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Abstract

Spatial interdependencies of stochastic units are usually quantified
by the Kullback-Leibler divergence of the joint probability distribu-
tion from the corresponding factorized distribution. In the present
paper, a generalized measure for stochastic interaction, which also
captures temporal interdependencies, is analysed within the setting of
Markov chains. The dynamical properties of systems with strongly
interacting stochastic units are analytically studied and illustrated by
computer simulations. In particular, the emergence of determinism in
such systems is demonstrated.
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1 Introduction

Spatio-temporal interdependence of neural activity has been the subject of
many investigations in experimental and theoretical settings. It is a general
belief that information processing in the brain essentially depends on inter-
relations, which for instance are expressed by cooperation and competition
of the neurons. On the phenomenological level, this is connected with the
generation of spatio-temporal neural activation patterns which are the basis
of experimental and statistical analyses [1, 3, 10, 12, 18] as well as functional
theories for synchronization and associative propagation of activity patterns
[2, 11, 17, 23, 25].

The hypothesis of strong interrelations is implicitly contained also in
many conceptual approaches to the understanding of first principles for neu-
ral organization and learning, where information theory provides an appro-
priate framework for the formulation and analysis of such principles [15, 16,
6, 20]. A well known measure that quantifies relations of interacting units is
a generalized version of the so-called mutual information of two units: Con-
sider N binary units 1, 2, . . . , N and a joint probability distribution p on
the configuration set {0, 1}N . Then the Kullback-Leibler divergence [13, 8]
of p from the set of factorizable distributions is a natural measure for the
“spatial” interdependence of the units:

I(p) := inf
pk, 1≤k≤N,

distributions on {0, 1}
D(p ‖ p1 ⊗ · · · ⊗ pN) . (1)

The Kullback-Leibler divergence represents the basis of many approaches to
neural complexity [19, 9] and has been theoretically studied in [4, 5] from the
information geometric point of view, where it is referred to as (stochastic)
interaction. In order to capture the intrinsically temporal aspects of interac-
tion, I has been extended in [7] to the dynamical setting of Markov chains.
In this case, the factorized or split Markov chains are the ones that can be
composed by a family of individual chains. So, there is no interaction of the
units with respect to a split Markov chain. In analogy to the approach given
by (1), we can consider the divergence of a Markov chain X from being split:

I(X) := inf
Y split Markov chain

D(X ‖ Y ).

(This formal definition is specified in Section 3).
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One of the main desired consistency properties of spatial as well as tempo-
ral interaction is the compatibility with the graphical neighbourhood struc-
ture of the network. This means, the global interaction/mutual information
should be a sum over the local interactions, defined by the neighborhoods of
single units. This property holds in the spatial case only for directed acyclic
networks [6]. In the temporal case, it is always satisfied [7]. In especially, Ro-
drigues, Huerta and Lopez [22] demonstrated the emergence of strong local
interactions in an instructive model for neural networks. Experimental evi-
dence for such a local optimization is also provided by Laughlin [14] (cf. also
[21]). Linsker [15, 16] further established a connection between (local) Heb-
bian learning rules and the optimization of local interactions. Thus, we are
encouraged to postulate the optimization of global interaction as a first prin-
ciple for learning in neural networks. This principle has been proposed in the
context of spatial interaction in layered networks in [6], where the connection
to the infomax principle by Linsker [15, 16] is discussed.

In the present paper we consider processes that optimize the dynamical
version of interaction. The analytical framework is formulated for general
Markov chains without direct reference to particular neural network mod-
els. This allows to investigate essential dynamical properties of strongly
interacting units unconstrained by architectural or other specific assump-
tions concerning neural dynamics. This provides a necessary first stage for
an investigation of learning processes also in more detailed recurrent neural
network models. Thus, the approach presented here optimizes interaction in
the full space of Markov chains, which leads to analytical results concerning
the most fundamental feature of strongly interacting stochastic systems, i.e.,
the development of the system dynamics towards determinism. In contrast, a
specific neural model would restrict optimization to constrained (and hardly
controllable) manifolds. We expect that the essential properties described in
the sequel for general Markov chains also carry over to more realistic models,
but have to leave the study of such models to future work.

The paper is organized as follows. In Section 2 we briefly introduce basic
notations and preliminaries for probability spaces and Markovian transition
kernels. In generalization of the usual mutual information for stationary
probability distributions, Section 3 provides the main definition of stochastic
interaction as the divergence of a Markov kernel from the product of its split
marginal kernels. The main analytical result for strongly interacting units
is also given in Section 3. It states that kernels with optimal stochastic
interaction must reveal a drastically reduced entropy and, hence, degree of
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randomness: Whereas for arbitrary Markov transitions in systems consisting
of N units, transitions between all (exponentially many) states are generically
possible, those are restricted to a number linear in N for strongly interacting
units. Section 4 afterwards demonstrates the development of determinism
in strongly interacting systems by means of computer simulations. These
simulations implement a simple stochastic optimization scheme for Markov
chains and display the nature of optimized systems by means of the resulting
sparse Markov kernels, state transition graphs as well as sample trajectories
for the stationary activity dynamics. Section 5 summarizes the main results.

2 Preliminaries

2.1 Discrete Probability Spaces

In the following, Ω denotes a non-empty and finite set of states . The vec-
tor space IRΩ of all functions Ω → IR carries the natural topology, and we
consider subsets as topological subspaces. The closed set of all probability
distributions on Ω is given by

P̄(Ω) :=

{
p = (p(ω))ω∈Ω ∈ IRΩ : p(ω) ≥ 0 for all ω ∈ Ω,

∑
ω∈Ω

p(ω) = 1

}
.

