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A MARSTRAND TYPE THEOREM FOR MEASURES WITH CUBE
DENSITY IN GENERAL DIMENSION

ANDREW LORENT

ABSTRACT. With a view to generalising rectifiability and density results to more general spaces
we prove the following: Let H® denote Hausdorff s measure in I”y. Let s € (0,2]. Let S C I

be a subset of positive locally finite Hausdorff s-measure with the property
H% (B ns
lim w =1 for H° a.e.z €S
r—=0  a(s)27srs

then s is an integer and S has a weak tangent at almost every point.

1. INTRODUCTION

One of the most attractive results in Geometric Measure Theory is the following.

Theorem 1 (Marstrand). Let p be a Radon measure on R™ with the property

0<limM<oo (1)

r—0 rs
for p a.e. x € Sptu. Then
® s is an integer,
o for pu a.e. x € Sptu there exists an s-plane V' going through x with the following property:
For any e > 0,
lim inf p (Br () \Ner (V)
r—0 rs
where Nep (V) := {z € R" : dist (2, V) < er}.

We say a measure p having property (2) at point « € Sptu has a weak s-tangent at x.

A central conjecture in classical Geometric Measure Theory was the conjecture that Radon
measures in IR" having positive finite s-density (in the sense of (1)) almost everywhere are s-
rectifiable. Marstrand’s Theorem was one of the key results in the history of this conjecture.
By greatly developing the methods Marstrand introduced in his proof of Theorem 1, Preiss [12]
proved the conjecture in 1986.

The proof of Theorem 1 (and of all subsequent developments) relies essentially on symmetry
properties of the Euclidean unit ball. Specifically the existence of an inner product is used fun-
damentally for even the most basic estimates obtainable by Preiss/Marstrand methods. Earlier
Besicovitch type methods for sets in IR with Hausdorff m-measure density 1 also depend heav-
ily on specific geometrical properties of the Euclidean unit ball, in this case the "rotundity” of
the unit ball. These methods are essentially combinatorial and seem to have no application to
general Radon measures, in fact they cannot even be applied to Spherical Hausdorff measure.
However they do have a certain robustness in the sense that they admit some generalisation
outside Euclidean space. In [13], Preiss and Tiser proved rectifiability for sets of finite Hausdorff
1-measure with lower density > %‘E (thus giving a slight improvement of the % estimate of
Besicovitch for 1-sets in Euclidean space) in general metric spaces. By extending the proof of
rectifiability of sets with Hausdorff n-measure density 1 in general codimension [11], [8], Chlebik
[3] proved rectifiability of sets of finite Hausdorff n-measure in Iy with density 1.

In contrast, until very recently there has been no progress in generalising Preiss/Marstrand
theorems outside Euclidean space.

As is standard we let {7 denote R™ with the sup norm. Let C, (z) := {2 : ||z — Z||oc < T}.

The motivation for the study of measures with density properties in [7} is two fold.
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Firstly as any metric space can be isometrically embedded into [, and given the unusual
nature of [7y even as a finite dimensional normed vector space, as a model for making the first
steps in generalising rectifiability and density theorems, [} has long been considered the natural
starting place. In [6] the author proved rectifiability for measures in 3 satisfying a strong
(uniform) 2-density condition.

The second motivation comes from the well known fact that any 2m sided centrally symmetric
polytope in IR™ can by obtained as a slice by an n-plane through a cube in IR™, (see [1] lecture
2). Given the results of [6] the most promising conjecture generalising rectifiability and density
results is the conjecture that Marstrand’s theorem holds for polytope density, (i.e. the conjecture
that Theorem 1 is true for measures with hypothesis (1) with respect to a centrally symmetric
polytope). While proving Marstrand’s theorem for measures with s-density in I for some range
of s > 0 is equivalent to proving Marstrand’s theorem for polytope density for the same range of
s > 0 (by the fact that a polytope can be realised as a slice through a cube). Unfortunately, we
need to use a stronger form of density (as is given by (4)) and for density condition (4) there is
no such equivalence between polytope density and density in [7.

Ifg=H f 4 Where A is a set of positive finite Hausdorff s-measure with density 1, then
i1 satisfies condition (4), in fact condition (4) is (roughly speaking) a reformation for Radon
measures of the most important additional property the density hypothesis of measure f has
over density hypothesis (1). Theorems for Radon measures of the form j have often proceeded
the same theorems proved for general Radon measures with density condition (1), see [2], [8],
[10].

Before stating our results we need some background. Following Federer, given a metric space
(M, d) we define Hausdorff s-measure in (M, d) by Carathéodory’s construction taking our initial
set function ¢ to be defined by ((S) = a(s)27% ((diam (S)))® for any set S, where diam is of

s

course taken with respect to the metric d and a(s) = I‘F(i-i,-l)' I’ denotes the standard Euler
2
function (see [4] 2.10 for the details).
Theorem 2. Let s € (0,2]. Let H® denote Hausdorff measure in I7.
Let S C 12, be a subset of positive locally finite Hausdorff s-measure with the property
H: (C,
limM =1 for H?ae. .z € S. (3)
r—0  s)275rs
Then

® s is an integer.
e For any e >0, for H® a.e. x € S there exists an s-plane V' going through x such that

lim inf H* (Cy (z) N S\Ner (V)
r—0 rs
By ([4] 2.10.18(3)) Theorem 2 follows from the following more techinical theorem.
Theorem 3. Let s € (0,2]. Let i be a Radon measure on I, with the following property;

0<limM: lim sup M<oo (4)

s s
r—0 r r—0, 2z€C,(z) r

=0.

for p a.e. x € Sptu, then the following is true:

® s is an integer.
o Given any € > 0, for p a.e. x € Sptu there exists an s-plane V' going through x such that

iaing P(Cr (@) \Ner (V)

r—0 rs

=0.

We state our theorem for measures having s-density conditions for s € (0, 2], this is a technical
restriction that potentially could be removed, see the remark preceding Lemma 8. As previously
mentioned a more fundamental restriction is that we use much stronger density conditions than
in Theorem 1. However our methods also yield a relatively simple proof of the following theorem:
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Theorem 4. Let p be a Radon measure on I3, with the property that

0 < lim MCr (@)
r—0 r2

then for any € > 0, for u a.e. x € Sptu there exists an 2-plane V' going through x such that

paing 11O (2) \Ner (V)

r—0 72

< 0

=0.
However Theorem 4 is a weak consequence of Theorem 5 [6].

2. BACKGROUND

2.1. Elementary notation. As mentioned in the introduction we will be much concerned with
properties of the unit ball in {2 .

Let ey, ez, . .. ey be orthonormal vectors forming the canonical basis of I7, . Define |||| to be the
sup norm, so ||z|| = max{|e; - z|, |ez - z|,...|en - 2|} We will let ej1,, = —e; for j € {1,2,...n}.

Let B, (z) denote the open ball of radius r > 0 centered on & with respect to the Euclidean
norm. For any A C R", B C R", Let AAB := (A\B) U (B\A4). We define a cubic annulus by
A(z,a,b) = Cy (2) \Cy (2).

Given set A C IR", ¢ > 0 let N.(4) := {z € R" :dist (2, A) < €} where dist(z,4) :=
inf {||z — z|| : # € A}. Given a set of vectors vy € IR", say k = 1,2,...m we will denote by
(v1,va,...0;,) the linear span of these vectors. If 7 is a linear subspace of R" we let P, : R" — 7
denote the orthogonal projection onto 7.

In order to get information from Preiss/Marstrand type methods in I it will be necessary to
consider ”sectors” of the cube where a ”sector” is given by the convex hull of the center point
and a particular face of the cube, see figure 1. We define this formally as follows.

FiGURE 1

Let T7 (0) := {.Z' €Cr(0):2 e = r}. We define
S\ = Ti (0),
r>0
= —SJ(.O) forj=1,...n. And S](-w) = S](-O) + x for any x € IR". Let
§§075) = U T/ N Ca-s)r (rej) .
r>0

And S’i(m’&) =S 4 2 for any z € R".
;)

i
Let G (m,n) be the Grassmannian manifold of all m-dimensional subspaces of IR". Let

(0)
S0 .S,,{;

d(A,B) :=inf {||z; — z2|| : ©1 € A, 29 € B}.

Define also
devwe (A, B) :=inf {|z1 — x2| : 1 € A,z € B}.
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A (-Lipschitz function from IR" to IR is a map f with the property
|f (x) = f ()] < Blle —yll,

(note the use of the sup norm).
Given a Radon measure p on [T}, a point & € Spty will be said to have square cone density at
z if and only if for some ¢ > 0 the following holds;

e (870822 06 0)
111 11

r—0 rs

>0 Vie{l,2,...n} (5)
We say a Radon measure p on I is an s-uniform measure if and only if
w(Cy (z)) =7r° Vo € Sptu,r > 0. (6)
We say and s-uniform measure on 7} satisfies the controlled complement condition if and only
if
w(Cr(z)) <r®* VzeR",r >0,j €{1,2,...n}. (7)

Finally we say a Radon measure p on l7} is a symmetric measure if and only if
w (S](-w) NneC, (ac)) =pu (Sj(i)n NneC, (ac)) V x € Sptu,r > 0. (8)

A set S C IR" of locally finite H™ measure is m-rectifiable if and only if there exist countably
many C! submanifolds Gy of dimension m such that

o (5\ <U]N a)) o

A set S C IR" of locally finite H™ measure is purely m-unrectifiable if and only if for every
C' submanifold G of dimension m we have

H™(SNG) = 0.

A measure p is said to be an A.D. (Alfors David) s-measure if and only if there exist numbers
b9 > 0, 8 > a > 0 such that

ar® < p (B, (z)) < Br® for all x € Sptu, r € (0,d) -

A set S is said to be an A.D. s-set if and only if y := Hfg is an A.D. s-measure.

2.2. Tangent Measures. We will make extensive use of some elementary results about tangent
measures. In order to simplify we will define tangent measures only for measures with positive
finite s-density, the lemmas we will state hold true in much more generality, see [11].

