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Abstract

In this paper we study the local and global injectivity of spatial deformations of shearable

nonlinearly elastic rods� We adopt an analytical condition introduced by Ciarlet 	 Ne
cas

in nonlinear elasticity to ensure global injectivity in that case� In particular we verify the

existence of an energy minimizing equilibrium state without self�penetration which may be

also restricted by a rigid obstacle� Furthermore we consider the special situation where the

ends of the rod are glued together� In that case we can still impose topological restrictions as�

e�g�� that the shape of the rod belongs to a given knot type� Again we show the existence of a

globally injective energy minimizer which now in addition respects the topological constraints�

Note that the investigation of super�coiled DNA molecules is an important application of the

presented results�

� Introduction

Our experience tells us that matter cannot interpenetrate and� thus� the deformation of an elastic

body in nature is always restricted by the presence of other deformable or rigid bodies and by

the presence of itself� Often the deformation of the considered body is not too large and the

case that other bodies are touched can be excluded� However the possibility of self�contact is

always present� Nevertheless this phenomenon� which is also related to the global injectivity of

deformations� is usually ignored in treatments in elasticity due to analytical di�culties� Another

class of very natural but scarcely regarded constraints are topological restrictions as� e�g�� that a

closed elastic tube forming some knot cannot change the knot type during deformation as long

as it does not intersect itself� In the present paper we want to show how constraints of the

mentioned kind can be treated for a general class of shearable nonlinearly elastic rods which can

freely deform in space� In particular we show the existence of energy minimizing equilibrium

states which might have self�contact but which do not intersect itself and where the deformation
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can still be restricted by a rigid obstacle� Furthermore we study rods which are glued together at

its ends and we verify the existence of globally injective energy minimizers respecting topological

constraints such as some prescribed knot type and some prescribed link type�

A general analytical condition ensuring global injectivity for deformations in three�dimensional

nonlinear elasticity was introduced in Ciarlet � Ne�cas ��	 and the existence of an energy minimizer

subjected to that side condition was veri
ed� A slight generalization of these results can be found

in Schuricht ���	� We are now interested in the question how global injectivity of deformations

and self�contact can be modeled for elastic rods and whether we can verify the existence of

corresponding equilibrium states� For planar deformations of elastic curves Ball ��	 has proposed

some approach to describe self�contact and he veri
ed the existence of solutions without self�

intersection in some sense� But these results cannot be extended to deformations in space� We

readily realize that the treatment of global injectivity for elastic rods which are merely idealized as

some deformable curve in space does not make sense� For a reasonable model of self�contact we in

fact have to consider the elastic rod as a slender but 
thick� three�dimensional body for which we

prevent self�penetration� Certainly there are di�erent ways of how to 
fatten� the elastic curve�

But if we have 
xed a rule for doing that� then we understand contact as a real self�touching of

the body in a three�dimensionally and geometrically exact way �which sometimes is also called


hard� contact�� This approach can be found in v�d� Mosel ���	 and in Gonzalez et al� ��	 for

some special situations and it is carried out in the present paper with di�erent analytical tools in

a much more general way� An alternative approach would be� e�g�� to consider the elastic curve

as an electrically charged wire generating repulsive forces according to a suitable potential �cf�

v�d� Mosel ���	 and citations therein�� This way some kind of 
soft� self�contact can be modeled

which� however� is not intended to study in this paper�

The Cosserat theory describing the deformation of nonlinearly elastic rods in space which

can su�er �exure� shear� extension� and torsion is a suitable theory as basis for the task to

model self�contact� Though mathematically one�dimensional� this theory allows a mechanically

natural and geometrically exact three�dimensional interpretation of deformed con
gurations� i�e��

it precisely tells us how to fatten the rod based on the underlying three�dimensional deformation�

Since that theory also allows general nonlinear constitutive relations and inhomogeneities in the

geometry and the mechanical properties of the rod� it is su�ciently general to cover a large

classs of problems� In this paper we show how the condition of Ciarlet � Ne�cas ��	 can be

adopted to that theory in order to exclude self�penetration� Due to the special structure which

deformations in the rod theory have� this condition implies even stronger injectivity results for the

three�dimensionally deformed states of the rod than for general three�dimensional deformations

in elasticity as shown in ��	� Here a local injectivity result for rods� which is again stronger than

the general three�dimensional analogue� is an essential ingredient for the proof� Since the set

of all con
gurations which satisfy the constraints ensuring local and global injectivity is weakly

closed in a suitable Banach space� we can verify the existence of energy minimizing equilibrium

con
guration without self�penetration and without intersecting a given rigid obstacle� Note that

the special case of planar deformations is already studied in Schuricht ��	�
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Let us now imagine that we take both ends of the 
thick� rod and glue them together� We

realize that we have a lot of freedom in doing so and� this way� we can in�uence the realized

equilibrium state essentially� Before we stick the ends together we can� e�g�� form a prescribed

knot and if the ends already touch� then we can still rotate the terminal cross�sections around the

rod axis before we 
x them� Thus� as long as we prevent self�penetration� we can in fact obtain

in
nitely many di�erent solutions though the boundary conditions are always the same� That we

can identify these solutions we have to impose topological constraints as the knot type of some

deformed mid curve of the rod and the link type between that mid curve and some curve on the

boundary of the rod� Mathematically a knot type is characterized by an isotopy class� The link

type� which 
xes the freedom in rotation of the terminal cross�section as described above� can

be speci
ed by a homotopy class� We show that these topological side conditions de
ne weakly

closed sets in a suitable Banach space which 
nally enables us to verify the existence of a globally

injective equilibrium state respecting these topological constraints�

In Gonzalez et al� ��	 the same problem as discussed in the previous paragraph is studied

for rods with homogeneous circular cross�sections by means of completely di�erent analytical

methods� There a bound for the global radius of curvature� which is a nonlocal geometric quantity�

is used to ensure global injectivity of deformations� Though this approach provides merely an

approximation for self�contact in the shearable case� in the case of unshearable inextensible rods it

allows the derivation of the Euler�Lagrange equation as necessary condition for energy minimizing

states and the veri
cation of further regularity properties �cf� Schuricht � v�d� Mosel ���	�� In

contrast� the approach in the present paper permits much more general existence results� but it

seems to be unsuitable for the derivation of the Euler�Lagrange equation� Note that a rigorous

derivation �i�e�� without hypothetical regularity assumptions� of the Euler�Lagrange equation for

a problem in nonlinear elasticity taking into account self�contact was never done before�

