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Abstract

This is the third in a series of papers on the construction of explicit solutions to
the stationary axisymmetric Einstein equations which can be interpreted as counter-
rotating disks of dust. We discuss the physical properties of a class of solutions to
the Einstein equations for disks with constant angular velocity and constant relative
density which was constructed in the first part. The metric for these spacetimes is
given in terms of theta functions on a Riemann surface of genus 2. It is parameter-
ized by two physical parameters, the central redshift and the relative density of the
two counter-rotating streams in the disk. We discuss the dependence of the met-
ric on these parameters using a combination of analytical and numerical methods.
Interesting limiting cases are the Maclaurin disk in the Newtonian limit, the static
limit which gives a solution of the Morgan and Morgan class and the limit of a disk
without counter-rotation. We study the mass and the angular momentum of the
spacetime. At the disk we discuss the energy-momentum tensor, i.e. the angular
velocities of the dust streams and the energy density of the disk. The solutions
have ergospheres in strongly relativistic situations. The ultrarelativistic limit of the
solution in which the central redshift diverges is discussed in detail: In the case
of two counter-rotating dust components in the disk, the solutions describe a disk
with diverging central density but finite mass. In the case of a disk made up of
one component, the exterior of the disks can be interpreted as the extreme Kerr
solution.

PACS numbers: 04.20.Jb, 02.10.Rn, 02.30.Jr



1 Introduction

Relativistic dust disks have been studied since the late sixties [1], the reasons for the
interest in these configurations being both physical and mathematical. The physical mo-
tivation arises from the importance of disk-shaped matter distributions in certain galaxies
and accretion disks. Whereas general relativistic effects do not play a role in the context
of galaxies, they have to be taken into account in the case of disks around black-holes
since black-holes are genuinely relativistic objects. Moreover disks can be considered as
limiting configurations of fluid bodies for vanishing pressure (see e.g. [2]). From a more
mathematical point of view, dust disks offer the opportunity to obtain global spacetimes
containing matter distributions which can be physically interpreted. The Einstein equa-
tions for an ideal fluid do not seem to be integrable even in the stationary axisymmetric
case. Infinitesimally thin disks provide a possibility to circumvent this problem because
the matter is reduced to two spatial dimensions. This leads to ordinary differential equa-
tions inside the disk which can be integrated at least in principle. Consequently one has
to solve a boundary value problem for the vacuum equations where the boundary data
follow from the properties of the matter in the disk. Since dust disks have no radial
pressures one can place the disks without loss of generality in the equatorial plane even
in the standard Weyl coordinates. Thus one avoids the complications of a free boundary
value problem where the location of the disk has to be determined as part of the solution
of the boundary value problem. The first solutions for relativistic dust disks were given
by Morgan and Morgan [1]. They considered static spacetimes with disks which can be
interpreted as being made up of two counter-rotating dust streams with vanishing total
angular momentum. Bardeen and Wagoner studied numerically a uniformly rotating disk
consisting of a single dust component and as a post-Newtonian expansion. They com-
pared this stationary solution to the Einstein equations to the static and the Newtonian
case and gave a detailed discussion of the physical features of the spacetime. Later Neuge-
bauer and Meinel [3] gave an explicit solution for the Bardeen-Wagoner disk in terms of
Korotkin’s solutions [9] on a Riemann surface of genus 2.

In the first paper of this series [4] (henceforth referred to as I) we studied stationary
counter-rotating dust disks and their relation to hyperelliptic functions. As an example
of this approach we gave an explicit solution on a Riemann surface of genus 2 [6] where the
two counter-rotating dust streams have constant angular velocity and constant relative
density. In the limit of only one component one gets the solution of [3], in the limit of
identical densities one gets a static solution of the Morgan and Morgan class. In the
second paper [5] (henceforth referred to as II) we gave explicit formulas for the Ernst
potential at the axis and the disk which are needed to discuss the energy-momentum
tensor and considered limiting cases.

In the present paper we discuss the physical features of the hyperelliptic solutions [7, 8]
which are a subclass of Korotkin’s finite gap solutions [9, 10] at the example of the solution
of I. We demonstrate how one can extract physically interesting quantities from the hy-
perelliptic functions in terms of which the metric is given. The solutions are explicit i.e. all
metric functions are given in terms of quadratures and a set of well-defined functions, the



theta functions. The integrals are evaluated numerically by making use of pseudospectral
techniques. The metric depends on two physical parameters: € = zr/(1+ z) is related to
the redshift zz of photons emitted from the center of the disk and detected at infinity; ~
is the relative density of the counter-rotating streams in the disk. In the Newtonian limit
€ is approximately 0 whereas it tends to 1 in the ultrarelativistic limit where the central
redshift diverges. The limit of a single component disk is reached for v =1 (we will only
consider positive values of 7), the static limit for v = 0.

We give analytic expressions for the mass and the angular momentum as an expansion of
the metric functions at infinity and as an integral over the energy-momentum tensor at
the disk. The resulting analytic expressions have to be identical which provides a test for
the numerics. As in [11] we discuss the matter in the disk using observers which rotate
in a way that the energy-momentum tensor is diagonal for them. We study the angular
velocity of these observers with respect to the locally non-rotating frames, and the angular
velocities and the energy densities of the dust components which these observers measure.
In the limit of diverging central redshift the spacetime is no longer asymptotically flat
in the case of a one component disk, and the axis is no longer elementary flat. This
behaviour can be related as in [2] to the vanishing of the radius py of the disk which was
used as a length scale. If one carries out the limit py — 0 for p # 0, the metric becomes
the extreme Kerr metric. In this limit the disk vanishes behind the horizon of the extreme
Kerr solution. In the case of two counter-rotating dust components the radius of the disk
remains finite even in the limit where the central redshift diverges. In the ultrarelativistic
limit of the static disks, the matter in the disk moves at the speed of light, the energy
density diverges at the center of the disk but the mass remains finite.

