all nonzero ¢ € Wol’2 (), 621 (ug, ) > 0.

o The strengthened condition of Legendre: There exists v > 0 such that
Foin; (@, u0(2), Vg (2)) XA > v[A]”
for all z € Q and all A € R".

o The strengthened condition of Weierstrass: There exists € > 0 such that

Ef(ﬂj,u,p, q) = f('rvu7Q) - f(xauvp) - fpz('rvuap)(Ql _pl) Z 0
for all z € Q, |u — ug(z)| <&, |p — Vug(z)| < € and all ¢ € R".

The first two conditions and their relation to condition (i7) introduced earlier are studied in Sections
2, 4 and 5 of this paper. The function Ey in the third condition is known as the Weierstrass excess
function. It is obvious that f(z,u,-) is convex at a point p if and only if E;(x,u,p,q) > 0 for
all ¢ € R™. Thus the last condition is a convexity requirement on f with respect to the gradient
argument. It is important to point out that this convexity assumption has a central role in all
the arguments mentioned earlier for the case N = 1. For the general case N > 1, it was shown
by Meyers [21] (see also Ball [2]) that if ug is a C! strong local minimizer of I, the function
flz,ug(x),") is quasiconver at Dug(x) for each z € Q. (The smoothness of ug can be relaxed cf.
e.g. [19] and [31]). Recall that a continuous function f : RV*" — R is quasiconvex at 4 € RV*n
(cf. Morrey [22], Ball [2]) if and only if

f(A) < /Q (A + D) da

for all ¢ € WOLOO(Q; RY), where Q C R" is the unit n-cube. It is known that quasiconvexity is
weaker than convexity and coincides with the latter when N = 1. Thus in the above list the last
condition is a somewhat reasonable strengthened version of the necessary condition just described.
However when N > 1 it is far more stronger than being necessary. A major question in this regard
is to formulate a set of sufficient conditions for strong local minimizers in the case N > 1 that is
based on quasiconvexity. This seems to be an open problem.

Let us point out that in almost all the sufficiency proofs mentioned earlier the function f is
assumed to be smooth (at least of class C2) and the stationary point ug is assumed to be of class
C'. Hence a further open problem would be to present sufficient conditions for local minimizers
of I under less smoothness assumptions.

We remark that recently Ball and James (unpublishes work) have given a direct proof for the
sufficiency theorem in the case n = 1, under slightly weaker hypotheses. There it is shown that
the conclusion of the theorem follows when the first condition is replaced by

e ug is a weak local minimizer of I.

As a further remark in [28] and [29] Sivaloganathan has employed the idea of a divergence free
structure to treat the case N > 1 under weaker convexity assumptions but in a special case. (cf.
also the work of Ball and Murat [5]).

Another interesting issue is to formulate sufficient conditions for ug to be an L" local minimizer
of I when r < co. In this general format this appears to be a difficult question. The example

I(u):/Q|Vu|2(1—u2)d:c,

with ug = 0 shows that the above sufficient conditions in general would not give rise to such local
minimizers. Indeed here ug = 0 is a strong local minimizer of I in A}(8€) but not an L" local
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minimizer for any r < co. To show this let us take a nonzero ¢ € C§°(R™) with supp ¢ C B.
Here C§°(R™) stands for the class of smooth functions with compact support in R™. Let us also
assume that B C Q and consider the sequence p.(z) := e~ *p(z/e) for ¢ — 07 and some a > 0 to
be specified later. Clearly ¢. — 0 in L™(2) if @ < n/r. Moreover

o) = 0 [ 9o (a) P (1= ('5) ) da
Q

et ([ 9pP do - [ [VpPle@P ds).

Hence if we choose ¢ such that the second integral on the right is nonzero, it follows that for any
1<r < oowecanfind 0 < a < n/r such that . — 0in L"(Q) while I(¢.) < I(0) for € sufficiently
small.

Theorem 3.2 provides to some extent an answer to the question raised above. It is a generalization
of an earlier work by the author in [30] for functionals in the form (1.1) with f(x,u, Du) = |Du|? +
F(z,u). We remark that in this latter case Brezis and Nirenberg [9] have recently established
conditions for a weak local minimizer of I to be a W12 local minimizer. Our results here as well
as in [30] are in the somewhat same direction as their’s but obviously in the more general context
of L™ (and W1 ) local minimizers. Indeed we here show that the growth of the second derivatives
of f namely f,, and fy, determine the exponent 1 < r < oo and we present an exact expression
for this dependence. We shall also see that unlike the case in e.g. [9] our proof does not rely on
N =1 and hence the result is valid for V > 1.

F

Figure 1: The double-well potential F'.

As a simple example let us consider the case f(x,u, Du) = |Du|? + F(u) where F' € C?*(R";R)
is a usual double-well potential with two local minima occuring at © = a and v = b (cf. Fig.
1). As F is bounded from below here F? coincides with the Sobolev space W12(Q; RY). It is
obvious that us = b is the global minimum of I over 2. We would however like to know about
the stationary point u; = a. According to Theorem 3.2 u; is an L' local minimizer of I in A3 (0)
(which is clearly not a global minimizer). This is surprisingly independent of how deep the second
well is, i.e. how large the quantity F'(a) — F(b) might get. To check this we only need to verify
condition (ii) of the theorem as condition (7) is satisfied by any stationary point of F. But

5 I(uy, ) = /Q 2IDpl + Fuu; (@)pivs) dz > vl@lfy1z )

for all o € WH2(Q; RY) and for some v > 0 provided the Hessian of F at a is strictly positive
definite.
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Let us end this introduction by describing briefly the plan of this paper. In Section 2 we present
some of the important necessary conditions satisfied by various kinds of local minimizers. These
are mainly of second order and hence both the function f and the stationary point ug are assumed
to have the required degrees of smoothness. In addition we mention the appropriate strengthened
version of these conditions and also derive some of their basic consequences. In Section 3 we
state the sufficiency Theorems 3.1 and 3.2 but postpone their proofs to the end of Section 4. We
begin Section 4 by proving some auxiliary results on weak convergence and lower semicontinuity of
variational integrals. We also study the question of positivity for quadratic forms and its relation
to some of the necessary conditions stated in Section 2. Finally in Section 5, as a simple example
we show how the local stability result of Sivaloganathan [29] can be achieved without any need for
the construction of local fields and Hamilton-Jacobi theory. For other applications of our results
we refer the reader to [6].

2 Preliminaries

We start this section by discussing the necessary conditions satisfied by different kinds of lo-
cal minimizers of the functional (1.1) and mention the appropriate strengthened version of these
conditions suitable for the sufficiency theorems appearing in the subsequent sections. We shall
assume N = 1. Recall that Q2 C R"™ is a bounded domain with Lipschitz boundary 0€2. Moreover
00 = 092 UIN, U N, where 0Q; and 02, are disjoint, relatively open and H"~!(N) = 0.