The problem of elastic rings subjeted to topological constraints has an important application

in modeling super�coiled DNA molecules� i�e�� molecules which wrap around itself due to torsional

stresses� It has been observed that enzyms can control the global shape of the molecule through

topological changes� i�e�� enzyms can cut the strands of the double helix of DNA and then glue

them together in a di�erent way which increases or relaxes torsional stresses and which in�uences

the shape of the molecule globally�

In Section � of this paper we present the Cosserat theory for nonlinearly elastic rods as

necessary for our purposes� Conditions which ensure local and global injectivity for deformed

con
gurations of rods are investigated in Section �� In particular we discusse how far they de
ne

weakly closed sets in a suitable Banach space� The formulation of analytical conditions describing

rigid obstacles and topological constraints can be found in Section � and it is shown that such

constraints provide weakly closed sets in some Banach space� In Section � we 
rst verify the

existence of rods without self�intersection and perhaps restricted by a rigid obstacle in a general

way� Then we derive the existence of an energy minimizing state for closed rods respecting also

topological constraints as discussed above�

�



Notation� By int A� cl A� and vol A we denote the interior� the closure� and the Lebesgue

measure of a set A� The set of all real � � ��matrices is given by R
��� and SO��� is the subset

of all proper rotation matrices� Weak and strong convergence in a Banach space is expressed by

� and�� respectively� C���� L���� and W��p��� stand for the space of continuous functions� the

Lebesgue space of p�integrable functions� and the Sobolev space of p�integrable functions with

generalized p�integrable derivative� respectively�

� Rod theory

In this section we formulate the special Cosserat theory which describes the behavior of nonlinearly

elastic rods that can undergo large deformations in space by su�ering �exure� torsion� extension�

and shear� For a more comprehensive presentation see Antman ��� Chap� VIII	�

We suppose that the deformed position 
eld of a slender elastic body can be given in the form

p�s� ��� ��� � r�s� � ��d��s� � ��d��s� for �s� ��� ��� � � � �����

where

� � f�s� ��� ���j s � ��� L	� ���� ��� � A�s�g �

Here r � ��� L	 � R
� describes the deformed con
guration of some material curve in the body�

the so�called base curve �e�g�� the curve of centroids or a suitable boundary curve�� d��s�� d��s�

are orthogonal unit vectors describing the orientation of the cross�section at s� We interpret s

as length parameter and ��� �� as thickness parameters of the rod� A�s� � R
� are uniformly

bounded parameter sets for the cross�sections� We assume that A�s� is the closure of an open set

with � � A�s� for all s � ��� L	� To exclude certain mechanically irrelevant cases we furthermore

demand that � is the closure of an open set in R
� � For the stress free reference con
guration�

which has not to be straight or uniform in thickness� we assume that s is the arc�length of the

base curve and that the cross�sections are orthogonal to the base curve� With

d� � d� � d�

the vectors fd��d��d�g� which we call directors� form a right�handed orthonormal basis for each

s which we can also identify with an orthogonal matrix D � �d�jd�jd�� � SO��� �the right hand

side denotes the matrix with columns d��d��d���

A deformed con
guration of the rod is obviously determined by functions r � ��� L	 � R
�

and D � ��� L	 � SO��� where it is reasonable to choose r � W��q���� L	�R� � and D �

W��p���� L	�R���� with p� q � �� It can be shown that each such con
guration uniquely cor�

responds to an element

w � �u�v� r��D�� where u � �u�� u�� u��� v � �v�� v�� v��

in the space

Xp�q � Lp���� L	�R� ��Lq���� L	�R��� R
� � SO��� �����
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such that

d�k�s� �
� �X
j��

ujdj

�
� dk for a�e� s � ��� L	 � k � �� �� � �����

r��s� �
�X

j��

vjdj for a�e� s � ��� L	 � �����

r��� � r� � D��� � D�

�cf� Gonzalez et al� ��	�� We call u� v the strains of the problem� By the notation p�w	� r�w	�

etc� we indicate that the values p� r� etc� are calculated for w � �u�v� r��D��� The special case

of a theory for unshearable and inextensible rods can be obtained by simply setting

v � ��� �� �� �

To ensure that con
gurations preserve orientation and are locally invertible it is asssumed

that

det
�p�s� ��� ���

��s� ��� ���
� � a�e� on � �����

which is equivalent to

v��s� � ��u��s�� ��u��s� for a�e� �s� ��� ��� � � �����

by ������ Due to the structural assumptions about � and A�s� this is also equivalent to the

one�dimensional inequality

v��s� � V �u��s�� u��s�� s� for a�e� s � ��� L	 �����

where

V �u�� u�� s� � max
��������A�s�

��u� � ��u� �

Obviously V ��� �� s� � � and V �u�� u�� s� � � for ju�j � ju�j �� � by � � A�s�� As an upper

envelope of a family of linear functions� V ��� �� s� is convex and obviously continuous �cf� also