We closely follow the discussion in the pioneering paper [2], but this time for a class of
solutions which depend on two parameters which continuously interpolate between the
Newtonian and the ultrarelativistic regime, and the static and the Bardeen-Wagoner case
respectively. The paper is organized is follows: In section 2 we summarize results of I and
IT and write down the complete metric corresponding to the Ernst potential of I in terms
of theta functions. We outline the numerical scheme and present typical plots for the
metric functions. In section 3 we discuss various physical properties of the solutions: We
relate the physical parameters € and v to the parameters on which the analytic solution
depends and discuss mass and angular momentum. The angular velocity €2 is discussed as
a function of € and . We study the energy-momentum tensor at the disk as in [11] as well
as the occurrence of ergospheres. In section 4 we discuss the ultrarelativistic limit of the
solutions. We briefly discuss the over-extreme case for the one-component solution where
the boundary value problem at the disk is still solved but where a ring singularity exists in
the spacetime since the parameters of the solution are beyond the ultrarelativistic limit.
In section 5 we add some concluding remarks.



2 Metric functions

2.1 Ernst potential and metric

We will briefly summarize results of I where details of the notation can be found. We use
the Weyl-Lewis—Papapetrou metric (see e.g. [12])

ds? = —e?/(dt + adg)? + e 2 (e*(dp? + d¢?) + p*dg?) (2.1)

where p and ¢ are Weyl’s canonical coordinates and 0, and 0,4 are the two commuting
asymptotically timelike respectively spacelike Killing vectors. With z = p + i( and the
potential b defined by

i
b, = —;ewaz, (2.2)

and b — 0 for 2 — 0o, we define the complex Ernst potential f = e?Y 4 ib which is subject
to the Ernst equation [13]

2
(fé"’fz):fofsz ) (23)

where a bar denotes complex conjugation in C. The metric function £ follows from
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In I we have considered disks which can be interpreted as two counter-rotating components
of pressureless matter, so-called dust. The surface energy-momentum tensor S* of these
models is defined on the hypersurface ¢ = 0. The tensor S* is related to the energy-
momentum tensor 7" which appears in the Einstein equations G* = 871" (we use
units in which the Newtonian gravitational constant and the velocity of light are equal to
1) via T* = S#ek=U§(¢). The tensor S# can be written in the form

fzz"‘m

(2.4)

St = oyuliul + o utu?, (2.5)

where greek indices stand for the ¢, p and ¢ components and where uy = (1,0, £0Q).
A physical interpretation of this tensor will be given in section 3. We gave an explicit
solution for disks with constant angular velocity ) and constant relative density v =
(04 —0_)/(04 +o0_) . This class of solutions is characterized by two real parameters A
and § which are related to €2 and « and the metric potential Uy at the center of the disk
via,

A = 202200 (2.6)

and

(2.7)



We put the radius pg of the disk equal to 1 unless otherwise noted. Since the radius
appears only in the combinations p/py, (/po and Qpg in the physical quantities it does
not have an independent role. It is always possible to use it as a natural length scale
unless it tends to 0 as in the case of the ultrarelativistic limit of the one component disk.
The solution to the Ernst equation will be discussed in dependence of the parameter
€ =zg/(1+ 2g) =1 — €.

The solution of the Ernst equation corresponding to the above energy-momentum tensor
is given on a hyperelliptic Riemann surface ¥, of genus 2 which is defined by the algebraic
relation p?(K) = (K +iz)(K —i2) [[_, (K — E;)(K — E;). We choose ReE; < 0, ImE; < 0
and B, = —FE, with B, = oy +if;. We use the cut-system of Fig. 1 for the numerical
calculations since it is adapted to the symmetry of the problem. The base point of the
Abel map is Ej.

Figure 1: Cut-system.

In this cut-system the solution of I takes the form

Olmj(w(oe™) +u) ,

700 = Shmlwtoon) — 0

(2.8)

where I = 55 [InG(7)dwogtoo- (1), Where u; = 5= [ In Gdw;, where T is the covering
i

of the imaginary axis in the +-sheet of 35 between —i and i, where the characteristic

[m] = [ 1 8 } in the cut-system of Fig. 1, and where

Vi —a)P+ 2+ +1
Vi —aP+F# - (2 +1)

The branch points of the Riemann surface are given by the relation F := E? = a +if
with «, [ real and

G(r) =

(2.9)

) 1 0?2
a——1+§, ﬁ— F—i‘a—z (210)



Regularity of the solutions restricts the range of the physical parameters to 0 < § <
Is(A) =2 (1 + 1+ 1/)\2) and 0 < A < A, where A.(7) is the smallest value of A\ for

which ¢ = 1. We note that with o and ( given, the Riemann surface is completely
determined at a given point in the spacetime, i.e. for a given value of F;. The dependence
of the solution (2.8) on the physical coordinates is exclusively through the branch points
P, and P,.

The complete metric (2.1) can be expressed via theta functions. With the characteristics
[n;] given by

= | w3 Y] w1 0] ma=| Y g] e

U

the function €2V can be written in the form

v _ Oll(W)O[na](uw)  Olns](w(o0))Ou(w(oo™)) 4 (2.12)
O[] (0)O[n2](0) B[ns](w(00™) + u)Olnaf(w(oo™) +u) '

The function €2V which is just the real part of the Ernst potential was written in [8] in the
form (2.12) with the help of Fay’s trisecant identity [14]. This form is especially adapted
for determining ergospheres which are just the zeros of €2 In [8] it was shown that the
real part of the Ernst potential can only vanish if O[n](u)O[ns](u) = 0 which provides a
necessary condition for the occurrence of ergospheres (the sufficient condition is that the
denominator in (2.12) is non-zero in this case).

Korotkin [9] gave an expression for the metric function a as a derivative of theta functions
with respect to the argument. In [8] this formula could be written in the form (2.13) free
off derivatives by using the trisecant identity which leads to

o O[m] (0)0[n2] (0) Olm](WOn)(u + 2w(oc™))
(@~ a) ”(@[m](w(oo))@[m](w(oo))@[n31<u+w<oo))@[n41<u+w<oo>> 1)’

(2.13)

where the constant ag = —7/€2. The constant can be expressed via theta functions on
the elliptic surface ¥ given by p/? = (K — E})(K — E?) (see [8], IT). We denote quantities
defined on ¥’ by a prime and get

BT 0 it 2(x0)
T e {7 | R ) R

1 4

The elliptic theta functions 1J; where i = 1, ... ,4 have the characteristics [ 1 ], [ (1) ],

0 0 .
[ 0 } and [ 1 } respectively.

