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Abstract

This is a discussion of selected open questions in billiard dynamics.

Introduction

Billiard dynamics broadly understood is the geodesic flow on a Riemannian
manifold with a boundary. Sometimes even this very general framework is
not broad enough. For instance, certain problems in physics lead to the
Finsler billiard. This means that the manifold in question is endowed with
a Finsler metric. See [33] for an introduction into the subject of the Finsler
billiard. Even worse, physical applications lead to the billiard on manifolds
with singularities. They are the configuration spaces of the underlying phys-
ical systems. In some cases the singular configuration space fits into the
framework of manifolds with corners. The simplest such manifolds are the
planar polygons, and there are physical models that yield triangular billiards.
See [16, 34, 22] and the survey [26].

The configuration space of the famous physical system of round elastic
balls [67] has a boundary with complicated singularities. It is structured com-
binatorially like a polyhedron with a large number of faces of all dimensions.
But it is much more complicated than a polyhedron, because its faces are not
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flat. The mathematical investigation of this system produced the celebrated
Boltzmann Ergodic Hypothesis. After Sinai’s seminal paper [62], a modified
version of the original conjecture became known as the Boltzmann-Sinai Er-
godic Hypothesis. See [62] and the Appendix in [67] for the background, and
§ 2 for further details.

However, in this exposition we restrict ourselves to the billiard in a
bounded planar domain with piecewise smooth boundary. The reason is
threefold. First, we concur with the opinion of G. D. Birkhoff [4] that this
setting allows to pursue right away interesting qualitative mathematical ques-
tions, bypassing lengthy preliminaries and/or cumbersome formalism. Sec-
ond, there are meaningful physical models that lead to planar billiards. We
refer to [68] and to the survey [26] for elaborations. The third, and the most
important reason is that the planar billiard offers intriguing open problems.
The problems are basic in that they are simple to formulate, and that they
concern the basic characteristics of these dynamical systems. Many of these
problems deal with the classical subject of periodic billiard orbits.

In the body of the paper we discuss several open problems of billiard dy-
namics. The choice of the problems is motivated partly by the personal taste,
and partly by the simplicity of formulation. To minimize the preliminaries,
we refer the reader to [68] for a modern introduction into the billiard ball
problem. See also [48], especially for the background on the material of § 1.
For obvious reasons, we call the planar domain in question the billiard table.
The geometric shape of the billiard table determines the qualitative character
of the corresponding motion. Historically, three geometric classes of shapes
have mostly attracted the mathematicians’ attention. First, it is the smooth
and strictly convex billard tables. For several reasons, the corresponding
billiard dynamics is called elliptic. This is the subject of § 1. Second, we
consider the piecewise concave and piecewise smooth billiard tables. The
corresponding dynamics is hyperbolic. However, there are also (nonstrictly)
convex billiard tables that yield hyperbolic dynamics. See § 2. Finally, bil-
liard tables of the third class are the polygons. The corresponding dynamics
is parabolic. See § 3 for a discussion of open problems for polygonal billiards.
Some of these problems are completely elementary.

Before turning to the body of the paper, I gratefully acknowledge the
remarks of several people on a preliminary draft of this survey. In partic-
ular, A. Katok pointed out that he wrote a somewhat similar in structure
paper on the “billiard ball problem”, based on his lecture at the Independent



University of Moscow [41].

We introduce now the basic notation and the terminology. It will be used
throughout the paper. We refer to [68] (pp. 3-4) for the figures illustrating
our conventions. Let Y C R? be a (closed) billiard table. Its boundary
dY is a finite union of C' curves. We are not assuming that Y is simply
connected, thus 0Y may have several connected components. The billiard
flow in Y is modeled on the motion of a material point. We will refer to it
as the “particle” or the “billiard ball”. At each moment of time the state
of the system is determined by the position of the ball, ¥y € Y, and its
velocity, v € R2. It suffices to restrict the attention to the motion with the
unit speed. Thus, v is a unit vector. When y € 0Y, then v is subject to
another restriction: It is directed inward. Let W be the space of pairs (y, v),
subject to these restrictions. Then W is the phase space of the billiard flow.
It is three-dimensional. If Y is simply connected, and 9Y is C', then ¥
is homeomorphic to the three-dimensional sphere, but we will not use this
observation. If (y,v) € ¥, we will say that y is the foot-point and v is the
direction of the billiard ball. The ball rolls with the unit speed along the
straight line through y, in direction v, until it reaches 0Y. At this instant
the direction of the ball changes. Let 3’ € Y be the point where the ball
touches the boundary of the billiard table. The transformation, v — v', is the
orthogonal reflection about the tangent line to Y at y'. Then (y',v') € U,
and the ball keeps rolling. These rules define the billiard flow 7% : & — W,