For p ∈ P̄(Ω), supp p := {ω ∈ Ω : p(ω) > 0} denotes the support of p. The
interior P(Ω) of P̄(Ω) consists of all elements with total support Ω.

The Shannon entropy of a distribution p ∈ P̄(Ω) is defined as

H(p) := − ∑
ω∈supp p

p(ω) ln p(ω).

It measures the uncertainty about the outcomes of an experiment goverened
by p. A related quantity which can be interpreted as a “distance” is the
Kullback-Leibler divergence or relative entropy of distributions p, q ∈ P̄(Ω):

D(p ‖ q) :=

{ ∑
ω∈supp p p(ω) ln p(ω)

q(ω)
, if supp p ⊂ supp q

∞ , otherwise
.
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Consider a non-empty and finite set V of units and corresponding state
sets Ων , ν ∈ V . For a subsystem S ⊂ V , ΩS :=

∏
ν∈S Ων denotes the set of all

configurations on S. The elements of P̄(ΩS) are the random fields on S. One
has the natural restriction XS : ΩV → ΩS , ω = (ων)ν∈V �→ ωS := (ων)ν∈S,
which induces the projection P̄(ΩV ) → P̄(ΩS), p �→ pS, where pS denotes
the image measure of p under the variable XS. If the subsystem S consists
of exactly one unit ν, we write pν instead of p{ν}.

2.2 Discrete Transition Kernels

Given two subsets A, B of V with B 	= ∅, a function

K : ΩA × ΩB → [0, 1], (ω, ω′) �→ K(ω′ |ω),

is called Markovian transition kernel if K(· |ω) ∈ P̄(ΩB) for all ω ∈ ΩA, that
is ∑

ω′∈ΩB

K(ω′ |ω) = 1, for all ω ∈ ΩA .

The set of all such kernels is denoted by K̄(ΩB |ΩA). We write K(ΩB |ΩA)
for its interior and K̄(ΩA) respectively K(ΩA) as abbreviation in the case
A = B. If A = ∅, then ΩA consists of exactly one element, namely the
empty configuration ε. In that case, K̄(ΩB |Ω∅) = K̄(ΩB | ε) can naturally be
identified with P̄(ΩB) by p(ω) := K(ω | ε), ω ∈ ΩB.

Given a probability distribution p ∈ P̄(ΩA) and a transition kernel K ∈
K̄(ΩB |ΩA), the conditional entropy for the pair (p, K) is defined as

H(p, K) :=
∑

ω∈ΩA

p(ω) H(K(· |ω)) . (2)

For two random variables X, Y with Prob{X = ω} = p(ω) for all ω ∈ ΩA,
and Prob{Y = ω′ |X = ω} = K(ω′ |ω) for all ω ∈ ΩA with p(ω) > 0 and all
ω′ ∈ ΩB, we set H(Y |X) := H(p, K). This measures the uncertainty about
Y given X.
The “distance” of two kernels K, L ∈ K̄(ΩV ) with respect to a distribution
p ∈ P̄(ΩV ) can be measured by

Dp(K ‖L) :=
∑

ω∈ΩV

p(ω) D
(
K(· ‖ω) ‖L(· ‖ω)

)
.

This extends the Kullback-Leibler divergence to the setting of transition
kernels.
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3 The Main Result on Strong Interaction

Consider a set V of units and corresponding state sets Ων , ν ∈ V . A prob-
ability distribution p on ΩV is called factorizable if there exist distributions
p(ν) ∈ Ων such that

p(ω) =
∏
ν∈V

p(ν)(ων), for all ω ∈ ΩV .

Thus, p is factorizable if and only if the units are independent with respect to
p. As stated in the introduction, the divergence from the set of all factorizable
distributions can be considered as a measure for “spatial” interdependencies
among the units. The following entropic representation is well known [4]:

I(p) := inf
p′ factorizable

D(p ‖ p′) =
∑
ν∈V

H(pν) − H(p). (3)

Here, the pν , ν ∈ V , denote the marginals of p. Ay [7] extended the definition
(3) to a dynamical version, where temporal interdependencies among the
units are also considered: A kernel K ∈ ΩV is called split if there exist
kernels K(ν) ∈ K̄(Ων), ν ∈ V , such that

K(ω′ |ω) =
∏
ν∈V

K(ν)(ω′
ν |ων), for all ω, ω′ ∈ ΩV .

The split transition kernels represent the dynamical version of the fac-
torizable distributions. Thus, in analogy to (3) we define the stochastic
interaction of the units with respect to p ∈ P̄(ΩV ) and K ∈ K̄(ΩV ) to be the
p-divergence of K from being split [7]:

I(p, K) := inf
K ′ split

Dp(K ‖K ′).

The measure I(p, K) extends the notion of spatial interdependence to the
dynamical setting. We also have the following representation ([7], Proposition
3.2):

Proposition 3.1. Consider a probability distribution p ∈ P(ΩV ), a
transition kernel K ∈ K(ΩV ), and the corresponding marginal kernels Kν ∈
K(Ων), ν ∈ V , of K defined by

Kν(ω
′ |ω) :=

∑
σ,σ′∈ΩV

σν=ω, σ′
ν=ω′

p(σ) K(σ′ | σ)∑
σ∈ΩV
σν=ω

p(σ)
, ω, ω′ ∈ Ων . (4)

7



Furthermore, define ⊗ν∈V Kν ∈ K̄(ΩV ) by

(⊗ν∈V Kν)(ω
′ |ω) :=

∏
ν∈V

Kν(ω
′
ν |ων), ω, ω′ ∈ ΩV .