Whereas the metric functions a and e“” can be invariantly expressed through the scalar
products of the Killing vectors, this is not the case for the metric function e?*. Nonetheless
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it is interesting to know this function because it determines the geometry of the (p, ()-
space and because of its relation to the 7-function of the linear system associated with the
Ernst equation (see [15]). This connection made it possible to derive an explicit expression
for k£ in terms of theta functions of (2.15) in [16]:

o] Op(W(K1) — w(kKy))
O[m](0)0[m](0) exp (2/F/FdK1dK2h(K1)h(K2)ln K5 > ;
(2.15)

where O, is a theta function with an odd characteristic, where h(7) = 0, InG(7), and
where C' is a constant which is determined by the condition that & vanishes on the regular
part of the axis and at infinity. It reads

U1 (w'(K)) — W'(Ky))
K, — K,

1/C = 054(261)) eXp< / / dK 1 dKoh (K () In

) . (2.16)
where dw) = dw', dwy = dw_y, u; = 55 L [ InGdw;, and where I' = 5= [[InGdw!_, .
In an ergoregion, the function O[n,|(u)O[ns](u) becomes negative. Smce the remaining
terms in (2.15) cannot change sign, the function e¢?* is always negative where €2V is
negative. The metric function g1, = ¢go0 = €2*~Y) is consequently non-negative.

Since we can concentrate on positive values of ( because of the equatorial symmetry of the
solution, the Riemann surface can only become singular if P, coincides with P, i.e. on the
axis, or if it coincides with Ey. Coinciding branch points imply that some of the periods
diverge. Although the Ernst potential is regular at the axis, this causes problems for
the numerical evaluation which affect the accuracy. Therefore we substitute the analytic

expression (see [8], II)

OO+ ! OO+ !
f<+ dw' + uy) — exp(—wa(00™) — ug)4( fg, dw' + uy)

elfe (2.17)
D21 P T dw' — uy) — exp(—wa(00t) 4 up) V([

f(0,¢) =

a T dw' — uy)

The real part of the Ernst potential can be written in the form
w 92 (ur) V3 (fgof dw’) — exp (—2wq(0cc™)) V2 (fgof dw')

PO 0 (i [ ) — exp (2om(oo )~ 20m) v (w1 o )

With these analytic formulas on the axis, one can obtain accurate numerical results since,
for ¢ < 1 and ¢ # 0, the metric functions have an expansion of the form F(p,{) =
F(0,¢) + p*F»(¢) + 0(p*) in the vicinity of the axis.

If Py coincides with F,, the Ernst potential and the metric functions can be expressed
in terms of quantities defined on the Riemann surface X" of genus 0 given by p"?(7) =
(1 — E))(T — E) i.e. via elementary functions. For Py = E, the differentials on ¥, reduce
to differentials on X", dw; = dw” dwy = dw'". and [ = [" = QmeF In Gdw”

E E+7 E E+ ocotoo—



where a double prime denotes that the quantity is defined on ¥"”. The Ernst potential
reads

Sil’lh WI(OO+)+UI "
f=——>2 e, (2.19)

. +)—
sinh “’71(002) 4

the function a follows from

(a — ag)e??

sinh T2
= p( I 4 X (2.20)
sin

) ain ]y w2(00T)
5 sinh 22

exp (m2) cosh u1+u2+2w1(o§+)+2w2( ) —exp (_%) cosh U1—uz+2w1(o§+)—2w2(oo+) 1)

2 sinh urw;( ) sinh “27w§(°°+)

and the function €?* is given by

exp (”12) cosh 12 — exp (—TZ) cosh W42

2 sinh %

exp<// dKldKZ In G(K,) In G(K,)x

(Kl—El)(Kz—El) L U B - B (2.21)

(K1 — E1) (K, — Ey) (K1 — E1)(Ky — EY) 7 '
where 75 is a component of the b-matrix on .
At the disk the branch points Py, Py lie on the contour I' which implies that care has to be
taken in the evaluation of the path integrals. The situation is however simplified by the
equatorial symmetry of the solution which is reflected by the additional involution K —
— K of the Riemann surface ¥, for ( = 0. This makes it possible to express the metric
functions in terms of elliptic theta functions (see [8]). In II we could give especially efficient
formulas for the functions needed to calculate the energy-momentum tensor at the disk.
We denote with ¥, the elliptic Riemann surface defined by p? = (7' + P H((r—a)*+ 5%,
and let dw be the associated differential of the first kind with wu,, = f In G(/7)dw(T).
We cut the surface in a way that the a-cut is a closed contour in the upper sheet around
the cut [—p?, E] and that the b-cut starts at the cut [oo, E]. The Abel map w is defined
for P € ¥, as w(P) = foi dw. Then the real part of the Ernst potential at the disk can
be written as

€2k:C

Y [ +96

A S 1

V(P40 4 L s
+\/ o 2Y (p? + ) + 32 +p? |, (2.22)




where

_ % +0p° V3 (U
V(PP +a)? + 2 03 (uw)

(2.23)

In I it was shown that there exist algebraic relations between the real and imaginary parts
of the Ernst potential,

2 1 = +0 1 2
%(64[]—1-1)2): <X—5€2U> L—X +6<5+2p —1>, (2.24)
/1
VIR 6p2
p)
and the function Z := (a — ag)e?V
2
77— p* + 6" = 2, (2.25)

A

At the rim of the disk (p = 1 and ¢ = 0) the value of the metric function ¢?V thus has

the form
1 /1 1
20(1,0) _ 1 _ * L 4
e 1 5 < e + 4 )\) . (2.26)

The imaginary part of the Ernst potential vanishes for v # 0 at the rim of the disk as
3 .. . . .

(1 — p*)2. These explicit relations at the rim of the disk can be used as a test for the

numerics.

