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AVERAGING TECHNIQUES YIELD RELIABLE A POSTERIORI FINITE

ELEMENT ERROR CONTROL FOR OBSTACLE PROBLEMS

S� BARTELS AND C� CARSTENSEN

Abstract� The reliability of frequently applied averaging techniques for a posteriori error
control has recently been established for a series of �nite element methods in the context
of second�order partial di�erential equations� This paper establishes related reliable and
e�cient a posteriori error estimates for the energy�norm error of an obstacle problem on
unstructured grids as a model example for variational inequalities� The surprising main
result asserts that the distance of the piecewise constant discrete gradient to any continuous
piecewise a�ne approximation is a reliable upper error bound up to known higher order
terms� consistency terms� and a multiplicative constant�

�� Introduction

While a posteriori error control and adaptive mesh design is well established for �elliptic�
partial di�erential equations �AO� BSt� EEHJ� V�� their exploitation for variational inequali�
ties started very recently �BSu� CN� LLT� V�� V	�� Amongst the a posteriori error estimation
techniques are averaging schemes 
rstly justi
ed by super�convergence properties on struc�
tured grids with symmetry properties� Their recent justi
cation on unstructured grids in
�BC� CA� CB� CF�� CF	� CF�� CF�� CF� raises the question� How can averaging techniques
be possibly reliable �i�e�� be guaranteed upper bounds� for variational inequalities�

Our mathematical investigations recast this question into the design of a weak approximation
operator that is compatible with the obstacle conditions and still enjoys local orthogonality
properties to generate higher order terms� Utilising the operator J from �Ca� and its dual J�

this paper provides an a�rmative answer for a simple obstacle problem with a�ne obstacle
and studies the nonconforming case�

Given a bounded Lipschitz domain � in Rd � d � 	� �� f � H����� g � H���N�� uD � H���D��
and � � H���� such that the closed and convex subset

K �� fv � H���� � v � uD on �D� � � v almost everywhere in �g

of H���� is non�void� the obstacle problem under question reads� Seek u � K such that

�ru�r�u� v�� � �f � u� v� �

Z
�N

g�u� v� ds for all v � K������

Here� ��� �� denotes the L��product and �D is a closed subset of � �� �� with positive surface
measure� �N �� �n�D� It is known �R� GLT� K� that ����� has a unique solution� The 
nite
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element approximation employs a �closed and convex� discrete set Kh �i�e�� a subset of a

nite�dimensional subspace of H����� and reads� Seek uh � Kh such that

�ruh�r�uh � vh�� � �f � uh � vh� �

Z
�N

g�uh � vh� ds for all vh � Kh����	�

There exists a unique discrete solution uh whose error e �� u � uh is in some sense quasi�
optimally small� we refer to �F� N� for a priori error estimates and focus on a posteriori
estimates in this paper� The choice

Kh �� fvh � S
��T � � vh � uD�h on �D� �h � vh almost everywhere in �g�����

can model a conforming �i�e�� Kh � K� or non�conforming �i�e�� Kh �� K� discretisation�
Here� S��T � is the P��
nite element space de
ned through a regular triangulation T of �
into triangles and tetrahedra if d � 	 and d � �� respectively� �BSc� Ci�� �h � S��T � is an
approximation to �� uD�h � S��T �j�D is an approximation to uD and we assume Kh �� ��

Our 
rst result employs �BC� CB� Ca� CV� and standard estimates for the proof of

kr�u� uh�k � �Z � ��h��� uh � w� � krwk� kh�Trfk� kh���E �Eg��skL���N �������

Here� k � k denotes the L�����norm� �� � substitutes �� up to a multiplicative mesh�size�
independent constant �� w is arbitrary in H���� with uh�w � K� wj�D � uD�uD�h vanishes
at nodes on �D� �h is a known discrete residual� hT and hE are local mesh sizes� and

�Z �� minfkph �ruhk � ph � S
��T �d� ph � n � g on N � �Ng�����

where n denotes the outer unit normal on �N and N is the set of nodes in T �ph � n
interpolates g at all nodes on �N�� Consistency is included in the arbitrary choice of w to
assess the error in Kh �� K and uD�h �� uD� in the absence of contact near the boundary�
with ���� �� maxf�� �g�

krwk � kh���E ��EuD��s
�kL���D� � kr��� uh��k������

The estimate ����� can be recommended for practical error control since ��h�� � uh � w�
can be evaluated� Closer investigations reveal that this term can indeed be replaced by
consistency� averaging� and higher order terms� Our main result is a re
ned version of

kr�u� uh�k � �Z � min
qh�S��T �d

kqh �r��h � uh�k� krwk� kh�Trfk� khT fkL���TD�

�kh���E �Eg��skL���N � � kh��T ��� �h � w��k� �kfkk��� �h � w��k�
���

�����

where ���� �� minf�� �g� The term khT fkL���TD� is the L
��norm over the shrinking domain

