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Abstract

Considered is plane rotationally-symmetrical motion of viscous incompressible liquid by in-
ertia in a ring, which boundaries are free. Corresponding initial boundary-value problem for the
Navier—Stokes equations was studied in [1] and also earlier in [2], where the case of zero surface
tension was considered.

The problem on a rotating ring represents a rich in content and at the same time simple
enough object for grounding of approximate methods in theory of viscous flows with free bound-
aries. An asymptotics of the solution of this problem at large Reynolds numbers was built in [3]
on the basis of the scheme suggested in [4]; the closeness of asymptotic and exact solutions was
proved at finite time interval.

The analysis of quasi-stationary approximation in the problem on a rotational ring is the aim
of the present work. The equations of quasi-stationary approximation for the general problem on
motion of isolated volume of viscous incompressible capillary liquid were derived in [5] from the
exact equations with the help of expansion by the small parameter of quasi-stationarity equal to
the ratio of the Stokes time to the capillary one. The problem contains one more dimensionless
parameter proportional to the modulus of conserving angular moment of liquid volume; this
parameter can be also considered as a small one. In dependence on the relation between these
parameters one can obtain three variants of limit problem: traditional and two new ones. Built
in [5] is formal asymptotics of solutions of the problem arising at tending of the quasi-statinarity
parameter to zero.

The question of grounding of quasi-stationary approximation was open until recently. Pre-
sented in [6] is the ground for the traditional variant of limit problem. Unfortunately the
standard model of quasi-stationary approximation is insipid in the problem on a rotational ring.

The problem mentioned above represents the first nontrivial example of such motion of
viscous liquid that its topology can be changed with time — a ring turns into a disk in finite
period of time in irreversible way [1] when the surface tension is large enough. The usefulness
of quasi-stationary approximation for the description of the process of modification of topology
of the flow domain in the considered problem in simple terms — by the analysis of the solutions
of ordinary autonomous differential equation of the first order — is the remarkable peculiarity.

1 Statement of problem.

Considered is a problem on plane rotationally—symmetrical motion of vis-
cous incompressible capillary liquid in a ring ri(f) < r < ro(t), which



boundaries are free. Let v, = Q(t)/r, vy = v(r,t) to be the radial and pe-
ripherical components of the velocity; p(r, t) is the pressure, p is the density
of liquid, v is its viscosity, o is the coefficient of surface tension, r;(0) = r;
(1 = 1,2). Functions v,, vy, p must satisfy the Navier—Stokes equations,
the initial conditions v,(r,0) = Q(0)/r, vg = vo(r) (r10 < 7 < 190) and
natural conditions on the free boundaries of the ring r = r;(t), i = 1,2 at
t > 0.

Let us determine the time scale ty = pvrip/o (the capillary time) and
the length scale, the scale of radial component of velocity and the pres-
sure scale r1g, o/pv and o/ryy respectively; then introduce dimensionless
independent variables 7 = t/tg, = = (r? — r?) /r3, and sought for functions
y =ri/riy, ¢ = prvQ/orig, u = ripv/Vr , so that u is the dimensionless
angular velocity of a liquid particle and V is the characteristic dimensional
peripherical velocity determined below. Functions y(7), ¢(7) and u(zx, 7)
form the solution of the following problem in a fixed domain:

O[(y + z)ul; = 4[(y + )’us), at 7>0, 0<z<a, (1.1)

uz(0,7) = uz(a,7) =0 at 7>0, (1.2)

u(z,0) =up(z) at 0<z<a, (1.3)

dy/dr =2¢p at 7 >0, (1.4)
d_gpz;<_a<p(4—5g0)_ 11 N

dr  In(1+a/y) yly+a) VI Vyta
_|_,0V§r10 /aUQ(x,T)dﬂf) at >0, (1.5)
y(0) =1, »(0) = wo. (1.6)

Here § = t,/ty = ori9/pv? is the parameter of quasi-stationarity, t, = r%,/v
is the Stokes time, a = (129/r19)% — 1 is the relative ring thickness, ug(z) =
proo(riov'1+z)/ov/1+z, po = prQ(0)/or1p.

The relations (1.1)—(1.6) coincide with ones derived in [1, 7] to within
the notations (there the parameter §~! = &2

= v/ryyV, i.e. the inverse
Reynolds number, is used instead of § and the characteristic velocity V' is
chosen as max |vy(r)|, ri90 < 7 < rg). The mass integral equivalent to the
ring square conservation

S =rlra(t) — ri(t)] = n(rky — i)



was used for derivation of these relations. Furthermore the original problem
with free boundary keeps the conservation law of the angular momentum:

’I“Q(t) T20
L =2mp / ro(r, t)dr = 2mp / rvg(r)dr.

ry (t) T10

So that we can determine the quantity V = L/mprs,. If the solution of the
problem (1.1)-(1.6) is known then functions v, vg, 1, 12 = (S/7 + r?)1/2
are expressed explicitly by u, y and ¢, and pressure p is reconstructed by
quadrature.