Proposition 2.1. (The necessary condition of Legendre) Let f € C?(Q x R x R";R) and
let ug € CH(Q) be a weak local minimizer of I. Then for every x € Q and for all A € R"
(L) fpip; (@, u0(2), Vue(2))AiA; > 0.

It is worth noting that condition (L) is actually a consequence of 621 (ug, @) > 0 for ¢ € WO1 2(Q),
which itself is a necessary condition to be satisfied by any weak local minimizer of class C!. The
proof of Proposition 2.1 now follows by applying Proposition 2.2 to the functional J(p) = 621 (uo, ¢)
with ¢o = 0 being a global minimizer.

Definition 2.1. The function ug € C*(Q) is said to satisfy the strengthened condition of Legendre
if and only if there exist v > 0 such that

(L) Foips (@, u0(x), Vuo (@) Aid; > y|A%,
for all z € Q and all X € R".

The Weierstrass excess function Ey corresponding to f was defined earlier in Section 1. The
following condition restricts the values of Vug(x) for any strong local minimizer to the set where
f(z,ug(x),-) is convex.

Proposition 2.2. (The necessary condition of Weierstrass) If uy € C*(Q) is a strong local
minimizer of I then
(W) Ef(ﬂ?,UO(ﬂT),V’U,O(lU),q) Z 0

for every x € Q and for all ¢ € R™.
The proof of this proposition is well-known and can be found in e.g. [16].

Definition 2.2. The function ug € C'(Q) is said to satisfy the strengthened condition of Weier-
strass if and only if there exists € > 0 such that

(W+) Ef(l',u,p,Q) >0

for all x € Q, for all u € R™ with |u —ug(z)| < &, for all p € R™ with |p — Vug(z)| < € and for all
qg € R"™.
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In the study of sufficiency theorems for strong local minimizers of I essential use is made of the
L-function defined by )
L(t):=(1+t)2 -1 for t € R.

This function was first introduced by E.J. McShane and later used by various authors in particular
Reid [24] and Hestenes [16], [17] (see also Bliss [7]). It can be easily checked that L is convex and
satisfies

(i) L()<[f and (if) L(t)g%. (2.1)

Further properties of this function are stated in the following

Proposition 2.3. (McShane, Reid [24]) Let L be as above and let o > 0. Then

(1) amin(l,a) L(t) < L(at) < a max(1, a) L(t),
(#4) tmin(a,t) < ((1 +a?)t + 1) L(t).
The fact that the L-function is quadratic near the origin and grows linearly at infinity makes it a

favourable candidate for acting as a lower bound on the growth of the Weierstrass excess function.
This is stated more clearly in the following

Proposition 2.4. (McShane, Reid [24], Hestenes [16, 17]) Let f € C*(Q x R x R";R) and
up € CH(Q) satisfy (L) and (W), Then there exist a, € > 0 such that

for all x € Q, |u—uo(z)| <e, |p— Vuo(z)| < ¢, and all ¢ € R".

The following property of the L-function was suggested and proved by McShane for the case
n = 1 and later reformulated and used by Reid (cf. [24]). It was extended ton > 1 and N =1 by
Hestenes (cf. [17]). Here we consider the case where both n, N > 1.

Proposition 2.5. Given § > 0 there exist C1, Cs > 0 such that
@0 [ (@(Du) - CiluP) da 20,
Q

(i) [ (LU = Coful D) d > 0

for all u € Wol’l(Q;RN) satisfying ||u|| L r~) < 6.

Proof. Let a,b € R"™ be such that (a,b) := (a1,b1) X ... X (apn,by) D Q. Given 1 <i <mn,let (z',1)
denote the n-tuple (z1,...,z; = t,...,z,) and set u = 0 in (a, b)\Q. It follows now (cf. for example
[13] pp. 164) that the function u(z',-) € Wy ((as, b;); RN) for £7~'-almost every z’. Now for fix
i and z’ we define

v(t) == /{: lui(z', )| dz.

Clearly |u(z',t)| < wv(t) for all t € (a;,b;) and v'(t) = |u(z',t)| for a.e. t € (ai,b;). It follows from
Jensen’s inequality for convex functions and Proposition 2.3 (i) that

b;
][ L(|U7i($’,t)|)dt > L((b,—al)flv(bl))

a;

> (b, — a,-)_l min(l, (b, — a,)_l)L(v(bl))
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Moreover
b; b;
/. lu(z', )] |ui(2' t)|dt < / min(d,v(t)) v’ (t) dt
b; b;
< min(/. o' (t) dt,/_ v(t)v'(t) dt)
< %v(bi)min(%,v(bi))
< % ((1+46%)% +1) L)

where in the last inequality we have used Proposition 2.3 (ii). We can therefore deduce that
bi bi
| Lluita o dez [ Clu ol ol de (2.3)
[« @;

for some C' > 0 independent of i. As |u(z',t)]? < 2f;’ lu(z', )] |u (2, t)] dt, it follows from (2.3)
that

b;
[ (@t o) = Ciluta ) de 2 0

A further integration of (2.3) and the above inequality gives

| @) = Clullu) dz > 0
Q

and

[ (€Guad) - Ciluf o) 2 0
Q

The result follows by recalling that L(|Du|) > L(|u4|) for a.e. € Q and setting C, = C/n. O
Corresponding to the L-function introduced earlier we can assign the functional

R: W' (Q) = [0, 00)

where

R(u):/QL(|Vu|)dac.

Note that this functional is non-homogeneous and non-subadditive. Moreover when wg is suffi-
ciently smooth, R(ug) represents the difference between the “area” of the hyper-surfaces corre-
sponding to u = ug and u = 0. In Section 4 we shall discuss further properties of this functional.

The following proposition plays an important role in the proof of Theorem 3.2. It was first stated
and proved for the case s = 0 in [30].

Proposition 2.6. Let 1 <q, 0<s<q,p>q—s and define

ri= T(napaqa S) = max(l,n( - 1))

q—Ss

Then for any A > O there exists € > 0 such that

1
J(u) == /Q(|Du|q + |u|? — N\ Dul®|u|P) dz > §||u||‘1W1,q(Q;RN),

for all w € WH4(Q; RN) satisfying [ull L (ry) < €.
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Proof. First note that
T 2 ey = A [ (Dl + al*) ) da

Moreover,
/Q (IDul’ + [ul")ul?dz < C1[ulliynaoumn /Q P75 de) 5

We shall now consider three distinct cases.

(i) 1 < g <n. Then
/ lulfi=sdz = / |u]?|u|?(a= =Y da
Q Q

< </ |u|q*dw>%</ (7 V) %,
Q Q
and
([ 1" a0y < Cllullfyna g
Therefore
J@) > Nl omn) (1—A02 (/ ] )dx> )
>

§||U||%V1,q(Q;RN)
provided [|u||zr(qr~) is sufficiently small.