�TD� a union of a few layers of elements near �D� e�g�� if f � L���� we have khT fkL���TD� �
kfkL����kh�EkL���D� and see that this term is of higher order� In case � � �h and no contact
near the boundary� the estimate reduces to

kr�u� uh�k � �Z � min
qh�S��T �d

kqh �r��h � uh�k� h�o�t������

�h�o�t� denotes higher order terms�� The 
ner estimate of Theorem ��	 re
nes ����������� in
the substitution of kqh �r��h � uh�kL���� by the re
ned norm kqh �r��h � uh�kL���s� on
a smaller computable region �s around the free boundary of the contact zone� Numerical
examples convinced us that this re
nement is necessary for e�cient approximation and error
control�
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If the obstacle � � �h is globally a�ne� r�h � A is constant and qh � ph � A in �����
provides

kr�u� uh�k � �Z � h�o�t������

Hence� the averaging estimator �Z �from the variational equality� is indeed reliable for the
obstacle problem up to a multiplicative constant and up to known higher order terms� It
is stressed that the averaging estimator �Z is e�cient� the proof is provided by a triangle
inequality

�Z � kr�uh � u�k�minfkru� phk � ph � S
��T �d� ph � n � g on N � �Ng�������

in case u is su�ciently smooth� the minimum in the right�hand side is of higher order�

It appears to us that the reliability of averaging techniques is always related to smooth data
�uD� g� and f� and hence rough obstacles might be excluded from the assumptions� this is seen
in our analysis by consistency terms which are not always of higher order and may dominate
the error estimate� Consequently� this paper does not focus on coarse approximation of rough
data�

The rest of this paper is organised as follows� Preliminaries and notation is introduced in
Section 	 where we recall a few results and state some basic estimates� Section � is devoted to
the a posteriori error estimates and their proofs� Section � outlines the numerical realisation
with a penalty scheme we employed� Section  reports on four examples where the estimate
of the error in the energy norm is extremely accurate�

	� Preliminaries

Throughout this paper� u � K solves ����� and uh � Kh solves ���	�� The aim is to prove
reliability and e�ciency of the aforementioned estimators� We let H�

D��� �� fv � H���� �
v � � on �Dg and de
ne S�

D�T � �� S��T � �H�
D����

Let ��z � z � N � be the nodal basis of S��T �� Note that ��z � z � N � is a partition of unity
and the open patches

�z �� fx � � � � 	 �z�x�g�	���

form an open cover ��z � z � N � of � with 
nite overlap�

Let K �� N n�D denote the set of free nodes and let E denote the set of all edges �d � 	� or
faces �d � �� appearing for some T in T � In order to de
ne a weak interpolation operator
J � H�

D��� 	 S�
D�T � we modify ��z � z � K� to a partition of unity �
z � z � K�� For each


xed node z � N nK� we choose a neighboring node ��z� � K and let ��z� �� z if z � K� In
this way� we de
ne a partition of N into card�K� classes I�z� �� f�z � N � ���z� � zg� z � K�
For each z � K set


z ��
X
��I�z�

�� and �z �� fx � � � � 	 
z�x�g�	�	�

and notice that �
z � z � K� is a partition of unity� It is required that �z is connected and
that 
z �� �z implies that �D � ��z has a positive surface measure�
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For g � L���� de
ne

Jg ��
X
z�K

gz�z � S
�
D�T � where gz �� �g�
z������z� � R��	���

The local mesh�sizes are denoted by hT and hE where hT � L
��T � denotes the element size�

hT jT �� hT �� diam�T � for T � T � and the edge size hE � L���E� is de
ned on the union or
skeleton �E of all edges E in E by hE jE �� hE �� diam�E�� The patch size hz �� diam��z�
is de
ned for each node z � K separately� For z � N n K set hz �� diam��z� and for T � T
let �T �� �z�T�N���z�� Note that the sets of patches ��T � T � T � and ��z � z � K� have a

nite overlap�

In the following we write k � kp�A instead of k � kLp�A� and k � k abbreviates k � k���� Similarly�
we denote by j � j����A �� kr � k��A the semi�norm in H��A� and j � j��� abbreviates j � j������

Theorem ��� ��Ca� Cl� CV� CB��� The operator J is H��stable and �rst�order convergent�
i�e��

kh��T �g � Jg�k� kh����E �g � Jg�k���N � jg � Jgj��� � jgj����	���

for g � H�
D���� Moreover� for f � L����� there holds

�f � g � Jg� � jgj���
�X
z�K

h�z min
fz�R

kf � fzk
�
���z

����
��	��

Lemma ���� We have� for all v � H�
D����

�f � v � Jv� �

Z
�N

g�v � Jv� dx� �ruh�r�v � Jv��

� jvj��� min
ph�S��T �d

�kruh � phk� kh���E �g � ph � n�k���N � kh�Trfk��

Proof� The lemma is� at least implicitly� included in �CB� �and also in �BC� CF�� CF	� CF��
CF��� and so we merely sketch its proof� From �	�� we have by Poincar�e�s inequality