2.2 Numerical evaluation of the hyperelliptic integrals

For the numerical evaluation of the above expressions we use pseudospectral methods.
First the a- and b-periods of the hyperelliptic Riemann surface for the cut-system in
Fig. 1 have to be determined. These are integrals between branch points F;, P;, i # j of
the Riemann surface,

P;: n
/ T o1e. (2.27)
P; :u(T)

With a linear transformation of the form 7 = at + b they can be put into the form

! Qo + Oélt + 062t2

-1 V1—1t?

where the «; are complex constants and where H(t) is a continuous (in fact, analytic)
complex valued function on the interval [—1,1]. This form of the integral suggests to
express the powers t" in terms of the first three Chebyshev polynomials Ty (t) = 1, T1(¢) =t

H(t) dt (2.28)



and Ty(t) = 2t> — 1 and to approximate the function H(t) by a linear combination of
Chebyshev polynomials

H(t) =Y haTu(t).

Since the T;, form a complete orthogonal system on the interval, this approximation can be
made arbitrarily precise by using enough terms. Using the orthogonality relation between
the Chebyshev polynomials

1 T m=n=20
/ T,.(t) T, (1) \/;dt_ﬁ = g/2 m ; n#0 (2.29)
-1 - m#mn

the value of the integral is a linear combination of the coefficients hy, h; and hy. To
determine these we have implemented a Fast Cosine Transform (FCT) within Matlab. It
turns out that we can get accuracies of the order of the machine precision (~ 107) if we
use 32, at most 128 terms in the approximating sum.

Since the sum of the a-periods and the integral over a closed contour around the cut
[E1, E] must exactly vanish, this can be used to test the numerics. When two or more
branch points coincide as on the axis, the analytic expressions (2.17) to (2.21) are substi-
tuted.

The differentials dw; of the first kind are normalized by the condition faj dw; = 27id;j, the
differential dwso+o— of the third kind is normalized by the conditions that it has residues
+1 and —1 at oo™ and oo™ respectively, and vanishing a-periods. The theta function is
approximated by the sum

N N
1 1
@(l‘) = Z Z exp <§7T117’L? + TN Ne + 571'22713 +nixp + TLQIQ) . (230)
N

ni=—N no=—

The rapid convergence of the series due to negatively definite real part of Il = ( ZH le )
21 T2

makes it possible in general to obtain an accuracy of machine precision with values N < 5.
To calculate the integrals w(oco™) we use the fact (see e.g. [14]) that the b-periods of
Abelian integrals of the third kind can be expressed via integrals of the first kind,

f[j, o = wi(00") — wi(o0"). (2.31)

These integrals are thus determined along with the b-periods of the integrals of the first
kind.

At the disk we use formulas (2.22) to (2.25). The non-Abelian integrals u;, I are deter-
mined also using pseudospectral methods. They can be written in the form

/1 dtH(t) (2.32)

1
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where H(t) is a continuous complex-valued function on the interval [—1,1]. The inte-
gration is performed by first approximating the integrand by a linear combination of
Chebyshev polynomials as before. Then, making use of the identity

TI

+1 T’ 1
mr- M= 9T, 2.33
m+1 m-—1 ( )

one can compute the expansion coefficients of a function g on [—1,1] with ¢’ = H by
applying the relation 2kgy = hy_1 — hxy1 (k> 0) between the expansion coefficients.
Finally, having transformed back, the value of the integral is obtained as ¢g(1) — g(—1).
In contrast to the algebro-geometric solutions of integrable equations like Korteweg-de
Vries and Sine-Gordon (see e.g. [18]), the characteristic quantities of the Riemann surface
as the periods have to be calculated at each point of the spacetime since the Ernst potential
depends on the moving branch points Py and Py. Thus for each value of (p, ¢) one has
to calculate nine integrals and to do the summation of the theta series to obtain the
Ernst potential (2.8). Because of the equatorial symmetry, the calculation can be limited
to ¢ > 0: whereas the metric functions are even in (, the imaginary part of the Ernst
potential is an odd function.

To illustrate the metric functions we show plots for € = 0.86 and v = 0.998 (A = 4 and
§ = 0.1), i.e. a disk in a strongly relativistic situation. The metric function e*V (see Fig. 2)

Figure 2: Metric function e?V.

tends to 1 for large distances from the disk. At the disk it is continuous but its normal
derivatives have a jump. In the vicinity of the disk, the function is negative which indicates
the presence of an ergosphere. In the exterior of the disk, €2V is completely smooth and
does not take a local extremum in the whole physical range of the parameters. The
function thus shows the same analytic properties as a solution to the Laplace equation.

11
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Figure 3: Imaginary part of the Ernst potential.

The imaginary part of the Ernst potential (see Fig. 3) is an odd function in . Thus it
vanishes in the equatorial plane in the exterior of the disk. For large distances from the
disk it tends to zero because of the asymptotic flatness of the spacetime. At the disk, the
function has a jump which is zero at the rim of the disk since b is continuous there.

The metric function a (see Fig. 4) is equatorially symmetric and everywhere continuous.
At the disk, the normal derivatives of a have a jump, in the remaining spacetime it is
completely regular. On the axis and at infinity the function is identically zero.

The function e?* in Fig. 5 has similar properties: it is equatorially symmetric and ev-
erywhere continuous, the normal derivatives have a jump at the disk. The function is
identical to 1 on the axis (‘elementary flatness’) and at infinity (asymptotic flatness).
The function is only significantly different from 1 in the vicinity of the disk. The metric
function e2(*=U) is always positive even in the ergoregions which implies that the signature
of the metric does not change.

3 Physical properties

3.1 The physical parameters

We consider the metric as depending on the two physical parameters € and . Mathemat-
ically more natural are the parameters A and 0. These two sets can be converted through
the following procedure. The formula (2.18) can be used to calculate the real part of the
Ernst potential at the origin, e2Y°, which is related to the redshift zx of photons emitted

12



Figure 4: Metric function ae?V.

from the center of the disk and detected at infinity, zz = e=Y0 — 1,

oo _ LX)V - )

= , 3.1
X2 = (VI+A2=))? (3.1)
where X is the purely imaginary quantity
U3 (uy)94(0)
X =" 3.2
91()5:(0) 32

The corresponding values of A and ¢ follow from (2.6), (2.7) and (3.1). We get for € # 1

1—72

0= (1—6)2X.

