Max-Planck-Institut
fur Mathematik
in den Naturwissenschaften

Leipzig

Evolving brain structures for robot control
by

Frank Pasemann, Ulrich Steinmetz, Martin Hilse

and Bruno Lara

Preprint no.: 20 2001







Evolving Brain Structures for Robot Control

Frank Pasemann'?, Ulrich Steinmetz', Martin Hiilse?,
and Bruno Lara?
YMaz Planck Institute for Mathematics in the Sciences, D-04103 Leipzig
2 TheorieLabor, Friedrich Schiller University, D-07740 Jena

Abstract

To study the relevance of recurrent neural network structures for
the behavior of autonomous agents a series of experiments with minia-
ture robots is performed. A special evolutionary algorithm is used to
generate networks of different sizes and architectures. Solutions for
obstacle avoidance and phototropic behavior are presented. Networks
are evolved with the help of simulated robots, and the results are
validated with the use of physical robots.



1 Introduction

Starting from the hypothesis that higher information processing or cognitive
abilities of biological and artificial systems are founded on the complex dy-
namical properties of neural networks, an artificial life approach to evolution-
ary robotics [4] is investigated. Complex dynamical properties of small neural
networks, called neuromodules for obvious reasons, are in general caused by
a recurrent coupling structure involving excitation and inhibition. Thinking
about these neuromodules as functionally distinguished building blocks for
larger brain-like systems, the (recurrent) coupling of these non-linear subsys-
tems may lead to an emergent behavior of the composed system.

Because the structure of neuromodules, with respect to adaptive behavior
of autonomous agents, is hard to construct [1], an evolutionary algorithm to
develop neuromodules as well as the couplings between these subsystems is
used. This algorithm is called EN S3-algorithm for evolution of neural sys-
tems by stochastic synthesis. The ENS? has already been tested successfully
on nonlinear control problems [6]. Furthermore, autonomous systems acting
in a sensori-motor loop, like simulated or real robots, are an appropriate tool
for studying the development of embodied cognition [7].

For the experiments reported in this paper the miniature Khepera robots
[3] as well as the Khepera simulator [2] are used. With respect to a desired
robot behavior, the neural networks are evolved with the help of the Khep-
era simulator. Those generating an excellent performance in the simulator
are then implemented in the physical robot and tested in various physical
environments. Finally, the structure of successful networks can be analysed.
It turned out, that evolved networks with an outstanding performance can
be comparatively small in size, making use of recurrent connections.

The EN S3-algorithm is applied to networks of standard additive neurons
with sigmoidal transfer functions. The algorithm sets no constraints, neither
on the number of neurons nor on the connectivity structure of a network,
developing network size, architecture, and parameters like weights and bias
terms simultaneously. Thus, in contrast to genetic algorithms, it does not
quantize network parameters and it is not primarily used for optimizing a
given architecture. The algorithm will be outlined in section 2. For the
solution of extended problems (more complex environments, more complex
sensori-motor systems, more complex survival conditions, etc.) the synthesis
of evolved neuromodules forming larger neural systems can be achieved by
evolving the coupling structure between functionally distinguished modules.
This may be done in the spirit of co-evolution of interacting species. We
suggest that this kind of evolutionary computation is well suited for evolving
neural networks, especially those with recurrent connectivity and dynamical



features.

2 The ENS? evolutionary algorithm

For the following experiments we use networks with standard additive neu-
rons with sigmoidal transfer functions for output and internal units, and
simply buffers as input units. The number of inputs and outputs is chosen
according to the problem; that is, it depends on the number of involved sen-
sors and the necessary motor signals. Here networks will have to drive only
the two motors of the Khepera. Thus, we use tanh as neural transfer func-
tion, setting bias terms to zero, to provide positive and negative signals for
forward /backward operations of the motors. Nothing else is determined, nei-
ther the number of internal units nor their connectivity, i.e. self-connections
and every kind of recurrences are allowed, as well as excitatory and inhibitory
connections. Because input units are only buffering data, no backward con-
nections to these units are allowed.