The previous equality can be rewritten in dimensionless variables as
follows

2/x+y (Nu(z, )z =2 [(z+ )do = 1. (1.7)
0
Let us introduce the function
w=1u—2/(a2y + a)). (1.8)

The quantity 2/(a(2y + a)) = w represents the dimensionless istantaneous
angular velocity of the ring rotating as a solid body with known area and
angular moment. From (1.7) it follows that

/x—l—y Jwdz = 0. (1.9)
0

The dimensionless ratio o = 47'/2L%/(poS°/?) can be composed from
quantities L, S, p and o. Parameter « is the unique dimensionless com-
bination of the motion integrals proportional to the square of angular mo-
ment and not containing viscosity in the problem on a rotational ring.
Further it is suggested that the centrifugal and capillary forces have one
and the same order when § — 0 in the studied motion. This condition will
be satisfied when « will have the order 1.

Passing on to the new sought for function w(z, 7) in (1.1)—(1.6) (w(z, 7)
is determined by the equality (1.8)) and using the relation (1.9) we obtain:

O[(y + z)w], = 4[(y + x)wa]w"‘

+46(2z —a)(2y +a)*p at 7>0, 0<z<a, (1.10)
wy(0,7) = wy(a, 7) =0 at 7 >0, (1.11)
w(z,0) =wy(z) at 0<z <aq, (1.12)



dy/dr =2p atT > 0, (1.13)

5d_<p B 1 Cap(d—dp) 1 1 aa®/? .
i " h{ltafy)l " yly+a) u vyFa (@2y+a)
aad? @
/w (z,7)dx| at T >0, (1.14)
y(0) =1, ¢(0) = ¢y (1.15)

Here wo(z) = —2/(a(2 + a)

condition

+ wo(z). Function wy(z) must satisfy the

/a(x + Dwydz =0 (1.16)

following from (1.9).

The problem (1.10)—(1.15) represents the subject of our further investi-
gation. Our aim is to build the asymptotics of the solution of this problem
for 6 — 0 and its grounding.

2 External expansion. Equations of quasi-stationary
approximation.

The asymptotic solution of singulary pertubed problem (1.10)—(1.15) is
built for 6 — 0 as a combination of the external and internal expansions.
The external expansion is found in the form of formal power series

y =y O 46y 162 1 o= 4500 4 6% .

w = dw' + 2w® + B + . (2.1)

The initial conditions for the terms of the expansion of y are: y© =

1, y® =0at 7 =0 (k= 1,2,...). Initial conditions for the functions
0¥ (j=0,1,...) and w® (k=1,2,...) are not posed. At the same time
functions ¢ can be determined explicitely by y@), wU-1 (let wh =
w® = 0 from substitution of the expressions (2.1) into (1.14) and equating
of terms at common powers of §. Function y© satisfies the nonlinear
ordinary differential equation of the first order and functions y*) (k =
1,2,...) satisfy the linear ordinary differential equations of the first order.

Functions w") (j = 1,2,...) can be determined from the solutions of
boundary-value problems

(40 + 20w, = Ri(z,7), 0<z<a, 7>0, (2:2)
wi)(0,7) = wl(a,7) =0, 7>0, (2.3

4



where 7 is considered as a parameter. The right parts of the equations (2.2)

can be expressed by functions y(, ..., y@: O ol O =),

The solvability condition | Rj(x, 7)dz = 0, 7 > 0 of the problem (2.2), (2.3)
0

at j = 1 follows directly from (1.10). Its fulfillment for j = 2,3,... can be
proved by induction. The solution of the problem (2.2), (2.3) is determined
to within the additive function 7. This arbitrariness permits to satisfy the
solvability condition on the next step of induction.

Let us pass to the constructing of the main terms of asymptotic expan-
sions (2.1). After substitution of these expansions into (1.14) and passage
to the limit when § — 0 we shall obtain

4ap0) 1 aa’?
O T o @0 g aE
So we conclude that
0= Ty (2.4)
where Y = y(©,
1 1 aa®?

‘Y= Ft Faa @v+ar

As it follows from (1.13), (1.15) and (2.1), (2.4) the function Y(7) is a
solution of the Cauchy problem

dY Y(Y +a)
—=—-——"GY t 0 2.5
S =S 06(y) a7 >0 (25)
Y (0) =1. (2.6)
And finally the function w! is determined as a solution of the problem
(2.2), (2.3) with R; = —(22 — a)(2y'” 4 a) 29, satisfying the condition
é’a(x +y ) wWdz = 0 (here p© is expressed by y© =Y by formula (2.4)).