�f � v � Jv� � jvj���kh
�
Trfk�

An integration by parts of ��ph�r�v�Jv�� and utilising that divTruh � � reveals that the
last two terms in the left�hand side of the asserted inequality equalZ

�N

�g � ph � n��v � Jv� ds� �ph �ruh�r�v � Jv�� � �divT �ph �ruh�� v � Jv�

� jvj���
�
kh

���
E �g � ph � n�k���N � kph �ruhk� khT divT �ph �ruh�k

��	���

by �	��� and Cauchy inequalities� This and a T �elementwise inverse estimate of the form
hTk divT �ph �ruh�k��T � kph �ruhk��T conclude the proof�

Lemma ��� ��BCD��� Assume uD � H���D� � C��D�� uDjE � H��E� for all E � E such
that E � �D� and let ��EuD��s

� denote the edgewise second derivative of uD along �D�
Suppose uD�h is the nodal interpolant of uD� i�e�� uD�h�z� � uD�z� for all z � N � �D� Then
there exists wD � H���� such that wDj�D � uD � uD�h� suppwD �

S
T�T �T��D �	�

T �

kwDk� � kuD � uD�hk���D� and jwDj��� � kh
���
E ��EuD��s

�k���D ��	���
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De�nition ���� De
ne

TD �� fT � T � T � �D �� �g and Tc �� fT � T n TD � ��h � uh�jT � �g�

The following lemma shows ����� and estimates the terms which include w in ������

Lemma ���� Suppose that uD satis�es the conditions of Lemma ���� that �j�D � uD�h� and
that ��� uh�� � wD in

S
TD with wD from Lemma ���� Then we have

min
w�H����
uh�w�K

jwj��� � kh���E ��EuD��s
�k���D � j��� uh��j��� and

min
w�H����
uh�w�K

�
jwj���� �

X
T�T nTD

kh��T ��� �h � w��k
�
��T �

X
T�Tc

kfk���T k��� �h � w��k��T
�

� kh���E ��EuD��s
�k����D � j���uh��j

�
��� �

X
T�T nTD

kh��T ��� �h��k
�
��T

�
X
T�Tc

kfk���T k��� �h��k��T �

Proof� Set w �� ���uh���wD and notice uh�w � K� Then jwj��� � j���uh��j���� jwDj����
Utilising wDjT � � and �h � uh on each T � T n TD we have on each T � T n TD

k��� �h � w��k��T � k��� �h � ��� uh����k��T � k��� �h��k��T �

Then� Lemma 	�	 proves the assertions�

Remark 	��� Since kwDk� � kuD � uD�hk���D by Lemma 	�	� the assumption ��� uh�� �
�kuD � uD�hk���D in

S
TD implies ��� uh�� � wD in

S
TD�

Lemma ��� ��BC� CB��� Let gjE � H��E��C�E� for all E � E such that E � �N and� for
each node z � N � �N where the outer unit normal n on �N is continuous �hence constant
in a neighbourhood of z as �N is a polygon�� let g be continuous� Assume that the set

S�
N�T � g� �� fph � S

��T �d � 
E � E � z � E � �N � ph�z� � nE � g�z�g

is non�void� Then ��Eg��s denotes the edgewise surface gradient of g on �N�

min
ph�S��T �d

�
kruh � phk� kh���E �g � ph � n�k���N

�

� min
qh�S

�

N
�T �g�

kruh � qhk� kh���E �Eg��sk���N �

Remark 	�	� For d � 	 the conditions on g in Lemma 	�� su�ce for S�
N�T � g� �� � �CB��

De�nition ���� De
ne � � �H�
D����

� and �h � S��T �� for v � H�
D���� by

��v� �� �f � v� �

Z
�N

gv ds� �ru�rv���	���

�h ��
X
z�K

�
�f ��z� �

Z
�N

g�z ds� �ruh�r�z�
�

z�����z���	���
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Remark 	��� Note that � � ��e � w� for w � H���� satisfying wj�D � uD � uD�h and
� � uh � w �since uh � w � K�� If uh � K we may choose w � �� If not� let� e�g�� PKuh
be the projection of uh onto K with respect to j � j��� and w �� PKuh � uh minimises jwj���
among all w with uh � w � K�

Lemma ���� We have� for all w � H���� satisfying wj�D � uD � uD�h�

�

	
je� wj�����

�

	
jej���� � �f � e� w � J�e� w��� �ruh�r�e� w � J�e� w���

�

Z
�N

g�e� w � J�e� w�� ds�
�

	
jwj���� � ��h� e� w�� ��e� w��

�	����

Proof� Note that e� w � H�
D���� The de
nition of J�e� w� yields� e�g��X

z�K

�ruh�r�z��
z� e� w������z� � �ruh�rJ�e� w��

and eventually leads to

��h� e� w� � �f � J�e� w��� �ruh�rJ�e� w�� �

Z
�N

gJ�e� w� ds�

This and some elementary calculations show

��e� w�� ��h� e� w� � �f � e� w � J�e� w�� �

Z
�N

g�e� w � J�e� w�� ds

� �ru�r�e� w�� � �ruh�rJ�e� w�� � �f � e� w � J�e� w��

�

Z
�N

g�e� w � J�e� w�� ds� �re�r�e� w��� �ruh�r�e� w � J�e� w����

Since 	�re�r�e� w�� � je� wj���� � jej���� � jwj���� we deduce �	�����

Our motivation for the de
nition of �h is that its nodal values re ect Kuhn�Tucker conditions�

Lemma ���� We have �h � � � uh � �h almost everywhere in � and� for z � K�

�h�z���h�z�� uh�z�� � ��

Proof� Given z � K and a real number w de
ne vh � S��T � by vh�z� �� w and vh��� � uh���
for � � Nnfzg� If �h�z� � w we have vh � Kh and calculate with ���	�

�uh�z�� w��ruh�r�z� � �ruh�r�uh � vh�� � �f � uh � vh� �

Z
�N

g�uh � vh� ds

� �uh�z�� w�
�
�f ��z� �

Z
�N

g�z ds
�
�

According to �	��� this gives �after a division by ����z� � ��

� � �uh�z�� w��h�z��

A discussion of w � R under the restriction �h�z� � w yields the assertions�
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�� A posteriori estimates

The combination of the next result with Lemma 	�� provides a proof of ������

Theorem ��� �A posteriori estimate I�� If w � H���� is such that uh�w � K� i�e�� wj�D �
uD � uD�h and �� uh � w� then

je� wj��� � jej��� � min
ph�S��T �d

�kruh � phk� kh���E �g � ph � n�k���N �

� kh�Trfk� jwj��� � ��h��� uh � w��

Proof� Since uh � w � K we have ��e� w� � �� cf� Remark 	��� Moreover� �h � � � u� �
almost everywhere in � by Lemma 	�� so that ��h� u� �� � � and hence

��h� e� w�� ��e� w� � ��h� e� w� � ��h� u� �� � ��h��� uh � w� � ��h��� uh � w��

Utilising this estimate and Lemma 	�� in �	���� we deduce the assertion�

The following lemmas are needed to obtain other bounds for ��h� e� w��

Lemma ���� Let z � N be either an interior point of � or suppose that each open half�
space with boundary point z has a non�void intersection with �� Suppose T � T is such that
z � �T and set ��z �� �z � �T � Let wh � S

��T � satisfy wh�z� � � and � � wh on ��z� Then�

kwhk��
�z � hz min
qz�S��T j��z �

d
krwh � qzk��
�z ������

Proof� The left� and right�hand side of ����� de
ne semi�norms k � kl and k � kr� respectively�
on S��T j
�z�� We claim that kwhkr � � implies kwhkl � � for all wh � S��T � with wh�z� �

� � whj
�z � Indeed� if rwh equals some qz � S��T j
�z�
d it is �T j
�z��piecewise constant and

continuous� whence wh is a�ne on ��z� Since wh�z� � � we obtain that wh�x� equals n��x�z�
for all x � ��z and some n � R

d � jnj � �� and some  � R� Let H �� fy � R
d � m��y�z� 	 �g

intersect with ��z �H���z �� � is obvious for z � � and assumed for z � Nn��� For x � H���z�

� � wh�x� � n � �x� z� and m � �x� z� 	 �����	�

For m � �n� ���	� implies  � � and for m � �n� ���	� yields � � � Together�  � �� i�e��
wh � � and so kwhkl � �� Since k � kl and k � kr are norms on the 
nite�dimensional a�ne
space fwh � S

��T j
�z� � wh�z� � �� � � whj
�zg� they are equivalent� The constant C � � in
k � kl � C k � kr depends on T j
�z � A scaling argument concludes the proof�

Remark ���� If z � N is a boundary point of � and fx � � � jx � zj 	 �g is convex for
some � � � then z does not satisfy the condition of Lemma ���� Convex corners may yield
unexpected di�culties for higher approximation �NW��

The next result shows that �h can be controlled by averaging terms�

Lemma ���� We have� for T � T �

hTk�hk��T � hT kfk���T � min
qT�S��T j�T �

d

�
kruh � qTk���T � h

���
T k�g � qT � n�k���N���T

�
�

h�T j�hj����T � h�T jf j�����T � min
qT�S��T j�T �

d

�
kruh � qTk���T � h

���
T k�g � qT � n�k���N���T

�
�
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Proof� Set J�f ��
P

z�K�f ��z������z� 
z and note that J�f is the 
rst summand in the
de
nition of �h in �	���� We have kJ�fk��T � kfk���T and jJ�f j����T � jf j�����T for T � T � cf�

�Ci� CV� CB�� Note also that hdT � ��� �z� � hdT and j
zj����T � hd����T � k
zk��T � hd��T for all
T � T with T � �z� Using this in �	��� we deduce

k�hk��T � kfk���T �
X

z�K�T��z

h
�d��
T j�ruh�r�z��

Z
�N

g�z dsj�

j�hj����T � jf j�����T �
X

z�K�T��z

h�d����T j�ruh�r�z��

Z
�N

g�z dsj�

�����

Let qT be an element of S��T j�T �
d� An elementwise inverse estimate shows

hzk divT �qT �ruh�k���T � kruh � qTk���T �

This� an integration by parts� divTruh � �� j�zj��� � h
d����
z � k�zk � h

d��
z � and noting that

for z � T � K there holds �z � �T lead to

�ruh�r�z��

Z
�N

�zqT � n ds � �ruh � qT �r�z�� �divT qT ��z� � hd����T kruh � qTk���T �

This� the fact that each element T belongs to a 
nite number of patches �z only� ������

and
R
��T��N

�z�g � qT � n� ds � h
d����
z kh���z �g � qT � n�k���N���T conclude the proof of the

lemma�

De�nition ���� With each T � Ti�

Ti �� fT � T � T � �D � �� �x� y � K � �T � �h�x� � uh�x�� �h�y� 	 uh�y�g�

we associate some zT � K � �T such that �h�zT � � uh�zT � and set ��zT �� �zT � �T �

Ts �� fT � T � �K � Ti� T � ��zKg� and �s ��
�
T�Ts

T�

Remark ��	� For each T � Ti we preferably choose zT � � �i�e�� zT �� �� if possible�� This
allows us to impose the condition of Lemma ��� in as few as possible nodes on the boundary�

Remark ���� The region �s may be regarded as a layer between the discrete contact zone
and the discrete non�contact zone�

Lemma ���� Assume that for each T � Ti for which zT � K � �N the intersection of �
with any open half�space with boundary point zT is non�void� For all w � H���� satisfying
wj�D � uD � uD�h and �� uh � w� we have

��h� e� w� �
X
T�TD

hTk�hk��T je� wj�����T �
X
T�Ti

min
qz�S��T j��zT

�d
kr��h � uh�� qzk

�
��
�zT

�
X

T�T nTD

kh��T ��� �h � w��k
�
��T �

X
T �Tc

hTk�hk��Tkh
��
T ��� �h � w��k��T � kh�Tr�hk

��
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Proof� Since ��h� e�w� �
P

T�T

R
T
�h�e�w� dx we may estimate the contribution from each

T � T separately� In the 
rst case we assume T � TD� Since e � w � � on �D� Friedrichs�
inequality implies Z

T

�h�e� w� dx � hTk�hk��T je� wj�����T ������

In the second case we assume T � T � T ��D � �� and �hj�T 	 uhj�T � Lemma 	�� guarantees
�hjT � � and so Z

T

�h�e� w� dx � ������

In the third case we assume T � Ti and so there exist y� zT � K � �T such that �h�zT � �
uh�zT � and �h�y� 	 uh�y�� The conditions of Lemma ��� are satis
ed for zT by assumption�
Since �h � uh� � � u�

��� �h � w�� � �h � uh � ��� uh � w�� � e� w�

Because of �h � �� this leads toZ
T

�h�e� w� dx �

Z
T

�h��� �h � w�� dx�

Z
T

�h��h � uh� dx������

Owing to Lemma 	�� we have �h�y� � � and so k�hk��T � hT j�hj�����T by a discrete Friedrichs�
inequality� This� ������ and Lemma ��� showZ

T

�h�e� w� dx � h�T j�hj�����T


�
kh��T ��� �h � w��k��T � min

qz�S��T j��zT
�d
kr��h � uh�� qzk��
�zT

�
�

�����

In the remaining fourth case we assume T � Tc and obtain with �����Z
T

�h�e� w� dx � hTk�hk��Tkh
��
T ��� �h � w��k��T ������

The summation of ������ ����� ������ and ����� veri
es the assertion�

The combination of the next result with Lemma 	�� provides the proof of ����� and so
speci
es to the reliability of all averaging techniques for a�ne obstacles�

Theorem ��� �A posteriori estimate II�� Assume that for each T � Ti such that zT � K �
�N the intersection of � with any open half�space with boundary point zT is non�void� For
all w � H���� satisfying wj�D � uD � uD�h and �� uh � w� we have

je�wj����jej��� � min
ph�S��T �d

�kruh�phk�kh
���
E �g�ph�n�k���N �� min

qh�S��Ts�d
kr��h�uh��qhk���s

�
�X
T�Tc

kfk���T k��� �h � w��k��T
����

� jwj��� � kh�Trfk

�
� X
T�T nTD

kh��T ��� �h � w��k
�
��T

����
�
�X
T�TD

h�Tkfk
�
���T

����
�
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Proof� As in the proof of Theorem ��� we have

je� wj��� � jej��� � min
ph�S��T �d

�kruh � phk� kh���E �g � ph � n�k���N �

� kh�Trfk� jwj��� � ��h� e� w��

Employing Lemma ��� and absorbing je� wj��� we have

����� je� wj���� � jej���� � min
ph�S��T �d

�kruh � phk� kh���E �g � ph � n�k���N �
� � kh�Trfk

�

� jwj���� � kh�Tr�hk
� �

X
T�TD

h�Tk�hk
�
��T �

X
T�T nTD

kh��T ��� �h � w��k
�
��T

�
X
T �Ti

min
qz�S��T j��zT

�d
kr��h � uh�� qzk

�
��
�zT

�
X
T �Tc

hTk�hk��Tkh
��
T ��� �h � w��k��T �

Lemma ��	 shows

������ kh�Tr�hk
� �

X
T�TD

h�Tk�hk
�
��T �

X
T �Tc

hTk�hk��Tkh
��
T ��� �h � w��k��T

� kh�Trfk
� �

X
T�T

min
qT�S��T j�T �

d

�
kruh � qTk���T � h

���
T k�g � qT � n�k���N���T

��

�
X

T�T nTD

kh��T ��� �h � w��k
�
��T �

X
T�Tc

khTfk���T kh
��
T ��� �h � w��k�

X
T�TD

h�Tkfk
�
���T

�

Let �ph � S��T �d denote the minimiser of

min
ph�S��T �d

�kruh � phk� kh���E �g � ph � n�k���N ��

Since �phj�T � S
��T j�T �

d for all T � T and since the patches �T have a 
nite overlap we haveX
T�T

min
qT�S��T j�T �

d

�
kruh � qTk���T � h

���
T k�g � qT � n�k���N���T

��

� min
ph�S��T �d

�
kruh � phk� kh���E �g � ph � n�k���N

��
�

������

A similar argument and the de
nition of Ts showX
T �Ti

min
qz�S��T j��zT

�d
kr��h � uh�� qzk

�
��
�zT

� min
qh�S��Ts�d

kr��h � uh�� qhk
�
���s�����	�

The combination of ����������	� proves the theorem�

Remark ���� Two applications of the triangle inequality indicate e�ciency of the error esti�
mate of Theorem ��	 in case �h � ��

min
ph�S��T �d

�kruh�phk�kh
���
E �g�ph�n�k���N �� min

qh�S��Ts�d
kr�uh��h��qhk���s � jej����jej�����s

�j���hj�����s�	 min
ph�S��T �d

�kru�phk�kh
���
E �g�ph�n�k���N �� min

qh�S��Ts�d
kr��qhk���s�
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�� Numerical Realisation via Penalisation

In the examples presented in the subsequent section we have �h � �� �N � �� �j�D � uD�h�
and f � H����� Then the error estimate of Theorem ��	 reduces to

jej��� � min
ph�S��T �d

kruh � phk� min
qh�S��Ts�d

kr�uh � �h�� qhk���s � h�o�t�������

where h�o�t� denotes higher order contributions� In the numerical experiments we do not
compute the minima in ����� but calculate an upper bound for the 
rst two terms by applying
the operator A � L����� 	 S�

N�T � g� and B � L����� 	 S��T �� of �CB�� de
ned for p �
L����� and �N � � by

Ap � Bp ��
X
z�N

pz�z���	�

with pz ��
�
j�zj

R
�z
p dx � R

� for z � N � i�e�� we calculate

kruh �Aruhk� kr�uh � �h�� Br�uh � �h�k���s�

We refer to �CB� for a de
nition of A in case �N �� � where g � �Aruh� � n vanishes at all
nodes z � N � �N �

Our numerical approximations are obtained utilising a penalisation method which reads�
Given � � �� seek u� � fv � H���� � v � uD on �Dg such that

�ru��rv� � �f � v� �

Z
�N

gv ds�
�

�
��u� � ���� v� for all v � H�

D���������

It is not di�cult to show that ����� has a unique solution u� � H���� with u� � uD on �D�
Moreover� if the solution u of problem ����� satis
es u � H���� we have

ju� u�j��� � ����kf �!uk�

The discrete version of ����� reads� Given � � �� seek u��h � fvh � S��T � � vh � uD�h on �Dg
such that