(3.3)

With this value we enter equation (3.1) for €?Y¢ and solve numerically for (e, ). Numer-
ically one finds that the first zero of €?%0 is reached for \, = 4.62966.... The function
has additional zeros for higher values of A (see e.g. [7]). We are only interested in values
0 < A < A.. Equation (3.3) then provides the corresponding value of (e, ).
For € = 1 there are two cases: if y =1, then § = 0 and A = A.. For vy # 1, relation (3.3)
implies that A must be infinite. The corresponding value of § follows with (2.6), (2.7) and
(3.1) in the limit A — oo as the solution of the equation
4(1 —~4)X?

J= T xz (3.4)
Throughout the article we will consider the following limiting cases:
Newtonian limit: € = 0 (A = 0), i.e. small velocities {2py and small redshifts in the

13
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Figure 5: Metric function e?*.

disk. For A — 0, the integral u| goes to zero. Thus the quantity X diverges since ¥; is
an odd function. Thus one gets from (3.1) Uy = —Q?, the value for the Maclaurin disk
(see e.g. I). In II it was shown that in this limit €2V tends to the Maclaurin disk solution,
independently of . This solution can be written as

Lt 20+
A (r =02+ p?

ultrarelativistic limit: ¢ = 1, i.e. diverging central redshift. For v = 1 we have J4(u}) =
0 and thus X = —i and fy = —i, i.e. the value of the Ernst potential of the extreme Kerr
metric at the horizon. For v # 1, the ultrarelativistic limit is reached for A — oo.

static limit: v =0 (0 = d4())). In this limit, the branch points of X' collapse pairwise
which leads to a diverging X and e?¥© = /1 + A2 — \. In II it was shown that this is the
Morgan and Morgan solution [1] for constant €2,

1 InG(r)
0.0 = [ 56
with
G:1_§(72+1). (3.7)

At the disk one has




with Q2§ = 1.

one component: 7 =1 (§ = 0), i.e. no counter-rotating matter in the disk. This is the
disk which was studied numerically by Bardeen and Wagoner [2]. The analytic solution
is the solution by Neugebauer and Meinel [3] in the notation of [7].

The parameter A can be viewed as a ‘relativity’ parameter: for small values of A, one
is in the Newtonian regime, for larger values relativistic effects become more and more
dominant up to the ultrarelativistic limit where the central redshift diverges. The values
of A\ itself, however, do not have an invariant meaning. Thus it seems better to use the
central redshift zp in € = 2r/(1 + 2r) as a parameter as in [2],

e=1—¢", (3.9)

where €% is taken from (3.2),

In the ultrarelativistic limit, the values of § must be between 0 (the one-component case)
and 4 (the static limit, where ¥ = 0 and X? — oo). We plot € as a function of A for v =1
and v = 0 in Fig. 6. In the case v = 1, the function goes to 1 at finite values of A\ whereas
for v # 1 it goes monotonically to 1 as A goes to infinity as in the static case v = 0.

0 5 10 15 20 25 30 35 40 45 50

Figure 6: The function € in dependence of A for y =1 and v = 0.

3.2 Mass and angular momentum

The ADM mass M and the angular momentum J of the spacetime (see e.g. [17]) can be
obtained by expanding the axis potential (2.17) in the vicinity of infinity. The real part
of the Ernst potential for € < 1 reads e?! =1 —2M/( + 0(1/¢) and the imaginary part
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b=2J/C*+ 0(1/¢?). In II it was shown that the ADM mass is given by the formula

1
M = _Doo— In 194(UI) - R/I:IHGd(JJLOO-&-, (310)
and that the angular momentum is given by
1
J=—1 <Doo— InYy4(u') + Deo- In s (u') + — / In G dw, OO+> : (3.11)
Q 27 Jp ’

where DpF(w(P)) denotes the coefficient of the linear term in the expansion of a function
F'in the local parameter in the vicinity of P.
In the Newtonian limit this leads to

2
M = 4?)&, (3.12)
s
the value of the Maclaurin disk, and
83
= Ten (3.13)

In the ultrarelativistic limit of the one component disk, J4(u’) = 0, both the mass and
the angular momentum diverge. In this limit the dimensionless quotient M?/J remains
bounded and goes to 1, the value of the extreme Kerr metric.

We plot the dimensionless quantity M?/.J in Fig. 7. As a function of € it varies monoton-
ically between the Newtonian value

M? 100

= — 3.14
J 3Ty ( )

and the value in the ultrarelativistic case which is always bigger than 1 for v < 1. For
fixed € it increases monotonically with ~.

3.3 Energy-momentum tensor

The energy-momentum tensor of the disk is given by (2.5) which has to be considered as an
algebraic definition of the tensor components. Since the vectors w4 are not normalized,
the quantities o4 have no direct physical significance. The energy-momentum tensor
was chosen in a way to interpolate continuously between the static case and the one-
component case with constant angular velocity. An energy-momentum tensor S* with
three independent components can always be written as

SH = ayvtv” + ppwtw”, (3.15)

where v and w are the unit timelike respectively spacelike vectors (v#) = Ni(1,0, wy)
and where (w") = Ny(k,0,1). This corresponds to the introduction of observers (called
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Figure 7: The dimensionless quantity M?/J in dependence of € for several values of ~.

¢-isotropic observers (FIOs) in [11]) for which the energy-momentum tensor is diagonal.
The condition w,v* = 0 determines « in terms of wy and the metric,

_ Jo3 + WeYs3

g= Q8T el (3.16)
9oo + WepGos

If we introduce the four-velocities i+ = Nius, the quantities 0. N3 are proper densities
in the sense of [2]. The quantity o which appears in the Einstein equations (see I) is

related to ¢ = oy +o_ via 0 = ¢¥"UG. In I it was shown that o is given by

by
o= :
8 pQ2(a — ap)e?V

(3.17)

It vanishes for p — 1 with infinite slope: in the non-static case it was shown in II that b,
is always proportional to /1 — p? while in the static case one gets

1 1—p?
0 = 2 5 2 arctan T 1. 2
4720 (2 — 1+ p?) $—14p

(3.18)

Since b = by + O(p?) in the vicinity of the origin for € # 1, the density is regular in the
whole disk for € < 1 and 7 # 0. This is however not true in the ultrarelativistic limit of
the static disks which we will discuss in more detail in the following section.