Then one has the representation

I(p, K) = Dp(K ‖ ⊗ν∈V Kν) (5)

=
∑
ν∈V

H(pν , Kν) − H(p, K). (6)

Equation (6) obviously generalizes (3) to the dynamical setting. The
main question we focus on in the present paper is the degree of randomness
(uncertainty of the future, given the present) in systems with strongly inter-
acting units. The uncertainty of a kernel K with respect to a distribution
p is measured by the entropy of (p, K). It vanishes exactly when the next
state ω′ is determined by the current state ω for all ω ∈ supp p, that is
|supp K(· |ω)| = 1 for all ω ∈ supp p. According to (6), I(p, K) is large if
the marginal processes (pν , Kν) have high entropy, but that of the full pro-
cess (p, K) is low. Thus, heuristically, systems with high interaction I prefer
determinism. An implication of the following main theorem of the present
work states that the entropy of a system with N strongly interacting binary
units is reduced to at most ln(N + 1). This represents a strong reduction
from the maximal value N ln 2 for complete randomness.

Theorem 3.2. Consider a probability distribution p ∈ P̄(ΩV ) and a
transition kernel K ∈ K(ΩV ). If (p, K) is a local maximizer of I then for all
ω ∈ supp p one has

|supp K(· |ω)| ≤ 1 − |V | + ∑
ν∈V

|Ων |. (7)

For the binary case, (7) implies

|supp K(· |ω)| ≤ 1 + |V |. (8)

The somewhat technical proof of Theorem 3.2 is given in Appendix A.
Note, that in (7) and (8) the expression |supp K(· |ω)| counts the number of
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transitions with non-vanishing probability from an arbitrary state ω ∈ supp p
to its target states. Since, in principle, there are exponentially many possi-
ble target states (e.g., 2|V | in the case of |V | binary units) the estimates (7)
and (8), which are only linear in |V |, provide a strong upper bound on the
number of transitions occurring in systems of strongly interacting units.

As a direct implication of Theorem 3.2 we have

Corollary 3.3. In the situation of Theorem 3.2, the entropy of (p, K)
can be estimated by

H(p, K) ≤ ln

(
1 − |V | + ∑

ν∈V

|Ων |
)

,

where the upper bound reduces to ln(1 + |V |) if |Ων | = 2 for all ν.

The upper bound for the entropy given in Corollary 3.3 proofs that ran-
domness is strongly reduced in systems with high interaction.

4 Simulations

4.1 Preliminaries on Markov Chains

Consider a Markov chain Xt = (Xν, t)ν∈V , t = 0, 1, 2, . . ., that is given by an
initial distribution p ∈ P̄(ΩV ) and a kernel K ∈ K̄(ΩV ). The probabilistic
properties of this stochastic process are determined by the following set of
finite marginals:

Prob{X0 = ω0, X1 = ω1, . . . , Xt = ωt}
= p(ω0) K(ω1 |ω0) · · ·K(ωt |ωt−1), t = 0, 1, 2, . . .

Thus, the set of Markov chains on ΩV can be identified with

P̄(ΩV ) × K̄(ΩV ).

A probability distribution p ∈ P̄(ΩV ) is called stationary with respect to
K ∈ K̄(ΩV ) if∑

ω∈ΩV

p(ω) K(ω′ |ω) = p(ω), for all ω′ ∈ ΩV .
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A transition kernel K ∈ K̄(ΩV ) is called parallel if there exist kernels K(ν) ∈
K̄(Ων |ΩV ), ν ∈ V , such that

K(ω′ |ω) =
∏
ν∈V

K(ν)(ω′
ν |ω), for all ω, ω′ ∈ ΩV . (9)

In the present section we show some representative Markov-chain simu-
lations of small systems with strongly interacting binary units. We obtain
such systems by an optimization of interaction in the set of parallel Markov
chains with stationary initial probability distribution. In the following, this
set of Markov chains is denoted by SMCpar. Thus, it is a constrained opti-
mization and therefore differs somewhat from the one that we have analyzed
in Section 3. We currently do not see a way to generalize the main Theo-
rem 3.2 to the constrained setting. Nevertheless, the simulation results are
compatible with this theorem and can be discussed with regard to it. Our
main intention is to demonstrate the emergence of determinism in systems
with strongly interacting units.

Section 4.2 describes the simulation scheme, that is, the Markov dynamics
chosen for the activity update and the optimization method to obtain systems
with large interaction by random search. Section 4.3 and 4.4 present simple
examples with two and three units, which already reveal all qualitative prop-
erties visible in highly interacting systems. Section 4.5 and 4.6 afterwards
consider the convergence of the optimization procedure from mere random-
ness towards global determinism, and Section 4.7 describes the accompanied
activation patterns observable during different phases of convergence. Fi-
nally, Section 4.8 displays asymptotic entropy distributions obtained from a
large number of simulations.

4.2 Description of the Simulations

We employ a parallel update dynamics for the short-time activity of N binary
units, i.e. Ων = {0, 1}, ν = 1, · · · , N . That is, we start from a set of indi-

vidual kernels K(ν) ∈ K
(
{0, 1} | {0, 1}N

)
, ν = 1, · · · , N , cf. (9). Transitions

K(ν)(1 |ω), ω ∈ {0, 1}N , are initialized with independent equally distributed
random values in ]0, 1[; transitions K(ν)(0 |ω) are then fixed by the normal-
ization condition K(ν)(1 |ω) + K(ν)(0 |ω) = 1 for probabilities and are not
stored explicitly. The full Markov kernel K is computed from the K(ν) by
means of (9). Initial states for the single units are also chosen independently
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and randomly with 50 percent probability of being 1. Sample trajectories
are generated by updating the activation state in every simulation step ac-
cording to the full transition matrix: If the system is in state ω at some step
t, the next state ω′ at time t + 1 is randomly chosen from {0, 1}N with the
probability K(ω′ |ω). This implements the usual Markov dynamics.