This solution has the form

o Y +a)
a(2Y + a)?

G(Y) l:c +(2Y + a)log (Y ™ a) Y({Y +a)

Y +x Y +x



The existence of constant solutions determined by the condition G(Y') =
0 is sufficient for the further investigation.The last equation is equivalent
to the system

aa7/2w2=4< ! + ! ) %:# (2.8)
VY VY +a) 2 2Y +a '

Its solution Y, w describes the rotation of a capillary ring as a rotation of a

solid body with dimensionless angular velocity w at predetermined angular
moment and area of a ring. Stationary solution of the system (1.10), (1.13),
(1.14) where ¢ = 0, w = 0 corresponds to it. The analysis of system
(2.8) was fulfilled in [1, 7]. It was found out that this system has no real
solutions at a < o ~ 5.89 and has one solution Y* = ka, w* at a = o*
(k = const ~ 0.121) and two solutions Yj(«,a), wi(a,a) (i = 1,2) at
a > a,, moreover 0 < Yj(a,a) < Y* < Ys(e,a) and limY; =0, limYs = oo
when o — oco. Ifa > a* then function G(Y) is positive at the intervals
(0,Y1), (Y2,00) and negative at (Y7, Y3).
If the inequalities
a>a", Yi(aa) <1 (2.9)

are fulfilled then the solution Y'(7) of the Cauchy problem (2.5), (2.6) is
positive for all 7 > 0 and Y — Y3(«, a) when 7 — oo with the exponential
velocity. (Fulfillment of the condition a < a* &~ 8.26 is sufficient for the
fulfillment of the second inequality (2.9).) Here the function Y is growing
monotonically if 1 < Y3(e,a) and diminishing in the opposite case. If
Yi(a,a) =1 and Y2(a,a) = 1 then the solution of the problem (2.5), (2.6)
is Y = 1. It is unstable in the first case and stable in the second one.

If we change the second inequality in (2.9) on the opposite one or if
a < o then function Y is diminishing monotonically with the growth of 7
and vanishes at some 7% > 0 by the law

Y = (" —7)?/164+0(t* — 7)* at 1 7717 (2.10)

and for 7 > 7* it should be continued with zero. (The necessity of such
continuation of function Y is caused by the fact that it is the main term
of the external expansion of the function y(7) = r#/r?, at § — 0.) At the
same time functions ¢(®) and w® determined in formulae (2.4), (2.7) are
continued with zero too.

Substitution of expressions (2.1) for y, ¢ in the equation (1.14) and

retention of the terms with the order of § in it lead to the relation
(1) Y —|— a Y aa5/2 (1)

= - + +
8avY | 8avY +a 42V +a))”
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1 a\ dp
——log (1+ = : 2.11
4q ® ( i Y) dr (2.11)

One can derive the equation for y(!) from (2.11) and (1.13)

dy(l) Y + a Y Cl(a/5/2 (1) 1 (0) 2
= - + + v+ S e) =
dr 4aY  4aY +a  2(2Y +a)? 2

1 a\ dol
——log |1+ — : 2.12
2a ©8 ( + Y) dr ( )

This equation must be solved with the initial condition

y1(0)=0 (2.13)

(here the function ¢(*) is determined by the equality (2.4)). Further as in
the case of the study of the main terms of the external expansion we must
distinguish the two cases: the solution Y (7) of the problem (2.5), (2.6) is
positive for all 7 > 0 (case A); Y > 0for 0 < 7 < 7" < 00, Y = 0 for
T > 7% (case B).

In the case A the solution y;(7) of the problem (2.12), (2.13) is regular
for all 7 > 0 and y; — const when 7 — oo in the exponential way. The case
B is more complicated. Using the relation (2.10) we obtain the asymptotics
of the solution of mentioned in the form

(1):7-*—7-

230 log’ (7" = 7) + Ol(7" = ) log(r* — 7)) (2.14)

Y
when 7 7 7*. We suggest that yM)(7) = 0 for 7 > 7* on the basis of (2.14)
so that the inclusion y!) € C#[0,00) will be valid with any 8 € (0,1).
However the function o(!)(7) has a logarithmic singularity when 7 * 7*.
Setting (1) = 0 for 7 > 7* we obtain the discontinuous function ¢ (7)
determined for all 7 > 0 although oM € L0, 00) with any ¢ > 1. At the
same time this variant of continuation of the function ¢ to the domain
T > 7% is the unique possible variant so far as this function is the element of
the expansion of the radial component of velocity of a ring by the parameter
0 and this component turns to zero after transformation of a ring into a
disk.