(i) 2 < n < ¢. Setting t = ﬂ, it can be checked that t* = g and 1 < 2 <t < n for the given
range of g. Thus

/Q|u|pq%sdm = /Q(|u|<z%s)qdac
C (/ (|u|q%t + |u|(q%—1)t|pu|t) dm)t,
Q

where we have applied the embedding W(Q) < L4(Q) to the function |u|?/(?~*) (note that
p > q — s). Using Holder’s inequality we can now write

/|u|q%tdx - /|u|n"*fq(ﬁ*1) fu| 5 de
Q Q

IN

IA
/™~
QD

=

A
i
8
~_
3
+>Q
3
/™~
S
=
S
U
8
~_

Similarly

wte wte
/|u| D! Dt de < </ (5% x) </ |Du|qu>
Q
/Q|U|Pq%s dx§C||u||%V1,q(Q;RN) </Q |u|n(q£;:371) d:c) ,

Therefore
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and so the result follows similar to that in Case (i).
(iii) n = 1. Without loss of generality let 2 = (0,1). We can now write

1 1
[rup@ e = [l gt g
0 0

1
ul** 7= | oo o) /0 lu| (1) da.

IN

Applying the embedding W'1(0,1) < L>(0,1) to the function |u[*Ta =Y and using a Holder
inequality we have

q—1

1 1 1 : 1 v
/ lu|P7 do < C </ |u|(q%71) dm) </ u|¢7s d:c> </ (Ju|? + Jug|?) dm) ,
0 0 0 0

and so the result follows immediately. |
It is possible to show that the exponent r defined in Proposition 2.6 is sharp. We shall refer the

interested reader to [30] for a proof of this. We end this section with the following

Example. Let p;,p2 > 0 and A, A2 > 0 be given. Then setting r = max(1,np;/2,nps), there

exist € > 0 such that

1
/(|Du|2 + |ul® = AiulP*+2 — Ao | Dul|uP> ) do > §||u||%vl’2(Q;RN)7
Q

for all uw € Wh2(Q; RY) satisfying ||ul|-orv) < €.

3 Statement of the sufficiency theorems

In this section we state the sufficiency theorems for local minimizers of I. The proofs are given
in Section 4. Recall that corresponding to the functional (1.1) we assign the class of admissible
functions F? as in (1.2) and for a fix ug € F? and 00y C 0N we set

AL (09Q1) = {u € F¥: (u — ug)|aq, = 0}.
We can now state the following

Theorem 3.1. (The fundamental sufficiency theorem) Let @ C R" be as described earlier
and consider the functional (1.1) with f € C?(Q x R x R™;R). Let ug € C1(Q) satisfy (W) and

(1) 0I(uo,) =0 and (i) 0°I(uo, ) > elliyr2(0)
for some v >0 and all ¢ € Wol’g(ﬂ). Then there exist o, p > 0 such that
I(u) — I(ug) > oR(u — o)
for all w € Ay, (09) satisfying |lu — ug|| L= () < p-

Remark 3.1. It follows from (i¢) that ug satisfies (L1). In Section 4, Corollary 4.1, we shall prove
more, namely that the pointwise positivity of the second variation at ug together with (L) are
equivalent to (i1).

Theorem 3.2. (A sufficiency theorem for L" local minimizers 1 <r < o) Let I, Q and f
be as in Theorem 3.1 and 02, C OQ as above. Let ug € C*(Q) satisfy

(i) O0I(uo,p) =0 and (i4) &°I(uo, ) > el
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for some v > 0 and all p € WH2(Q) with ¢|aq, = 0.
(1) (The case r = 0c.) Assume that there exist o, € > 0 such that

Ej(w,u, Vuo (), 9) 2 alg = Vuo(x)[* (3.1)
for all z € Q, |u —ug(x)| < & and ¢ € R™. Then there exist o, p > 0 such that
I(u) — I(up) > ollu — u0||%,V1,2(Q). (3.2)

for all w € A2 (0) provided ||u — uol|p () < p-
(2) (The case 1 <r < 0.) Assume that there exists a > 0 such that

Ey(z,u, Vug(2),q) > alg — Vug(z)|? (3:3)
for all z € Q, u € R, and ¢ € R™. Furthermore let for some p1, p» >0
| fuu(@,u, Vuo(2))| < C(1+ [ul*)  and [ fup(@,u, Vuo(x))| < C(1 + |u]??), (3.4)

for some C > 0 and all x € Q. Then there ezist o, p > 0 such that (3.2) holds for all u € A% (0%)
provided ||u — uol|Lr () < p where r = r(n,p1,p2) = max(1,np;/2,nps).

Note that in the above theorem (case (1)), the lower bound on I(u) — I(ug) is sharper than
that of Theorem 3.1, as ||V(u — u0)||%2(Q;Rn) > 2R(u — ug). We have achieved this by imposing a
quadratic growth on f with respect to the gradient at infinity (cf. (3.1)).

We also remark that in the special case f(z,u, Vu) = |Vu|? + F(z,u) condition (3.3) trivially
holds with @ = 1 and that 7 = r(n,p1,p2) = max(1, §p1). In this way we recover the results in
[30] (cf. also [9]).

4 Proofs

This section is devoted to the proof of Theorems 3.1 and 3.2. We first discuss some auxiliary
results and postpone the proofs of these theorems to Subsection 4.5.

4.1 Lower semicontinuity of quadratic forms

Let {agf)} be a given sequence of measurable functions on (2 and such that agf) — a;; (the mode of
convergence to be specified later). In this subsection we study the question of lower semicontinuity

in the following setting:

/ aij(z)p,ip,; de < liminf agf) (m)goff)goff) dx
Q k— o0 Q

when p(F) — o in WH2(Q). As replacing al(f) (x) with (a%?) (x) + a;’;) (x))/2 does not change the
integrands we can assume without loss of generality that the sequence {agf)} is symmetric, that is

(k) (z) (k)

a;; = aj;; (z) for a.e. x € Q and for all 1 <4, j < n. We shall start by recalling two well-known

results, namely:

Lemma 4.1. (A refinement of Fatou’s Lemma) Let {u®)} be a sequence of measurable func-
tions such that {(u(’“))i} is uniformly integrable and u'*) — u a.e.. Then

/udm < liminf/ u® dz.
0 k— 00 0
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The proof of this lemma is an easy exercise in measure theory and we refer the reader to [18]
and [25]. We also need the following

Lemma 4.2. Let a € L>®(Q; R"*") satisfy the following version of Legendre’s condition
a;j(£)\iA; >0 forae x€q, (4.1)

for all X € R™. Then the variational integral J(p) = [, aij () ip,; dz is sequentially weakly lower
semicontinuous on W12 (€2).