Given a € R" and r > 0 define T, , (z) = @ Note that Ty, spt (A) = p(rnA +a), ACR".
Suppose u is a Radon measure on IR" with positive finite s-density a.e. we say v is a tangent
measure of p at a point a € IR"™ if there exists a sequence (r,,) of positive numbers, such that

To,r
= 0 and —228 —~ p as n — oo.

n

We will denote by Tan (u, x) the set of tangent measures to u at  and we will denote by Tan (1, ),
the set of supports of tangent measures to u at x.
Note that by definition of weak convergence, if measure p at point x is such that

lim inf p (B, () \Ner (V)

r—0 rs

=0

for every € > 0, then for some subsequence r, — 0 we have that v := lim,,_, M is such
that Sptv C V for some V € G (s,n). If v is in addition s-uniform it is an elementary exercise of
differentiation of measures to see that V = )\va for some A > 0. See Step 1 and Step 2 of the

proof of Lemma 18 [6].
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Lemma 1. Suppose . measures I, with the property that for p a.e. © € Sptu

0< limmz lim sup M<oo.

r—0 s r—0, z€C,.(x) s
Then for u a.e. © € Sptu every v € Tan (u, z) is a measure with the following two properties:

e For some a > 0 we have v = av where U is an s-uniform measure with the controlled
complement condition, i.e. U satisfies (6) and (7).
e 0 € Sptv.
This is a version of Corollary 14.7 [11]. The proof of Corollary 14.7 is carried out for Euclidean
balls but the same proof applies here.
So note, using tangent measure notation, a measure p with positive finite density having a
weak s-tangent V at z is equivalent to Tan (u,2) NG (s,n) # 0.

Lemma 2. Suppose p measures I, then for u a.e. x € Sptu every v € Tan (u,x) has the
following two properties:

(1)  T.q14v € Tan(p,x) forall z € Sptw.
(2) Tan(v,z) C Tan(u,z) forall z € Sptw.

This is a slightly weaker form of Theorem 14.16 [11], again the proof in [11] is for Euclidean
space, but it applies in [} without change.

3. REDUCTION OF PROBLEM

Let p be a measure on IR"™ with the property

0 < lim M (@)
r—0 rs

for p a.e. z € Sptpu.

Now suppose our Theorem is false, so in the case where s is an integer, for some subset
B C Sptu of positive p measure we have that Sptu has no weak s-tangents at any point z € B.
Now let yg be one of the p almost all points in B such that Lemmas 1 and 2 hold true. Take any
vg € Tan (i, yo), by Lemma 2 for any z € Sptyy we have

Tan (v, z) C Tan (p, yo) -

Suppose Sptrg has a weak s-tangent at point z € Sptyg, i.e. for some V € G (s,n) we have
V € Tan (vo,2), then V € ’fz;;l(p,yo) and so Sptu has a weak s-tangent at yg, contradiction.
Thus Sptry has no weak s-tangents at any point of its support and so the measure is purely
s-unrectifiable.

Now by Lemma 1, v, is (after a multiplication by a positive constant) an s-uniform measure
with the controlled complement condition. So all we need to do is to prove our theorem is to
show that any Radon satisfying (6) and (7) can only exist when s is an integer and that this
measure has to have a weak s-tangent somewhere in its support, this will follow essentially from
repeated applications of Proposition 1.

4. SKETCH OF THE PROOF

4.1. Dimension reduction. One of the starting points for the results of this paper is the
observation that an s-uniform measure v on [ whose support is contained in the graph of a
1-Lipschitz function (defined from subspace ei- where e; is an element of the orthonormal basis of
I) can be pushed forwards (via the projection onto ei) to form an s-uniform measure on 1",
As such if we are able to prove that Sptr is contained in the graph of a 1-Lipschitz function, we
can obtain an s-uniform measure v, with the same properties in a space with one less dimension.

As is implied in the last paragraph, we will be arguing on a (finite) sequence of measures,
each one defined from the last and each having sucessively better properties. Pushing forward
measures onto subspaces will be one of the methods we will use to obtain new measures, the
other will be via the taking of tangent measures.
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By virtue of Lemma 2 the measure we eventually show is supported on an s-plane can be
found as the n-th tangent measure of a sequence tangent measures of tangent measures (i.e. v, €
Tan (Vp-1,Zn-1), Vn—1 € Tan(vy_2,%,—2),. .. 1 € Tan(u,z)). Informally speaking; Lemma
2 alows us to “blow up” the measure we are dealing with at any time to obtain a new one
with stronger properties. This turns out to be extremely powerfull. However the measure we
eventually obtain that is supported on an s-plane will be found through a combination of taking
tangent measures and pushing forward meaures onto subspaces. So in our proof of existance of
weak tangents for measure g we can not simply apply Lemma 2. We need a lemma to the effect
that if a “pushed forward” measure v has a weak s-tangent, then the measure it has been pushed
forward from also has an s-tangent. This the contents of Lemma 10.

So the main difficulty is to show that we can find measure v (obtained from a sequence of
taking tangent measures and pushing measures onto subspaces) supported on a 1-Lipschitz graph.
Note that this is equivilent to the following statment.

(st uss),) Nspt =0 va € Sptw. (9)

There are four main ingredients from which we will achieve a proof of the existence of measure
v satisfying (9). Firstly we will show that tangent measures to our original measure p has a
property we call measure symmetry .

4.2. Measure symmetry. Formally measure symmetry is defined as follows: For v a.e. x €
Spty, for any i € {1,2,...n}, r > 0 we have

v (Si(w) NnCy (x)) =v (Sz(i)n NnC, (:c)) .

Recall a measure having this property is known as a symmetric measure, see (8). Originally
this property was proved for unrectifiable 2-uniform measures in I3, in [6] by using certain in-
tegral estimates originating from [9]. On our context, measure symmetry “comes for free” as
a consequence of our stronger density condition (4), a proof comes from simply differentiating
the function z — fCT(w) r — ||z — z||dvz and noting that this function achieves its maximum on
points of Sptr. In Euclidean rectifiability and densities, condition (4) also implies strong sym-
metry properties of the support of the measure. In particular it can be (reasonably easily) shown
that that the tangent measures to a measure in Euclidean space satisfying density condition (4)
are supported on subspaces, and consequently these measures are rectifiable.

4.3. Monotonicity. Measure symmetry in {% turns out to be extremely powerful. As a con-
sequence of measure symmetry we can prove a property we call monotonicity . Monotonicity
is our second ingredient. First some background. From standard arguments via the theory of
differentiation of measures, for any = € Sptv for L! a.e. r > 0 we can induce a “slicing measure”
vy on OC, (z) such that for any A C I we have

v(A) = />0 v, (0C, () N A) dL'r.

For any i € {1,2,...n} we define fi(w) (r) = vy (BCT ()N SSI)). By monotonicity we mean

that that v has the property that fi(z) is a monotonic non-decreasing function for any i €
{1,2,...n} and any x € Sptv.

The proof of this property is essentially an elementary trick. Measure symmetry in the cube
C, (z) implies measure symmetry on the boundary 9C, () and by the fact that (which we get
for free by arguing by contradiction and assuming that none of the tangent measures of v are
supported on, or near 1-Lipschitz graphs) Sptr must approach z from inside many different

sectors, we can use measure symmetry on boundaries to “push” the measure of 9C, () N Si(w)

slightly upward inside Si(m)\Cr (x) (see figure 3 for a suggestion of the argument) and hence in
this way we get a “weak form” of monotonicity. By pursuing this argument in a more careful
way it is possible to show fz.(m) is monotonic. This result first appeared (with slightly weaker
hypotheses, for measures in [2,) in [6], Lemma 9. The proof we give here is similar but simpler.
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4.4. Touching point arguments. The third ingredient in the proof of (9) comes from a refine-
ment of a technique originating from Besicovitch usually called “touching point arguments”. This
refinement uses the fact that the support of the measure must have projection zero onto almost
all subspaces of one dimension lower than the ambient space (since, arguing by contradiction,
Sptr is unrectifiable or of dimension less than the ambient space minus one) to show that for v
almost all z € Sptv, for some i € {1,2,...2n} we have

(@)
lim inf Y (Si ne (37))

r—0 rs

=0.

This result first appears in [6] Lemma 14 in (3, and see [7] Lemma 1 for the result with (n — 1)
sets in IR™. Unfortunately in this paper we need the result for s-sets in IR" so we need to repeat
(with minor adaptions) many arguments from [6], [7].

In combination these three ingredients yield a tangent measure v with measure symmetry,
monotonicity and the property that

(Sl.(o) U Sﬁ’n) N Sptw = 0. (10)
Now note that if, (9) was not true then we can find a point 2 € Sptr such that (by monotonicity)

F () >0 forallr > 0. (11)

4.5. Bounds on fi(w). Our fourth ingredient is to show that for an s-uniform measure v (with
measure symmetry, monotonicity) that satisfies (10) for which Sptw is not contained in a Lipschitz

graph we can find z € Sptr such that fi(z) is strictly positive but is bounded . This can be
shown in any number of ways (see for example Lemma 19 [6]), the essential point being that

Sptrv N Sl-(gc) C Sl-(w)\Si(o) and the measure of (Si(m)\Si(O)) N C, (0) can be shown to be of order
r||z||. The approach we take in this paper is “combinatorial” and relies heavily on measure
symmetry and the possibility of taking repeated tangent measures. Once fi(w) is bounded, by
using measure symmetry it is not hard to see that for any y € Sl-(gc) N Sptv, fi(y) must also be
bounded and sup,. fi(w) = sup,- fi(y). This has the consequence that for sufficiently large

R >0,Sptv NA(z,R,00) N Sl-(gc) = (). From this point on it is not hard to gain a contradiction,
see figure 7 for a suggestion of the argument.
So (11) is not true and hence for every x € Sptrv we have

(Si(””) U Sl(i),b) N Spty = 0

thus Sptv is contained in the graph of a 1-Lipschitz function. This is how the proof works.

5. PROOF OF THEOREM

Proof [of Theorem 3]

So as already argued, if our Theorem is false we have the existence of an s-uniform measure
in I7, satisfying the controlled complement condition, which in the case where s is an integer has
no weak s-tangent at any point of its support.