Antman ��� Chap� VIII��	�� In Section � we discuss how far ����� really ensures local injectivity

of a deformation p�

The rod is called hyperelastic if the material response can be described by a stored energy

density W � R� � R
� � ��� L	 � ��	��		 depending on �u�v� s� where W ��� �� s� is convex and

such that the total elastic energy is given by

Es�w� � Es�u�v� �

Z L

�
W �u�s��v�s�� s� ds �

The derivatives n � Wv and m � Wu provide the force and the moment� respectively� exerted

from the material on one side of a cross�section to the material on the other side of the cross�

section �cf� Antman ��� Chap� VIII��	�� For our analysis we assume that�
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� W ��� �� s� is continuous for all s � ��� L	�

� W �u�v� �� is measurable for all �u�v� � R
� � R

� �

� W �u�v� s� � ��s� for some � � L����� L	��

This way we in particular ensure that Es��� is weakly lower semicontinuous on the Banach space

Y p�q � Lp���� L	�R���Lq���� L	�R� �� R
� � R

���

�cf� Dacorogna ��	�� Note that Xp�q is a closed subset of Y p�q but not a linear subspace�

Analogously as for planar rods in Schuricht ��	� external forces exerted to the rod can be

described by a vector valued regular Borel measure f on � and the corresponding potential

energy is given by

Ep�w� � �

Z
�
p�w	�s� ��� ��� � df �

In Section � we are looking for minimizers of the total energy

E�w� � Es�w� �Ep�w�

subjected to further side conditions�

To simplify notation we set

X �Xp�q� Y � Y p�q

and we assume that � � p� q �	 for the rest of this paper� Note that parameters p� q for X and

Y have to be always the same�

� Local and global injectivity

��� Formulation of the results

According to our experience� the place occupied by one body cannot be occupied by another

body at the same time� The same must be true for each part of a deformable body and one

says that the body cannot penetrate itself� We invoke this property of matter into our theory

by the mathematical demand that the mapping p given in ����� has to be �globally� injective

on int �� Since this condition is hard to treat analytically� it is mostly neglected and merely a

local condition like ����� is usually taken into account in problems of continuum mechanics� If

deformations are continuously di�erentiable� then local injectivity can be ensured this way� In

��dimensional nonlinear elasticity� however� deformations belonging to W��p���R�� are usually

considered and a condition like ����� ensures local injectivity only in some generalized sense �cf�

Fonseca � Gangbo ��	�� But� due to the speccial structure ����� which we impose to deformations

of our rods� we will get local injectivity for deformed rods satisfying ������ Since condition �����

does not de
ne a weakly closed set in Y � it cannot be used to verify minimizers of the energy�

Therefore we still consider some more sophisticated situation ensureing local injectivity� Then

we consider a slightly generalized situation which is important for existence results� Finally we
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adopt a condition introduced by Ciarlet � Ne�cas ��	 for problems in ��dimensional elasticity to

our setting to ensure global injectivity of deformations p on int ��

Let us start with a proposition which states local injectivity on the basis of ������ The proof

essentially uses the special structure of p according to ����� and can be found at the end of this

section�

Proposition ��� Assume that w � �u�v� r��D�� �X satis�es the orientation preserving condi�

tion ������ Then the mapping �s� ��� ���� p�w	�s� ��� ��� is locally injective on int �� Furthermore�

this mapping is open on int �� i�e�� the images of open sets are open�

Since we are interested in existence results� which we want to derive by variational methods�

we need side conditions which de
ne weakly closed sets in a suitable Banch space� This� however�

is not the case for condition ������ By this reason we have to consider the relaxed condition

v��s� � V �u��s�� u��s�� s� a�e� on ��� L	 � �����

Here we also allow deformations p where portions of the rod are compressed to zero volume� By

the natural growth condition that

W �u�v� s��	 as v� � V �u�� u�� s�� � � �����

i�e�� the elastic energy approaches in
nity under complete compression� we can enforce that equal�

ity in ����� can only occur on a set of measure zero for con
gurations with 
nite energy� Though

����� itself does not ensure local injectivity of p� we can supplement Proposition ��� with the

following more sophisticated result�

Proposition ��� Let W satisfy ������ let w � �u�v� r��D�� �X satisfy ������ and let

Es�u�v� �

Z L

�
W �u�s��v�s�� s� ds �	 �

Then the mapping �s� ��� ���� p�w	�s� ��� ��� is locally injective and open on int ��

This way we justify the use of the relaxed condition ����� in cases where ����� is met� The fact

that the mapping p�w	��� is open will be an important ingredient in the proof of Theorem ���

below� The proof of the proposition is postponed to the end of this section�

Now we have seen how local injectivity can be ensured� But it can still happen that parts of

the rod which are far away from each other in the reference con
guration penetrate each other

after large deformation� To prevent this we adapt an inequality condition introduced by Ciarlet

� Ne�cas ��	 to our rod theoryZ
�
det

�p�s� ��� ���

��s� ��� ���
d�s� ��� ��� 
 vol p�w	��� �����

where �vol� denotes the Lebesgue measure� Roughly speaking we demand that the volume occu�

pied by the deformed rod is not smaller than the sum over the volumes occupied by disjoint parts

of the rod� By ����� inequality ����� is obviously equivalent toZ
�
v��s�� ��u��s� � ��u��s� d�s� ��� ��� 
 vol p�w	��� � �����
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Theorem ��� Let W satisfy ������ let w � �u�v� r��D�� � X satisfy ������ ������ and let

Es�u�v� �	� Then the mapping �s� ��� ���� p�w	�s� ��� ��� is �globally� injective on int ��

Observe that we merely get injectivity on int � and not on �� Hence it is not excluded that

deformed points of the rod corresponding to parameters on the boundary �� may coincide� This

is a very natural fact and just means that the deformed elastic body can have self�contact� Note

further that in the general ��dimensional case� studied by Ciarlet � Ne�cas� the strains must be

p�integrable with some p � � to get a comparable result� However� due to the special structure of

deformations p given in ������ in our case p� q � � is su�cient� The proof of the theorem� which

is given at the end of this section� uses also Proposition ����

As we already mentioned� for our variational problem we need side conditions which provide

weakly closed sets in Y in order to apply the direct methods of calculus of variations� The next

lemma states that this is the case for conditions ����� and ������

Lemma ��� The sets

X� � f�u�v� r��D�� �Xj �u�v� satis
es�����g and

X� � fw �X jw satis
es�����g �����

are weakly closed in Y �

��� Proofs

Proof of Proposition ���� Since w � X is 
xed� we suppress the dependence of p� di etc�

on w� Let us 
rst show that p��� �� �� is locally injective on int �� For this reason we 
x any

�s�� ���� ���� � int �� We obviously can 
nd � � � and � � 	 � � such that

cl U���� � int � ������

where

U��� � f�s� ��� ��� � R
� j js� s�j � �� j�� � ���j � 	� j�� � ���j � 	g �

Since the parameter sets A�s� are supposed to be uniformly bounded� there is  r � � such that

j��j� j��j �  r for all �s� ��� ��� � � �

We assume that � � � is so small thatZ s���

s���
ju��s�j ds �

Z s���

s���
jv��s�j ds �

Z s���

s���
jv��s�j ds � min

�
	

��
�
	

��  r

�
������

and

d��
�� � d��
�� �
�

�
for all 
�� 
� � �s� � �� s� � �	 ������

�recall that d���� is continuous�� By assumption �u�v� satis
es the orientation preserving condi�

tion ����� and thus also ������ Hence� by �������

v��s�� ��u��s� � ��u��s� � �	� ju��s�j� ju��s�j � on U��� � ������
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We will now show that p is injective on U���� For contrary suppose that there are di�erent

points �s�� ���� ����� �s�� ���� ���� � U���� s� � s�� with

p�s�� ���� ���� � p�s�� ���� ���� ������

Observe that the case s� � s� easily implies ��� � ���� ��� � ��� and thus can be excluded� Using

 p�s� � p�s� ���� ���� � !s � s� � s� �  s�t� � s� � t!s

we consider

!p �  p�s���  p�s��

� !s

Z �

�
 p��s� � t!s� dt

� !s

Z �

�
r�� s�t�� � ���d

�
�� s�t�� � ���d

�
�� s�t�� dt

� !s

Z �

�

� �X
j��

vjdj � ���

�X
j��

ujdj � d� � ���

�X
j��

ujdj � d�
�
dt �by ������ ������

� !s

Z �

�
�v� � ���u��d� � �v� � ���u��d� � �v� � ���u� � ���u��d� dt ������

where  s�t� is the argument of all functions in the last two lines� We claim to show that

!p �  d � � where  d � d��s�� � ������

By p�s�� ���� ���� �  d �  p�s�� �  d this contradicts ������ and would verify the global injectivity of

p on U����

Let us introduce the notation

�i �

Z s�

s�

jui�s�j ds � �i�� �

Z s�

s�

jvi�s�j ds � i � �� �� ��

�i �

Z �

�
jui� s�t��j dt � �i�� �

Z �

�
jvi� s�t��j dt � i � �� �� ��

Clearly

�i � !s �i � i � �� � � � � �� ������

By �����

d��s� � d��s�� �

Z s

s�

�
�u��
�d��
� � u��
�d��
�

�
d
 �

Hence

kd� �  dkC�s��s�� 
 �� � ��kd� �  dkC�s��s�� � ������

Analogously�

kd� �  dkC�s��s�� 
 �� � ��kd� �  dkC�s��s�� � ������
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Pluging ������ into ������ and vice versus we obtain

kd� �  dkC�s��s�� 

�� � ����

�� ��
�

� kd� �  dkC�s��s�� 

�� � ����

�� ��
�

� ������

Notice that the denominator is positive by ������� Using ������� ������� ������� ������ we can now

estimate

!p �  d � !s

Z �

�

�
	�ju�j� ju�j�� �jv�j�  rju�j�

�� � ����

�� ��
�

� �jv�j�  rju�j�
�� � ����

�� ��
�

�
dt

�all arguments have to be  s�t��

� 	��� � ����
�

�� ��
�

�
����	 �  r�� � ���
 �  r��

�� � ����
 �  r�� � ���	 �  r��
��
�

Using ������ and 	 � � we obtain that

�

�� ��
�

� �

and� again by �������

!p �  d � 	��� � ���� ��
	

�
�� �

	

�
��� �

	

�
��� � ��� �

If �� � �� � �� then we have veri
ed ������� Otherwise u��s� � u��s� � � a�e� on �s�� s�	 and�

therefore� d��s� � d��s�� �  d on �s�� s�	 by ������ With ������ and ����� we then get

!p �  d � !s

Z �

�
v�� s�t��d�� s�t�� �  d dt �

Z s�

s�

v��s� ds � � ������

which veri
es ������ also in the remaining case� Hence p is injective on U��� and by the arbitrary

choice of �s�� ���� ���� � int � the local injectivity of p on int � is shown�

The continuity and the local injectivity of p 
nally imply that p maps open sets onto open

sets �cf� Zeidler ���� Theorem ���C	� �

Proof of Proposition ���� We proceed exactly as in the previous proof of Proposition ����

However for the veri
cation of ������ we argue that v��s� � � a�e� on ��� L	 due to ����� and

Es�u�v� �	� �

Proof of Theorem ���� By the special structure of p � p�w	 according to ����� and by r �

r�w	 � W��q���� L	�� di � di�w	 � W��p���� L	�� i � �� �� �� there is a set I� � ��� L	 of measure

zero such that

lim sup
��s�����������s�������

kp� s�  ���  ���� p�s� ��� ���k

k� s�  ���  ���� �s� ��� ���k
�	 for all �s� ��� ��� � �� � � n �I�

where

�I� � f�s� ��� ��� � �j s � I�g � ������

��



By Federer ��� p� �������	 we then have that

Z
��

�
v��s�� ��u��s� � ��u��s�

�
d�s� ��� ��� �

Z
p����

card fp���q�g dq

where �card� denotes the number of elements of a set and p�� is the inverse of the mapping p����

Below we show that

vol p��I�� � � � ������

Using ����� we thus get

vol p��� �

Z
p����

dq 


Z
p����

card fp���q�g dq

�

Z
��

�
v��s�� ��u��s� � ��u��s�

�
d�s� ��� ��� 
 vol p��� � ������

Consequently

card fp���q�g � � for almost all q � p��� � ������

Suppose now that there are di�erent �s�� ���� ����� �s�� ���� ���� � int � with

 q � p�s�� ���� ���� � p�s�� ���� ���� �

We can choose disjoint open ballsB� andB� centered at �s�� ���� ���� and �s�� ���� ����� respectively�

and both contained in int �� By Proposition ��� the sets p�B�� and p�B�� are open and both

contain  q� Hence we have card fp���q�g � � on a neighborhood of  q� But this contradicts ������

and veri
es the injectivity of p on int ��

We still have to prove ������� Denote the diameter of p��� by  d and  � be an upper bound for

j��j� j��j as long as �s� ��� ��� � �� Let �s�� ���� ����� �s�� ���� ���� � �� s� � s�� and consider


 �
����p�s�� ���� ����� p�s�� ���� ����

�
� d��s��

��� �
Using p�s�� ���� ���� � d��s�� � p�s�� ���� ���� � d��s�� and deriving ������� ������ as in the proof of

Proposition ���� we readily get the estimate


 
 � �

Z s�

s�

�X
j��

�juj�s�j� jvj�s�j� ds � 
�s�� s�� �

With  di � di�s��� i � �� �� �� we further set

Q�s�� s�� � fq � R
� j j�q � r�s��� �  d�j 
  d� j�q � r�s��� �  d�j 
  d� j�q � r�s��� �  d�j 
 
�s�� s��g �

Obviously

p�s� ��� ��� � Q�s�� s�� for all �s� ��� ��� � ��s��s�


�notation in the sense of �������� Thus

vol p���s��s�
� 
 vol Q�s�� s�� �  d �
�s�� s�� � ������

��



Since I� has measure zero� for any 	 � � there is a sequence of disjoint intervals �s�j��� s�j� �

��� L	� j � N� such that

I� �
�
j�N

�s�j��� s�j� � I� �
�X
j��

�s�j�� � s�j� 
 	 �

By ������ we obtain

vol p��I�� 

�X
j��

vol p���s�j���s�j��



�X
j��

vol Q�s�j��� s�j� �  d�
�X
j��


�s�j��� s�j�

� � �  d �
�X

i��

Z
I�

jui�s�j� jvi�s�j ds � ������

Since the measure of I� is not greater than 	 and 	 � � can be choosen arbitrary small� the right

hand side in ������ can be made arbitrary small� This veri
es ������ and the proof is complete�

�

Proof of Lemma ���� Observe that weak convergence wn � w in Y just means that un � u

in Lp� vn � v in Lq� r��n � r� in R
� � and D��n � D� in R

��� and analogously for the strong

convergence wn � w in Y �

By the convexity of V ��� �� s�� the set

Y � � f�u�v� r��D�� � Y j �u�v� satis
es �����g

is convex� Since a strongly convergent sequence in Lp or Lq has a subsequence which converges

pointwise almost everywhere and since V ��� �� s� is continuous� Y � is closed with respect to strong

convergence and� hence� also with respect to weak convergence� By the closedness of SO��� in

R
��� we 
nally get that X� is weakly closed in Y �

Let now wn � w in Y where wn � X�� Clearly the left�hand side in ����� is weakly

continuous� We show that

lim sup
n��

vol p�wn	��� 
 vol p�w	��� ������

which then establishes that w satis
es ������ Since SO��� is closed in R��� � this implies that also

X� is weakly closed in Y �

By the continuity of p�w	��� the set p�w	��� is compact� For the 	�neighborhoods U��p�w	�����

	 � �� we thus have that

lim
���

vol U��p�w	���� � vol p�w	��� � ������

In Gonzalez et al� ��� Prop� ���	 it is shown that

r�wn	� r�w	 � di�wn	� di�w	 � i � �� �� �� in C���� L	� � ������

��



Hence� for any 	 � � there is n� � N such that

p�wn	��� � U��p�w	���� for all n � n� �

But this combined with ������ implies ������� �

� Rigid obstacles and topological constraints

��� Formulation of the results

The deformation of an elastic body is often restricted by a rigid obstacle� i�e�� the rod cannot

occupy the points in space occupied by the obstacle� It seems reasonable to assume that a rigid

obstacle can be identi
ed with the closure O of an open set in R� �in Schuricht ��	 the case where

int O � � is discussed for planar deformations�� Admissible deformations of the rod must then

satisfy

p�s� ��� ��� �� intO for all �s� ��� ��� � ��

As a special case we allow that O � � which describes the case without obstacle� Again we ask

whether this constraint provides a weakly closed subset in Y �

Lemma ��� The set

XO � fw �X j p�w	�s� ��� ��� �� intO for all �s� ��� ��� � �g �����

is weakly closed in Y �

The proof is given at the end of this section�

Let us now study rods where the ends are glued together� More precisely we consider