We further compute in every time-step a stationary probability distribu-
tion p with respect to the full Markov kernel K, the marginal kernels Kν (cf.,
(4)), and the respective stationary marginal distributions pν . From those the
interaction I(p, K) as well as the entropies of the full and marginal kernels
are derived according to (2) and (6).

The interaction I is maximized using a simple random search scheme.
In every time-step we randomly choose a single entry in one of the individ-
ual kernels K(ν)(1 |ω) and perturb it by a small random number, ξ, equally
distributed on [−ε, ε], where ε is the learning rate (ε = .025, if not stated oth-
erwise). Perturbed values are clipped to the range [0, 1], and the K(ν)(0 |ω)
are again fixed by the normalization condition. That is, for randomly chosen
ν ∈ V and ω ∈ {0, 1}N we set

K
(ν)
t+1(1 |ω) = φ

(
K

(ν)
t (1 |ω) + ξ

)
(10)

K
(ν)
t+1(0 |ω) = 1 − K

(ν)
t+1(1 |ω), (11)

where the function φ(x) is zero for x ≤ 0, one for x ≥ 1, and φ(x) = x
else. The new full Markov kernel and interaction measure are computed,
and if the interaction increases the perturbation is accepted. Otherwise, the
optimization is repeated for a new random entry of the parallel kernel. The
simulation proceeds to the next time-step if either I can be increased or 5
unsuccessful optimization trials have been performed. We stop simulations
after typically several thousand steps. At that time convergence is usually
acceptable (cf. Fig. 4 and below).

The above algorithm is numerically quite expensive, since it has expo-
nential complexity in the number of units N . Therefore, we are restricted
to small systems, N < 10. In the sequel, we represent the resulting strongly
interacting systems in different ways: First, we show samples of the time-
course of activity as raster plots. Determinism in these plots is expressed as
repetetive activation patterns. Second, we display the full Markov kernels
after convergence. Deterministic transitions from a state ω to ω′ in these
kernels have values of 1, and only the element K(ω′ |ω) in the ωth column
of the full kernel can be different from zero. Third, from K(ω′ |ω) we derive
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state transition graphs, i.e., we plot the states ω ∈ {0, 1}N as nodes of a
graph, and the nonzero entries K(ω′ |ω) as directed edges leading from ω
to ω′. Nodes in these plots are labeled by the respective states, and edges
by their corresponding transition probability. As explained later, for bet-
ter readability of these plots we occasionally strip off some of the nodes as
well as edges with very small probabilities. Deterministic transitions in these
graphs correspond with nodes that reveal only a single outgoing edge which
has probability 1.

4.3 Simple Examples with Two Units

Figure 1 displays two examples comprising N = 2 units each. In both ex-
amples the optimization almost reached a deterministic process as can be
inferred from the Markov matrices displayed in the upper left portions of the
plots. These contain only a single strong transition in every column. In fact,
most transitions are zero, and only two transitions in the left and four in the
right example reveal a tiny residual probability. Therefore, the entropy of
the full kernels is small and would even converge to zero for longer simula-
tion times. The figure also plots the state transition graphs comprising all
non-vanishing edges. A generic Markov process in principle allows for transi-
tions between arbitrary states. In Fig. 1, however, only very few edges arise,
expressing the almost deterministic nature of the dynamics. Skipping the
residual edges with probabilities near zero, the transition graphs show that
the dynamics is basically confined to sets of cycles or permutations: a 3-cycle
and a 1-cycle (fixed point) in the left, and a 2-cycle and 2 fixed points in
the right example. The 3-cycle can also be observed in the sample trajectory
on the left side, whereas the example trajectory on the right first is kept in
the 00-fixed point and switches to the 2-cycle at step 9 driven by the small
residual transition probability from state 00 to state 01.

Finally note that although the dynamics is almost deterministic and the
full kernel entropy is low, the marginal kernel entropies are almost ln(2) =
.6931471. This implies that entropies computed for single unit activities are
maximal. Predictions of the next state of a single unit given nothing but
its present state are, hence, impossible. In strong contrast, they are almost
perfectly possible, if the whole system state is known, because the full kernel
entropy is near zero. This is well in accord with the philosophy behind the
interaction measure: As (6) shows, the interaction consists of the summed
marginal kernel entropies, which measure the disorder in the individual unit
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Figure 1: Two examples of strongly interacting systems comprising N = 2
units. Shown in each plot are the Markov kernel K(ω′ |ω), ω, ω′ ∈ {0, 1} ×
{0, 1}, in the upper left (the area of each circle represents the strength of a
particular transition; sums over columns, i.e. ω′, must be 1), and its repre-
sentation as a state transition graph. At the bottom sample trajectories are
displayed as raster plots (here, time runs from left to right and unit numbers
from top to bottom; each circle represents an activity value of ων = 1 in
the respective time-step). Values for the interaction I := I(p, K), entropy of
the full Markov kernel HKF := H(p, K), and the marginal kernel entropies
HKν := H(pν, Kν) are also given. The dynamics consist of almost deter-
ministic cycles in both examples. Accordingly, the kernel entropies are low,
but note that the marginal kernel entropies almost approach their maximum
value ln(2).

activities, subtracted by the full kernel entropy, which accounts for the dis-
order in the full system. Maximizing the interaction should, thus, increase
the randomness in individual units, but decrease that of the whole state
trajectories.