A few remarks are in order. The rules defining the flow 7" stem from the
assumptions that the billiard motion is frictionless, and that the boundary of
the billiard table is perfectly elastic. The orthogonal reflection rule insures
that billiard orbits are the local minimizers of the distance functional. This
property was used in [33] to define the reflection rule of the Finsler billiard. If
JY does not have a tangent at y', then the transformation (y,v) — (y',v’) is
not defined. These are the corner points or the cusp points of the boundary.
The standard convention is to “stop the ball” when it reaches a corner point.
Thus, if Y is not C?, then the billiard flow has orbits which are not defined
for all times. Our assumptions on Y imply that the union of these orbits has
zero volume with respect to the natural invariant measure.

Set X = 9Y, and endow it with the positive orientation. Choosing a
reference point on each connected component, and using the arclength as
parameter, we identify X with the disjoint union of k = k(Y") circles. In the
body of the paper (with a possible exception of § 3) k = 1. Denote by ® C ¥
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the subset given by the condition y € 9Y. Then ® is a cross-section for
the billiard flow. The corresponding Poincaré mapping is the billiard map.
The terminology is due to G. D. Birkhoff who championed the “billiard ball
problem”. See [4] and § 1 below. We will use explicit coordinates on ®.
Let x be the arclength parameter on X. For (z,v) € ® let § be the angle
between v and the positive tangent to 0Y at x. Then 0 < § < 7, where 0 and
7 correspond to the forward and the backward tangential directions respec-
tively. The arclength and the angle are independent coordinates. They yield
an isomorphism ® = X x [0, 7]. Since X is a disjoint union of circles, ® is a
disjoint union of k finite cylinders, or annuli. Note that this coordinatisation
fails at the corner points of Y. We use the notation ¢(z,0) = (xq,6;) for
the billiard map.

The Liouville measure on ¥ is invariant under the billiard flow. Let p, ¢ be
the euclidean coordinates in R2, and let 0 < o < 27 be the angle coordinate
on the unit circle. The density of the Liouville measure is dv = dpdgda. We
denote by p the induced measure on ®. It is invariant under the billiard map,
and we have du = sinfdxdf. Slightly abusing the language, we will call p
the Liouville measure for the billiard map. Both measures are finite, but not
normalized. A straightforward computation yields

v(¥) = 2mArea(Y), u(®) = 2Length(dY). (1)

1 Smooth, strictly convex billiards: elliptic
dynamics

The first deep investigation of this billiard is due to G. D. Birkhoff. See [4],
vol. 2. For this reason, it is often called in the modern literature the Birkhoff
billiard. The billiard map is an area preserving twist map. See, e. g., [43]
for more information about these maps, in general, and the Birkhoff billiard,
in particular. An ¢nvariant circle is a ¢-invariant curve I' C ® which is a
noncontractible topological circle. Recall that the space ® is a topological
annulus. Both components of 0® are trivial invariant circles. Interpreting ®
as the space of rays intersecting the billiard table, we view I' as a curve in
the space of rays. With any such curve we associate its set of focusing points,
F(T') C R2. Ignoring for the moment possible singularities of F'(T'), we point
out that for a general curve I' C @, its set of focusing points is not contained



in Y. This is true even for the general invariant curve. For instance, let Y
be an ellipse. Let f, f' € Y be its foci. There are invariant curves I" such
that F'(I') is a confocal hyperbola intersecting the segment [f f'].

