Max-Planck-Institut
fur Mathematik
in den Naturwissenschaften

Leipzig

Evolving neural behaviour control for
autonomous robots

by

Martin Hilse, Bruno Lara, Frank Pasemann
and Ulrich Steinmetz

Preprint no.: 19 2001







Evolving Neural Behaviour Control for
Autonomous Robots

Martin Hiilse!, Bruno Lara!, Frank Pasemann!?,

and Ulrich Steinmetz?
Y TheorieLabor, Friedrich Schiller University, D-07740 Jena
2Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig

Abstract

An evolutionary algorithm for the creation of recurrent network
structures is presented. The aim is to develop neural networks con-
trolling the behaviour of miniature robots. Two different tasks are
solved with this approach. For the first, the agents are required to
move within an environment without colliding with obstacles. In the
second task, the agents are required to move towards a light source.
The evolution process is carried out in a simulated environment and
individuals with high performance are also tested on a physical envi-
ronment with the use of Khepera robots.



1 Introduction

Within the frame of Synthetic Modeling and Embodied Cognitive Science
[4] an evolutionary algorithm is presented. This algorithm, called EN.S? for
Evolution of Neural Systems by Stochastic Synthesis [7]), evolves the struc-
ture and size of artificial neural networks and optimizes the corresponding
parameters at the same time. It is designed especially to generate networks
with recurrent connectivity.

The starting hypothesis for the presented experiments is that internal
dynamical properties of recurrent networks are the basis for cognitive capa-
bilities and therefore should be also used for the control of robot behavior.
It is well known that even small recurrent networks present a variety of dy-
namical characteristics such as bifurcating attractors, hysteresis effects, and
chaotic attractors co-existing with periodic or quasi-periodic attractors [6].
So the idea is to use the ENS® algorithm to generate recurrent network
structures for agents having to exist and survive in a complex environment.

For the experiments described in this paper the agents are Khepera robots
[2]. Evolution is carried out using a Khepera simulator [1]. Finally, the
recurrent networks with highest performance are tested on the real robot.
Section 2 of this paper introduces the ENS? evolutionary algorithm. Section
3 describes the experimental set-up and the results are outlined in Section 4
which presents also a discussion of these results. Finally Section 5 concludes
the paper.

2 [ENS? Description

The algorithm is inspired by a biological theory of coevolution. Originally
it was designed to study the appearance of complex dynamics and the cor-
responding structure-function relationship in artificial sensorimotor systems.
The basic assumption is that in ”intelligent” systems the behavior relevant
features of neural subsystems, called neuromodules, are due to their inter-
nal dynamical properties which are provided by their recurrent connectivity
structure. But the structure and interaction of such nonlinear subsystems
with recurrences in general can not be designed to produce a reasonably com-
plex dynamical behavior. Thus, the main focus of the EN S3-algorithm is to
evolve an appropriate structure of artifical neural networks.

To start the algorithm one first has to decide which type of neurons to
use for the network. We prefer to have standard additive neurons with sig-
moidal transfer functions for output and internal units, and use input units
as buffers. The number of input and output units is chosen according to the



definition of the problem; that is, it depends on the pre-processing of input
and post-processing of output signals. Nothing else is determined, neither
the number of internal units nor their connectivity, i.e. self-connections and
every kind of recurrences are allowed, as well as excitatory and inhibitory
connections. Because input units are only buffering data, no backward con-
nections to these are allowed.

To evolve the desired neuromodule we consider a population p(t) of n(t)
neuromodules undergoing a variation-evaluation-selection loop, i.e. p(t+1) =
S-E -V -p(t). The variation operator V' is defined as a stochastic operator,
and allows for the insertion and deletion of neurons and connections as well
as for alterations of bias and weight terms. Its action is determined by fixed
per-neuron and per-connection probabilities. The evaluation operator E is
defined problem-specific, and it is usually given in terms of a fitness function.
After evaluating the performance of each individual network in the popula-
tion the number of network copies passed from the old to the new population
depends on the selection operator S. This operator performs the differential
survival of the varied members of the population according to evaluation
results. In consequence of this selection process the average performance
of the population will tend to increase. Thus, after repeated passes through
the variation-evaluation-selection loop populations with networks solving the
problem can be expected to emerge.

3 Experimental Set-Up

The aim of the experiments is to find recurrent neural networks which are
able to control specific behavior of the Khepera robots. To achieve this the
networks are evolved using the EN.S? algorithm described in Section 2. As
aforementioned the only necessary initial conditions, on terms of structure
and size, are the input and output neurons. These constrains are defined by
the structure of the Khepera robot.