First we begin with some preliminary lemmas.

6. PRELIMINARY LEMMAS

Lemma 3. Let integer n > 1. If v is an s-uniform measure on 13 with the property that
v (8S£w)) =0 for any x € Spty, i € {1,2,...2n} and the property that v (C, (z)) < r° for all
z €. Then v is a symmetric measure, i.e. for any x € Sptv the following is true;

v (SJ(-I) NnC, (:c)) =v (S;i)n NnC, (:c))

for every j € {1,2,...n}, 0 <r < oo.
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Proof Let r >0, y € Sptv.
Step 1: We will show function h, : R" — IR given by

hr<y)=/o()r—||y—z||duz
»\Y

is a smooth function and its derivatives are

ZZ: ) =v (Si(y) ne. (y)) (Sffin NC (y )) (12)

for each i € {1,2,...n}.
Take some y € Sptr and some i € {1,2,...2n}. To start with let

Do [r-le=ul zeC @)
wo={ 7 GE)

Since

e (g hes) = he ) = [ g4 (2) = g (2) v, (13

We will start by evaluating ¢(¥+5¢) (z) — ¢¥) (2) in various regions of C, (y + he;) N Cy (y).
To start, if z € S N C, (y) we have

qvthed (2) — ¢ (2)

—lz = (y + hes) || + ||z — ¥l
h (14)

and similarly if z € Sl_ﬁ/_)n NC, (y + he;) we have

g (2) —qW (2) = —llz = (y + hea) | + 11z =y
= —h (15)

For any j € {1,2,...2n}\ {i,i + n} we have that for S](-y) N S](-y+hei) we have

40 (2) — g (2) = 0. (16)
We know that for all z € C, (y) N C,. (y + he;)

‘q(y+hei) (z) — ¢V (z)‘ < h.
And for all z € C,. (y) AC, (y + he;)

) ()| + | ()] < 2.

Since v (Ui€{172...2n} 8S§y)) = 0 so we know for each j € {1,2,...2n}

e </(Cr(y)n(5§y)asj(y+he ) ‘q(HhE (2) = ¢ (2)‘ de) =0 ash—0. (17)

Similarly the terms on the boundary have no influence,

ht </ ‘q(y““f’) ‘ ‘q v ( ‘dvz) — 0 ash = 0. (18)
Cr(y) AC (y+he;)

So putting together (14), (15), (16), (17), (18) we get

lim ™! (/ i qvthed) (2) — g (2) dI/Z> =v (Sl-(y) nC, (y)) (Sl_% NG, (y )) (19)

h—0

And putting (13) together with (19) we establish (12) and so we have completed Step 1.

Step 2: We show h has zero derivative on the points of Sptw.
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Now we note by the Fubini type theorem given by 1.15 [11], for any y € IR we have

hw) = [ vl - el
Cr(y)
= /I/(zECr(y):r—||y—2||2t)dL1t
0
_ / v (Crs () ALt
0
/(r—t)delt
0

rs+1
s+1°
. . s+1
With equality when y € Sptrv. Hence sup {h, (z): z € R"} = )

mum on the points of Sptr. So for all points y € Sptr we have ‘gﬁ: (y) =0foreachi e {1,2,...n}
and by (12), this completes the proof. O

IN

and h, achieves this supre-

Remark

Lemma 3 states that any s-uniform measures satisfying the controlled complement condition and
for which v (851-(9”)) = 0 for all z € Sptr and for all i € {1,2,...2n}, is a symmetric measure
(recall definitions (6), (7), (8)).

Remark

Asin [11], p.139 given our s-uniform measure v on I we can induce a measure (sometimes called

slicing measure) ¥ on 0C, (z) for L a.e. r > 0 for any z € Sptv, such that

b
/ / ¢ (x) dv'PzdLr = / ¢ (z) dvz
a JOC.(z) A(z,a,b)

for all ¢ € Co(IR"™), 0 < @ < b < oo. When the situation is unambiguous we will drop the

superscript and so the measure will be denoted by v,.. Note that if = € Si(y) with y,x € Sptv
then we have

v (4) = ()
for any A C 9C, (y) N Si(w). Both measures v\ and Vf,f)Hzin are derived via differentiation of
so this is to be expected.

o))

measures and hence are defined from v ”locally
Lemma 4. Let integer n > 1. Let v be a symmetric s-uniform measure on 2 with the property
that v (851-(9”)) =0 for any x € Sptv and anyi € {1,2,...2n} then for any z € Sptv the following
18 true

v (S5 n0C, (2)) = v (S

Jjt+n

nac, (z))

for any j € {1,2...n}, for L' a.e. 7 > 0.
Proof Where v, is defined we have for any i € {1,2,...n}

y(A(z,r—h,r-{—h)ﬁSJ(.Z))

(=) o
(o) = gy ET
v (A(z,r —h,r+h) msj.j)n)
= lim
h—0 2h

= (Sj(fgnmacr (z)). O

Lemma 5. Given n > 2 and s € (0,n) if u is a symmetric s-uniform measure on I} and has
the following two properties;

o L (851@) =0 for every i € {1,2,...2n}, € Sptu
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e 1 has square cone density (i.e. satisfies (5)) at u almost every point
then firstly s > 1 and secondly for p a.e. y € Sptu and any i € {1,2,...n} the function

1 (5) = s (9Cs () N 5)
is monotonic non decreasing function that is locally Lipschitz away from 0.

Proof
We break the proof into 3 steps:
Firstly let G denote the set of points of Sptu with square cone density.

Step 1: Given y € G, i € {1,2,...2n} we will show that for any s > 0
aC, (y) N SY N Sptp # 0.

Suppose not, then we can find interval (a,b) C IR which contains s and has the following prop-
erties,

o i (A (y,a,b)N Si(y)) =0.
e For every € > 0 we can find s € (a — €, a) such that

v) (acs (y) N s,?y)) >0

Note by measure symmetry, we have that the interval (a,b) has the same properties for Sz(ﬁ)n
Let € > 0,6 > 0. Now since y € G we must be able to find z € (5’(1”"6) 5’(1""6)) NCos (y )ﬁG

by the above remark we lose no generality in assummg z € Sl_ﬁ’_)n because if we had z € S we

could use the properties of (a,b) with respect to S@ 1, and argue in exactly the same way to get,

by measure symmetry, exactly the same conclusion. So pick s € (a — %, a) such that

v) (acs (y) N sgw) >0

Figure 2 gives an impression of how the argument works.
So since 0C5 (y) N Si(y) C OC 42—y (2) N Sl@ we have that by measure symmetry

FIGURE 2

u?) )
Fstlz—y| (803+\\~—yH (z) N SH_n) > 0.
However 0Cs 4z (2) 1 Sz(+)n CA(y,a,b)N Szz)n and by our construction

a(0Cs 1y ()NS50 (A, a,b) NS, )) > 0.
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So we can find a point 2o € int (A( a,b) N Slf_)n) N Sptp and so for some small § > 0 we have

Cs (z0) C A(y,a,b)N Sl(fi)n thus u (A (y,a,b)N SH)H) > 0, and by measure symmetry this is a
contradiction.

Step 2: fz.(y) is monotonic non-decreasing.
This follows from the same kind of reflection trick as Step 1. Figure 3 illustrates how the argument
works. Given r; < ry we can pick z € Sz(ﬁ)n NOCr,—r, (y) N Sptu. Since
2

I,

r,

(1-1)/2

FIGURE 3

Ty —7T r1+ 7
rtlly -zl =m+ 2— = 12

2 2
we have
8C,, (y) N SY) C OC ryary (2) NS (20)
And as
C10s (2) N S cac,, (y) NSy, (21)

So we have monotonicity because by (20), (21) and measure symmetry we have
e (8&1 (y)msgy)) < uﬂm (‘90““2 (2 )”Si(Z))

- pwz (0Cnsm ()N 85,)
< u (8C,, () nsY,)
= (9C,, () NS

Now since y € G it is clear that u (Si(y) NCq (y)) > 0 for any a > 0 and so we know that

fi(y) (r) = (acr (y) N Sl(y)) > 0 for all r > 0.

Step 8: s > 1.

Suppose not, so 0 < s < 1, then since p,. (OC, (y)) = sr®~! the measure on the boundary tends
to infinity as r — 0. So for some small 0 < 79 < oo and some i € {1,2,...2n} we must have

1 (r0) = piny (9Cw, (1) N1 S > 25

but as fz.(y) (1) < s so this contradicts monotonicity.
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Step 4: Lipschitzness.

We know that for a.e. 7 >0
s—1

S A =T
k=1

Let ¢ (r) := £r°~!, so t is locally Lipschitz away from 0. So given r1 < 13

s s— s—
ORI 1 R D DR V) D DR/
ke{1,2,..n}\{i} ke{1,2,..n}\{i}
s s— s—
< 07—
= t(ry) —t(r) (22)

by monotonicity. O

7. MAIN PROPOSITION
Proposition 1. Given integer n > 2 and real number s € (0,2], if p is a symmetric s-uniform
measure on I, where either

e s is an integer and Sptu is supported on a purely unrectifiable s-set
e s is not an integer

then for u a.e. x € Sptu we can find a tangent measure v € Tan (u,x) such that Sptrv N Cy (0) is
contained in the graph of a 1-Lipschitz function from e; to (ex) for some k € {1,2,...n}.

Proof Suppose not, so we have some subset B C Sptu of positive u measure for which
Proposition 1 is false.
Let ', denote the set of graphs of 1-Lipschitz functions from ej- to (ex) for k € {1,2,...n}. Let
p1(A,B) :=sup{d(z,B) : z € A}, so this is half the Hausdorff metric.