4.4 Branching Nodes and Nested Cycles

Figure 2 shows a somewhat more complex example for N = 3 units. The
dynamics does not converge to a simple permutation, but reveals additional
structure. First, observe that the Markov matrix has columns with more
than a single entry. The dynamics is, thus, not fully deterministic. The
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transition graph on the right reveals all edges that have probability larger
than .05. This skips just two residual edges that did not yet converge to
zero. Almost deterministic transitions larger than .95 are drawn with thick
solid lines, transitions starting from node 110 are drawn with dashed, and
those starting from node 001 with thin solid lines. Inspection of the graph
reveals that it consists of a 1-cycle, i.e. the node 011, and two nested 4-
cycles which have the transition 000 → 001 in common. At the node 001
two transitions to nodes 100 and 101 in either of the loops are possible with
positive probabilities smaller than 1, all other transitions in both loops are
almost deterministic, and transitions from the branching node 001 to all other
nodes than 100 and 101 are zero. In contrast node 110 has positive transitions
to all nodes, but is not contained in any loop. We may therefore call that
node “transient”: Once left, activity never flows back to it. Therefore, the
probability p(001) is zero. In contrast the other nodes determine the “ergodic
components” of the dynamics: They support a positive stationary probability
since activity repeatedly cycles back to them. This subdivision into non-
empty transient and ergodic components is typical in our simulations. Also
nested loops and branching states with more than one but only a few outgoing
edges with nonvanishing transition probabilities are typical. Therefore, most
strongly interacting systems are only almost deterministic: At branching
nodes they have the freedom to chose between several possible target states,
which, however, are only a small subset of all possible states. The kernel
entropy of a system with branching nodes, of course, is always positive – only
completely deterministic systems, which result in rare cases in our simulations
and cannot reveal any branching nodes, have vanishing entropy.

The branching states have an interesting impact on sample trajectories.
Those are periodic for strict n-cycles (cf. Fig. 3), but they consist of repetetive
patterns of various length for systems with branching nodes. An example is
shown at the bottom of Fig. 2, where the activity switches several times at
state 001 between the two possible pattern sequences generated by the two
nested loops. Of course, in larger systems one expects even more complicated
situations than just two nested cycles (cf., e.g., Fig. 7).

Theorem 3.2 provides an upper bound for the number of outgoing edges
for optimal Markov transitions. For N binary units this bound is N + 1 for
all ω in the ergodic components. No bound is imposed on transient states.
This is consistent with the present (as well as all subsequent) simulations,
which, however, are restricted to Markov chains in SMCpar. In fact, these
simulations usually reveal an even smaller number of outgoing transitions
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Figure 2: Same as Fig. 1 but for N = 3 units. Here, the dynamics consists of a
1-cycle (fixed point), i.e. ω = 011, two nested loops with branching node ω =
001, and a transient node ω = 110 which has transitions to all other nodes.
Since the branching node has positive transition probability to nodes in both
of the nested loops, the sample trajectory reveals randomly interleaved but
repetetive sub-patterns corresponding to eiter of the two loops.

than N + 1, with the majority of nodes having just one, and a subset of
nodes – the branching nodes – with two outgoing connections. Although
they should in principle be possible, we never observed branching nodes with
more than 2 outgoing edges in a large number of simulations. In contrast,
transient nodes can develop deterministic transitions (see, e.g., node 11000
in Fig. 3) as well as connect to a varying number ot target states up to the
full range of all 2N possible states (e.g., node 110 in Fig. 2).
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Figure 3: Same as Fig. 1 but for N = 5 units. The dynamics separates into
several disjoint loops and transients. Only the deterministic transients are
shown in the transition graph. Because the loops are disjoint and have no
branching nodes the kernel entropy is very low and sample trajectories after
transients have died out are strictly periodic.

4.5 The Evolution of Global Determinism
and Individual Non-Determinism

The time-course of convergence is depicted in Fig. 4 for two example simu-
lations, one with N = 4 and a learning rate of ε = .05 on the left hand side,
and a second simulation on the right with N = 7 and a ten-fold learning rate
ε = .5. Displayed are the interaction measure (thick solid line), the entropy of
the full Markov kernel (dashed line), and the mean number of outgoing edges
(thin solid line) averaged over all nodes and divided by 10 in the left figure
and by 32 in the right to fit suitably into the plot (counted as outgoing are
only transitions with probability larger than .000001). There is no qualita-
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Figure 4: Time-course of convergence. Left: N = 4, ε = .05, right: N =
7, ε = .5. Displayed over time are the interaction measure (bold solid line),
the kernel entropy (dashed line), and the average number of outgoing edges
(thin solid line; scale has to be taken times 10 on the left and times 32 on the
right). Because the kernel entropies approach small values, the corresponding
processes become almost deterministic.

tive difference between the curves in both examples, but clearly convergence
is slower for larger systems. Therefore, the learning rate was 10 times larger
in the N = 7 example as compared to N = 4. Moreover, the asymptotic
interaction measure for N = 4 is bounded by 4 ln(2) = 2.7726, whereas the
bound is 7 ln(2) = 4.8520 for N = 7. Obviously, the optimization process al-
most reaches these upper bounds. Conversely, the kernel entropies converge
to small values near zero. Corollary 3.3 in Section 3 provides an upper bound
of ln(N + 1) for the entropy of strongly interacting units. For N = 4 this
bound is 1.609 and for N = 7 it is 2.079, both consistent with Fig. 4. The
bound becomes more stringent in larger systems, because ln(N +1)/(N ln 2)
goes to zero with increasing system size. The small kernel entropies imply
that the network dynamics as a whole becomes almost deterministic, but that
the marginal kernel entropies must stay large (cf. (6)). So, again, the future
can be well predicted from whole states, but single units do not contain much
information about it.