The Khepera robots are miniature cylindrical robots (diameter of 55 mm),
with the basic configuration the robot has 8 Infra Red (IR) sensors (6 at the
front of the robot and 2 at the rear), and two wheels, each controlled by a DC
motor with an incremental encoder (10 pulses per mm of advancement of the
robot). Each sensor can be used in two modalities: as a proximity sensor (by
emitting and measuring the reflected Infra Red light), and as a light sensitive
sensor (by measuring the Infra Red component of the environment light).

Two basic behaviors were studied using an average population size of 50
individuals, obstacle avoidance and light seeking. The time interval for eval-
uating these individuals was set to 5000 simulator time steps. Furthermore,



we can influence the size of resulting networks by changing the probabilities
of increase and/or decrease of neurons and/or synapsis and adding cost terms
for neurons and connections to the given fitness functions, as described in
Section 2.

For evaluating the performance of the robots the two dimensional Khepera
simulator [1] was used. A suitable interface for the communication between
the Kephera simulator and the evolutionary program was implented. In this
way every neuromodule of a generation is sent to the simulator and will be
directly used for controlling the simulated Kephera. The start position of the
robots is randomly set for every generation but fixed for the evaluation of
all neuromodules in one generation. The fitness function for the calculation
of the performance is implemented in the simulator. Performance of every
neuromodule (controlling the simulated Khepera) is calculated for the life
span of each individual in each generation and then sent back to the ENS3.

3.1 Creating Obstacle Avoidance Behavior

We want to evolve neuromodules which allow the Khepera robot to move in
a given environment as long as possible without colliding with any obstacle.
A typical environment used for this evolution task is shown in the Fig. ?7.
Environments are build on the Khepera simulator. It is worth noting that
the evolved network structures are expected to behave at least with the same
performance in the physical robot as they do in the simulated environments.

For evolving neuromodules which have an obstacle avoidance behavior the
8 infra-red proximity sensors of the Khepera are used. The number of sensors
determines the number of input neurons of the neurocontrollers. To control
the motors governing the robot wheels positive and negative signals are re-
quired. A tanh transfer function satisfies this requirement and is therefore
used for the output neurons as well as for hidden neurons. The bias term of
the tanh function is set constant to zero for all of the neurons throughout the
whole evolution process. The initial structure of the individual neuromod-
ules have only 8 linear input neurons, as buffers and two nonlinear output
neurons.

To generate an obstacle avoidance behavior we introduce a fitness function
Fi which states: For a given time t go straight ahead as long and as fast as
possible. This is coded in terms of the two network output signals M, and

M, as follows:
5000

F1 = Z Mo(t) + Ml(t), (].)

t=1

where —1 < My, M; < 1. A second condition for calculation of the perfor-



mance is used.

If the robot has a collision before 5000 time steps the evaluation of the
neuromodule stops and the value of the current performance is taken as the
maximum performance of the individual. The maximum performance for the
neuromodules in these runs is 10000.

10000 T T

" Pedosmance’ ——

- Www
i

8000
7000
6000

Figure 1: Performance of the best neuromodule of each generation.

The evolutionary process can be followed in Fig. 7?7 where the perfor-
mance of the best individualsof the first 200 generations is shown. It shows
the performance of the best neuromodule in every generation. At the begin-
ning robots do not move or are spinning around having only one wheel active
or both with opposite signals; as can be seen the performance is low. After
a few generations displacement of the robots in straight trajectories can be
observed. After 35 generations the robots move fast, turning away from the
walls and exploring nearly all of the accessible space at the simulated envi-
ronment. Fig. ?? shows a typical path of such simulated robot controlled by
an evolved neuromodule.

During this phase the networks generally grow in size. To make or keep
the network size small we increase the probabilities of deleting neurons and
synapses within the evolutionary algorithm. This is done around the 50th
generation, where it can be seen that the performance remains constant. Af-
ter the probability change, the network size (number of synapsis and hidden
neurons) decreases, but the performance and the observable behavior remains
constant.

3.2 Light Seeking

For the second experiment in addition to the 8 proximity sensors we use the 8
light sensors of the Khepera; i.e., we now have 16 sensor inputs. The goal in



this experiment is to find a light source as fast as possible and move towards
it. In the case of a moving light source the robot should follow it. Aiming to
find a network structure only for this type of behavior the individuals should
not be concerned with obstacles. The fitness function is coded as:

5000
Fo=3 a-M@t)+3-(1-An)+7 (1-Ps(t) (2)
t=1
where 0 < M <2, 0< A, <1,0< Ps<1and «, fand v are appropriate
constant parameters.