But if I' is an invariant circle, then v = F(T') is contained in Y. More-
over, if I" is a nontrivial invariant circle, then v C Int(Y’). See [31]. This
observation extends to the “Birkhoff Minkowski billiard” [33]. The curves
v formed by the focusing points of invariant circles are the caustics of the
billiard table. In the example above, the caustics are the confocal ellipses
contained in Y. Their union is the region Y \ [ff']. The invariant circles
in @ also fill out a region, C'(®), with nonempty interior. Assume that Y is
not a disc. Then the complement ® \ C'(®) has a nonempty interior as well.
The region ® \ C(®) looks like a pair of “eyes” in the middle of the cylinder
®. See [68]. There are many open questions about the caustics. We will
formulate only one, the most famous.

Definition 1 A billiard table Y is integrable if the union of invariant circles
in the phase space has nonempty interior.

The following statement is commonly called “the Birkhoff conjecture”, al-
though it first appeared in print in a paper by Poritsky [57].

Problem 1. Ellipses are the only integrable billiard tables.

Let Y be a euclidean disc. We may view Y as a degenerate ellipse, with
f = f'. The preceding analysis applies, but now the invariant circles fill out
all of the phase space. M. Bialy proved the converse: If all of ® is foliated
by invariant circles, then Y is a disc [3]. If 9Y is sufficiently smooth, and its
curvature is strictly positive, then the invariant circles in ® fill out a set of
positive measure. This was first proved by V. Lazutkin under the assumption
that Y was of class C*% [49]. The smoothness requirement was eventially
lowered to C%. See [68] and the references there. By a theorem of J. Mather
[54], the positive curvature condition is necessary for the existence of caustics.

An invariant region, (2 C ®, which is a noncontractible topological annu-
lus whose interior contains no invariant circles, is a Birkhoff instability region
(or zone). This is an important concept for area preserving twist maps. See
[43]. Assume the Birkhoff conjecture, and let Y be a non-elliptical billiard
table. Then ® contains at least one Birkhoff instability zone. An instability



region has positive topological entropy [1]. Hence, the Birkhoff conjecture im-
plies that any non-elliptical billiard has positive topological entropy. By the
metric entropy of a billiard we mean its entropy with respect to the Liouville
measure. The only examples of convex billiard tables with positive entropy
are the Bunimovich stadium and its generalizations. Although these regions
are convex, the corresponding billiards are hyperbolic. See § 2. This leads
to our next open problem.

Problem 2. Give an example of an elliptic billiard with positive metric
entropy.

Since the notion of “elliptic billiard” is somewhat vague, we give a con-
crete, geometric version of this problem. Note that the Bunimovich stadium
and its generalizations are C''-smooth, but not C?-smooth. Besides, they are
not strictly convex.

Problem 3. a) Construct a strictly convex C'-smooth billiard table with
positive metric entropy. b) Construct a convex C%-smooth billiard table with
positive metric entropy.

Using a simple variational principle, Birkhoff proved the existence of cer-
tain periodic billiard orbits [4]. His approach extends to area preserving
twist maps, and yields the same existence result [43]. However, the billiard
framework makes the considerations especially geometric and elementary. A
periodic orbit of period ¢ (under the billiard map) corresponds to a (directed)
closed polygon, P, with ¢ sides, inscribed in 0Y. Vice versa, every closed
(directed) inscribed ¢-gon, satisfying the obvious condition on the angles it
makes with Y, determines a periodic orbit of period q. Birkhoff called poly-
gons satisfying the angles condition the harmonic polygons. Let 1 < p < ¢
be the number of times the pencil tracing P in the positive direction goes
around 9Y. The ratio 0 < p/q < 1 is the rotation number of a periodic orbit.
Fix a pair 1 < p < ¢, with p and ¢ relatively prime. Let X (p, q) be the set of
all incribed ¢-gons that go p times around 0Y. The space X (p, ¢) is a man-
ifold with corners. For P € X(p,q) set f(P) be the physical circonference
of P. Then the harmonic polygons are the critical points of the function f.
Birkhoff proved that f has at least two distinct critical points. One of them
delivers the maximum, and the other a minimax to the length function. The



corresponding periodic billiard orbits are the Birkhoff periodic orbits with
rotation number p/q.

As an example, let us consider the rotation number 1/2. Then the maxi-
mal Birkhoff orbit yields the diameter of Y. The minimax orbit corresponds
to the width of Y. When the two are equal, 9Y is a curve of constant width,
and we have a one-parameter family of periodic orbits with rotation num-
ber 1/2. They fill out the “equator” of ®. There are other examples of the
Birkhoff billiard tables with one-parameter families of periodic orbits having
the same length and the same rotation number. See [37] and [25] for different
approaches.