The FIOs can interpret the matter in the disk as having a purely azimuthal pressure or as
a disk of two counter-rotating dust streams if pj /0% < 1. One can show numerically that
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p; /0, is a monotonically decreasing non-negative function of v which vanishes identically
only for v = 1. Thus, it is maximal in the static case as expected. There we have
e A L D) (3.19)

p

The last equation follows from (2.25).

The only case where pj = o, is the ultrarelativistic limit of the static disks. In this case

the matter rotates with the velocity of light while in all other cases, the velocity 4 /p;;/a;
is smaller than 1. Thus the energy-momentum tensor can be written in the form

1
" = Sop(ULUY + UMUY) (3.20)

where (UY) = U*(v* £ /p;/osw”) are unit timelike vectors. This is the sum of two

energy-momentum tensors for dust. Furthermore it can be shown that the vectors UL are
geodesic vectors with respect to the inner geometry of the disk: this is a consequence of
the equation S%” = 0 together with the fact that U is a linear combination of the Killing
vectors. Consequently the FIOs can interpret the matter in the disk as two streams of dust
with proper energy density o, /2 which are counter-rotating with the same angular velocity

Q1= (No/N1)y/p;/0y. This is the interpretation we will refer to in our discussion.

Except for the static case v = 0 the FIOs are not at rest with respect to the locally
non-rotating frames which rotate with angular velocity

wy = 98 (3.21)
933

with respect to the inertial frame at infinity. Therefore, the quantities we will discuss in
the following are the angular velocities w;, wg, €, and the energy density o* := el""P)or.
We discuss the angular velocities in units of 2 which has no invariant meaning but which
provides a natural scale for the angular velocities in the disk. It is constant with respect
to p but depends on the parameters ¢ and 7. In the Newtonian limit it is small since
Uy = —Q2. Thus independently of v, the angular velocity € behaves as /€ for € =~ 0.
The fact that the ultrarelativistic limit for the one-component disk is reached for a finite
value of A\ implies via (2.6) that © must vanish in this limit. This behaviour will be
discussed in more detail in section 4. Thus, as € varies between 0 and 1, for v = 1, Q
starts near zero in the Newtonian regime, reaches a maximum smaller than 1 and then
goes to zero. For 0 < v < 1, it reaches a maximum, too, but then it does not go to zero
in the ultrarelativistic limit. In the static case (7 = 0) one has

0e,0) = 51— (1", (3.22)

which grows monotonically from zero to 1/2 ultrarelativistic limit. We plot € as function
of € for several values of v in Fig. 8.
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Figure 8: Angular velocity €2 in dependence of € for several values of ~.

The angular velocity w; of the locally non-rotating observers is a measure for the frame
dragging due to the rotating disk. We depict w; in dependence of p at the disk for v = 0.7
and several values of € in Fig. 9. There is obviously no frame dragging in the Newtonian
case, w; is of order Q3 for small Q. The angular velocity w; increases monotonically with e
for fixed p and . However the curves for € > 0.85 are so close to the curve with e = 0.85
that we omitted them in Fig. 9. Since the density (see below) is peeked at the center of the
disk for e — 1, the frame dragging increases strongly near the center. In Fig. 10 we plot
w; at the disk for e = 0.8 for several values of . In the static case it is identical to zero.
The frame dragging increases monotonically with v for fixed p and e since more counter-
rotating matter makes the spacetime more static. Since the central density decreases with
v for fixed e, the frame dragging at the center is for v < 1 closer to the one-component
case than at the rim of the disk. The angular velocity w; is always smaller than €2 for
v < 1. In the ultrarelativistic for v = 1 the ratio w;/€2 becomes identical to 1 in the disk.
In terms of the components of the energy-momentum tensor, the angular velocity wg reads

1
W = 550 <S§’ -5 — \/(S§’ —S9)? + 45};53) : (3.23)

For fixed p and €, the angular velocity w, is monotonically increasing in 7 from zero in
the static case to {2 in the one-component limit. For p = 0 it is identical to v which is
also the value in the Newtonian limit. The ratio wy/€2 is depicted in dependence of p for
v = .7 for several values of € in Fig. 11.

19



Figure 9: Angular velocity w; for v = 0.7 and € = 0.05,0.15, ..., 0.85.

The angular velocity of the dust streams €2, with respect to the FIOs follows from

0 wj — 2wy + Q2 (3.24)
¢ 1 — 25y + Q2k2° '

For fixed p and e the angular velocity (2. increases monotonically in v from 0 in the one-
component case to 1 in the static case. In the former case the observer follows the dust
and can interpret the dust which is at rest in his coordinate system as ‘two’ non-rotating
dust components. For p = 0 the function €. is identical to Q4/1 — 72 which is also the
value in the Newtonian limit. We plot €2, in dependence of p for v = 0.7 for several values
of € in Fig. 12.

The proper density o, for a FIO is given by

ol 2

% Y 2092
o = 1 — 2572 4+ K2€)°). 3.25
P 1- KWy KGo3 +g33( 7 ) ( )

The density is finite except in the ultrarelativistic limit of the static disks. In the Newto-
nian limit, the density reads

20)?