Step 1:
We will show that for p a.e. € B and for every k € {1,2,...n}

inf {p1 (Sptr N Cy (0),GNCy(0)) : v € Tan (u,z) ,G € I'y,} > 0. (23)

Suppose not, then we must be able to find z € B such that Lemma 1 and Lemma 2 hold true
and for some k € {1,2,...n}

inf {p; (Sptr NC; (0),GNC1(0)) : v € Tan (u,z) ,G € T} = 0.
So for every m € IN we can find v, € Tan (i, z) and G,, € Ty such that
P1 (Sptlfm naoy (0) ,Gm NnCh (0)) < 27m7

thus Sptv,, NC; (0) C Ny-m (G, N C1 (0)). Now by Ascoli-Arzela Theorem we can find a subse-
quence such that G, NC; (0) converges in Hausdorff metric to GNC; (0) where G is a 1-Lipschitz
graph. Thus for any € we can find an N, € IN such that for all m > N,
Sptvg, NC1(0) C  No—im (Gi,, NC1(0))
C NAGNCL(0).

So by definition of tangent measure for every p € IN we can find r, > 0 such that

Te,rpp 1(C1(0)\Ny-» (G))

s
’f‘p

< 27P

To rpt 1
3
graph of a 1-Lipschitz function from e to (ey), contradiction. Thus we have shown (23) and

completed the Step 1.

Let v = lim,_, , v is a tangent measure of p at  and Sptv N C4 (0) is contained in the



A MARSTRAND TYPE THEOREM FOR MEASURES WITH CUBE DENSITY IN GENERAL DIMENSION 13

So pick some xy € B for which inequality (23) and Lemma 1, Lemma 2 hold true. Let

01 = inf {pl (SptrNC;1 (0),GNCL(0)) : v € Tan (u,x0) ,G € U Fk}.

k=1

We will prove some general properties about tangent measures v € Tan (u, xo).
Firstly note that by Lemma 2, for any v € Tan (u,z¢) if v1 € Tan (v, z) for some z € Sptr
then

inf {p1 (Sptri N C1(0),GNC1(0)) : G €y} > forall k€ {1,2,...n} (24)

Let €; > 0 be some small number depending on §; whose size will be determined later.

Step 2:
Given v € Tan (i, zg) we will show that for v a.e. z € Sptv

g0 052)

r—0 T

> € (25)

for any i € {1,2,...n}.
Suppose not and we can find subset By C Sptv such that for some i € {1,2,...n}

o (00 (8 Ut )

r—0 T

<€ (26)

for each ¢ € By. So we can extract some subset B3 C By of positive v measure such that for
some small number g; > 0

v(Cr@n (55 usi))

/raS

<€ VY re(0,01), z€ Bs. (27)
We will show that this implies
Cou (2) N (s<4 Sz(iif“)) NSptv =0 V z € Bs. (28)

21
2

Suppose not and we can pick a point x € B3 such that

Coy (z) N (S‘i(””"*“) U Si(_f’;:“)) N Sptv # 0

(3

then let 2 € Cey (z) N (5’2@’461) U S(i 461)) N Sptr and let r = ||z — z||. As we have
Care, (2) € Cor () 1 (S U SEY)

so we have v (Czr ()N (S me) S:ﬁ;l )) > (2r)% €, and this contradicts (27). Thus we have

established (28). Let x3 € B3 be a density point of Bs. Since from Lemma 14.5 [11] we know
that Tan (v, z3) = Tan (v p,,23). So any v1 € Tan (v, z3) has the property

(S(z Bl Sz(i:“ ) N Spty; = @ for all = € Spty;. (29)
Let K = P,. (Sptr1), we define a map g : K — (e;) by

9(z) =P (z).

i

From equation (29) it is clear that g is a well defined =) -Lipschitz map from K. Further

= )
more every point of Spty; lives in the graph of g, see figure 4. Now let h : e; — (e;) be defined

by
h(z) ::inf{g(y)-eiﬁ—%:yeff}e,

for any z € e;-. This is a )—LlpSChltZ map from e;- extending g, see Theorem 2.10.44. [4].

_(1 Be
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Ci

Ci+l
€i+5 Ci+2
Ci+4

Ci+3

FIGURE 4

Now assuming €; is small enough we can certainly find a 1-Lipschitz map T : eiL — (e;) such
that if we let G = {(21,...,T(z),...z,) : ¢ € Cy (0) Nej} then we have

p1 ({(z1,...,h(2),...20) 12 € C1 (0)Nej },G) <%1.

And so Sptr N C; (0) C Ns, (G), this contradicts (24) and so we have established (25).
2

Recall notation; any point satisfying inequality (25) is known as a point having square-cone
density (see (5)). Also note that any v € Tan (u, xo) has to be such that

v (as,?z’) ) (30)

fori € {1,2,...2n}, € Spty, since if this was not true then we could take a tangent measure vy

in a density point of the set BSZ@ NSptr. So Sptyy; would be contained in an (n — 1)-plane that is

the image of a 1-Lipschitz map from some e;- for some k € {1,2,...2n}, which contradicts (24).
Now we will break off the proof of Proposition 1 to establish some more properties of measures
v € Tan (u, o). The coming Lemmas will rely heavily on equations (25) and (30). The first thing
we should note however is that by (25) and (30), measure v satisfies the hypotheses of Lemma
3, so we know from this point on (in the proof of Proposition 1) that s € [1,2].

7.1. Properties of measures in Tan (y, zo).

Lemma 6. If v € Tan (u,z¢) with the property v (Si(o)) = 0 then we can find v € Tan (,0) and
x € Sptv such that:

o The function fi(m) (r) = vy (BCT ()N Si(gc)) is monotonic non-decreasing and bounded

with the property that fl-(z) (r) >0 for all r > 0.
o There exist some large number R > 0 and some small number ¥ > 0 such that

Ny (981 V0SE),)) N A (e, R, 00) N Sptw = 0.

To avoid having to keep track of constants we make the assumption that any 7 € Tan (i, zo)
is an s-uniform measure with the controlled component condition (i.e. not just a scalar multiple
of such a measure)

Step 1: First we find a tangent measure with convenient properties.
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Let
B = {j €{1,2,...n}: ﬁ(sj.‘” NC, (0)) =0 for some a > 0}. (31)

If we take any 7 € Tan (#,0) then we will have 7, (SJ(O)) =0 for every j € B;. So let
By = {j €{1,2,...n}\By : in (sj.‘” A C (0)) =0 for some a > 0}. (32)

Any s € Tan (74,0) will have the property (S](-O)) = 0 for every j € By U By. Recall, by

Lemma 2 we know v» € Tan (7,0). We can keep doing this until we have a v € Tan (#,0) and a
set B C {1,2,...n} such that

oV (SJ(O)) = 0 for every j € B,
7 (S,(co) NCqy (0)) > 0 for all @ > 0 whenever k € {1,2,...n}\B.

If we have that B = {1,2,...n} then by measure symmetry we have v (S](-O) U Sj(?n) = 0 for all

j€{1,2,...n} and so v (R") = 0, contradiction. So we know B is a proper subset of {1,2,...n}.
Let {i1,42,...ip} be an ordering of the set {1,2,...n}\B, i; being the smallest number in

this set, i5 the second smallest and so on.

: © a(e1,05)
Pick z; € SZ-1 N Sptr such that d; := fl > 0. We know we can find such an z;

because v (851(10)) = 0. So we have Cy, (0) C Sl(fcj_z1 Next pick 22 € Cq, (0) N Sg)) N Sptw for

d(w2,05(2)
D)

which ds = > 0. The situation is as shown in Figure 5. We can continue picking
/ 2di
2 -
FIGURE 5
points
z € Cq,_, (0) Nint (SZ-(E)) N Sptr (33)

until we finally have a point z, € int (Si(f)) N Sptr with the property that z, € int (SZ(:_’;_L) for
ke{l,2,...p—1}.
So for some small € > 0 we have

Cse (z,) C int (s§f>) , (34)

Cye (zp) C int (s“k’ ) for k€ {1,2,...p— 1}. (35)

ik+n
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We must be able to find z € C; (zp) such that v (Si(w) NC: (m)) > 0 by square cone density, (i.e.
inequality (25)).

Step 2: We will show the function f*) is bounded.
Note that since z € int (S(f)), for all large enough r > ||z|| we have that

i

8CT_||m|| 0)n S(O)

ip+n

C 9C, () N S, (36)
Secondly note that since from (35) we know that x € int (S(”) ) for k € {1,2,...p— 1} thus

irtn
Ty € int (SZ(:)) for all k € {1,2,...p— 1} and we have
OC,s o) (z1) N S C OC, () N ST, (37)
As (from (33) and (34)) zy, € SZ-(E) for all k € {1,2,...p} and so we have that for all large enough
s> |||
C 9C, (zx) N S\ (38)

r+n-

Let k € {1,2,...p — 1}. Working backwards we see (38) implies f(:_f_)n (s) > f(l?_),_n (s — ||z]]) for

2 2

OCs_ |z, (0) N S

ik+n

all large enough s > 0. And (37) implies fi(:) (r) > fi(;’c) (r — ||z — zx]|) for large enough r > 0.

Recall that (by measure symmetry) fi(:”’“) = f(z’“)

in+ns Dutting these in equalities together gives us
that for each k € {1,2,...p—1}

1) 2 £ = el = Nl — ) (39)
for all large enough r > 0. Finally by (36), for all large enough r > 0
T @) > £i00 (r = ). (40)

Let 3 > 0 be some number bigger than ||z|| and max {||zx|| + ||z — zx|| : k € {1,2,...p— 1}}. By
monotonicity and measure symmetry and equations (39), (40) we have that for all k € {1,2,...p}
and for all large enough r > 0

50 > 190 -p). (41)

Now as

srel pl® (0C (7)) <= ()
9 = 9 = kz_:l fk (’f‘)

and clearly i & {i1,42,...9p} (recall D (SZ(O)) = 0 and the way we arrived at {i1,i2,...49p} from
(31) and (32)) so by using (41) we have

(z) - 5T (2)
o= e Y /0
ke{1,2,..n}\{i}
< Zp:f(x)( )
= 2 i, \T
k=1
(41)  gps—1 P )
< — ; - 0). 42
< X (42)

By the way we arrived at the set {i : k = 1,2,...p} we have

(0) -
2 (0) _ Uep (aC(r—B) (0)) _s(r— B)° !
D L) (r=8)= = :
2 2
k=1
Now for r > 1+ 3 since (recall v € Tan (u, z¢) satisfies the hypotheses of Lemma 3) s € [1,2] we
have that £ (rs—l —(r— ﬂ)“) < 58
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So applying this to (42) we have

<t (43)

wlm

for all large enough r > 0.