One of the basic characteristics of a dynamical system is the growth rate of
periodic points. In order to talk about a growth rate, we need to introduce a
way to account for the number of these points. These accounting devices are
usually called the counting functions. There are different kinds of counting
functions. One of them is the number of periodic points of the period at
most n. We mean the period with respect to the billiard map. Let fy(n)
denote this counting function. (See §§ 2 and 3 for other examples.) Denote
by gy (n) the number of periodic orbits of period at most n.

Birkhoff’s theorem yields a universal quadratic lower bound on gy (n).
Namely, gy (n)/2 is bounded below by the number of relatively prime pairs
1 < p < g <n. This implies a universal cubic lower bound on the counting
function fy(n), i. e., fy(n) > cn®. We leave the computation of the universal
constant ¢ in this inequality to the reader. See, e. g., [36].

In view of the examples above, fy(n) may be infinite. Hence, there is no
universal upper bound on the number of periodic points. Another natural
way to estimate the size of a set is to compute its measure. Let ® be the
phase space of the billiard map, and let P C ® (resp. P, C ®) be the set
of periodic points (resp. periodic points of period n). For example, if Y is a
table of constant width, then the set P, is the equator of ®. Although it is
infinite, u(Py) = 0. We formulate our next open problem as a claim.

Problem 4. Prove that for any Birkhoff billiard table p(P) = 0.

Since P = U;2 5Py, a disjoint union, the preceding claim is equivalent to the
following.

Problem 5. Prove that for any Birkhoff billiard table p(P,) = 0 for all n.
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The natural analog of this claim for the general area preserving twist maps
fails! This problem is strictly about the billiard. For n = 2 the solution
is straightforward. In fact, we have already outlined the argument in the
preceding discussion. For n = 3 this is a theorem of M. Rychlik [59]. Rych-
lik’s proof depends on a formal identity, which he verified using Maple. L.
Stojanov simplified the proof, and eliminated the computer verification [65].
Ya. Vorobets gave an independent proof [72]. His argument applies to higher
dimensional billiards as well. Finally, M. Wojtkowski [76] proved the claim,
as an application of the mirror equation of the geometric optics. See [31] for
other applications of the geometric optics in billiard dynamics.

For n > 4 the question is open. To obtain a counterexample, one would
have to produce a billiard table with a two-parameter family of periodic
orbits. Recall that there are billiard tables with one-parameter families of
such orbits [37, 25]. However, these tables are very special. In fact, the claim
of Problem 4 should hold for any billiard table. It has nothing to do with
the ellipticity. There is plenty of partial evidence that the claim holds. For
instance, this is known for the tables of §§ 2 and 3. It was proved for the
billiard tables with piecewise real analytic boundary. See the book [60] and
the references there. In addition, a theorem of V. Petkov and L. Stojanov
[56] implies that for the generic billiard table (not necessarily Birkhoff!) the
sets P, are finite for all n.

A solution of Problem 4 would have important implications for analysis.
The famous Weyl conjecture [74] predicts the second term and the error
estimate for the spectral asymptotics of the Laplace operator (with either
Dirichlet or Neumann boundary conditions) in a bounded domain. A theorem
of V. Tvrii [38] establishes the Weyl conjecture under the assumption that
the union of periodic billiard orbits in the domain has measure zero. Thus,
a solution of Problem 4 would yield the Weyl conjecture for planar domains.

2 Piecewise concave billiard tables: hyper-
bolic dynamics

As a geometric motivation, we propose the following construction. Take a
convex polygon, P. For instance, P may be a triangle or a quadrilateral.



Then replace each side of the polygon by a circular arc, centered at a distant
point. If the center-points are sufficiently far from P, then these circular arcs
form a “curvilinear polygon” whose vertices coincide with the vertices of P.
Choosing the center-points appropriately, we insure that the “sides” of this
curvilinear polygon, Y, are convex inward. This is a particular example of a
piecewise concave billiard table. It is not important that the sides of Y are
circular. The crucial condition is that they are smooth and convex inward.
See the figures in [68], p. 115.