0" =51+ Q((1=7)p"—2) = -1 - p? (3.26)
T

the value for the Maclaurin disk. The dependence of o* on p is shown for v = 0.7 for

several values of € in Fig. 13. With increasing e, the central density grows and the matter

is more and more concentrated at the center of the disk. For e = 0.8 the density is plotted
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Figure 10: Angular velocity w; for ¢ = 0.8 and v = 01, 0.2, ...,0.90.95, 0.99, 1.

for several values of v in Fig. 14. With increasing 7, the central density increases.
In [2] and [1] the observer dependent ‘rest mass density’ op 4 of the dust streams was de-
fined as 09+ = 0*/2U% which leads to the total rest mass density o in the asymptotically
fixed frame

* N1

00 = 0" (3.27)

The total rest mass of the disk M, is then the integral

1
M, = 27r/ oopdp. (3.28)
0

The binding energy of the disk is defined in [2] and [1] as the difference between the total
rest mass and the ADM-mass, E, = My— M. We plot E}/M, as a function of ¢ for several
values of 7 in Fig. 15. In the Newtonian limit, the binding energy is independent of ~,

1
Ey/M = 592. (3.29)

In the case v = 1, the binding energy increases monotonically up to a value of E,/M; ~
0.37 in the ultrarelativistic limit. For v < 1 it reaches a maximum for a finite value
of € and can become even negative. In the static limit Ej/M, diverges to —oc in the
ultrarelativistic limit since the rest mass of the disk goes to zero. We plot E,/M, as
function of e for several values of 7 in Fig. 15.
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Figure 11: Angular velocity wy for v = 0.7 and from top to bottom € = 0.05,0.15, ... ,0.95.

The ADM-mass can also be calculated in standard manner [17] at the disk, in our case
1
M = 27r/ (S3 — SNeF~Y pdp. (3.30)
0

Similarly, one gets for the angular momentum

1
J = 27r/ S3e*Y pdp. (3.31)
0

The above formulas can be used to check the numerics since they must reproduce the
results of (3.10) and (3.11).

3.4 Ergospheres

In strongly relativistic situations it is possible that the asymptotically timelike Killing
vector 9; becomes null or even spacelike. The vanishing of €V defines an ergosphere
(although it does not have the topology of a sphere here) i.e. the boundary of a region of
spacetime where there can be no static observer with respect to infinity.

The surface plot of the metric function €2V in Fig. 2 shows the typical behaviour of
these functions: they are completely smooth in the exterior of the disk while the normal
derivatives are discontinuous at the disk. The function does not assume a local extremum
in the exterior of the disk and goes to 1 at infinity, e?V = 1 — 2M/|z| + .... Since the
ADM-mass is always positive in the physical range of the parameters (see section 4.4), the
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real part of the Ernst potential is always less than 1. At the disk, however, the function
may have a global minimum.

In the Newtonian regime, the so-called gravito-magnetic effects such as ergospheres do
not play a role. When the parameter € increases from zero to one, the function e? may
vanish at some points in the spacetime. Since it assumes its minimum value at the disk,
this means that an ergosphere necessarily first appears at the disk when the minimum
value becomes zero. For larger values of € the minimum drops below zero in these cases
so that the ergosphere grows for increasing values of €. In the ultrarelativistic limit e =1
it reaches the axis.

To illustrate the dependence of ergospheres on the parameter € for fixed 7, we plot them
in Fig. 16 for v = 1. The plot shows the (p, {)-plane with the disk on the p-axis between
zero and one. The potential is regular in the equatorial plane in the exterior of the disk
which implies that the equipotential surfaces hit the plane orthogonally there. At the disk,
however, the normal derivatives have a jump which leads to a cusp of the equipotential
contours at the disk. The ergosphere grows with € and includes the whole spacetime in
the ultrarelativistic limit which will be discussed in the next section.

Qualitatively, one would expect that counter-rotation makes a solution more static, i.e.
that effects like ergospheres are suppressed. Thus in situations with the same central
redshift but different 7, the ergoregion will always be smaller in the case of more counter-
rotation if there is an ergoregion at all. In Fig.17 we show the ergospheres € = 0.95 and
several values of . It follows from (2.26) that the ergosphere goes through the rim of the
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disk if

2

0=1-——. 3.32

X (332
This means that for disks with 6 > 1 possible ergoregions are confined to values of p < 1.
One finds numerically that smaller values of v i.e. more counter-rotating matter imply
that the ergoregion forms at bigger values of € i.e. in stronger relativistic situations if it
is to appear at all. The ergoregions are also formed closer to the axis. In the static case
there is obviously no ergosphere. The function €2V only vanishes in the ultrarelativistic
limit at the center of the disk. There are no ergoregions for values of v < v, = 0.707....

4 Ultrarelativistic limit

4.1 Ultrarelativistic limit of the static disks

The main features of the ultrarelativistic limit can already be found in [1]. The potential
¢?V in the disk and its normal derivative there have the form

1 1-—
eV =P ,(e’”), = = arctan i : (4.1)

whereas the metric function k is of order p? for small k. The behaviour of the metric
functions can be obtained from (3.8) and (2.4). The angular velocity in the disk is
2 = 1/2. The matter in the disk moves with the velocity of light since the four-velocity
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becomes null in the whole disk. The energy-density o (3.18) diverges at the center as 1/p?,
the density o* = —ggoo diverges as 1/p. The ADM-mass is however finite, M = 1/(4x).
Since the matter moves with the velocity of light, the rest mass of the disk must vanish.
Thus the gravitational binding energy is negative.

The linear proper radius

p
Py ::/ e*Vdy (4.2)
0

is finite in the disk since the integrand behaves near the center (see 1I) as 1/,/p and is
finite in the rest of the disk. The proper circumferential radius in the disk,

Pc =V g33(p) = ﬁ: (4.3)

is also finite. Thus the ultrarelativistic limit of the static disks with uniform rotation is
a disk of finite radius with diverging central redshift and diverging central density but
finite mass. The matter in the disk consists of particles with zero rest mass which move
with the velocity of light.

4.2 Ultrarelativistic limit for 0 <y < 1

The ultrarelativistic limit of stationary counter-rotating disks bears similarities with the
static case in the sense that the axis remains regular: the constants ay and C in (2.14)
and (2.16) which are 0 and 1 respectively in the static case remain finite here since they
can only diverge if ¥J4(u') = 0 which can happen only for v = 1. The integrals in the
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respective exponents of (2.14) and (2.16) are always finite though In G(7) has a term In7
in the limit A — oo as can be easily seen. Thus the axis remains elementary flat in the
case 7 < 1 even in the ultrarelativistic limit. Since ag = —7/2 is non-zero for 0 < v < 1,
the angular velocity ) remains finite in the limit, too, as can be seen in Fig. 8.