XC � fw �Xj r�w	��� � r�w	�L�� d��w	��� � d��w	�L��

d��w	�L� �
�
��d��w	��� � ��d��w	���

�
� d��w	���g �����

where ��� �� � R with ��
� � ��

� � � are given� Besides the coincidence of the end points of the

base curve these conditions ensure that the orientation of the cross�sections is the same and that

the rotation angle between d���� and d��L� is 
xed�

Before we glue together the ends of the rod in the above mentioned way we have a lot of

freedom� We can� e�g�� form the rod into some knot� Then� if we prevent self�penetration� the type

of the knot cannot change during deformation� This means that the set of all globally injective

deformations has di�erent components which represent the knot type as topological constraint�

For a precise mathematical formulation of such a restriction we need the notion of isotopy class for

closed curves� Let r�� r� � ��� L	 � R
� be two continuous curves with ri��� � ri�L�� i � �� �� The

curves r�� r� are called isotopic �r� 
 r�� if there are open neighborhoods N� of K� � r����� L	��

��



N� of K� � r����� L	� and a continuous mapping " � N� � ��� �	 � R
� such that "�N�� �� is

homeomorphic to N� for all � � ��� �	 and

"�q� �� � q for all q � N�� "�N�� �� � N�� "�K�� �� � K��

Note that isotopy does not depend on the special parametrization of the curves and sometimes

we also write K� 
 K� instead of r� 
 r�� The next lemma shows� roughly speaking� that isotopy

classes provide weakly closed subsets in Y as long as deformations are globally injective� To avoid

technicalities we assume that there is some �� � � such that

B� � f���� ��� � R
� j ��� � ��� � ���g � A�s� for all s � ��� L	 � �����

This means that the base curve lies always in the interior of the rod� Otherwise isotopy has to

be considered for curves in the interior of the rod di�erent from the base curve� The proof of the

lemma can be found at the end of this section�

Lemma ��� Let W satisfy ����� and let Es�  w� 
  c for some  c � R and some  w �XC satisfying

����� and ������ Then

XK � fw �XC j r�w	 
 r�  w	� w satis�es ������ ������ Es�w� 
  cg

is weakly closed in Y �

If we take some rod and glue together its ends such that it belongs to XK we realize that

there is still some freedom in doing that� since we can rotate the terminal cross�sections around

the normal axis d���� against each other and after each full rotation we meet the same boundary

conditions as 
xed in XC � This means that XK still has in
nitely many components� We

can characterized these components by homotopy classes in SO���� Two continuous mappings

D��D� � ��� L	 � SO��� withD���� � D���� andD��L� � D��L� are called homotopic �D� � D���

if there is a continuous mapping # � ��� L	 � ��� �	 � SO��� such that

#��� �� � D���� and #��� �� � D���� on ��� L	 �

#��� �� � D���� and #�L� �� � D��L� on ��� �	 �

Again we have to ask whether the set of all rods with D��� belonging to the same homotopy class

form a weakly closed set in Y �

Lemma ��� Let D � ��� L	 � SO��� be a continuous curve� Then the set

XL � fw �X jD�w	 �Dg

is weakly closed in Y �

If we consider closed rods� i�e�� w � XC � the signi
cance of XcL is to 
x the linking number

of the two curves r��� and r���� �d���� where � � � is so small that ��� �� � A�s� for all s � ��� L	�

This linking number is a topological invariant and obviously removes the freedom of full rotations

we had discussed above� The proof of the lemma� which can be also found in Gonzalez et al� ���

Lemma ���	� is sketched at the end of this section for completeness�

��



��� Proofs

Proof of Lemma ���� Let wn � w � �u�v� r��D�� in Y with wn � XO� As in the proof

of Lemma ��� we get D� � SO��� and ������ which readily veri
es the assertion� since the

complement of intO is closed in R
� � �

Proof of Lemma ���� Let wn � w in Y with wn � XK� We have Es�w� 
  c by the weak

lower semicontinuity of Es��� �cf� Section ��� Lemma ��� implies that w � X and w satis
es

������ ������ We get ������ as in the proof of Lemma ��� and� thus� w �XC � We will show below

that r�wn	 
 r�w	 for some su�ciently large n � N� Hence r�w	 
 r�  w	 by wn � XK and the

assertion follows�

Since we consider closed rods �i�e�� belonging to XC�� the parameter set � can be replaced

with a parameter set

�� � f�s� ��� ���j s � SL� ���� ��� � A�s�g

where SL is a circle with perimeter L and the points on SL are identi
ed according to some arc

length parametrization� Note that �s� �� �� � int �� for all s � SL by ������ Recalling the proof of

Proposition ��� we readily see that p�w	 is an open mapping even on int �� and� therefore� the

compact curve K� � r�w	�SL� lies in the open set p�w	�int ���� Thus we can 
nd some open ��

neighborhoodN��K�� � p�w	�int���� � � �� For some subdivision � � s� � s� � � � � � sN�� � L

of SL �note that s� and sN�� in fact coincide�� we consider the piecewise a�ne closed curve