This class of billiard tables arose in the work of Ya. Sinai on the Boltzmann-
Sinai gas [62]. See the Appendix by D. Szasz in [67] for the background ma-
terial. In the Boltzmann gas the round molecules are confined by the walls
of a container. Sinai has replaced the walls by periodic boundary conditions.
Thus, the round molecules of the Boltzmann-Sinai gas move on a torus. In
the “real world situation”, the number of the moving molecules is very large,
and the space is three dimensional. Sinai began by considering a “mathe-
matical caricature” of the physical system. In the caricature gas there are
only two round molecules, and the space is two dimensional. Eliminating the
center of mass, we reduce this system to the geodesic flow on a flat torus with
a round hole. Represent the torus by the 2 x 2 square, so that the hole is
the central disc of radius 1/2. Using the four-fold symmetry of the problem,
we reduce it to the billiard in the unit square with the deleted quarter-disc
of radius 1/2, centered at a vertex.

The domain we have constructed is known as the Sinai billiard *. We will
use this example to establish the terminology. Let Y be the domain above.
The boundary of YV is a union of four straight segments and a circular arc.
The former are the neutral components and the latter is a dispersive compo-
nent. Billiard tables like this are called semi-dispersive. In the absence of
neutral components, we speak of dispersive billiard tables. It is the dispersive
boundary components that cause the hyperbolicity of the billiard dynamics.
We will not give a formal definition of the hyperbolic billiard dynamics. We
refer the reader to [43] for the background on hyperbolic dynamics, in gen-
eral, and to § 5 of [68] and to the survey [8] for an introduction into the
hyperbolic billiard dynamics, in particular.

! Unfortunately, there is a fair amount of confusing terminology in the literature. Math-
ematicians often use the expressions like “Sinai’s billiard” or “the Sinai table” or “a dis-
persive billiard” interchangeably. Physicists tend to mean by “the Sinai billiard” a special
billiard table, though not necessarily the one we just defined.



Slightly abusing the language, we will say that a billiard table, Y, is
hyperbolic if the corresponding billiard map, ¢ : & — &, is hyperbolic.
Already in [62] Sinai proved the hyperbolicity of dispersive tables. After
the discovery by L. Bunimovich that the stadium and similar billiard tables
are hyperbolic [7], the workers in the field started searching for geometric
criteria of hyperbolicity. The notion of an invariant cone field [75] provided
a convenient approach to the subject. See also [42].

We restrict the discussion of this material to billiards. Denote by V, the
tangent plane to the phase space at z € ®. The differential ¢, is a linear
map from V; to Vi,).

Definition 2 A family C = {C, C V, : z € ®} is an invariant cone field if
the following conditions are satisfied.

o 1. The closed cone C, is defined for almost all z € ®, and the “func-
tion” z +— C', is measurable.

e 2. The cone C, is nontrivial and has nonempty interior.
e 3. We have ¢.(C.) C Cyz).

e 4. For almost all z € ® there exrists n = n(z) such that ¢7(C,) C
Int(Cyn(z))-

The existence of an invariant cone field is equivalent to the (nonuniform)
hyperbolicity of the billiard [75]. Using a geometric approach, M. Wojtkowski
constructed invariant cone fields for several classes of billiard tables [76]. In
addition to the “old” classes of hyperbolic tables (i. e., the dispersive tables
and the generalized Bunimovich’ stadia), Wojtkowski found invariant cone
fields for a wide class of locally strictly convex tables. Wojtkowski’s principles
of the design of hyperbolic billiard tables were further extended by V. Donnay
and R. Markarian. See § 5 of [68] and the references there. Recently, the
author and his collaborators used Wojtkowski’s ideas to construct hyperbolic
billiards on surfaces of arbitrary constant curvature [32].
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Despite the recent advances in extending the class of hyperbolic billiard
tables, the following “old” question remains open.

Problem 6. Is every semi-dispersive billiard table hyperbolic?

We will formulate a more concrete version of this question. Like in the
beginning of this section, we start with a (not necessarily convex) n-gon P.
We choose 1 < m < n of the sides, and replace them by convex inward
circular arcs of sufficiently large radii. This defines a special class of semi-
dispersive billiard tables. We will call them (for want of a better name) the
semi-dispersive polygons.

Problem 7. Is every semi-dispersive polygon hyperbolic?