To evolve appropriate networks we consider a population p(t) of n(t)
neuromodules undergoing a variation-evaluation-selection loop, i.e.

p(t+1)=SEV p(t).

The variation operator V is realized as a stochastic operator, and allows for
the insertion and deletion of neurons and connections as well as for alterations
of bias and weight terms. Its action is determined by fixed per-neuron and
per-connection probabilities. The evaluation operator E is defined problem-
specific, and it is given in terms of a fitness function. This function usu-
ally has two types of terms: those defining the performance with respect to
a given behavior task (system performance), and terms related to internal
network properties like network size and the number of connections. Af-
ter evaluating the fitness of each individual network in the population the
number of network copies passed from the old to the new population de-
pends on the selection operator S. 1t performs the differential survival of the
varied members of the population according to evaluation results. During
repeated passes through the variation-evaluation-selection loop the average
performance of the populations will increase. If a satisfactory system per-
formance is achieved, the evolution process will generate smaller networks of
equal system performance, if terms in the fitness function are set appropri-
ately.



3 Evolved networks for Khepera control

The goal of the following experiments is to generate a specific robot behavior
like obstacle avoidance or phototropism. We use an average population size
of 30 individuals. The time interval for evaluating these individuals was
set to 2000 simulator time steps. There was also a stopping criterion for
the evaluation of an individual: It was terminated when bumping into an
obstacle. Furthermore, we influence the size of resulting networks by adding
cost terms for neurons and connections to the given fitness functions.

3.1 The first experiment: Obstacle avoidance

In a first experiment a network which allows the simulated Khepera robot
to move in a given environment without hitting any obstacle present in this
environment is evolved. The final goal is to obtain networks, evolved in
a simulated world, which produce a comparably successful behavior, when
controlling the physical robot in its very different environment.

For solving this task, the six infra-red proximity sensors in the front, and
the two in the rear of the robot provide the input to the network. To control
the two motors of the Khepera, the signals of the two output neurons are
used. Thus, initially the individual neuromodules have only eight linear input
neurons as buffers and two nonlinear output neurons.

To reach the goal fitness function F' is introduced which simply states:
For a given time T go straight ahead as long and as fast as possible. This is
coded in terms of the network output signals out; and outy as follows. First
the quantities m; and ms are defined as follows:

if out; <0 then m; =0, else m; =out;, 1=1,2.

Then, the fitness function is given by

2000

Fri=% o (mi(t) +mat)) = B [m(t) —ma(t) |, (1)

t=1

with appropriate parameters « and [.

Starting with a simple environment (with less walls and obstacles than the
environment shown in Fig. 2) it takes around 100 generations (depending
on the parameter settings of the evolutionary program) to get individuals
having satisfactory fitness values. Although generating a comparably good
robot behavior, the corresponding neural networks can differ in size as well
as in their connectivity structures.



135

synapses

\

o_performance

s_performance

neurons

—0. 04274

a 139

Figure 1: Performance of simulated robots and the development of corre-
sponding network size during the first 139 generations of an evolutionary
process.

The development of brain size (number of neurons and number of con-
nections) of a typical evolutionary process can be followed in Fig. 1. At the
beginning robots do not move or are spinning around having only one wheel
active, but already after ten generations the first robot is moving slowly on
a straight line. After thirty generations the fittest robots are exploring the
accessible space, moving faster on straight lines and turning when near a
wall. During this phase networks are still growing in general. The irregular
development of network size corresponds to the different initial conditions
from which robots in every generation have to start; they are more or less
difficult to cope with. Then, around generation 45 the costs for neurons
and synapses are increased to keep the size of the networks small. Therefore
the curves for the output performance and the system performance are now
splitting. At around generation 60 the number of hidden neurons of best
networks stabilizes around 6, with networks having around 110 synapses. A
further increase in costs for the network size is able to reduce the number of
neurons and synapses without decrease in the performance of the controllers.