An almost immediate consequence of this is the following

Proposition 4.1. Let a®) — a in L>®(Q; R"*") with (a;;) satisfying (4.1). Then

/Qalj( )pip,jdr < hm lnf Q )( )(p(k)(p(k) de

when ©®) — ¢ in WH2(Q).
Proof. We claim that

lim inf gf)go(k)go(f dr = hm 1nf/ azjgo goj) dx.

k—o0

Indeed this can be seen from
| / aif oo} d / aije P da| < / ) — a| V™ P

< 1a™ — al| L @@umm x| [0* [y ) -

An application of Lemma 4.2 now completes the proof. a
We can now make the following general statement concerning the lower semicontinuity question

raised at the beginning of this section.

(k)

ij

and let o) — ¢ in Wb 2(Q) Furthermore assume (a;;) satisfies (4.1) and that the sequence

{( gf)go(k)go(f )_} is uniformly integrable. Then

Proposition 4.2. Let {a } be a sequence of measurable functions such that a;;’ — a;; a.e.

/Qazj( )p,ip,j dx < hmmf/ gp(k)goff)d .

Remark 4.1. The hypotheses of this proposition are weaker than those of Lemma 4.1 in the sense
that the weak convergence of {Vp(®)} in L?(; R"™) does not imply any kind of pointwise conver-
gence. This proposition exhibits how convexity can “handle” weak convergence in the context of
lower semicontinuity.

Proof. An application of Egoroff’s Theorem to the sequence {a(’“)} shows that a*) — a almost
uniformly in €. This means that for a sequence {Q)} of measurable subsets of  shrinking to
zero i.e. QU € QO and £7(QW) — 0,

a® s a  LPOQ\QW;R™™)  for all I.

By the uniform integrability condition, given € > 0 there exists § > 0 such that

/E ( E;)w(’")cp(]k)) dz <e whenever L"(E) < 0.
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Therefore for [ sufficiently large

al® k) ()
i P, de
[ el

v

2 ) (K) g / (8) 0 L™ gy
/Q\QU) RS o ( LRERE )

/ B oWy e,
o\ '

Letting £ — oo and applying the previous proposition to the first term we obtain

v

lim inf/ 5;”)90(’" cp]) dz > / aijp,ip,; dr —e.
Q a\Q®

k—o0

The result now follows by letting [ — oo and an application of Lebesgue’s Theorem on monotone
convergence. ]
By slightly modifying the above proof we can also show that

gf) — ai; almost
uniformly and let Vo*) — Vo in L?(Q4;R"™) for each measurable Q4 C Q on which agf)

ai; uniformly. Furthermore assume (a;;) satisfies (4.1) and that {( ”)cp(k)go(; )7} is uniformly

Proposition 4.3. Let {a } be a sequence of measurable functions such that a

_>

integrable. Then
/a”( )cpl<p]dx<hrn1nf/ ()( )cp cp])dx
Q Q

— 00

We now turn our attention to quadratic functionals of the form
1) = [ (@ss@pap + bil@)pip + cla)e?) do
Q

where the coefficients a, b and ¢ are all bounded measurable functions and where (a;;) satisfies the
following version of the strengthened Legendre condition, namely there exists v > 0 such that

aij (2)AiA; > VAP
for a.e. x € Q and all A € R".

Proposition 4.4. Let J be as above and assume J(p) > 0 for all nonzero o € W2() satisfying
vlaa, = 0. Then there exists A\; > 0 such that

T(¢) = Mllgl[fz )

for all o € WH2(Q) with ¢|aq, = 0.

Recalling that the second variation of I at any point uy € C*(Q) is a quadratic functional of the
above type, more specifically

52I(U0, (ID) = / (fPin (mi Uop, VU’O)SDJ'SDJ + 2fpiu($7 Uo, VUO)SDJ()D + fuu(m; Uo, VU’O)()DZ) d.CL',
Q

we can state the following

Corollary 4.1. Let I, Q, ug be as in Theorem 3.1. Then condition (ii) is equivalent to (L™) and
621 (ug, @) > 0

for all nonzero ¢ € W1’2(Q) satisfying vloq, = 0.
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Remark 4.2. This result is still true when N > 1 if (LT) is replaced by the strong ellipticity
condition (cf. Section 5) and provided 9Q; = 9Q. For the case 90 # () an additional condition
known as the complementing condition should hold for every = € 9, (cf. [26]).

Proof of Proposition 4.4.
Step 1. By a standard minimization of J over the unit sphere in L?(Q) it follows that there exists
a > 0 such that

J(p) > allollzz(q) (4.2)

for all ¢ € W12(Q) satisfying ¢|aq, = 0, so that

(0% (0%
Ji(p) = J(p) - §||<P||%2(Q) > §||<P||%2(Q)-
Step 2. We now claim that
() > BlIVelliz@rn)»

for some 8 > 0. Indeed if this were not the case there would be a sequence of nonzero functions
{o®)} such that

1 o}

Note that from this it follows that ||[Ve® || 2(q.r) # 0 and so letting 1)) = o®) /||V )| 12 (q.rn)
and appealing to the quadratic nature of J;, we get

1 o «a «a
> / (a0 0 + 0™ + (e = M) dz 2 S P q)- (4.3)

The boundedness of the sequence {)(¥)} in W12(Q) implies that by passing to a subsequence,
p® =y i WHAQ), 9" 5y i LA(Q),

and so 1 = 0. By passing to the limit in (4.3) as k — oo

0> likrf_l)gf/gaiﬂﬂff)qﬂfpdx + /Q(biw,ﬂﬂ + (c— %W?) dz.
This together with the fact that
/Qaz'jiﬁf,-k)i/fff)dw >
contradicts ¢¥» = 0. The proof is thus complete. a

A Direct Proof for Proposition 4.4. By step 1 of the previous proof we can assume (4.2).
Clearly for any £; > 0 we have

/ (1 +e1)aijp,ip + bipip+ cp?) do > / (e1ai50,00,5 + ap?) da,
Q Q

or alternatively,

(07

IVell72@rn) + EWH%Z(Q)'

€1y
14+¢

1 .
s+ — (b0 + 2 dx >
/Q (CLUQO,Z(PJ 1 el ( iP,iP cp )> X 2

Now we wish to prove

1+o0
/ (az‘j@,w,j + T+2 (bip,ip + 0902)) dr > ﬂ”@”?ﬁ(g),
Q €1
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for some 8 > 0 and 0 > ¢;. Then this would imply the desired uniform positivity in the W12
sense. However the left side of the above inequality can be written as

1 o
Cmih — (b;w 2 — (b;w 2 d
/Q (amom g (big,ip + cp”) + Ty e (bi,ip + cp )) x

17 2 « 5
2 1+e; IVellzrn) + Tte, llellz2(0)
Mo ,
T (IVellz@mn llellie@) + llellzo)
1 S M
2 1+¢ <(617 a JM§)||V(‘D||%2(Q;R") + (a TO% T MU) ||<P||2Lz(sz)> )

with max(||b]|z :r"), ||c||z~(@)) < M and s > 0 arbitrary. Therefore we require

s 1
—ocM->0 —oM(— +1 0
g1y —o 2> , a—o (2s+ ) >0,

plus the fact that e; < 0. These can be written as

1<o<72 <a 2s
— < —- o< — .
g1 Ms’ M1+ 2s

(4.4)

So we proceed as follows; choose s > 0 such that 1 < 2y/Ms. With this s (now fixed) select o > 0
to satisfy the second inequality in (4.4), then find €; to fit the first inequality. O

4.2 Some auxiliary results on weak convergence

We shall start this section by recalling the following well-known lemma. A proof can be found in
e.g. [10].