When m = n — 1, a semi-dispersive polygon, Y, has only one neutral
component. Let Y’ be the reflection of Y about this side, and set Z =
Y UY’'. Since Z is a dispersive billiard table, it is hyperbolic. Because
of the axial symmetry of Z, the billiard maps in Y and Z are, essentially,
equivalent. Hence, the table Y is hyperbolic. In special cases, we can extend
the trick of reflection, to prove the hyperbolicity of semi-dispersive polygons
with m < n—1. For instance, let P be a triangle with an angle 7/n. Let Y be
the semi-dispersive triangle, whose only dispersive component replaces the
side of P, opposite the m/n angle. Reflecting Y™ successively 2n times, in an
obvious way, we obtain a dispersive billiard table, Z. Thus, Z is hyperbolic.
Since Y and Z are related by a 2n-fold symmetry, the table Y is hyperbolic
as well.

A suitable generalization of the reflection trick will work if P is a rational
polygon. See § 3 below for the definition. The crucial special case of Problem
7, when m = 1 and n is arbitrary, is equivalent to Problem 12 of § 3.

Dispersive billiard tables are ergodic [10], while for the hyperbolic tables,
in general, this is not the case [76]. However, the stadium and its relatives
are ergodic [66]. So far there are no examples of strictly convex hyperbolic
billiard tables. See Problems 2 and 3. The billiard dynamics in hyperbolic
tables has strong chaotic properties [9, 10, 13]. See also the articles in [67].
Many open questions for hyperbolic billiards have to do with the decay of
correlations. See, e. g., [14, 79]. Since this subject is rather technical, we
do not formulate any of them here. Instead, we will discuss the statistics
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of periodic orbits in dispersive billiards. In this case, the set of periodic
points of a particular period is finite, and the natural counting function is
well defined. Let fy(n) be the number of k-periodic orbits, with k& < n.
The asymptotic behavior of fy(n), as n — oo, is an important dynamical
characteristic. From now and until the end of this section, we restrict our
discussion to dispersive billiard tables.

By a theorem of Stojanov [64], fy(n) < e+", for some positive number
hy, as n — oo. By a theorem of Chernov [9], there is also an exponential
lower bound: e"-" < fy(n). Combining the two bounds, we obtain the
inequalities

fy(n)

|
0<ho< ligg}fogi < lim sup

n n—o00

|
%’”(n)gm@o. 2)

The following two problems were contributed by N. Chernov 2.

Problem 8. Does the limit below exist?

n—oo n

By equation (2), if this limit exists, then 0 < h_ < h < h; < 0.

(3)

Problem 9. If the limit in equation (3) does exist, is h the topological en-
tropy of the billiard map?

To simplify the exposition, we formulated both questions for dispersive
billiards only. Their natural analogs make sense (and are open) for all hy-
perbolic billiard tables. Moreover, Problems 8 and 9 fit into the general
relationship between the distribution of periodic points and the topological
entropy [39]. However, the singularities, which is the paramount feature of
the billiard dynamics, preclude the applicability of the smooth ergodic theory.
Other techniques have to be used. See, for instance, [12] and [28].

3 Polygonal billiards: parabolic dynamics

We refer to [24, 26] and to [68], Chapter 3 for the background material. The
surveys [63] and [53] discuss more recent developments. The polygon is not

2Personal communication.
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required to be convex or even simply connected. We also allow slits, i. e.,
obstacles without interior. A polygon P is rational if the angles between
the sides of Y are of the form 7m/n. Let N = N(P) be the least common
denominator of these rational numbers. A classical construction associates
with Y a closed surface S = S(P) tiled by 2N copies of P. The surface
S has a finite number of cone points, where the total angle is a multiple of
2w, If P is simply connected, then there is a simple formula for the genus
of S(P) in terms of the angles of P [24]. This formula implies that S(P) is
a torus if and only if P tiles the plane under reflections. The billiard in P
is essentially equivalent to the geodesic flow on S(P). This observation was
first exploited by A. Katok and A. Zemlyakov [45]. In the papers on billiards
S(P) often goes by the name of the “Katok-Zemlyakov surface”. However,
the construction has been in the literature (at least) since the early 20-th
century. See [23] and the references there.