4.6 Two Phases in the Evolution of Complex Systems

The optimization curves in Fig. 4 roughly separate into two phases: Initially
the interaction I increases approximately linearly but it saturates for large

17



times. In this second phase convergence is only very slow. The Markov kernel
entropy behaves opposite to the interaction: Initially it is large, indicative for
dominating random transitions, but it quickly decreases to small values cor-
responding with high levels of determinism. The average number of outgoing
connections gives some insight in what is going on: First, the Markov kernel
is strictly positive such that almost all transitions are larger than .000001
and are counted as outgoing. Therefore, the average numbers at t = 0 are
about 24 = 16 and 27 = 128 for N = 4 and 7, respectively. This number
quickly decreases during the first phase of the optimization, i.e., an increas-
ing number of formerly possible transitions dies out. For instance, around
t = 1200 in the example with N = 4 the average number of outgoing con-
nections is only 2 (out of 24 = 16 possible transitions). Hence, determinism
is initially increased by confining the flow of actvity to restricted pathways
in state space. Only some of the remaining transitions, however, are already
truly deterministic, that is, have a probability of 1 – most have intermediate
values. Therefore, at any time step of the activation dynamics several target
states are possible, such that it is not yet possible to predict the future well,
even if the current state is known perfectly. In the second part of the opti-
mization the (asymptotically reached) transient and ergodic components of
the dynamics separate. On the ergodic component the convergence proceeds
as before: The number of outgoing connections is further constrained un-
til many nodes are left with only a single deterministic outgoing transition.
Branching nodes are similarly confined to a minimal number of non-vanishing
outgoing connections. On the other hand, the probability p(ω) for (asymp-
totically) transient nodes decreases to zero. Therefore, these nodes have a
decreasingly small influence on the interaction measure, which contains the
p(ω) as weighting coefficients, cf. (6) and (2). Nonetheless, although it is
small, changing outgoing connections of transient nodes still has an impact
on the interaction measure. During the second phase of the optimization,
therefore, most optimization steps refer to transient nodes accompanied by
only minor increases in I and a slow convergence. In addition, the increase in
the average number of outgoing connections during the second optimization
phase shows that many of the transient nodes must again redevelop quite
a large number of non-vanishing connections. Hence, as a rule, the number
of connections of nodes in the ergodic component is reduced to a minimum,
whereas in the transient component this number can become large for at least
some nodes (cf., e.g., node 110 in Fig. 2, but also the almost deterministic
transient transitions in Fig. 3).
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Figure 5: Example for the development of a transition graph for N = 4 units.
Displayed are graphs corresponding with times t = 300, 1300 and 2500 of
the left simulation in Fig. 4. Only transitions originating from nodes with at
most 4 outgoing non-zero connections and probabilities larger than .01 are
drawn. The optimization first reduces the number of positive connections in
the network (t=300). At intermediate times (t=1300) all nodes have less than
5 outgoing transitions and loops have built up; some transitions are already
deterministic (bold transitions are > .95). After convergence the ergodic
component consists mostly of deterministic transitions (t=2500), and most
often (though not here) nested loops with branching states, cf. Fig. 2.
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Figure 5 demonstrates the graph structuring process in some more detail.
Corresponding with Fig. 4 (left) partial transition graphs are plotted for
t = 300, 1300 and 2500, and N = 4. Drawn are only transitions that start
at nodes with at most 4 outgoing connections and have probability larger
than .01. All other transitions and nodes are stripped from the figures.
Because the Markov kernel is randomly generated with values in ]0, 1[ at
time zero no state connects to less than 5 other states as required, such
that the corresponding graph is empty. At time t = 300 the optimization
dynamics has just confined the number of outgoing connections of a few
nodes to less than 5. The respective nodes and connections are plotted in
Fig. 5 for t = 300. None of the transitions is yet deterministic, but some have
already quite high probability, such that some transitions in a long sample
would appear more often than others. The corresponding graph, nonetheless,
is still broad and flat. At intermediate times, t = 1300 all 16 states reveal
less than 5 outgoing transitions, the average number is about 2, and quite a
few transitions are already deterministic. The graph also contains relatively
long sequences of almost deterministic activity patterns, some arranged in
loops. So, the graph structure deepens, and predictions about subsequent
states become increasingly reliable. However, there still are a lot random
transitions between the asymptotically ergodic states. Those are removed
in the final phase of the optimization process, such that we are finally left
with deep and narrow graphs, which allow for predictions of future states
but (beside nested loops and branching nodes) are basically free of random
transitions between ergodic states. Note that the graph for t = 2500 in Fig. 5
still contains two transitions with low probability. These, presumably, die out
for very long simulation times leaving just two disjoint cycles. Furthermore,
remember that we have stripped off most of the transients from the graphs
in Fig. 5, because these have more than 5 outgoing transitions. As Fig. 4
demonstrates the average number of outgoing transition of these nodes must
be quite large. Displaying them would have made the figures unnecessary
complicated.

4.7 Determinism and Randomness

in Activation Patterns

Activation patterns of the four cells resulting from the transition graphs in
Fig. 5 are displayed in Fig. 6. At t = 300 these are apparently almost random,
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Figure 6: Activation patterns corresponding with the three transition graphs
in Fig. 5. The activity patterns change over time from almost random to
repetitive. Accordingly, determinism of the process and predictability of
future states increase gradually.

although a closer inspection shows that some transitions already appear more
often than chance level, for instance, the pattern 0011 → 1111 → 1101 occurs
twice, and is indeed also part of the eventually emerging repetetive pattern
at large times. The pattern approached for t > 2500 is perfectly periodic
in the displayed time-frame because the transition graph converges to two
disjoint cycles, a 4-cycle and a 6-cycle (cf. Fig. 5, t = 2500). At intermediate
times the 6-cycle is also already visible but occasionally perturbed by non-
converged random transitions with low probability.