The fitness function states: move forward, as M is the sum of the unsigned
output to the motors, minimize turning, as A,, is the difference between the
unsigned motors output, and move towards light, as Fjs is a value propor-
tional to the activity of the light sensitive sensor with the highest activity.

4 Results and Discussion

4.1 Avoiding Obstacles

A network, which generates good behavior in the simulated environment
as well as on the physical robot is shown in figure 2. Input neurons are
represented by black circles with the position they have in the robot. This
network was randomly selected and represents the best individual of the
150th generation. It uses two hidden neurons, which are self-excitatory, one
of this is larger than 1. It is known that for a single neuron with positive
self-connection larger than 1 there is an input interval over which hysteresis
phenomena (flipping between two stable states) can be observed [5]. It seems
that this is used for instance to get out of situations which usually generate
deadlocks.

The output neuron driving the left motor is self-inhibitory, and has also
an inhibitory connection from the other output neuron, which drives the right
motor.

The behavior in the real robot generated by this network is similar to
the plotted paths in Fig. ?7. The robot presents obstacle avoidance as well
as exploration abilities. Letting the robot move in its physical environment
after a while it will have visited almost all areas within reach. This can
of course not be achieved by pure wall following behavior, as it is usually
learned by robots.



——

iI o = H"\LJW

a) b)

Figure 3: Typical paths followed by the simulated robots with evolved neuro-
controllers for obstacle avoidance.

4.2 Light Seeking

After only a few generations the evolved structures presented light seeking
behaviour. The individuals advance towards the light when this is within
the reach of the light sensors. The individual with the highest performance
of the 50th generation is shown in Fig. 4. Again, black circles show input
neurons, the first group of 8 neurons represents the proximity sensors, the
second group represents the light sensors.

It can be observed that there exist connections from the proximity sensors,
even though there was no specific data requirement from their input in the
definition of the fitness function. These connections are related to the straight
trajectory of the robot in the absence of light.

When the physical robot was used, the individuals go in straight trajec-
tories towards the light. If the light is moved they follow it. When there



Figure 4: The network with the best performance of the 50th generation.

is no light present in the environment the individuals move in a wide semi-
circular path. If the connections coming from the first 8 inputs neurons were
manually deleted the robot presented a different behaviour. In the absence
of light, it will turn in its own central axis, but when presented with the light
source it would advance towards it and keep following it if the light source
was in movement. Trajectories, with different starting positions, followed by
the best individual of generation 50 are shown in Fig.??.

a) b b)

Figure 5: Typical paths followed by the simulated robots with evolved neuro-
controllers for light seeking.

For the first simulated environment there is only one light source in the
center. It is seen that disregarding the starting position the robot will always
move towards the light and stay around it. On the second environment the
robot moves towards the light source which finds closest at the front.



5

Conclusions

We have presented an evolutionary algorithm that optimizes the structure
and characteristics of recurrent neural networks for control of miniature
robots. Two different tasks were investigated. For both tasks, the results
of evolution present small structures that exhibit complex behaviour after
relatively small number of generations.

Future research will be done on the different possible approaches to the

interface modules performing different tasks.

References

1]

Michel, O., Khepera Simulator Package version 2.0: Freeware mo-
bile robot simulator written at the University of Nice Sophia-Antipolis
by Oliver Michel. Downloadable from the World Wide Web at
http://wwwi3s.unice.fr/~om/khep-sim.html

F. Mondala, E. Franzi, and P. Ienne. Mobile robots miniturization: a
tool for investigation in Control Algorithms. In Proceedings of ISER’ 93,
Kyoto, October 1993.

Nolfi, S., and Floreano, D. (2000) Evolutionary Robotics: The Biology, In-
telligence, and Technology of Self-Organizing Machines MIT Press, Cam-
bridge.

Pfeifer, R., and Scheier, C. (2000), Understanding Intelligence, MIT
Press, Cambridge.

Pasemann, F. (1993), Dynamics of a single model neuron, International
Journal of Bifurcation and Chaos, 2, 271-278.

Pasemann, F., Structure and Dynamics of Recurrent Neuromodules, The-
ory in Biosciences, 117, 1-17

Pasemann, F. (1998), Evolving neurocontrollers for balancing an inverted
pendulum, Network: Computation in Neural Systems, 9, 495-511. —