Surfaces S(P) are examples of translation surfaces, which are of indepen-
dent interest [30]. From the viewpoint of the classical analysis, a transla-
tion surface is a closed Riemann surface with a holomorphic linear differen-
tial. Considering the quadratic differentials instead, we come to the class
of half-translation surfaces. The connection between the polygonal billiard
and the classical complex analysis proved to be very useful for the former
[47, 50, 51, 70]. We will give a few examples that show the usefulness, but
also the limitations of this relationship.

The geodesic flow of any translation surface, S, decomposes into the one-
parameter family of directional flows bly, 0 < 6 < 27. The flow b)) is identified
with the linear flow on S in direction . The Lebesgue measure on S is
preserved by b}. Hence, the billiard flow in a rational polygon is not ergodic.
It decomposes into the one-parameter family of directional billiard flows. Let
S be an arbitrary translation surface. A theorem of Kerckhoff, Masur, and
Smillie [47] says that the flows b)), are uniquely ergodic for Lebesgue almost
all . As a consequence, the directional billiard flow of a rational polygon is
ergodic for almost every direction. For the typical translation surface, the
set N(S) C [0, 27) of non-uniquely ergodic directions has positive Hausdorff
dimension [52]. Since the typical translation surface does not correspond to a
polygon, the theorem does not produce applications to the billiard. However,
the corresponding set A/(P) is well understood for special rational polygons
[23, 70, 15].

Now we turn to the billiard in irrational (i. e., arbitrary) polygons. De-
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note by 7 (n) the parameter space of euclidean n-gons, up to the scaling. Note
that the billiard is preserved by scaling. The space T (n) is a finite union of
natural components corresponding to a particular combinatorial data. Each
component is homeomorphic to a relatively compact set of the maximal di-
mension in a Euclidean space. Thus 7 (n) has a natural probability measure,
1, whose restriction to each component is proportional to the corresponding
Lebesgue measure. For instance, the space 7(3) of triangles is the subset
of R?, given by T(3) = {(a,3) : 0 < a < 3,0, < w/2}. Thus, T(3) is,
essentially, a square. Since [47], it is known that the set £(n) C T(n) of
ergodic n-gons is residual in the sense of Baire category [55]. A theorem of
Ya. Vorobets [73] produced actual examples of ergodic polygons. See more
on this below. The following question arises.

Problem 10. Ts u(E(n)) > 07

This question is open for all n > 3. The case of n = 3 is especially
interesting, since the mechanical system of three elastic particles confined
to move on a circle reduces to the billiard in an acute triangle. This was
independently noted in [22] and [11]. See [53] for a more detailed account.
Let mq, my, m3 be the masses. Then the angles of the triangle A(my, my, m3)

satisfy
tanai:mi\/m1+m2+m3,i:1,2,3. (4)
mimeomms

Note that in this correspondence between the mechanics and the billiard,
the condition of m-rationality of angles does not have an obvious physical
meaning. In the limit, when ms — oo, we obtain the physical system of
two elastic particles on an interval. The limit of A(my, ms, m3) is the right

triangle whose angles satisfy tan ay = /my/ma, tan ae = y/mso/m;.

Vorobets [73] proved that if the angles of an irrational polygon P admit a
particular superexponentially fast rational approximation, then P is ergodic.
This result produced examples of ergodic polygons, but it did not solve the
problem above. Numerical experiments indicate that irrational polygons are
ergodic, and have other stochastic properties [2, 11]. There is no theorem
confirming this, but, on the other hand, there is no theorem precluding this
possibility. 3

3The following problem grew out of discussions with D. Kleinbock in the Summer of

14



Problem 11. Give an example of an irrational but nonergodic polygon (tri-
angle).

Another open question has to do with the structure of possible invariant
sets in the phase space of a nonergodic polygon. Let P be an arbitrary n-gon.
Denote its sides by ay,...,a,. For 1 < i < n let &; C ® be the set of ele-
ments in the phase space of the billiard map, whose footpoints belong to the
side a;. Then ® = U} ;®;, a disjoint decomposition. Let p be the Liouville
measure in ®. Then, by equation (1), ;(®;) = 2Length(a;). Our next open
question is motivated by semi-dispersive billiard tables. See Problem 7 in
§ 2. We formulate this question as a statement.

Problem 12. Let P be an arbitrary n-gon, and let X C ® be a measurable
invariant subset. If X contains one of the sets ®;, then X = &.