Figure 7 shows a similar plot than Fig. 6 but for seven units, i.e., 27 =
128 states. This simulation converged to a complicated graph comprising
transient states as well as several nested loops of different length. The final
Markov kernel and transition graph are not shown since they are utterly
complex. Because the converged graph is nested and comprises branching
nodes, at first glance all activity traces in Fig. 7 look more or less random even
at large times. Nonetheless, the asymptotic entropy of the full Markov kernel
was only 0.168 as compared to an interaction of 4.66 ≈ 7 ln(2) indicating a
high degree of determinism. In fact, for instance the first 9 consecutive steps
in the bottom frame from 5000 to 5008 appear identically starting at 5033;
they are furthermore partly overlapping with a 9-cycle that perfectly repeats
three times starting at 5038. A closer investigation of Fig. 7 shows this way,
that as in the previous example for N = 4, determinism and predictability
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Figure 7: Same as Fig. 6 but for N = 7 (corresponding with the right plot in
Fig. 4). Whereas the asymptotic process approached in Fig. 6 contains only
two disjoint cycles (cf. also Fig. 5 for t = 2500) the asymptotic transition
graph (not shown) in the present example is considerably more complex and
consists of several nested loops. Therefore, instead of becoming repetetive as
in Fig. 6 (bottom frame) activation patterns now appear much more random
even if the network is almost converged.

increase continuously during the time-course of the optimization process.

4.8 Entropy Distributions

Figure 8 displays H(p) and H(p, K) for a large number of simulations and
N = 4, 5, 6 and 8 units. In all plots ε was .5 and individual systems were
optimized for 25.000 steps to guarantee convergence. A strict upper bound
for the kernel entropies is N ln(2) corresponding with pure random kernels.
Apparently in all cases the kernel entropy H(p, K) converges to much smaller
values indicating a high degree of determinism. Some systems at least up
to N = 6 are even deterministic, that is, have H(p, K) = 0. For larger
systems simulations become too slow to sample the distributions in Fig. 8
appropriately. So, the case H(p, K) = 0 cannot be excluded in such systems.

The value N ln(2) is also a strict upper bound for H(p). It is reached,
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Figure 8: Distribution of H(p) and H(p, K) for N = 4, 5, 6, 8. Horizontal
lines in each plot depict the theoretical upper bound N ln 2 for H(p) (and
H(p, K)). Optimized kernel entropies are usually much lower, indicative
for a high degree of determinism. H(p) falls below the upper bound with
increasing N , because a fraction of all states becomes transient.

if all 2N states belong to the ergodic component and have equal probability
p(ω) = 2−N . For small systems (especially for N < 4, not shown) this
bound is occasionally obtained, but with increasing systems size transient
and branching states become influential in H(p): The first reduce supp p,
the second lead to deviations from equal-distributedness. Hence, H(p) falls
below the bound N ln(2) for increasing N . This indicates, that a number of
states in a given optimized system should be transient. Nonetheless, H(p)
still remains high also for large N . Thus, a considerable fraction of states
must belong to the ergodic components.
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5 Conclusions

In summary, in generalization of the well-known mutual information for sta-
tionary probability distributions, we have introduced an information theo-
retic measure of interaction that takes into account the temporal interdepen-
cies in a set of stochastic units. Although examplified here by the simplest
case of Markovian processes this measure can also be applied to artificial
network models comprising more realistic neurons as well as to experimen-
tal data, for instance, obtained from multiple unit recordings [1, 11]. The
measure computes a generalized Kullback-Leibler divergence of a stochastic
process as a whole from the product of its single unit (marginal) processes.

Optimization of mutual information between static input and output ac-
tivity distributions has been proposed as a fundamental organization prin-
ciple in real neural systems [21, 15, 16]. As a first step in our dynamic
framework, we therefore considered Markovian systems that optimize their
stochastic interaction. The restriction to general Markov chains here allows
to rigorously prove some strong results concerning complexity in strongly
interacting systems. In especially, it was shown that given the current state
the number of possible successor states must be linearly bounded in con-
trast to an exponential number of possible successor states in pure random
systems. This way given the present state, future states of the system can
be predicted with high reliability. On the other hand, the entropy of the
marginal kernels is maximized by the optimization. So, the activity of single
elements in a strongly interacting system does not carry much information
about the future.

The presented simulations confirm this prediction and reveal that the op-
timized systems can be represented as almost deterministic transition graphs,
consisting of an ergodic component and transient states which eventually di-
rect activity into the ergodic component. The ergodic component carries the
asymptotic network activity and in turn comprises nested but almost deter-
ministic cycles of activity patterns, linked by branching nodes, which allow
for a low number of transitions between several deterministic cycles.

Simulations in the present work were retricted to small systems. Nev-
ertheless, Corollary 3.3 in Section 3 implies that also in large systems the
Markovian matrices of strongly interacting systems and their induced state
transition graphs must be sparse. Thus also in networks of reasonable size
the phenomena described in the previous sections must appear.

Future work will be directed into two main directions: First, in the present
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work, we did not consider “input” into the network, say, in form of some set
of units clamped to prescribed and possibly non-stationary stochastic pro-
cesses. With that respect, the results presented here refer to what could be
phrased the natural or intrinsic dynamics of strongly interacting processes in
the absence of external forces (cf. [24] for a comparable study of “natural”
modes of cortical activity). In previous work, however, we already consid-
ered the impact of input in the stationary case, which is tightly related to
Linsker’s infomax principle [5, 6, 15, 16]. In these studies the unconstrained
optimization of mutual information led to a drastical decrease of complexity,
much comparable to the result in Theorem 3.2, but additional input only
increased the complexity by an amount defined by the input alone. Thus,
the total complexity separated into an intrinsic and an extrinsic component.
The same may be expected also in the dynamic framework developed in the
present paper. Of course, this needs further evaluation.