Lemma 4.3. Let p, p» € [1,00] such that 1/py + 1/ps < 1. Assume {©®} {p*)} are given
sequences such that *) — o in LP1(Q) and p*) — o) in LP2(Q). Then ®p*) — py)p in L7(Q),
whenever 1/r > 1/p; + 1/py with the usual interpretations for co.

Note that in the particular case where p; and p, are conjugate exponents the product sequence
converges weakly in L!(Q) to the product of the limits.

Proposition 4.5. Assume n > 3 and let {p®)} be a bounded sequence in W'2(Q). Then by
passing to a subsequence if necessary

@) 0= i W(Q),
(i) (W)= inWh(Q).
Furthermore if {b®)} and {c¢®)} are sequences such that b*) — b in L™*(Q;R™) and ¢*) — ¢ in
L3 (Q), then
(i) W (p™)? = cp? in L*(Q),
() 8o W ~bigp; in L'(Q). (4.5)

Proof of Proposition 4.5. As a result of the reflexivity of W1?(Q) and the compactness of the
imbedding W12(Q) — LP(Q) for p < 2*, it follows that by passing to a subsequence if necessary
(we do not re-label this) we have

(p(k) — ¢ in WH2(Q), (p(’“) — ¢ a.e. in Q.
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Now let *) = (p(F))2. Then Vp*¥) = 20(F)V () g.e. and therefore by a simple application of
Holder’s inequality we have that since 1*/2* + 1*/2 =1

1% 1%
2%

[ veas < cy ( / |<,o<’“>|2*dw> ( [ 1ve® |2dx) <o
Q Q

/ [ ® Y d :/ eIV 2z < O,
Q Q

as 1*.2 < 2*. Therefore {1)(¥)} is bounded in W''"(Q) and so by passing to a further subsequence
) — x for some y in W17 (Q). The pointwise convergence ¢(¥) — »? now implies y = ¢ a.e..

To show the next part we first recall that (¢(¥))2 — ¢? in L' (Q) = L7-2(Q) as a result of
the continuity of the imbedding W17 (Q) < LP (). An application of Lemma 4.3 with p; = n/2,
p2 =n/(n —2) and r = 1 now implies the weak convergence ¢'¥) (¢(#))2 — ¢p?. The other case is
similar. O

Also

Proposition 4.6. (Hestenes [17]) Let {p®} be a sequence in Wy () such that
(1) sup/ |2 dz < oo,
k Jo
(i) sup [ 1pW] V] do < oc, (4.6)
£ Jo
and o®) = @ a.e. in Q for some p € Wy*(Q). Then for any b € C(Q;R")

lim | bi(z)e™ e k) dzx = / bi(x)pp,; dx.
k— oo Q Q
It is important to note that in this proposition the restriction on the functions ¢*) to vanish on
the boundary is essential.
Proof. We shall give this in two steps. _
Step 1. We prove the result for the case when b € C1(Q;R"). It follows from (4.6) that the
sequence {(p*))?} is bounded in Wy'(Q). (Note that (4.6) implies that for each k the weak
derivative V(p(F))? = 2p*)Vp*) of, e.g. [14] pp. 151.) Thus it follows from the compactness of
the imbedding W1 () — L!(Q) that by passing to a subsequence if necessary (¢*))? — ¢?
L'(Q). Now
k 10 1
g = 5 50 Bl )?) = Shia(e ™)
and hence an application of the divergence theorem shows that

1 N
/ bip ™ o de = — / bi,i(p")) da.
Q 2 Ja
This implies the conclusion.

Step 2. We now consider the general case when b € C (Q; R"). By approximation it follows that
for any given & > 0 there exists b* € C'(Q; R™) such that ||b — b*|| e (q;rn) < €. Therefore

?

I/ bi(p® o) — i) dz| < /Ib—b*llso’“)( —wzldx+|/b*<,0(’” o — pp.i) da|

< 6C+/Qb;"(so Do — pp;) do
< g(C+1),

provided k is sufficiently large (we have used the result from step 1 for the second integral). The
proof is complete since ¢ is arbitrary. a
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Corollary 4.2. Let {o™®)} be as above and let {b™)} be a sequence such that b%) — b in L>®(Q; R™)
with b € C(Q; R™). Then

Q

k=0 Jq
Furthermore if ¢*) — ¢ in L™(Q) then
c®) (go(k))z —cp? in L().
(Compare with (4.5).)
Proof. The first part follows by noting that

im [ 5 e®®dz = lim / bip®) o .
’ k—oo Jq )

k—o0 0

Indeed
|/Qb§k)90(k)90,(z‘k)d$_/Qbi‘P(k)‘P,(f) da|

IN

/Q BB b1V ¥)| de

ClIb™ = b]| oo () -

IN

For the second part assume n > 1. Then it follows that the sequence {(p¥))?} is bounded in L™ (Q)
and thus (¢®))2 — 2 in L' (Q). (Note the pointwise convergence given in the proposition.) The
result is now a consequence of Lemma 4.3. The case n = 1 is similar. ]

4.3 Some convergence properties related to R

The positive functional R was defined earlier in Section 2. The fact that it is non homogeneous
and non-subadditive makes it far from being a norm over Wo1 ’1(9); however it has some features
similar to that of the norm || - [[yy1.1(q). We start by showing that they have the same convergent
sequences. (We note that the results in this subsection are due to Hestenes [17] and are presented
in a shorter and updated form for the convenience of the reader).

For a sequence {v®)} in W' (Q2), the convergence R(v¥)) — 0 implies Vo®) — 0 in measure.
Recall that a sequence of measurable functions {g(¥)} converge to zero in measure if and only if
for any € > 0

Lr{z e Q;lg®(z) >e}) -0 ask — oo.

Infact one can say more, namely
Proposition 4.7. ||U(k)||W1,1(Q) — 0 if and only if R(v®) — 0.

Proof.
(a) The implication (=) is trivial.
(b) To show (<=) we consider

2
||VU||%1(Q;R") = |Vul dz
Q
1 3
[~ (1) o
@ (14 LL(Vu))> 2

(/Q L(Vu)dx) (/9(2+L(Vu))d:c>.

2

IN
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Therefore an application of Poincaré’s inequality shows that
llul[fy11(9) < CR(u) (1 + R(w),

for some C > 0. The proof is thus complete. O
Assume now that the sequence of nonzero functions {v®)} in W' (Q) is such that R(v®)) = 0
and define a corresponding sequence of variations

: (k)

w0
T REw®)

In what follows we shall explore some properties of this sequence.