Note that for rational polygons, which are very non-ergodic, the claim
holds. This follows from the main result of [47].

Periodic billiard orbits in polygons is a subject that does not require any
mathematical background beyond the school geometry, and it has immediate
applications to physics. For instance, let A(my, ms, m3) be the acute triangle
corresponding to the system of three elastic masses. See equation (4). Then
the periodic billiard orbits in the triangle A(m;y, msy, m3) correspond to the
periodic trajectories of the physical system of three masses. * The reader will
appreciate that the problems on periodic billiard orbits in polygons proved
to be especially elusive.

Problem 13. Does every polygon have a periodic orbit ?
Every rational polygon has periodic orbits, and much more is known (see

below). Certain special classes of irrational polygons have periodic orbits
[16, 34]. Every acute triangle has a classical periodic orbit - the Fagnano

1999. However, S. Troubetzkoy informed me that he had posed it several years ago in
Oberwolfach.

4Another connection between billiards and physics arises in the study of mechani-
cal linkages. See www.ma.huji.ac.il/"drorbn/People/Eldar/thesis for more information on
these “Basic Machines”. I am indebted to M. Steiner for bringing this to my attention.
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orbit [27]. But it is not known if every acute triangle has other periodic
orbits. Neither is it known if every obtuse triangle has a periodic orbit. See
[21] and [35] for periodic orbits in obtuse triangles.

Every periodic orbit in a polygon, with an even number of segments,
is contained in a parallel band of periodic orbits of the same length. The
boundary of a band is a union of singular orbits, or the generalised diagonals
[40]. These are the billiard orbits with endpoints at the vertices. Periodic
orbits with an odd number of segments are necessarily isolated, but they are
extremely rare. A rational polygon has a finite number of them. Let fp(¢) be
the number of periodic bands of length at most ¢. This is the right counting
function of periodic orbits in polygons.

Problem 14. Find efficient upper and lower bounds on fp(¢) for irrational
polygons.

At present it is only known that fp(¢) grows subexponentially [40, 28].
The concensus is that there should be a universal polynomial upper bound
on this counting function. As for a lower bound, it is anybody’s guess.

For rational polygons the situation is different. By results of H. Ma-
sur [50, 51] and M. Boshernitzan [5, 6], the counting function has quadratic
bounds. More precisely, there exist 0 < c¢,(P) < ¢*(P) < oo such that
c.(P)? < fp(0) < ¢*(P)F? for sufficiently large £. We can take for ¢,(P) and
c*(P) the lower and the upper limits, respectively, of fp(¢)/(?.

Problem 15. Find efficient estimates on ¢,(P) and ¢*(P) for rational poly-
gons.

In all examples computed so far fp(f)/¢? has a limit, i. e., c¢,(P) =
c¢*(P) = ¢(P). If this is the case, we say that the polygon has quadratic
asymptotics. For certain classes of rational polygons this has been proven,
and various expressions for the quadratic constant ¢(P) were found. See
[23, 69, 71], and [30]. The preceding definitions and questions have their
counterparts for translation surfaces, where periodic billiard orbits are re-
placed by the closed geodesics. On the one hand, the quadratic asymptotics
have been established for a special class of polygons and surfaces: Those
satisfying the lattice property, or, simply, for lattice polygons and translation
surfaces [69, 29, 30]. The quadratic constants for lattice polygons are number
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theoretic. See [69, 71] and [30]. They are highly unstable under perturba-
tions. Besides, lattice polygons are rare. All acute lattice triangles have been
determined [46, 58]. For obtuse triangles the question is open. On the other
hand, it is known that the generic (with respect to the Lebesgue measure)
translation surface has quadratic asymptotics. Let S be the generic transla-
tion surface. Then the value of its quadratic constant depends only on the
connected component of the stratum of the Teichmiiller space, to which §
belongs [17]. The “generic” quadratic constants have been computed [20, 19].
The result of [17] has no consequences for polygons, since the corresponding
subset of the Teichmiiller space has measure zero. However, an extension of
the preceding technique establishes the quadratic asymptotics and evaluates
the generic quadratic constants for a very special but interesting class of ra-
tional polygons [18].

Problem 16. Does every rational polygon have quadratic asymptotics?
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