Second, sofar we only considered stochastic interaction in somewhat for-
mal Markovian systems. Although some artifical neural networks (Boltzman
machines, Hopfield networks) can be reformulated in that context, much work
remains to be done to transfer the concept to a mathematical framework for
more realistical neural models. However, Linsker’s results on the stationary
case strongly encourage us to proceed into that direction.
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A Proof of the Main Result

Now we come to the proof of Theorem 3.2. It is based on the following
lemma:

Lemma A.1. Let ∆̄ be a d-dimensional closed simplex in a real vector
space and ext its set of extreme points. For each subset ext′ ⊂ ext, ∆(ext′)
denotes the open face of ∆̄ with the extreme points ext′, and we have the
stratification

∆̄ =
⊎

∅ �= ext′ ⊂ ext

∆(ext′).

For a point x ∈ ∆̄, supp x is the subset of ext defined by x ∈ ∆(supp x). Now
consider an affine subspace V of aff ∆̄ that is given by r linear equations:

V = {x ∈ aff ∆̄ : x satisfies the r given linear equations}.

If a point x0 ∈ C := V ∩ ∆̄ locally maximizes a strictly convex function
f : C → IR, then

|supp x0| ≤ d + 1 − dim V ≤ min {r, d − dim C} + 1. (12)

Proof. Consider the set S := V ∩ ∆(supp x0). We have x0 ∈ S ⊂ C,
where x0 locally maximizes the strictly convex restriction f |S of f to S. Thus,
x0 must be an extreme point of S, which is only possible if S = {x0} (S is
open in aff S). This implies

V ∩ aff ∆(supp x0) = {x0}. (13)

Now we apply the dimension formula

d = dim aff ∆̄

≥ dim aff
(
V ∪ aff ∆(supp x0)

)
= dim V + |supp x0| − 1 − dim (V ∩ aff ∆(supp x0))︸ ︷︷ ︸

(13)
= 0

≥ max {d − r, dim C} + |supp x0| − 1.

This gives us the estimations (12).
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Proof of Theorem 3.2. We fix the local maximizer (p, K) of the
interaction I, an ω ∈ supp p, and define the simplex

∆̄ := ∆̄(p, K, ω)

:=
{
(p, L) ∈ P̄(ΩV ) × K̄(ΩV ) : L(· | σ) = K(· | σ) for all σ ∈ ΩV , σ 	= ω}

⊂ IRΩV × IRΩV ×ΩV .

This set can naturally be identified with P̄(ΩV ) by the map ∆̄ → P̄(ΩV ),
(p, L) �→ L(· |ω). Now we define the convex subset

C :=

⎧⎪⎪⎨
⎪⎪⎩(p, L) ∈ ∆̄ :

∑
β∈ΩV
βν=σν

L(β |ω) =
∑

β∈ΩV
βν=σν

K(β |ω), ν ∈ V, σν ∈ Ων

⎫⎪⎪⎬
⎪⎪⎭ ,

which can be represented as the intersection of ∆̄ with an affine subspace of
IRΩV × IRΩV ×ΩV that is given by

∑
ν∈V (|Ων |−1) equations. In order to apply

Lemma A.1, we prove that the interaction I is strictly convex on C:
The entropic representation (6) in Proposition 3.1 immediately implies that
the continuous function I can be explicitely written as

I(p, K) =
∑
ν∈V

⎧⎪⎪⎨
⎪⎪⎩

∑
σν ,σ′

ν∈Ων

h

⎛
⎜⎜⎝ ∑

α,β∈ΩV
αν=σν, βν=σ′

ν

p(α) K(β |α)

⎞
⎟⎟⎠ − ∑

σν∈Ων

h

⎛
⎜⎝ ∑

α∈ΩV
αν=σν

p(α)

⎞
⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

− ∑
σ∈ΩV

p(σ) H(K(· | σ)). (14)

Here, the continuous function h : [0, 1] → IR is defined by

x �→ h(x) :=

{ −x ln x, x 	= 0
0 , x = 0

.

Consider the restriction of the interaction I to the set C. According to
formula (14), for all (q, L) ∈ C one has

I(q, L) =
∑
ν∈V

⎧⎪⎪⎨
⎪⎪⎩

∑
σν ,σ′

ν∈Ων

h

⎛
⎜⎜⎝ ∑

α,β∈ΩV
αν=σν, βν=σ′

ν

q(α) L(β |α)

⎞
⎟⎟⎠ − ∑

σν∈Ων

h

⎛
⎜⎝ ∑

α∈ΩV
αν=σν

q(α)

⎞
⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

− ∑
σ∈ΩV
σ �=ω

q(σ) H(L(· | σ)) − q(ω) H(L(· |ω))
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=
∑
ν∈V

⎧⎪⎪⎨
⎪⎪⎩

∑
σν ,σ′

ν∈Ων

h

⎛
⎜⎜⎝ ∑

α,β∈ΩV
αν=σν, βν=σ′

ν

p(α) K(β |α)

⎞
⎟⎟⎠ − ∑

σν∈Ων

h

⎛
⎜⎝ ∑

α∈ΩV
αν=σν

p(α)

⎞
⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

− ∑
σ∈ΩV
σ �=ω

p(σ) H(K(· | σ)) − p(ω) H(L(· |ω))

= const − p(ω) H(L(· |ω)).

With the strict concavity of the entropy we get the strict convexity of the
restriction I|C. Therefore, Lemma A.1 implies

|supp K(· |ω)| = |supp (p, K)| ≤ ∑
ν∈V

(|Ων | − 1) + 1.
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