Proposition 4.8. The sequence {¢pF)} is weakly relatively compact in Wol’l(ﬂ).

Proof. The result follows by showing that {Vp(®)} is weakly relatively compact in L'(Q; R").
For this let E be a measurable subset of €2, then

2
Vp*)|? 1

V(k)d> /|—d/ 1+ =L(Vo® ) 4

([wetiae o T Loy @ [, (1 gt ) de

2 (zn(E) + %R(N))) .

IN

IN

Since R(v(®)) — 0, it follows that the sequence {V¢(®)} is uniformly integrable and thus according
to the Dunford-Pettis criterion, sequentially weakly relatively compact in L*(£2; R™). |

As a consequence of the above proposition we can now assume that there exists ¢ € WOM(Q)
such that by passing to a subsequence (we do not re-label this) p*) — ¢ in W11(Q).

An application of Egoroff’s Theorem to the sequence {Vv(’“)} implies the existence of a sequence
{QW} of measurable subsets of 2, shrinking to zero, such that Vo*) — 0 in L>*(Q\Q®; R") for
each [. Using this we can now improve the weak convergence of the sequence of variations {cp(k)}
as stated in the following

Proposition 4.9. The sequence {V(p(k)} lies in L?(Q\QW; R") for sufficiently large k (depending
on 1) and the variation o belongs to W, >(Q). Furthermore V®) — Vo in L2(Q\Q®;R™) for
each [.

Proof. Consider the sequence {z(*)}, where

(k)
2 = Ve .
(1+ LL(Voth))3

Then ) 2
#))2, _ [Vel™| d

and so by passing to a subsequence z(*) — z in L?(; R"). Now let g € L°(Q; R"™). Then

T = 2,

| o (g- 2% —g- VW) dal

1
(1+ 1L(Vovk)))z

The convergence of the last term to zero in the above inequality implies that z = Vg for a.e.
z € M\ and so for a.e. z € Q; therefore ¢ € Wy *(Q). In addition

0 e 1 " 2
/ V) — 202 g _/ W (L(Vo™)) " dz =0
o\ 2 Jovaw

< ||g||L°°(Q;R")||V‘P(k)||L1(Q;R")|| - 1||Loo(Q\Q(l))-
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and therefore
Vet ~ve in LHQ\QY;R").

This completes the proof. O

4.4 A lower semicontinuity property for [
Given a € C(Q x R;R), b € C*(Q x R;R") consider the functional

J(u) = / (a(z,w) + bi(z,w)u ;) de.
Q
The following is an extension of a lower semicontinuity property of J by Lindeberg and Hestenes
cf. [17] to the case where Qs # 0.

Lemma 4.4. Let ug € C'(Q) satisfy b;(z,uo(x)) vi(z) = 0 on 0Qy. Then for any ¢ > 0 there
exists § > 0 such that
|J(u) = J(uo)| < &(1+ R(u—uo)),

for all uw € WH(Q) satisfying
|lu — uol| Lo (o) < 0, (u —uo)lo0, = 0.

Corollary 4.3. Let I, f, ug and 2 be as in Theorem 3.1. Then there exists 8 > 0 such that to
any € > 0 there corresponds a § > 0 satisfying

I(u) — I(ug) > BR(u — ug)dz — €,
whenever
llu — uol| Lo (o) < 0, (u —uo)lo0, = 0.

Before presenting the proof of this corollary and Lemma 4.4, let us make a little remark about
some algebraic manipulations here and in the proof of Theorems 3.1 and 3.2. As we are dealing
with integrals taking their values in the set of extended real numbers, that is R = RU{—00, +00}
the “identity” [(9+ h)dax = [ gdz+ [ hdz is not in general valid. (Consider for example the case
where g = —h > 0 with g having an infinite integral). However if at least one of g or h has a finite
integral the above equality holds. Thus special attention need to be paid on such manipulations
specially in Subsection 4.5.

Proof of the corollary.
I(u) — I(ug) = /Q(f(x,u,Vu) ~ f(@,u0, Vao)) da
- /Q(Ef(w,u,VUO,Vu) + f(u, Vo)
Ly (s, Vo) (u — o) i — f(@ o, Vo)) da
a /Q LOV (- o)) dz + I () — J(uo)

v

where

J(u) = /Q (f(z,u, Vug) + fp,(x,u, Vug)(u — uo) ;) dz,

and we have used Proposition 2.4. The result now follows from the lemma and recalling the natural
boundary condition fp, (z,uo(x), Vug(x)) vi(x) = 0 (when 09 # 0). O
Proof of the lemma. It can easily be checked that

J(w) - T(uo) = / (alr, u) — aa, uo) + (b2, w) — bi(, uo) o
+bi(z, u)(u — up) ;) de.
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But P
oz, (bi(w,u0)(u — ug)) — 92

+(bi(z,u) — bi(x,u0))(u — uo) 4,

and hence an application of the divergence theorem shows that

bi(z,u)(u —ug),; = bi(x, uo)(u — uo)

0
/Qbi(x,u)(u —u)de = /Q(_aaci bi(z,uo)(u — ug)

(b, ) — by, 1)) (u — o) ) da.

Therefore from the continuity assumption on a and b it follows that for ||u — ug|| L= (q) sufficiently
small

|J(u) = J(uo)| < /Q(|a($;u) —a(z,u)| + [Vuo| [b(z, u) — bz, uo)|
+ 104, (2, uo) | |[u — uo| + [b(z, 1) — b(z,u0)| [V (u — uo)|) dz
g
< S arLvE-wl) o
< ¢ <1+/§2L(|V(u—uo)|)dx> ,
where ¢ = max(1, £L"(Q)). O

4.5 Proof of Theorems 3.1 and 3.2

We start this subsection with the proof of Theorem 3.1. Assume the conclusion were false. Then
there would exist a sequence {u®)} C AL (99) with u(¥) different from ug, u® — ug in L>(0),
such that

1
T(w®) — I(ug) < ER(u(k) — ). (4.7)
It follows from Corollary 4.3 that for any € > 0

1
BR(u™ —up) —e < ER(u(k) — ug),

for sufficiently large k. This implies that R(u®) — ug) — 0. Following Subsection 4.3 with
v®) =4 — g, we can define a corresponding sequence of variations
go(k) _ u® — ug

R% (u(k) — UO)

We can now write
I(u™®) — I(ug)

= / (f(m,u(k),Vu(k)) - f(m,u(k),Vuo) - fpi (mau(k)avuﬂ)(u(k) - u0)7z'
Q

+ f(m,u(k),VUO) — f(z,u0, Vug)
+ (fpz (J?, u(k) ; VUO) - fpi (CI?, U, Vuo))(u(k) - UO)J
+ S (w0, Vug) (u® — ug) ;) d. (4.8)