In II it was shown that the potential €?V is linear in p near the origin unless v = 7.
(which is just defined by this condition) where it is quadratic in p. For v > =, there
are ergospheres in the spacetime, for 7 < 7, the potential €?V is positive in the whole
spacetime. We plot e2Y at the disk for several values of ~ in the ultrarelativistic limit
in Fig. 18. We note that the metric function ae?” in the disk is also linear in p in the
vicinity of the origin if €?V is. For v — 0, the metric function €2V in the disk approaches
p/2. For v — 1 the limiting function is also linear in p in the whole disk. One has to
note that the limits v — 1 and € — 1 do not commute. The ultrarelativistic limit of the
case v = 1 is discussed section 4.3. The limit v — 1 of the ultrarelativistic solutions for
v < 1 are always obtained for A — oo. If one goes with v — 1 (6 — 0) in this cases, the
limiting function is one of the ‘overextreme’ solutions which are discussed in section 4.4.
In contrast to the static case, the energy density ¢* is finite even in the ultrarelativistic
limit. The proper linear radius (4.2) and the proper circumferential radius (4.3) are both

finite in the disk. The velocity of the counter-rotating streams in the disk p;/a; is less
than 1, i.e. the velocity of light in the limit e = 1 for 0 < v < 1.

26



Figure 16: Ergospheres for v = 1 and several values of e.

4.3 Ultrarelativistic limit of the one-component disks

The ultrarelativistic limit of the case v = 1 is different from the previously discussed cases
since it is reached for ¥4 (u") = 0. This implies with (2.14) and (2.16) that both constants
ag and C diverge as ¢ — 1. These constants do not have a direct physical importance.
The fact that they diverge merely indicates that the axis cannot remain elementary flat in
the ultrarelativistic limit. A consequence of the diverging constant ag is that the angular
velocity €2, which is the coordinate angular velocity in the disk as measured from infinity,
vanishes. A diverging constant C' implies that all linear proper distances (4.2) diverge.
The function e2=V)*+2V is however bounded.

The axis is in fact singular in the sense that the metric function eV vanishes there
identically which can be seen from (2.18). The Ernst potential is identical to —i on the
axis for ¢ > 0. In the limit € — 1, the ergosphere becomes bigger and bigger. When
it finally hits the axis for ¢ = 1, the whole axis and infinity form the ergosphere and
the function eV is negative in the remainder of the spacetime. We plot the potential in
Fig. 19. The fact that ¢2Y vanishes on the whole axis implies moreover that all multipole
moments diverge. The dimensionless quotient A/?/J remains however finite and tends to
1, the value of the extreme Kerr metric (see section 3.4).

The vanishing of 2 = 2p, in the limit ¢ = 1 indicates that either the angular velocity or
the radius of the disk go to zero in this case. Bardeen and Wagoner [2] argued that the
spacetime can be interpreted in the limit € — 1 and py — 0 as the extreme Kerr metric in
the exterior of the disk. In [7] it was shown that such a limit (diverging multipoles, singular
axis, ... ) can occur in general hyperelliptic solutions and can always be interpreted as
an extreme Kerr spacetime. For an algebraic treatment of the ultrarelativistic limit of

U
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Figure 17: Ergospheres for ¢ = 0.95 and several values of 7.

the Bardeen-Wagoner disk see [19]. In the ultrarelativistic limit of the above disks for
v = 1, the spacetime becomes an extreme Kerr spacetime with m = % The physical
interpretation of this fact as already given in [2] is that the disks become more and more
redshifted for increasing e. Its radius shrinks and the disk finally vanishes behind the

horizon of the extreme Kerr metric which forms in the ultrarelativistic limit.

4.4 Over-extreme Region

Since the ultrarelativistic limit of the one-component disks is reached for a finite value A.
of A, the question arises what the solution (2.8) describes for A > A., the smallest value
of A where ¢ = 1. In I it was shown that the boundary conditions at the disk are still
satisfied. Moreover the relations between the metric functions at the disk ensure that the
functions are bounded at the disk (they have at most a jump discontinuity there). The
proof for global regularity given in I does not hold in the ‘over-extreme’ region A > A..
It indicates that a singularity in the equatorial plane is probable which in fact can be
verified numerically. A typical plot is presented in Fig. 20. In the ultrarelativistic limit,
the ergosphere stretches to infinity, in the over-extreme region with € < 1 it is confined
to a finite region of spacetime. The singularity in the equatorial plane is of the form
1/(p—ps) at p, since the elliptic theta functions in the equatorial plane have zeros of first
order. In [7] it was shown that the singularity leads to a negative ADM-mass for certain
A > A.. The spacetime is thus physically unacceptable. This is a striking example that
it is not sufficient to solve a boundary value problem locally at the disk within the class
of solutions [9], but that one has to find in addition the range of the physical parameters
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Figure 18: Metric function e?V at the disk for several values of 7.

where the solution is globally regular outside the disk.

5 Conclusion

In this paper we have discussed a class of solutions to the Ernst equation which can
be interpreted as counter-rotating disks of dust. The solutions are given on a Riemann
surface of genus 2. We presented the numerical evaluation of the explicit formulas for the
mass and angular momentum, the energy-density, angular velocities in the disk in terms of
theta functions. Most of these relations hold for general solutions on Riemann surfaces of
genus 2. A generalization to arbitrary finite genus is straight forward in most cases. The
discussion here is intended to provide an example on how to extract physical information
out of the solutions of the form (2.8). Of special interest is the ultrarelativistic limit in
which the redshift of photons emerging from the center of the disk diverges. In the case
of only one component, the disk shrinks to a point and the exterior of the solution can be
interpreted as the extreme Kerr solution. If counter-rotating matter is present, the disk
has a always a finite radius even in the ultrarelativistic limit. It would be interesting to
study numerically the light cone structure of the spacetime which will be the subject of
further research.
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Figure 19: Metric function €2V in the ultrarelativistic limit of v = 1.
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