Step 3: We will show that for some small 8 > 0 for sufficiently large R > 0 we have

Ny (851-(9”)) N A (z,R,00) N Sptr = {.

Since v (Sliz) NC: (m)) > 0 we can pick z; € int (S ) N C; (x) N Sptr and by measure
symmetry we can also pick a point zy € int (Sz(in) N C: () N Sptr. We can assume z; and
To are points for which the functions fi(ml) and fi“) are monotonic non-decreasing and locally
Lipschitz away from 0. Let ¥; := d (xl,as“”)) and 9 1= d (;cg,asl@n). Since f*) = an i
bounded and fl_,_n (r) < fl(fL (r + ||z2 — z||) we know fl_ﬁ) fi(“) is bounded. Just as easily we
can observe fi( is bounded. So let ay := sup {fi( 2 (r):r> 0}, Qg = sup {fi(“) (r):r> 0}

and a := sup {fi(w) (r):r> O}. Firstly we want to show as < a. Suppose not, let § = as — a.

e -x ||

FIGURE 6
We can find an r > 0 such that f(“) (r) > as — §. See figure 6. So and since 9C; (z2) N Slfn
OC, 4 jjo—as| () N Sl+n by measure symmetry

O+ e —al) > f22)
f(m)

(r)
(r)
0

> Qs — —.
279

Hence by measure symmetry fi(w) (r +||z2 — z||) > a2—$ > «, contradiction. So we have as < a.

Since z € Si(“) so 0C, (z) N Si(m) C OC, 4 ||o—za|| (T2) N Sl-(m) we can argue in exactly the same
way to show as > «, thus as = a. With an identical argument we can see that a; = a. So we
have a = a; = as.

Let 9 = M. We can find R > 0 such that fi(zl) (£)>a- 1954—_1. Now suppose we had

some point z € A (z, R,00) N Ny (BSZ-(m)) N Sptr then we could fit the cube

Co () (PN ) na (500
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SO
/Amnz—m||—19,||z—x2||+19> vy (0Cy (@) 0 (S7\S[ ) ) 2 0"

So we must be able to find a point p € [||z — z2|| — 9, ||z — 22|| + V] such that
. o ﬂs—l
v, (acp (z2) N (s,? NSt >)) > -
Now v, (9C, (w2) 0 (SEN\SI) ) = 152 () = £ (0 = llas = wal)). So

120 = 1 @l =) + v, (96 (@) 0 (S\s())

ﬂs—l 05—1
> —
> a+ 9 1
s—1
= o+ 1 s

contradiction.
So we have Ny (85-(””)) NA (z,R,00)NSptr = . For identical reasons we have Ny (asfﬁ)n)

(3

A(z,R,00)NSptry =0. O

Lemma 7. There can be no v € Tan (u,xo) with the property that v (SZ(O)) = 0 for some
i€{1,2,...2n}.

Proof

Suppose not, and so we have 7 € Tan (u, xo) with & (Sl-(o)) = 0. We know by Lemma 6 that

we can find v € Tan (7,0) and x € Sptr such that
e The function fi(z) (r) ==uv, (BCT ()N Si(w)) is monotonic non-decreasing and bounded

with the property that f*) (r) > 0 for all r > 0.
e There exists some large number R > ||z|| and some small number 9 > 0 such that

Ny ((as,? U asl_?n)) N A (z, R, 00) N Sptw = 0. (44)

Since fz.(m) (s) > 0 for all s > 0 by Lemma 5 we can pick some point y € A (z,3R,00) N
int (SZ-(””)) N Sptr for which the hypothesis of Lemma 5 are satisfied (recall this follows from (25)

and (30)). And so as y has the property that fj(y) is a positive non-decreasing locally Lipschitz

function for every j € {1,2,...n}. Soin particular v (SJ(.y) NnCy (y)) > Oforeveryj € {1,2,...n}
and every r > 0.
Now pick the j € {1,2,...2n}\ {i,i + n} for which y - e; > « - e;. For some small gy € (0, %)

we can pick some z; € int (Sl(Jrn) N Cy, (y) N Sptr such that the function fj(m) is Lipschitz

monotonic non-decreasing and szl) (s) > 0 for all s > 0, assuming we choose o small enough

we also have z; € S\*)
We will pick a chain of points crawling forward from z; in direction e; in the obvious way.

Firstly we pick 2o € A (zl, o 4) S(Z1 NSptr (using the fact that f; (z1) (s) > 0 for all s > 0) and
we can assume the point zo we picked is such that f (2) i positive monotonic non-decreasing.

So we can use this to pick a point z3 € A (22,%,%2) N S *2) A Sptw with the property that f(z3
is positive monotonic non-decreasing. In this way we bulld up a sequence of points (z,) Where
Zntt € A (20, 2,9)N S; (*2) for all n € IN, see figure 7. We will show that

2n €S ¥nelN. (45)
Firstly recall that we know 2; € Si(m). We also know z;, € Sj(zl), consider the following expression

(zk —m)-ej = (2k—21) €+ (21—y) €+ (y—2z) e
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KoL

FIiGURE 7

Case 1: (2, — 21) - €; > 2, since |[z; — y|| is small and (y — ) - ¢; > 0 we have that z; €

A(m,%,oo).

) 3R (21)
Case 2: (25 — 21)-ej < %5* since z, € S

we have that ||z — 21| < 22 and thus by smallness
of ||21 — y|| we have [[zx — y|| < ||z, — 21| + |lz1 — yl| < & and so since ||z — y|| > 3R we have
Iz = @/l > lle = yll = llzx = yll > 5. Thus

zr €A <x, ?, oo> (46)

for all £ € IN.

Recall; we want to show (45). Now let m € IN be the first number such that z,41 ¢
S S0 2, € S and as [lzm — zmia]l < 2 so d(zm,asf)) < 2. And thus by (46)
Ny ((851@ U asffn)) N A(z,R,00) N Sptr # () which contradicts (44). So we have shown
(45).

Now recall also that for each k € IN we know z; € S](-Z’“_l) NnA (zk,l, g, %) and so z, €
A (zl,kg, oo). So we know

15
ek — @) -er 2 Jlzg = all > [lzill = llzll 2 1z = 21ll = llza]l = lJell = 00 ask =00 (47)

Now recall z; € int (Sl(fi)n) N Sptv so let o1 :=d (zl, S.(y))7 since z;, € 51(21) we have

(3

d (zk, S.(y)) > 0 (48)

(3

for all £ € IN. Let 0 = min {g, Z-1. So by (44), (45), (46) and (48) we know the set {z; : k > 1}
are trapped in SZ-(””)\SZ.(y) and stay distance o away from the boundaries 852@ and BSZ-(””).

We also know fi(gc) is bounded and monotonic (recall, we obtained tangent measure v by using
Lemma 6) and so let Ly := lim, 00 ) (r). Since y € S\*) the function f*) is also bounded.

And as we have argued before at the end of Lemma 6 we have that lim, fi(y) (r) = L.
Now we can take some r¢ > 0 such that
s—1 s—1

fi(m) (r)>L; — z and fi(y) (r)>L; — 1




20 ANDREW LORENT

for all r € (rp,00). And by (47) we can pick some ¢ € IN such that (z; — x) - €; > 2rg. Now as
already noted by (44), (45), (46) and (48) we know
Cy (29) C (S-(w)\SZ(y)) NA(x,(zg —x)-€;,—0,(2g —x) - e;+0),

2
SO ( )
z2g—T)-eito
[ (oo () o
Thus there must exist some s € ((Zq —x)-e; — o, (zq — 2) - e; + o) such that

s—1

Vs (acs ()N (s§w>\s§y>)) > UT

However as
1 (5) = £ (s = (g = 2) - e0) = v, (0C, (1) 0 (SE\8))

we have that
s—1

) 2 T4 =y =) -e)

contradiction. O

Remark. The proof of Proposition 1 now follows if we can show the existence of some tangent
measure ¥ € Tan (u, o) with the property that » (Sl.(o)) = 0. This is a consequence of the results
of the next section.

8. STRENGTHENED TOUCHING POINT ARGUMENTS

The results and the methods of this section are basically a reworking of the methods already
used in [6] (for entirely the same purpose, in [2_) and [7]. As such there is essentially nothing
in this section that can be said to be original. However for completeness we include most of the
necessary details.

The following lemma is a co-dimension (n — 2) version of a result that was first proved for
2-sets in IR? in [6] Lemma 14 and for (n — 1) sets in IR" in [7] Lemma 1.

Since the support of the measures we deal with are either (n — 1)-unrectifiable or of dimension
s < n—1 we know from the the projection theorems of Federer and Marstrand that the projection
of our set onto almost any choice of (n — 1) subspace will have zero (n — 1) Lebesgue measure.
Roughly speaking, what the coming lemma says is that the complement of the projection of this
set can not have big holes inside it. To put it another way, having zero projection implies that we
can “fill” the space with many parallel cylinders running up through the complement of our set.
Lemma 8 says that (so long as we are on a sufficiently small scale) the diameters of the cylinders
can not be too big.

The point of the lemma is the following: In [2] and all subsequent papers in the field one of
the basic methods has been so called “touching point arguments” which establish the existence
of a tangent measure (to a measure with positive finite density in Euclidean space) on one side
of a half space. There is no way to use this fact to show that Sptu is emptied out from one of
the sectors Sj(z) (where € Sptu) because it is easy to see there exists an (n — 1) plane cutting
through all the sectors of a cube centered on z. Only when s = 2 is this not the case. And thus
if we project the measure onto a 2-dimensional subspace we can hope to empty a sector.