However
Ey(z, u®) | Vg, Vu®)
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= flz,u®, vu®) = fz,u®), Vug) — fp, (@,u®, Vo) (™ — ug) ;
= /01(1 — 1) fpip; (@, 0™ Vg + 1V (™ —ug))dt  (u® — ) ;(u®) —ug) ;.
Similarly
f@,u™, Vug) — f(w,u0, Vo) = fulw,uo, Vao) (u™ — ug)
+ /1(1 — 1) fuu (@, u0 + (™ —ug), Vug) dt (u® —ug)?,
and 0

(foi (@, u™ Vo) — fp, (z, u0, Vuo)) (u®) — ug) 5

1
= / fpiu(z,uo + t(u(k) —ug), Vug) dt (u(k) — UO),z‘(U(k) — ug).
0

Therefore combining these together and making use of condition (i) in the theorem we can write

I(u!™) = I(uo)

= [ @ @@ o) — o) s+ 8 () o) a0
Q
+eB(@) @ = u)?) de,

where
1
oP(z) = /(1—t)fp1pj(mu Vo + 1V (u® — ug)) dt,
0
1
bgk)(:c) = / fpiu(:c,uo-i—t(u(k) — ug), Vug) dt,
0

1
B(z) = / (1 = 8) fuu(z, uo + t(w® — ug), Vug) dt
0

It can be easily checked that
A > 3 Fo, (- 00(), Vo)

for a.e. x € Q and
1
bgk) = fpiu(suo(-), Vuo(4)), ) — §fuu(au0()7vu0())

in L°°(2). Dividing (4.9) by R(u® — ug) and using (4.7) we obtain

1 e (k .
1> [ (@ @6 + 10 @6 + D @) da.

(4.9)

(4.10)

Setting u = u*) — uy in Proposition 2.5 it follows that the sequence {¢®)} satisfies (4.6). By

passing to the limit in (4.10) and using Corollary 4.2

k— oo

0 > liminf A alk )( )go(k)goff)

1
+§/ (2fpiu(x,u0,Vuo)<p7,-<p+fuu(:c,uo,Vuo)cpz) dz.
Q

(4.11)
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Since
lim inf (k)( )go(k)go(j) dzx =
k— o0
(k) (k)
liminf/ Efxu ; Vo, Vu )>a>0,
k—o0 ’U,(I” — Uo) -

(according to (2.2)) it can immediately be deduced that ¢ # 0.
Recalling the lower semicontinuity result in Proposition 4.3, Proposition 4.9 and the fact that

af (2)p'P o' > 0 it follows from (4.11) that

0> 5I(u0,¢) (4.12)

This however contradicts (i¢). The proof is thus complete. O

We shall now proceed with the proof of Theorem 3.2. The main lines of the proof are similar to
that of Theorem 3.1 and for this reason we will abbreviate some of the arguments.

Proof of Theorem 3.2. We argue by contradiction. Indeed if the conclusion were false, for some
sequence {u(®} C A2 (09;) with u(*) different from uo we would have u¥) — ug in L"(Q2) and

1 . .
I(U(k)) — I(UO) < EH’U,(I") — u0||%/vl,2(9)- (413)

We now define the sequence of normalized variations ¢®) = (u®) — ug)/[|u® — ug||lwiz(q). As
l|o®)] lwr2(q) = 1, it follows that there exists a ¢ € W' ?(£2) such that by passing to a subsequence
oF) = o in WH2(Q), o®) = ¢ in L*(Q) and ¢|sq, = 0. We now consider two distinct cases:
Case (1) r = co. Here we proceed in a way similar to that of (4.12) and we show that 621 (ug, ¢) < 0.
Case (2) 1 < r < oo. The main difference between this case and the previous one is that the
convergence u®) — ug in L7(Q) does not imply any uniform convergence of the sequence over Q
in order to allow us make use of the continuity of f and its derivatives. To overcome this we have
imposed the growth conditions (3.4) stated in the theorem. We also need the following

Lemma 4.5. Let I, Q, f, p1, p2 and ug be as above and let u'®) — ug in L"(Q) such that
I(u(k)) I(UO) —||u (k) —U0||W12 Q)+C,

for some C > 0. Then the sequence {u®} is bounded in W'2(Q). In the case C = 0 we can
extract a subsequence such that u'® — ug in W2(Q).

Proof. It follows from the growth condition (3.4) that there exist Cy, Co2, 8 > a (« as in (3.3))
such that

f(x,u(k),Vuo) — f(z,u0, Vug) > —C1(1 + |u(k) — up|P*T?) + ﬂ|u(k) — upl?,
and similarly,
(fola,u™, Vug) = fo(x,u0, Vug)) - V(u® —ug) > —=Co(1+ [ul®) — ug|?> )|V (u®) — up)],

for a.e. & € Q0. Therefore using the expansion (4.8) and condition (3.3) we can write

1
EHu(k) — uOH%/Vl’Q(Q) +C

2/(0‘|V(u( —uo)® = Co (L +ul® — gl ) + Blut™) — uol?
Q
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—Co(1 + |u(k) — u0|p2+1)|V(u(k) —up)| — C’3|V(u(k) — ug)|) dz,
and as a < 3
Ca > S{[u® — ugl[}yia (o) — / Crlu® —uo|P*? da
2 Q

- / Cs(1+ [ul? — w2 1)V () — up)| da.
Q

Applying Proposition 2.6 (with ¢ = 2) to this inequality (cf. the example following the proposition),
we get

«
Cy 2 ZHU(k) — uo|lfyr2 () — CslIV (W™ = u)||L1 (@),

for sufficiently large k. Using a Holder inequality on the last expression it follows immediately that
the above can hold only if ||u(®) — ug||w1.2() is bounded.

If C = 0, it follows from the previous part that by passing to a subsequence if necessary u®) — g
in L2(Q) (as a result of the compactness of the imbedding W'2(Q)) < L?()). Using (4.9) and
the growth condition (3.4) we can write

1
EHU(M - U0||%v1,2(9)

= /YMVWW—wmﬁ—ca1+w“ﬁﬂmWMm“—uw
Q
-C;(1+ |u(k) — up|P?) |u(k) — ug| |V(u(k) —up)|) dz
or

(0%
0 > EHU(I@)_uO||%V1’2(Q)—/C8(1+|u(k)_u0|P1)|u(k)_u0|2d$
Q

- / Co(1+ [u® — upl) [u® — wo| |V (u® — ug)| da
Q

« . . . "
> [ (FIVE® — w0 = Colu® = o = Cofu® — uol [V®  uo)]) d,
Q

where we have again used Proposition 2.6.
Setting & = ||u®) — wg||2(q) and t = ||V (u¥) — ug)||12(;rn) We have

0> %t2 — Cret — Cge?,
or 0 <t < (Cye. The result follows by letting € — 0. O

We can now apply Lemma 4.5 to the sequence {u(k)} and deduce that by passing to a subsequence
u®) = ug in W12(Q). By passing to a further subsequence this implies that

1
@) = 3 frups (u0(), Vo )

for a.e. € 2. We shall now consider two cases.