To make the simulator solutions more robust, in the sense that they can
control the real robot in its very different physical environment equally effi-
cient, the simulator environments gradually changed having more obstacles
or walls, including for instance walls at 45 angles. An example environment
is shown in Fig. 2a, together with a typical path of a simulated robot in
this environment. The paths for the left and the right wheel start at the



a) b)

Figure 2: a.) A simulator environment and b.) a robot path in this environ-
ment for 5000 time steps.

filled circles and end at the cross marks. It can be seen, that the robot
turns left as well as right in different situations, achieving this by turning the
corresponding wheel backwards for a short while.

Out[LEFT) out[RIGHT)

Figure 3: The simplest evolved network which was able to generate an effec-
tive obstacle avoidance behavior for the real robot.

The most simple solution, which also generates a very good behavior of
the real robot, is shown in Fig. 3. It uses no internal neurons, but only direct
connections from inputs to the output neurons. What is remarkable about
this solution, is its output neuron configuration. The neuron driving the
left motor has a self-inhibitory neuron which also inhibits the second output
neuron. Furthermore, it should be noted, that not all sensors are connected
to the left or to the right output neuron, that the rear proximity sensors are



connected only to right output neuron out[0], and that the whole connectivity
structure is highly asymmetric with respect to the left/right symmetry of
the sensor and motor configuration. Remarkably, most of the connections
are inhibitory. It is well known, that for a single neuron with positive self-
connection larger than 1 there is an input interval over which a hysteresis
phenomena [5] (flipping between two stable states) can be observed. It seems
that in the shown network this effect is effectively used for instance to get
out of situations like 45 angles between walls.

SUEER,
PR

‘~

OUut[LEFT] out[RIGHT]

Figure 4: A more complex network generating effective obstacle avoidance
for the real robot.

A second solution shown in Fig. 4 uses two hidden neurons and several
closed signal loops. All neurons (hidden and output) use self-connections,
and loops are of different length - like the 2-loop between the output neurons,
the 3-loop involving neurons out[0], h[0] and A[1], and the 4-loop involving
out[0], h[0], h[1] and out[1]. Furthermore, loops are even or odd, that is, the
number of inhibitory connections in a loop is even or odd. The generated
behavior in the real robot is slightly smoother than the one generated by the
first network. The robot not only finds its way out of 45 angle walls but also
maneuvers out of a narrow blind alley.

The general impression of the robots behavior is of course not only ob-
stacle avoidance but that of an exploratory behavior: letting the robot move
in its physical environment after a while it will visit almost all areas within
reach, moving through small openings in the walls, wandering through nar-
row corridors and even coming out of dead ends. This of course cannot be
achieved by pure wall following behaviors, as it is usually learned by robots.



3.2 The second experiment: Light seeking

For the second experiment in addition to the 8 proximity sensors, the 8 ambi-
ent light sensors of the Khepera are used; i.e., we now have 16 sensor inputs.
The goal of this experiment is to find a light source as fast as possible and to
stay there (eating). Because the first experiment already provided networks
generating an exploratory behavior, for the initial population it is reasonable
to use one of these network solutions. The additional light sensors are of
course not yet connected. During the evolution process additional neurons
will connect to these new inputs while the initial network configuration may
change.

To find an appropriate solution the following fitness function is applied
stating: For a given time and a given environment ”eat” as much light as
possible. This is coded as follows

2000

F:= Y a-ing(t)+f-|ing(t) —in.(t)], (2)

t=3D1

where o and (3 are appropriate parameters, and iny and in, are given in
terms of the inputs ¢[0], ..., i[7] to the additional light sensors by

ing = 1[0] +4[2] +4[3] +¢[5], in, :=[6] +[7] .

Thus, for determining the fitness only four of the six front light sensors are
used, and the proximity sensors are not evaluated at all.

Again, the ENS3-algorithm is applied to the simulated robots with a
few light sources now spread over the environments used also in the first
experiment. As before, we gradually make the boundary conditions more
complex; i.e., more walls and obstacles are introduced while reducing the
number of light sources.