In Euclidean space the standard method is to use the fact that for any point = in the support
of the measure and for any r > 0, in the ball B, (z) there must be a sub-ball of diameter Ar
which does not intersect any point of the support. The sub-ball is expanded until it touches the
first point of the subset of the support of the measure which (arguing by contradiction) has the
property that it is (quantitatively) always onto both sides of any half-space. Assuming z is a
density point of this subset and the scale is small enough we have a contradiction.
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In our case, when we expand the empty cylinders it may turn out that the first point of the
subset they touch is at the very top of the cube C; (x) (hence any small cube centered on this
point will be half outside C, (z)) and as such we can not use the fact that = is a density point.
The situation is salvaged however if the empty cylinders can not be too big because then there
will be many small sub-cubes at the boundary of the cube C, (). See figure 8, and as we have
very sharp estimates for the measure on the boundary of the cube, we get a contradiction.

@g%@g@@
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Lemma 8. Given integer n > 3, let s € (0,2]. Given an A.D. s-set Sy C R" and a closed subset
S1 C So with the property that there exists 2-plane V and number ro > 0 such that for some
small A\; > 0 and p > 0 we have
H* (B, (2) N X* (2,6,p) N So)
/rS
forallp € VNS" ! and all x € Sy, r € (0,79). Then we can find constants Ii;‘l >0 and 19;‘1 >0
such that the following statement is true:

> A\ (49)

Let K (z,V,a) = P;l (By () NV) denote the cylinder. If d € (0,79) is such that
H* (Baa (2) \S1) _
ds -
then for all z € (V+z)NK (:c, V, nz‘ld) we have that

(50)

K (z, V,e%ﬁ;‘ld) N.S1 N Bag (x) # 0.

Proof

To simplify notation, let p := Hfso. We will assume that V' = (e1,e2) (if not then we just
define everything in terms of a different co-ordinate system {e;,es,...€,} where V = (g1,¢€2)).

Step 1:

Let a € OK (z,V,r) and W, denote the (n — 1) tangent plane of the boundary of the cylinder
at point a, let n, € W;- N .S"~! be the unit normal pointing “inwards” towards the center of the
cylinder. We will show there exists a constant £, > 0 such that

X*(a,n4,p) N Be,, (a) C K (2,V,r).
As Py (a) € 0K (z,V,r) NV it can be easily seen that there exists some constant £, > 0 such

that
Py (X% (a,nq,p) N Be,, (a)) C B, ()N V.
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Thus X+ (a,nq,p) N Be,, (a) C Pt (B () NV) = K (z,V,7).

Step 2:
Now suppose a € OK (z,V,r) and n, € S 1 NV such that
X" (a,nq,p) N Be,, (a) C K (z,V,r)

and we have that

A
i (Ber () N X (a,m0,0) N181) > 5 (67)° (51)
we will show there exists some number C;‘l > 0 with the property that
Xt (a,nq,p) VK (2,V, (1= ") r) NSy # 0. (52)
By the fact the Sy is A.D. we have some constant 35, > 0 such that
A s
i (XF (@m0, p) NV A0, By, &) N 61) 2 T (6r)" (53)

Now it should be clear that
Py (X% (a,nq,p) N A(a,Br,7,&r)) C Py (K (2,V, 1))
and in fact there exits some constant Cg‘l > 0 (letting d denote Hausdorff metric) such that
dg (PV (XJr (a,ng,p) N A(a, By, 1, §pr)) ,OPy (K (z,V, r))) > (Z‘lr.
Hence from (53) we have
Xt (a,nq,p) N Be,p () NK (z,V, (1 - ;‘1) r) NSy # 0.
Now we define the slab
H(z,V,a) ={yeR":|(y—2)-ej| <a, foreachi=3,4,...n}.
Let

k .
dh = Ernrd(1— oy’ (54)
j=0

Define .
Ty = H(zV,0) N K (z V,(1-¢) Hgld) . (55)

And define the cone as follows.

U (2, V, k)t d) == {y € Cq (2) : |Pv (y — 2)| < K" |Preyy (y — (2 + dey))| for each k € {3,...n}}.

p?

And define
U (2,V,k),d) == {y € Cq(2) : |Pv (y — 2)| < Ii;‘l |P<ek> (y — (2 — dek))| for each k € {3,...n}}.

p )
Finally define
LG (z,V, /@Z‘l,d) = (z,V, /@Z‘l,d) N o (z,V, /@Z‘l,d) .
Step 3:
We will show -
U (z,V,k),d) c |JT; (56)

J p?

To start with note that
U (2,V,6)",d) CCq(2) C{yeR": |(y—2)-e;| <dfori=3,4,..n}.

p

So for any y € ¥ (z,V, ﬁz‘l,d) N H (z,V,¢o) we have for any k € {3,...n}
[Py (y — 2)| < &) min {|Pre,y (y — (2 + dex))|, | Peyy (y — (z — deg)) |} < K)1d

thus (recall definition (55))

)

¥ (z,V, K1 d) NH (z,V,¢o) C Lo.

P )
We will argue by induction, see figure 9. Suppose we have that
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k
U (z,V,k)',d) N H (2,V,¢1) C |J T (57)
j=0

Note that for ag € (0,d) we have (recall, V = (e1,e2))

(z+ao(es+es+...eq) +V)NO¥ (2,V, k)", d)

yeR" : y-ep, =(z+ap(es+...ey)) ex, forallk; € {3,...n} and
= |Py (y — 2)| = k) ‘P@k)( (z+dek2))‘ for some ks € {3,...n}

:{yEIR”:y-ek:z-ek+a0f0rk6{3,4,...n}, |Pv(y—z)|:/<;2‘1|a0—d|} (58)

which is the boundary of a circle of radius /<;p (d — ap) in the 2-plane z+ag (es + €4 +...e,)+ V.
In the same way, for ay € (—d,0) we have

(z+a1(es+es+... )+V)DB\I’(Z V,Kf,‘l,d)

:{yEIR":y-ek:z-ek+a1 for k € {3,4,...n}, |Pv(y—z)|:/-@;‘1 | +d|}(59)

which is the boundary of a circle radius /-@>‘1 (d = |a1|) in the 2-plane z+ay (e3 +es + ... ep)+ V.
Now let 9541 be the radius of the two congruent spheres given by 0¥ (z V, Ii;‘ , d) ﬁaH (z,V, o).
By equations (58), (59) we have that

A A
'19k+1 = Kpld—lﬁl(ﬁk

Kytd — K ng Md (1 )

k .
— )\1d é-p Z '7 . (60)

Jj=0
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And note

zk: CAI = N (1_ (1_431)“1)'
P

=0

A1
Recall k' = Cg—p so putting the above expression into (60) we get

Vg1 = Ii;‘ld(l [f‘l)k—H

which is exactly the width of the cylinder I'y41. Now as ¥4 is the biggest radius of the spheres
given by 1 slices of

ov (z V. k) d) N(H (z,V,bp+1) \H (2,V, 1)) -

) p )
So we know that ¥ (z V, Ii;‘l, ) N(H (z,V,dp+1) \H (2,V, ¢)) is “thin” enough to fit into Iy
As it is also, by definition, short enough to fit into ['y4;. So by inductive assumption (57) we

have
k+1

(Z Vaﬁp ’ )mH(z7V7¢k+l) - U FJ
7j=0

This establishes Step 3.

Step 4:

Recall z € V + & such that ¥ (z,V, k)", d) C Bag ().

Suppose\Il(z V, kM d)ﬂSl#@ Let kl—max{szkﬂ\ll(z V, kM d)ﬂSl#@}. We will

) 14 ) ) 14 )
show k; is sufficiently big so that A; ( C)‘l) slkat1) (fp/if,‘ld)s < 2ed®.
We argue by contradiction and assume otherwise, so

M (1= Y (g rdd)” > 2ede. (61)

We know that T, 41 N (2,V,k)',d) NSy = 0. Let y1 € D, N (2,V,k)1,d) NSy, let h =

|Pv (y1 — z)| so by definition of Ty, (see (55)) we know that
e (1= wrd, (1= )" ra). (62)
Now y1 € ¥ (2,V,k)*,d) C Bayg(z) and as hé, < &, (1 - (z‘l)kl rytd=(0 (1-¢)d<d
X* (y1,791,p) N Brg, (y1) € Ba(y1) C Baa(2) . (63)
And by the fact that y; € S1 (recall (49)) we know that

1 (Bne, (y1) N X (y1,m4,,p)) > A1 (§,h)°.

By using (61), (62) we know A\; (§,h)° > 2ed® and so from (63) and the density estimate (50) we
know that we have

1 (Bre, (y1) N X (y1,my,,p) N S1) > A (§h)° — ed®
A s
> 5 (&h)

and so by equations (51), (52) we can pick y2 € X (y1,ny,,p) N Bre, (y1) N Sy such that

\Y

pe € K (2,V, (1= Q) h) C K (2,V, (1= Q)" w)a). (64)
Now y; € I¢ (z V, Iizl,d) which means for each j € {3,4,...n} we have
= |Pv (y1 — 2)| < &)Y |Preyy (1 — (2 + dey))| -
Thus from (64)

[Py (y2 = 2)| < (1= ) h < (L= () w) [Preyy (91 — (2 + dey)] - (65)
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And since Y2 € Bhé,, (yl)
|Pe,y (2 — (2 + dey))| |Pre;y (1 — (2 + dej))| — R,

|Pre;y (y1 — (2 + dej))| — &6t | Preyy (1 — (2 + de;))|

|Peyy (1 — (2 +dej))| (1= (1) - (66)

Putting (65) and (66) together we have for each j € {3,4,...n}

[Py (y2 — 2)| < 6)" | Preyy (y2 — (2 + dej))| -

v v

So

Y2 € U (2,V, n;‘l,d) .