K� consisting of the straight pieces connecting r�w	�si� with r�w	�si���� i � �� � � � � N � The

subdivision can be supposed to be so 
ne that

K� � N��
�K��� �����

Let us again recall the arguments of the proof of Proposition ��� for a special situation� We


x �
�� �� �� � int �� and choose U�
�� � U��� such that ������� ������� ������ are satis
ed� Then

we arbitrarily choose �
�� �� ��� �
�� �� �� � U�
��� 
� � 
� and� by the same arguments leading

to ������� we can show that

�
r�w	�
��� r�w	�
��

�
� d��w	�
�� � � �����

and� similarly� �
r�w	�
��� r�w	�
��

�
� d��w	�
�� � � � �����

By the compactness of ��� � f�s� �� �� � ��j s � SLg there are 
nitely many of the open sets

U�s��� s� � SL� which already cover ���� Without loss of generality we can now assume that

the subdivision of SL is so 
ne that consecutive points �si� �� ��� �si��� �� ��� i � �� � � � � N � always

belong to the same set of the 
nite covering of ���� By ������ ����� we then have that

�
r�w	�si���� r�w	�si�

�
� d��w	�si� � � for i � �� � � � � N � ������

�
r�w	�si�� r�w	�si���

�
� d��w	�si��� � � for i � �� � � � � N � ������

��



Let us now show that a straight segment Ki
� � �r�w	�si�� r�w	�si���	 of K� �i������ � � �N�

can intersect a cross�section S�s� � p�w	�s�A�s��� s � SL� at most once� Otherwise� if some

straight segment Ki
� contains at least two points of some S� s�� then Ki

� � S� s� by ������ But this

contradicts the global injectivity of p�w	 on int �� and the fact that Ki
� contains both r�w	�si�

and r�w	�si����

Next we show that the straight segment Ki
� intersects exactly all cross�sections S�s� with

s � �si� si��	� Let � � r���� be the arc length parametrization of K� such that Ki
� � r����i� �i��	��

Since p�w	��� is an open mapping� the inverse q � �$s�q�� $���q�� $���q�� is continuous� Hence

� � $s�r����� is continuous with si � $s�r���i��� si�� � $s�r���i����� i�e�� K
i
� intersects at least all

S�s� with s � �si� si��	� Suppose now that  s � $s�q� ��� �� �si� si��	 for some  � � ��i� �i��	� By

continuity arguments we can assume that  s is arbitrarily close to either si or si��� Let 
rst  s � si�

By the same arguments as in the proof of Proposition ��� leading to ������ we can derive that

�
p�w	�$s�r�� � ��� $���r�� ���� $���r�� ���� � r�w	�si�

�
� d��si� � �

which is obviously the same as

�
r�� � �� r�w	�si�

�
� d��si� � � � ������

On the other hand� by ������ we have that

�q � r�w	�si�� � d��si� � �

for all q � Ki
�� since K

i
� is a straight segment� But this contradicts ������� Analogously we can

argue if  s � si�� by using ������� Hence the straight segment Ki
� intersects exactly all cross�

sections S�s� with s � �si� si��	� i � �� � � � � N and we can conclude that the curve K� intersects

each cross�section S�s�� s � SL� exactly once�

By the previous results we can construct neighborhoods M�
��
 of K� and M�

��
 of K� by

taking all circles in S�s�� s � SL� with radius ��� and centers on K� and K�� respectively� By

continuously translating theses circles within the cross�sections S�s� we readily verify that

r�w	 
 r� � ������

As in the proof of Lemma ��� we get ������� i�e��

r�wn	� r�w	� d��wn	� d��w	 uniformly on ��� L	 as n�	 � ������

For su�ciently large n � N we have r�wn	�SL� � M�
��
 and we can 
nd parameters tn� � tn� �

� � � � tnN�� such that for all large n � N

r�wn	�t
n
i � � S�si� for i � �� � � � � N � � �

By the compactness of SL we have� at least for a subsequence� that

lim
n��

tni � ti � SL for i � �� � � � � N � � �

��



By

jr�wn	�t
n
i �� r�w	�ti�j 
 jr�wn	�t

n
i �� r�w	�tni �j� jr�w	�tni �� r�w	�ti�j � ������

by ������� and by the continuity of r�w	���� we conclude that r�wn	�t
n
i �� r�w	�ti�� On the other

hand� for each � � � there is n��� � N such that r�wn	�SL� �M�
� for all n � n�
� where M�

� is a

neighborhood of K� which is built as M�
��
 above but whith circles having radius 
 � �� Hence

we also get r�wn	�t
n
i � � r�w	�si� which implies ti � si for i � �� � � � � N � � by the injectivity of

r�w	���� Using an estimate like ������ also for d�� we thus have that

r�wn	�t
n
i �� r�w	�si�� d��wn	�t

n
i �� d��w	�si� as n�	 � ������

Thus we can 
x n � N so large that K� � r�wn	�SL� �M�
��
 and such that� by ������� �������

�
r�wn	�t

n
i���� r�wn	�t

n
i �
�
� d��w	�si� � � �

�
r�wn	�t

n
i �� r�wn	�t

n
i���

�
� d��w	�si��� � � � ������

�
r�wn	�t

n
i����r�wn	�t

n
i �
�
�d��wn	�t

n
i � � � �

�
r�wn	�t

n
i ��r�wn	�t

n
i���

�
�d��wn	�t

n
i��� � � ������

for i � �� � � � � N �

By K� we now denote the piecewise a�ne closed curve connecting the points r�wn	�t
n
� ��

r�wn	�t
n
� �� � � �� r�wn	�t

n
N���� By K� � M�

��
� we have K� � M�
���� Using the same arguments as

above and by ������ we can show that K� intersects each cross�section S�s�� s � SL� exactly once

and that

K� 
 K� �

Finally� again by the same arguments as before but based on the deformed cross�sections of p�wn	

and by ������� we can show that

K� 
 K� �

Take� however� M�
��� instead of an analogue to N��
�K�� for these arguments and note that M�

���

is an open neighborhood of K�� Furthermore we have that K� �M�
��� and� by ������ ������ and

by choosing � � ���� at the beginning� we can assume that M�
��� � p�wn	�int��� for n � N large

enough�

We conclude that K� 
 K� which just means that r�w	 
 r�wn	 and the proof is complete�

�

Proof of Lemma ���� Each element Q � SO��� can be represented by a vector q�Q� � R
� �

Here q�Q� describes the direction of the rotation axis and the length jq�Q�j gives the rotation

angle ��Q� � ��� �	� In a neighborhood of the identity in SO��� the mapping Q � q�Q� and its

inversion q � Q�q� are uniquely de
ned and continuous� Note that Q�q�Q��� � Q�� q�id� � ��

Q��� � id� Furthermore the mapping A � A�� is continuous in R
��� near A � id� Let now

wn � w in X for wn �XL� As in the proof of Lemma ��� we get ������� i�e�� D�wn	�D�w	 in

C���� L	� which readily implies that w � X� Furthermore D�w	�s�D�wn	�s�
�� is continuous in s

and uniformly close to the identity for n � N large� With

#�s� �� � Q��q�D�w	�s�D�wn	�s�
���D�wn	�s� for s � ��� L	� � � ��� �	

��



we readily verify that D�wn	 � D�w	 for su�ciently large n � N and thus also D�w	 � D� i�e��

D�w	 �XL� �

� Existence of solutions

In this section we verify the existence of an energy minimizing equilibrium state for two general

situations� First we look for globally injective deformations possibly subjected to a rigid obstacle

and then we consider closed rods restricted by topological constraints�

Let us study variational problems where we calim to minimize the energy

E�w� �

Z L

�
W �u�s��v�s�� s� ds�

Z
�
p�w	�s� ��� ��� � df

with respect to further side conditions� To get coercivity of E��� in Y we impose the usual growth

condition

W �u�v� s� � c�jujp � jvjq� � ��s� for all �u�v� s� �����

where � � L����� L	� is given and � � p� q �	 are the constants identifying the space X �Xp�q

�cf� ������� Recall also the general assumptions for W which we imposed in Section ��

To avoid unnecessary technicalities we 
x r��� at the origin and thus consider the general

variational problem�

E�w�� Min%� w �X� �����

r�w	��� � �� w �XO� �����

w satis
es ����� and ������ �����

Theorem ��� Let W satisfy ����� and ������ If there is at least one admissible w� for the

variational problem ����� � ����� with �nite energy E�w�� �	� then the variational problem has

a minimizer�

Observe that the theorem remains true in the case without obstacle� since we have included

the case O � �� Instead of the boundary condition r��� � � we can 
x the position of any

other point of the rod or it is even su�cient to impose much weaker conditions as� e�g�� done in

Schuricht ��	�

Proof � Let wn � �un�vn� r��n�D��n� �X be a minimizing sequence of the variational problem�

Since r��n � �� since allD��n belong to the bounded set SO���� since Ep is linear� and by ������ the

sequence wn is bounded in the re�exive space Y � Hence there is a weakly convergent subsequence

�denoted the same way�

wn � w � Y �

In Section � we have seen that Es is weakly lower semicontinuous� Ep is obviously a linear

continuous functional on Y and thus also weakly lower semicontinuous� Therefore E�w� 
 E� &w�

��



for all admissible &w� The assertion of the theorem is veri
ed if we can show that w is admissible�

But this readily follows from Lemma ��� and Lemma ���� �

Let us now consider the variational problem with topological constraints� We assume that a

given closed continuous curve  r represents some prescribed knot type and that a given continuous

curve  D in SO��� identi
es some prescribed homotopy classs for the frames D���� Furthermore

we choose some closed set O � R
� �which is the closure of an open set� and numbers ��� �� � R

with ��
� � ��

� � � in order to 
x the sets XO and XC de
ned in ����� and ������ respectively�

Thus we can study the variational problem

E�w�� Min%� w �X� �����

w �XC � w �XO� r�w	 
  r� D�w	 �  D� �����

w satis
es ����� and ������ �����

Theorem ��	 Let W satisfy ����� and ������ If there is at least one admissible w� for the

variational problem ����� � ����� with �nite energy E�W �� � 	� then the variational problem

has a minimizer�

A similar result for rods with homogeneous circular cross�sections has been proved by Gonzalez

et al� ��� Theorem ���	 based on a nonlocal geometric side condition instead of ����� and ������ The

results are identical for unshearable rods� In the case of shearable rods� however� the geometric

condition in ��	 can model global injectivity and self�contact only approximatly while our results

are exact also in that case even with non�homogeneous and non�circular cross�sections� The

disadvantage of condition ����� is that it seems to be unsuitable for the derivation of the Euler�

Lagrange equation as necessary optimality condition� With respect to that question the nonlocal

geometric condition used in ��	 seems to be more powerful� since the Euler�Lagrange equation

could be derived at least for unshearable inextensible rods �cf� Schuricht � v�d� Mosel ���	��

Proof � We argue as in the proof of Theorem ��� and still have to verify that w �XC � r�w	 
  r�

and D�w	 �  D where w is the weak limit of the minimizing sequence�

As in the proof of Lemma ��� we get ������ which readily implies that w � XC � Lemma ���

gives that D�w	 �  D� Now note that Es�wn� has to be bounded for the minimizing sequence

wn by ����� and the linearity of Ep���� Hence Lemma ��� provides that r�w	 
  r and the proof

is complete� �
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