After having evolved networks for the simulated robots which seemed to
generate the desired behavior in several different environments these net-
works are tested for the real robot. In fact, also the physical robot “looked”
for a light source and got there straight when one was found. It even fol-
lowed the light source, a small lamp, when this was moved by hand. The
generated behavior seemed to be robust also in the sense that it was not
much influenced by changing light conditions. Again there were reasonable
solutions of different network size and structure. One interesting solution is
shown in Fig. 5, where, for greater clarity, Fig. 5a shows the connections
coming from proximity sensors and Fig. 5b those coming from the light
sensors. It can be seen, that both types of input signals address all hidden
and output neurons; i.e., both types of information are processed in one and



Wy
)

i,

c»

e
/ 9 %

0
Ao

Y,
i
/ X //
// iy \

a) OUt[LEFT) out[RIGHT] b) OUt[LEFT) out[RIGHT]

Figure 5: a.) Connections of the proximity sensors and b.) of the ambient
light sensors to the hidden and output neurons of an evolved network for
phototropic behavior.

the same network structure simultaneously. Furthermore the massively re-
current structure of this network is obvious, including also self-connections.
Especially, the output neurons are again recurrently connected.

4 Final Remarks

The presented method to evolve neural networks for robot control turned out
to be effective in two different directions. On one hand, the developed net-
works produced a robust robot behavior in the sense that one and the same
network was not only able to cope equally good with different environments
in the simulator, but turned out to have an excellent performance also when
implemented in the physical Khepera and tested under different environmen-
tal boundary conditions. On the other hand, the EN S3-algorithm produced
a variety of recurrent neural networks, which can be analyzed with respect to
their internal dynamical properties. This can reveal relations between these
properties and the generated robot behavior. The mentioned hysteresis ef-
fect, which seemed to be responsible for effective turning in dead ends, may
serve as a first example.

Our strategy is to progress from simple to more complex robot behav-
iors by evolving larger networks starting from initial populations of smaller
functionally distinguished neuromodules. In principle there are two different
techniques to achieve this. One method, called module expansion, starts from
already evolved networks which can solve a subtask. Evolution will then add
new neurons and connections to these, probably fixed, structures. It was



applied in the experiment described above, where phototropic behavior was
created from an existing exploration ability.

The second method may be called module fusion: two evolved functionally
distinguished modules, with fixed architectures, are chosen for the initial
population and the evolution process generates only an appropriate coupling
structure to accomplish a more extensive behavior task. Here, of course,
emergent properties have to be expected and are desired: The resultant
behavior may not be due just to the "sum” of the basic abilities, but may be
of a very different quality.

References

[1] Husbands, P., and Harwey, I. (1992) Evolution versus design: Control-
ling autonomous robots, in: Integrating perception, planning and action:
Proceedings of the Third Annual Conferences on Artificial Intelligence,
IEEE Press, Los Alamitos.

[2] Michel, O., Khepera Simulator Package version 2.0: Freeware mo-
bile robot simulator written at the University of Nice Sophia-Antipolis
by Oliver Michel. Downloadable from the World Wide Web at
http://wwwi3s.unice.fr/~om/khep-sim.html

[3] Mondala, F., Franzi, E., and Ienne, P. (1993), Mobile robots minitur-
ization: a tool for investigation in control algorithms, in: Proceedings of
ISER’ 93, Kyoto, October 1993.

[4] Nolfi, S., and Floreano, D. (2000) Evolutionary Robotics: The Biology, In-
telligence, and Technology of Self-Organizing Machines MIT Press, Cam-
bridge.

[5] Pasemann, F. (1993), Dynamics of a single model neuron, International
Journal of Bifurcation and Chaos, 2, 271-278.

[6] Pasemann, F. (1998), Evolving neurocontrollers for balancing an inverted
pendulum, Network: Computation in Neural Systems, 9, 495-511.

[7] Pfeifer, R., and Scheier, C. (2000), Understanding Intelligence, MIT
Press, Cambridge.

10