In the same way y; € ¥¢ (z, V, Iizl,d) implies
y2 € 9 (2,V,K)1,d) .
Hence we have that
y2 €V (2,V,m)".d).
Now from (56) we know that (y» — 2) is “short” enough (i.e. |(y2 — 2) - x| is small enough for
each k € {3,4,...n}) and from (64) we know (y2 — z) “thin” enough (i.e. |Py (y2 — 2)| is small
enough) for (recall the definition of Iy, see (55))

yQE‘Il(Z,V,Ii;\l,d)ﬂ U Fj NSy
j=k1+1

thus contradicting the maximality of k;.
So we have established Step 4 and thus we know (recall (61)) that

)\1 (1 _Cp)\l)s(k1+l) (

Let 0 = (1 — C‘),‘l)kl Iizld recall, this is the width of cylinder I'y,. So

Eorntd)” < 2ed”. (67)

2ed® > N (1= 0) Y (Grhid)" = a (1= ) 6o,
Thus )

(2¢)= d .
A (1-6") &

So we have shown that for any z € V + x such that ¥ (z, V, Ii;‘l , d) C Bug (z) if we know that

U (2,V,6)0,d) NS # 0

p?

6 <

then
1

(2¢) d
A (1-60)e
Since we know that for all z € (V 4+ 2) N K (,V,s)'d) we have
rev (z,V KA d)

? p

K|=2V, N Bag (z) NSy £ 0.

1
and letting 9 = ——2*—— completes the proof. [
)‘18 (17Cpl)£p
Lemma 9. Let n > 3 be integer and let s € (0,2]. Given s-uniform measure p on I (Sptu is
a purely unrectifiable in the case s =2). For any p > 0 for p a.e. x € Sptu we have

lim inf i (5‘](.”””’) ne (m))

r—0 rs

=0,

for some j € {1,2,...2n}.
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Proof As the proof is basically identical to the proof of Lemma 15 [6] we only sketch the
arguments.
Suppose for some p > 0 and some subset B C Spty we have that

1 (9§W> ne, (m)) > A (68)

forall j € {1,2,n+1,n+ 2}, z € B and r € (0,r¢) where g > 0 is some small number. Assume
B is compact. Let M > 0 be some large number such that B C C (0). Let S := Cps (0)NSptpu.
Note that it is immediate from Theorem 6.9 [11] that v := Hg is an A.D. s-measure. Infact by
Theorem 6.9. there exist constants 0 < ¢; < ¢2 < oo such that

cip (A) <v(A4) < cop(A) (69)

for any A C IR". Let € > 0 be very small and z be a density point of B. Let r > 0 be such that
H? (Cgr (1'0) \B) < erd,

Let V = (e1,e2). We know that the orthogonal projection of B onto a subspace arbitrarily
close to V' has zero Lebesgue measure. As before, to simplify notation we assume the projection
onto V has zero Lebesgue measure. So we have many empty cylinders (parallel to V+) running
up through our cube C.

By (68), (69) we can apply Lemma 8 and so we know that the cylinders inside K (aco, v, H;‘T) N

C, (zo) have width less than Sxesr and thus there are approximately P :=

2
(f’k’) 2] of them.
(c582)

See figure 8. Now we expand these cylinders until they touch the first point of our set B, call
this point z. Since for some j € {1,2,n+ 1,n + 2}, gj(z,p) (with a reasonable amount of Spty in
it) must stick inside our cylinder, so most of these points must be very close to the boundary of
C.

So in fact we must have (roughly) P disjoint cubes
{C/BXG%"’ (z1)-. Cﬁxe%r (ZP)} < CT<1+26%6A) (o) \C’"(l_%%ﬁx) (o)

and thus
N2
() s€(Bar)” < Pe(Bar)’

2 (e%ﬁx)
((1 + QG%ﬂ)\)S — (1 — 26%@\)8) r®

as s € (0,2] this gives a contradiction for small enough € > 0.
Thus for pu a.e. x € Sptu

IN

&(z,p)
wl S NGy (x)
lim inf ( ! ) =0
r—0 rs

for some j € {1,2,n+ 1,n + 2}.

9. PROPOSITION 1 CONTINUED.

Recall, we are arguing by contradiction and have established in Lemmas 6, 7 some strong
properties of tangent measures v € Tan (u,zo). All that remains for us to get a contradiction

is to show that there exists A € Tan (p,zo) such that A (SZ(O)) = 0. So to begin with take

(arbitrary) v € Tan (i, zo).
As we know from Lemma 9 so for v a.e.  we can find a sequence r,, — 0 such that

v (s]“) ne,, (@)

s
Tn

-0 (70)
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u(sj(.“”)nom (w))

s
T"VL

as n — 0o. This must imply that — 0 because otherwise the tangent measure

U:=lim,_ o M will be such that o (85](-0)) > 0, which we have already shown is impossible
for measures in Tan (1, o) (i.e. because it contradicts (24)). Taking tangent measure A :=
lim,, 00 Tz—;:L” we have that A S](-O)) = 0. By Lemma 2 )\ € Tan (u, zo) and thus the existence
of A contradicts Lemma 7. This completes the proof of Proposition 1. [

10. PROOF OF THEOREM 3 CONTINUED.

10.1. Intermediate Lemma.
Lemma 10. Given an s-uniform measure p on I, s € {1,2,...n — 1} and

Sptu C {f(t)e; +t:t€ei}
where f : e;x — R is 1-Lipschitz. Letv := P,. 4H. Suppose for some point a € Sptv we have that
Tan (v,a) NG (s,n — 1) # 0
then for some q € Sptu
Tan (1, q) NG (s,n) # 0.
Proof
First some notation. It may help to distinguish between cubes in I". and cubes in e;-. So we
will let C,. (z) denote the cube in subspace ej of radius 7 > 0 centered at = € ej-.
Let b := f (a) e; + a. Recall notation; T, (z) := #=%. Let r, — 0 be a sequence such that

T,
lim % — g, (71)
n— 00 Ty

for some V' € G (s,n — 1), (recall explanation given at the start of section 2.2).

Step 1:
We will prove we can find some subsequence (rg, ) of (r,) such that measure

~ . Tb,rkn ﬁ:u’
o= Jlim e (72)

is such that Spta N P;f (C’l (0)) is contained in the graph of a 1-Lipschitz function.
To begin with we will show that
Im 1= Tbmm ({f (t) e;+t:te GZL})

is a 1-Lipschitz graph. Take z,y € {f (t)e;+t:te ef-}. Let x; := x - e;, y; := y - ;. Note that
since |z; — yi| < ||P.x (z —y) || we have

€T .
|(Tb77"m (.CL') - Tbﬂ“m (y)) '6i| = = ﬂ
'm T'm
1
< —lPr =yl
L Y
Tm T
_ el B -
B Zitr yita
Tm o
Lo Yn
= 1Bt (Tor, @) = Py T, @D (73)

Its easy to see that P.. (J,,) = ei. Define G, : e — IR by

G () = (Pe:il ()N Jm) -e;
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and by (73) we know that G, is 1-Lipschitz. So by Ascoli-Azerla we can find a subsequence (I,,)

of (k) such that G, converges uniformly on P;f (C’l (0)) to G, for some 1-Lipschitz function
G. ’

And since (I,,,) is a subsequence of (k)

Ty, 410
LR LN L. (74)

,
Note that = € SptTy ., 4 is equivalent to the fact that
Ty, g (Be (%)) = p(rnBe (x) +b) >0 Ve >0,
which is equivalent to
xr, +b= Tbjrln (x) € Sptp.
Thus
SptTyr, spt = {Tp,r, (y) 1y € Sptpu} C J = {Gp (z)e; + 2 € €] }.

Since G, converge uniformly to G inside Pe__f ((:’1 (0)), for any € > 0 we can find M sufficiently
large so that

I 0P ((Z*1 (0)) C N, ({G(m) ei+z:zel) (0)})

for all m > M.
By definition of weak convergence, we have (recall (74))

Sptfin P! ((Z*1 (0)) C N, ({G (z)ei+a:C) (0)})
and as this is true for every € > 0 we have shown Step 1.
Step 2:

We will show that Sptan P,* (C‘l (0)) CP, (V).
Firstly by definition of weakltangent, for anyl € > 0 we have

. (Cr. (@) \Ner, (a+V))

n—00 rfl

=0.
Note that from the definition of measure v and the fact that P,. (a) = P,. (b)
v (Cr (@\Nop, (a+V)) = To, v (G2 (0)\N (V)

= Top, it (Pel1 (él (0) \ Ve (V)))

= Ty, :p (Pe__j (é1 (0)\ V. (V))). (75)
So
T (r (c1 O\N.(V)) . v (. (@) \N (a+V)) .

Thus (recall definition (72))
i (PZ (Cr@ V(1)) =0

for all € > 0. Hence we finally have
Sptjin P! (él (0)) c P! (é1 0)N V)
and we have shown Step 2.

Step 3:
We will show that for some point ¢ € Sptjz we have Tan (f1,¢) NG (s,n) # 0.
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Firstly note that by putting Step 1 and Step 2 together we have
Sptjin P! (él (0)) c {G@ei+w:zeer}nP ! (é1 0)N v)
= {G(x)eiﬁ—x:xECN'l(O)ﬂV}. (76)
By (71)
~ . T(lﬂ“ln tV _ s
U= nh_)rréo T = AHy. (77)

Let x € V, as before, from the definition of measure o

A2 eS = i (ée (m)) _ nlggo Tosm, ﬁ’;lsfée (m)) _ nlggo Tas, th (]}g (éf (5‘7))) ) (78)
So since P,1 (a) = P,1 (b) (recall definition (74))
) - D
- T v, 5l (ijf (C.@))
In
@ \oses.

Thus Sptji N P;f () #0. Now G : V — R is a 1-Lipschitz function from an s-dimensional

subspace to IR. So by Rademacher’s Theorem it is differentiable for L* a.e. z € V.
Now pick some point zg € VN Cy (0) for which G is differentiable at xo. Thus for any € > 0

we can find § > 0 such that for any z € V N Cs (x0) we have
|G (2) — G (z9) — DG (x0) - (2 — mo)| < €|z — o]
So }
G (2) € N5 (G (m0) — DG (x0) - (z — x0)) forall z € Cs (xo)NV.
Let W := {(DG (z9) - 2)e; + z: z € V}, W is an s dimensional subspace. So we have

{(G@ei+2):2eVNCs(a0)} € Nes (G (wo) € +0) + W),
And by (76) this implies
SptjiN Pt (Cs (0)) © Nes (G (w0) €5+ 20) + W).
Now as € > 0 was arbitrary, by the same argument we can find a sequence d,, — 0 such that
Sptji N Pt (Cs, (20)) € N,a-n (G (o) ei + o) + W)

T

Let zo = Pe:f (o) N {G (y)e; 1 y € e}, and let X :=limy, 00 %’m So we have

SptA C W € G (s,n).
As by Lemma 2, A € Tan (fi, z0) C Tan (i, b) we have completed the proof of the lemma. O

10.2. Proof of Theorem. Our plan is to use Proposition 1 to repeatedly reduce the dimension
of the ambient space in which the measure lives.