Case (a) n > 3. Tt follows from the convergence u'®) — ug in L"(Q) that u*) — ug in L™+/2(Q2) and
L"P2(Q)). Therefore the growth conditions (3.4) together with Lebesgue’s theorem on dominated
convergence imply that

bgk) — fpiu(':uo(')vvuo(')): B — %fuu(vuo():vuo())
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in L"(Q) and L™/?() respectively. Applying Propositions 4.2 and 4.5 to (4.10) we can now deduce
that 621 (ug, @) < 0.

Case (b) n < 2. The main problem is that in this case we can not apply Proposition 4.5 to the
sequence {(,0(’“) }. However this difficulty can be overcome by recalling the conclusion of Lemma 4.5.
Indeed it follows from u(®) — uy in W1H2(Q), the continuity of the imbedding W'?(Q) < LI(Q)
for ¢ < oo ( W12(Q) = L>*°(Q) when n = 1) and the growth conditions (3.4) that

b = fpa(uo(), Vuo(), ¢ — %fwc,uo(-),wo(-))

in L1(Q) for any ¢ < co. We can again pass to the limit in (4.10) by an application on Lemma 4.3.
Thus 621 (ug, ) < 0.

The only remaining task (in both cases (1) and (2)) now is to exhibit ¢ # 0. But this follows from
(4.10), i.e.

1
£ > alle e + [ (@D + (@) - ) )) da,

or after passing to the limit and noting that ||¢(¥) llwiz) =1,

1
0 Z a+ 5/ (2fpiu($;U0;VU0)(P7i(P + (fuu(m,UO,v’U,O) - 2&)(102) d.fl?,
Q

which is false if p = 0. O

Remark 4.3. Similar to the case N = 1 we can associate to any given sufficiently smooth f :
0 x RY x RV*" — R, the Weierstrass excess function E; : @ x RY x RV*" x RV*" — R by
setting

Ef(.fl?,u,P,Q) = f(l',U,Q)—f(iIJ,U,P) —fp(iIJ,U,P)'(Q—P).

The statement of Theorem 3.2 (for simplicity here we restrict to case (1), similar comments apply to
case (2) with the appropriate modifications) can now be generalized to the case N > 1 if condition
(3.1) is replaced by its multi-dimensional analogue:

There exist a,e > 0 such that

Ef(wauaDUO(m)aQ) Z Oé|Du0(.CL') - Q|27 (414)

for all z € Q, |u — ug(z)| < e and Q € RVN*",

The proof can be extended to this case without much difficulty. The important point however
is that this condition is much stronger than necessary. For example it follows from (4.14) that
fz,up(z),-) is strictly convex at Q = Dug(z) for € Q which is stronger than the necessary
condition of quasiconvexity (cf. Section 1).

Note that even when f fails to satisfy (4.14) it might still be possible that this condition is
verified by f = f 4+ g where g : @ x RY x RV*" — R is a null Lagrangian, that is the integral
fQ g(z,u, Du) dz depends only on the boundary values of u. The key observation is that unlike the
case when either of n or N = 1, in the multi-dimensional setting a null Lagrangian is not necessarily
an affine function of the gradient (cf. [2] and [3]). In this case Theorem 3.2 can be translated to the
multi-dimensional setting wihout the requirement of f being convex in the gradient argument (cf.
e.g. Theorem 5.1). But of course the difficulty would be to find the appropriate g. We recall that
in [29] Sivaloganathan shows that for a special class of non convex functions f one can establish
(4.14) for a modified f by finding a suitable null Lagrangian. He then employs this idea together
with some machinery from Hamilton-Jacobi theory to establish a local stability result in nonlinear
elasticity. We will later see how this follows from Theorem 3.2.
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5 Local stability theorems

The positivity of the second variation of I at the stationary point ug is a key assumption in
the sufficiency Theorems 3.1 and 3.2. In this section we show that under reasonable convexity
assumptions on f this can always be “locally” true. We then apply this observation to prove local
stability of stationary points. In particular we are able to obtain the result of Sivaloganathan
[29] without any need for the construction of local fields and the Hamilton-Jacobi theory (cf. also
Zhang [34] and [35]). To start let us recall that a C? function f: RV*™ — R is strongly elliptic
at A € RN*" if and only if there exists a > 0 such that

DAY\ @ p, A @ ) > af AP |l
for all A € RN and p € R™.

Proposition 5.1. Let f € C?(Q2 x RN x RN*™; R), ug € C*(;RY), zg € Q and f(xo, uo(z0), )
to be strongly elliptic at Dug(xo). Then there exist 7,0 > 0 such that

5100, 9) 2 Tllo | sy,

for all p € W01’2(B(5;RN).

Proof. Let us set fijn(z) := fp,;p, (%, u(z), Dug(x)). It follows from the strong ellipticity
condition on f and an application of Plancherel’s Theorem (cf. [33]) that

/fijkl(xo)%,j%,l de > Oé/ |Df? dz
Q Q

for some o = a(xo) > 0 and all ¢ € Wy*(Q; RN). Moreover a simple continuity argument shows
that

v

/fz'jkl(w)%js%z dz /fijkl(mo)%js%z dw—/ |(fijri(z) = fijra(20)) Pijspri| dx
Q Q Q

> / D|? d,
2 /,

provided ¢ vanishes outside a sufficiently small ball around zy. Hence

62[(“07 QO)

/ (fijrt (@) ikt + 2P ju (@, U0, Duo) @i j ok
Q
+fukul (xaUOaDUO)QOk(Pl)d'r
o . . 1
> [ (GIDel ~ CEDP + ZIof) - Clol?) o
Bs(zo) 2 £

o
> G (Do - Culel o
Bg(zo)

where ¢ € WH2(Q; RY) is assumed to vanish outside Bs(zo) for some small enough § > 0. By
taking § smaller if necessary we can make the right hand side in the last inequality strictly positive
for nonzero . The result is now a consequence of Proposition 4.4. O

Combining the above proposition together with Theorem 3.2 and recalling Remark 4.3 we can
now state the following (cf. [29] Theorems 2.4 and 3.2)

Theorem 5.1. Let f € C*(Q x RN x RV*™": R) and ug € C! (; RN) be a stationary point of I.
For given zo € Q let there be 1,7 > 0 and g € C?(B,(zo) x RN x RN*"; R) such that the integral

/ 9(z,u0 + ¢, Dug + D) dx
B,«(zo)
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is well defined and constant for all ¢ € Wol’Q(BT(:co);RN) with ||| Lo (B, (20);rRY) < T- Moreover
let f + g satisfy (4.14) with Q replaced by B, (xo9). Then there exist §,p,v > 0 such that for any
variation ¢ € W12(Q; RYN) vanishing outside Bs(zy),

I(ug + ¢) — I(uo) = 7llelfiyr2rm

provided ||¢||pe r~) < p-
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