�ru��h�rvh� � �f � vh� �

Z
�N

gvh ds�
�

�
��u��h � �h��� vh� for all vh � S�

D�T �������

We solved the nonlinear equation ����� with a Newton�Raphston scheme �without damping��
The implementation was performed in Matlab in the spirit of �ACF� with a direct solution
of linear systems of equations�

We stress that we do not solve ���	� but rather an approximation to it and we use the
penalisation ����� even if we know u �� H�����

The following adaptive algorithm generates all the sequences of meshes T�� T�� T�� ��� in this
paper which are uniform for " � � or adapted for " � ��	 in ����� For details on the
red�blue�green�re
nements in the algorithm we refer to �V��
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Algorithm �A��� �a� Start with a coarse mesh T�� k � ��
�b� Set � �� ��N where N is the number of degrees of freedom of the triangulation Tk and
compute the discrete solution u��h of ����� on the actual mesh Tk�
�c� De
ne

M �� fz � K � u��h � �h�z�� �T � Tk �y � N � T� �h�y� 	 u��h�y�g�
Ts�� �� fT � Tk � �z � M� T � �zg�

For T � Tk compute the re
nement indicator

�Z�T ��

�
kru��h �Aru��hk��T if T �� Ts���

�
�

�
kru��h �Aru��hk��T � kr�u��h � �h�� Br�u��h � �h�k��T

�
if T � Ts���

for the energy error eN �� kr�u�u��h�k��� and compute its estimator �N ��
�P

T�T �
�
Z�T

����
�

�d� Mark the element T for red�re
nement provided

�Z�T � " max
T ��Tk

�Z�T ������

�e� Mark further elements �red�blue�green�re
nement� to avoid hanging nodes and generate
a new triangulation Tk��� Update k and go to �b��

Remarks ���� �i� Note that the discrete contact zone is fx � � � u��h�x� � �h�x�g and
u��h�x� 	 �h�x� can occur for some x � ��
�ii� For simplicity� we only computed an approximation Ts�� of Ts�
�iii� Since we only consider lowest order methods with optimal convergence rate O�h� the
choice � � ��N is motivated by ��N � h� in two dimensions�
�iv� The choice of the factors in the de
nition of �Z�T is motivated by the e�ciency estimate
of Remark ����

� Numerical Experiments

The theoretical results of this paper are supported by numerical experiments� In this section�
we report on four examples of problem ����� on uniform and adapted meshes�

��� Example with smooth rotational symmetric solution �LLT�� Let f �� �	 on
� �� ����	� ��	�� and uD�x� y� �� r��	� ln�r����	 where r �� �x��y����� on the Dirichlet
boundary �D �� ��� For �h � � �� � the exact solution of problem ����� then reads

u�x� y� �

�
r��	� ln�r�� ��	 if r � ��

� otherwise�

Note that u � H����� In our numerical experiments the coarse triangulation T� of Fig� �
consists of �� squares halved along a diagonal�

The left plot in Fig� � shows a sequence of triangulations generated by Algorithm �A����� The
algorithm re
nes the mesh in the complement of the contact zone f�x� y� � � � x� � y� � �g
in which the solution vanishes� The approximate discrete contact zone fT � Tk � u��h�xT � �
�h�xT �g� where xT denotes the center of a triangle T � is plotted in white while its complement
is shaded �we chose this color since in most of the examples the complement of the contact
zone is re
ned and appears darker�� The right plot of Fig� � displays the solution u��h
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on the adaptively generated mesh T� with �� degrees of freedom� In Fig� 	 we plotted
the error and its estimator versus the degrees of freedom for uniform and adaptive mesh
re
nement� A logarithmic scaling used for both axes allows a slope � to be interpreted
as an experimental convergence rate 	 �owing to h � N�� in two dimensions�� We obtain
experimental convergence rates � for both re
nement strategies� The error on the adaptively
re
ned meshes is however smaller than the error on uniform meshes at comparable numbers
of degrees of freedoms� The plot shows that �N serves as a very accurate approximate of the
error eN � The entries �N� eN� and �N� �N� almost coincide�
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Figure �� Adaptively re
ned meshes T� �left upper� to T� �right lower� �left�
with approximate discrete contact zone shown in white and solution u��h on
T� with �� free nodes �right� in Example ���

�	� Example with corner singularity� Using polar coordinates �r� �� on the L�shaped
domain � �� ��	� 	�� n ��� 	�  ��	� ��� uD �� � on �D �� ��� �h � � �� �� let f�r� �� ��
�r��� sin�	����

�
�	��r��r � �		� �r�

�
� 

�
r�����	��r� sin�	����� ���r� where�

���r� ��

��
�

� if r 	 ��
��r� � �r � ��r� � � if � � r 	 ��

� if � � r�
for r �� 	�r � �����

and ���r� �� � if r � �� and ���r� �� � otherwise� The exact solution of ����� is then given
by u�r� �� �� r��� ���r� sin�	���� and has a typical corner singularity at the origin� The
coarsest triangulation T� of Fig� � consists of �� halved squares�

The sequence of triangulations generated by Algorithm �A���� in Example �	 and displayed
in the left plot of Fig� � shows a re
nement towards the origin where the solution has a
singularity in the gradient and a re
nement in the region f�x� y� � � � ��� � �x� � y����� �
���g where the solution has big gradients� This behavior can also be seen in the right plot
of Fig� � where we plotted the numerical solution u��h on triangulation T� with �	� degrees
of freedom� Fig� � shows that the adaptive Algorithm �A���� improves the experimental
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Figure �� Error and error estimator for uniform and adaptive mesh#
re
nement in Example ���

convergence rate about ��� for uniform mesh�re
nement to the optimal value �� Note that
for uniform mesh�re
nement we expect an asymptotic convergence rate 	�� due to the corner
singularity� The error in the region where u has a large gradient seems to dominate in this
preasymptotic range with N � ���� Again� the entries for �N and eN almost coincide and
this behavior improves for increasing numbers of degrees of freedom�

��� First problem from elastoplastic torsion �R�� Let f �� � on � �� ���� ���� uD �� �
on �D �� ��� �N �� �� and ��x� y� �� dist��x� y�� ���� In this example the exact solution
of ����� is not known and cannot be expected to be smooth since � �� H����� The coarsest
triangulation T� of Fig�  consists of �� elements with �h � � on T��

This example is di�erent from Examples �� and �	 in the sense that the solution and the
obstacle are non�smooth along the lines f�x� y� � � � x � y or x � � � yg of the contact
zone� Algorithm �A���� re
nes the mesh towards these lines as can be seen in the left and
right plot of Fig� � Moreover� the approximate discrete contact zone reduces to these lines�
Using Algorithm �A���� the experimental convergence rate �� for Algorithm �A�� improves
to the optimal value � for the error estimator at least in Fig ��

��� Second problem from elastoplastic torsion �LLT�� Let f �� �� on � �� ���� ����
uD �� � on �D �� ��� �N �� �� and �h�x� y� � ��x� y� �� � dist��x� y�� ���� As in the
previous example the solution is not known� The coarsest triangulation T� is the same as in
Example ���

This example underlines the e�ciency of our estimator and its robustness with respect to
non�smoothness of the obstacle� The obstacle is non�smooth along the lines f�x� y� � � �
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x � y or x � ��yg but these lines do not belong to the contact zone and hence there should
be no re
nement towards them� The sequence of meshes in the left plot of Fig� � shows that
the complement of the contact zone is indeed re
ned but the lines of non�smoothness of the
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obstacle do not seem to play a special role in the re
nement� The experimental convergence
rate of the error estimator for uniform mesh�re
nement equals one and this can be seen as
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an indication that u � H����� The adaptive Algorithm �A���� leads to smaller errors than
Algorithm �A��� cf� Fig� �� and shows also the optimal experimental convergence rate ��

To illustrate that the term minqh�S��Ts�d kr�uh � �h� � qhk���s should not be coarsened to
minqh�S��T �d kr�uh � �h�� qhk of ����� we compared �N with the error estimator �N�c�

	�N�c �� kru��h �Aru��hk� kr�u��h � �h�� Br�u��h � �h�k�

As can be seen in Fig� � this error estimator leads to worse experimental convergence rates
for uniform and adaptive mesh�re
nement�
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ned meshes T� �left upper� to T� �right lower� �left�
with approximate discrete contact zone plotted in white and solution u��h on
T� with ��	� free nodes �right� in Example ���

�� Remarks� �i� The numerical results for Examples ����� show that the adaptive Al�
gorithm �A���� yields signi
cant error reduction�
�ii� The error estimate performed extremely accurate although we only computed an approx�
imation u��h to uh�
�iii� As an initial function for the Newton scheme we used �h on T� for the 
rst mesh and
successively the prolongation to Tk�� of the solution u��h on Tk for subsequent re
nement
levels �nested iteration�� We stopped the iteration process when the Euclidean norm of the
coe�cient vector of the residual rh of ����� satis
ed jrhj � ������ In the above examples�
the scheme converged after at most ten iteration steps�
�iv� The meshes generated by Algorithm �A�� show local symmetries� A similar error esti�
mator as �N designed for second order partial di�erential equations performed well also on
randomly perturbed meshes without any symmetry �CB� BC��
�v� The error estimator is reliable and e�cient in Examples ��� �	� and ��� It is reliable
�but possibly not e�cient� in Example �� owing to non�smoothness of the obstacle�
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