Recall, we are arguing by contradiction, so assuming our theorem is false we have an s-
uniform measure g in I that satisfies the controlled complement condition (recall definition (6),
(7)) which in the case where s is an integer has no weak s-tangents at any point of its support.

It is worth noting that the only results we have at our disposal to prove the theorem are
Lemmas 1, 2, 3 and Proposition 1.

So firstly by Lemma 3 we have that p is symmetric and by Proposition 1 for p a.e. € Sptu
we can find a tangent measure fi € Tan (u, z) such that SptNCy (0) is contained in the graph of
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a 1-Lipschitz function g; : ef — (ey,) for some k € {1,2,...n}. In addition by Lemma 1 we know
that f1 is s-uniform and satisfies the controlled complement condition. Let v; € Tan (0, 1), 7 is
again s-uniform with the controlled complement condition and as we have seen before in Step 1
of Lemma 10 its entire support contained in a graph of a 1-Lipschitz function h; : eé- — (ex).
Finally define a measure p; on e,{; by p1 := vi4p , , i.e. for any subset A C ekJ-

‘k

w (4) =i (P1(4)).

k

See figure 10. Its clear that Sptyy = F,. (Sptr1). Again to avoid confusion we will let C, (x)

Ci

I

€i+n

Vi

)

Figure 10

denote the cube in subspace ej radius 7 centered at = € ej. Now for any x € Sptu; let

Y= P;l (z) N'Sptry, we have that
k

H1 (CN'r (55)) = n (Pe__kLl (ér (55)))
= 11 (Cr(y),

by the fact that Sptr is contained in the graph of h;.

Thus g1 is an s-uniform measure in e, i.e. an s-uniform measure on [y ~!. We can repeatedly

make this reduction until either:

We have an s-uniform measure fi on % for which
3y € Sptja with Tan (j1,9) N G (s,q) # 0. (79)

Or
We have an s-uniform measure ji on I2_. (80)

Note that if s is not an integer then the hypotheses of Proposition 1 are always satisfied and
hence we must have case (80). However let us argue first for s = 2.

Step 1:

So in either case, (79) or (80) we have a 2-uniform measure in some space, say 12 with weak
2-tangents. This measure is arrived at by a finite sequence of blow ups (i.e. taking tangent
measures) and projections down onto a subspaces.

Formally; for some m € IN we have a sequence measures py := u, Uz, - - - by, where for each
ke {2,3,...m} either

pr € Tan (pug—1,xr—1) for some zx_1 € Sptug_1
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or
pp = Pe_l_(k) yir—1 for some p (k) € {1,2,...n}.

Now suppose that (in fact this is the case but we do not need it) u,, = Pe;(m) ¢Mm—1 for some
p(m) € {1,2,...n} then by Lemma 10 we know that Sptu,,—1 has a point b € Sptu,,_1 such
that Tan (um—1,b) N G (2,p+ 1), i.e. it has a weak tangent.

If -1 € Tan(pm—2,Tm—2) for some z,,_2 € Sptu,—o then by Lemma 2 we have that
Tan (ftm—2, Tm—2) N G(2,p+1) # 0. And we can continue “pulling back” the weak tangent
until we reach measure p,, r which is not a tangent measure of the previous measure, i.e.
Wm—k = P, fhm—k—1 1. Here again we apply Lemma 10 to establish that there is a point

L
Cp(m—k)
¢ € Sptim—_g—1 such that Tan (um—r—1,¢) NG (2,p+2) # 0. And so we can continue, until we
finally have shown that there exists a point d € Sptu such that Tan (u,d) N G (2,n) # 0. So we
have a contradiction and for the case s = 2 the theorem is proved.

Step 2:

Now we will argue for s € (0,2). If s = 1 and we had case (79) we could argue as in Step 1
and establish a contradiction. So if s = 1 we only need to deal with case (80) which we will do
presently.

If s # 1 then only case (80) can occur (because as noted, the hypotheses of Proposition 1 are
always satisfied) so whether s = 1 or not we only need to deal with case (80).

We again push forward the measure, this time onto a 2-subspace. So we have an s-uniform
measure v in [2 . In this case we claim:
u(éj(.”"’)mcr(x))

For any p > 0, for v a.e. z € Sptr we have that liminf, poe = 0 for some

j€e{1,2,3,4}.

This follows from the most basic version of Besicovitch touching point argument. We will
sketch the details.

Suppose the claim was false to we have a closed set B C Sptv of positive v measure such that
for some p > 0 and some J§y > 0, 79 > 0 we have

v (SJ(.LP) nC, (:c)) > dor?

for all j € {1,2,3,4}, z € B, r € (0,79).

We note that for any ball B, (y) in IR?, if we have point z € 9B, (y) then for some j €
{1,2,3,4} we have g§z7p) N Cy,r (2) C B, (y) where A\, > 0 is some constant depending only on
p. Let € > 0 be some small number to be decided on later, we take a density point x € B and
some r € (0,79) such that

v(Cy (z)\B) < er®.

Now let y € Cx () \Sptv, take number a > 0 such that B, (y) C C; (x) \B and 0B, (y) C

C, (z) N B # 0. Pick z € 0B, (y) N B. So for some j € {1,2,3,4} we have

S9N Cy,a (2) C Ba (y).
Since we have Sptv N SJ(.Z”’) N Ch,a (2) C Sptr\B we have
So(Aa)® < v (S*j(”) NCha (z))
< e (81)

1
So we have a < (%) ’ %+ and so in this way we can show all the holes in C» (z) N B are
P

very small compared to r, so we can "fill up” the 2-dimensional square C: with points of
1
€

Sptr. Formally; let ¢ = (%); ﬁ for every y € C: we can find a point z, € C;(y) N B.

Lin fact we do not “take a tangent measure” more than once “in between” projections down onto subspaces,
however as this in no way simplifies the proof we make no special note of it.
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So {C; (zy) : y € Cx } forms a cover of Cx and we can apply the 5r Covering Theorem to get a
disjoint set {Cs (2y,) : k =1,2,...p} such that 4ps? > = However as s € (0,2) we have

100"
p
V<U C, (Zyk)> = ps’
k=1

Y
<
@
|
o

Y%

1 s—2
r? e\ T
400 do Ap
oot 1 e\ *
T 400 )\272 oo
So as € — 0 we have M — 00, which is a contradiction, so we have established our claim.
Now as before, for v a.e. z € Sptr we can use this to get a tangent measure 7 € Tan (v, z) with

the property that (SJ(.O)) = 0. This allows us to apply Proposition 1 and find a tangent measure

A € Tan (v, x) with its support inside C; (0) contained in a graph of a 1-Lipschitz function from
e; — {e;), for some i € {1,2}. So its immediate that s < 1. If s = 1 as we have seen before
in Step 3 of the proof of Lemma 10; by Rademacher’s Theorem and Lemma 2, Sptr has a weak
1-tangent at . We can now go through the same “pulling back” procedure used in the case s = 2
so finally show that our measure p has weak 1-tangents. This is contradiction, and it completes
the proof of Theorem 2 for the case s = 1.

If s < 1 then we use Rademacher’s Theorem to get a tangent measure A € Tan (z,?)
that is supported inside a subspace V € G (1,2). We identify V with the real line in the
trivial way. Note that in one dimension SY”) NnC,(z) = S’{m’&) NC,(x) = [z,z+7r) and
Séw) NCy(z) = S’éw’&) NCr(x) = (z —r,z]. By Lemma 6, A is symmetric. Also note that A
trivially has square cone density (recall definition (5)). We can then argue in the same way as
Step 1 of Lemma 5 and show that SptA = IR. As s € (0,1) by a simple covering and counting
argument this implies A ([—1,1]) = co which is a contradiction. This concludes the proof of the
Theorem 2. O

11. PrROOF OF THEOREM 4

By the reduction of the problem given in section 3, it suffices to show that a 2-uniform measure
1 has a weak tangent somewhere in its support. We argue by contradiction, so u does not have
a weak tangent anywhere in its support and so in particular is purely unrectifiable. By Lemma
5 of [6] we know p is a symmetric measure. Hence p satisfies the hypotheses of Proposition 1
and so we can find a tangent measure v € Tan (u, z), for some = € Sptu such that Sptr N C; (0)
is contained in the graph of a 1-Lipschitz function g : e — (ex) for some k € {1,2,3}. Let G
denote the graph of g.

As we have done before we can define a 2-uniform measure 7 on e; by

v(A)=v (P;1 (A)) for any A C ekL.

k
Recall 7 is 2-uniform because firstly Spt = F, 1 (Sptv) and secondly if we let C, (z) denote a
cube of radius r > 0 on point = € Spt# inside e; then as SptVﬂP611 (C’T (m)) C GﬁPe_f (C’r (m))
k k
So v (Pe_ll (C’r (w))) =v (CT (Pe_ll ()N G)) =r%. Hence by a basic covering argument we see
k k

that L? (Spt?) > 0 (in fact Spt? = e; but we do not need this so we do not prove it). Now
by Rademacher’s Theorem we must be able to find a point z¢g € Sptr at which g is differen-
tiable. As a very weak consequence, this implies the set G has a weak tangent V € G (2,3) at



A MARSTRAND TYPE THEOREM FOR MEASURES WITH CUBE DENSITY IN GENERAL DIMENSION 33

20 = Pe*; (xo) NG. So we can find a tangent measure A € Tan (v, z¢) supported inside V. Hence

by Lemma 2 measure p has a weak tangent V at x and this contradiction completes the proof.
O
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