We see that in the case B the expansion (2.1) becomes invalid for 7 close
to 7*. It turns out that if we pass to the new independent variable y instead
of 7 and new sought for function ®[y(7)] = ¢(7) and Wiz, y(7)] = w(z, 1)
in the relations (1.10)—(1.15) then the process of building of the external
expansion can be regularized. It follows from the fact that function ¢ is
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negative at the interval |1, 7%) if 7* — 7 is small enough so that dy/dr =
2¢ < 0 [1]. As a result we pass to the problem:

§®[(y + 2)W], = 2[(y + 2)*W, ], + 28(2 — a)(2y + a) *®

at y<wy, 0<z<a, (2.15)
W, (0,y) = Wa(a,y) =0 at y <y, (2.16)
W(z,yo) = Wo(z) at 0<z <a, (2.17)
e 1 a®(4—6®) 1 L aa®/? N
dy  2log(l+a/y)® y(y + a) VI Vyta  (2y+a)?
5/2 a
“‘14 [ Wz, y)dz| at oy <y, (2.18)
0
®(yo) = Po (2.19)

(here yo = y(10) > 0, @9 = (1) < 0).
Equations (2.15), (2.18) permit the existence of formal solutions in the
form

d =30 450W 415200 . W =sWOB2WO 453w 4. . (2.20)

Functions W® | k = 1,2,... satisfy the boundary conditions (2.16). The
process of calculation of the terms of the expansion (2.20) is very similar
with one discussed in the beginning of this subsection so we shall omit it.
Let us note that the expression for ®© coincides with (2.4) after substi-
tution of y instead of Y (now y is the independent variable). Analogously
the function W is determined by (2.7) where y is substituted instead of
Y. However the essential distinctions arise among the next terms of the
expansion (2.1) and its analog (2.20).
The expression for ®1)(y):

o) = D Log1 4oy )

In order to obtain the dependence ®M[y(7)] we must solve the Cauchy

problem
d
—=200(y) +2500(y) at 7>,
y(10) = Yo

From this fact and (2.21) it follows that function y(7) does not permit the
expansion in the asymptotic series (2.1) at 7 close to 7*.
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From the other side the smoothness of functions W®(z,y), ®®(y) is
not worsening near the values ¢ = 0, y = 0 it is even increasing with the
growth of k. In particular

0) — — /4 + O(y), (2.22)

oM = —ylog(1/y)/64 + O(y),
®® = 3432 10g%(1/y)/1028 + O[y*/* log(1/y)],

when y — 0. Moreover usmg the induction one can show that ®% ¢
C(k+/3 2[0, 0], W) ¢ CH+5=D/2(]0,a] x [0,y0]) for k = 1,2, ... with any
B € (0,1).

3 Internal expansion. The matching conditions.

Built above formal solution (2.1) of the equations (1.10), (1.13), (1.14) is
not satisfying the initial conditions (1.12) and the second condition (1.15).
In order to compensate the arising discrepancies we must search for the
components ¢, w of the solution of the problem (1.10)—(1.15) in the form

O) 4 O — 30 4 510 4 ) — ) 4

w =00+ 5w + 0V — W) 4 Z(w® 4 0@ - )4
where functions v0, v® »*) E =12 .. (the elements of the internal
expansion) depend on "rapid time” 5 = 7/ (functions v¥, v¥) ... depend
on x too); quantities Y, k=1,2, ... are constant and z(*) are functions

of x.

The problem of determination of v(?) is obtained in the following way.
Expressions (3.1) are substituted into the equation (1.10) where we pass
to the "rapid time” and then put y = 1, 6 = 0. As a result we derive the
equation

[(z + )0, = 4[(z + 1)*"]., (3.2)
that must be solved in the semistrip S, = {z,n: 0 < x < a, n > 0} with
the boundary conditions

v0(0,n) =vP(a,n) =0, >0 (3.3)
and the initial condition

VO(z,0) = wy(z), 0<z<a. (3.4)



The solution of the problem (3.2)—(3.4) is representable by the Fourier

series
0)

U(

IRZED gcgo)exp(—ﬁn)f@(vw +1), (3.5)

where f;(r) is the solution of the equation

d2f 1df
W_Frdr (

1
)‘2 - _2>f = 07
r
satisfying the conditions
d
—f—i—O at r=1, r=+1+4a

dr r

(i.e. the linear combination of the Bessel functions of the first and second
kinds of argument A;r); A; > 0, (i = 1,2,...) are the roots of the equation

JQ()\Z'\/ 1 + CL)YVQ()\Z) — JQ()\Z)}/Q()\Z\/ 1 + a) = 0,

- constants,

(/\/erlf Vi) /Wwo () (Vo T )

and cl(o)

The absence of any term not depending on 7 in the right part of (3.5) is
quaranteed by the condition (1.16). This property is well coordinated with
the fact that the external expansion of the function w(z, ) begins from
the term with the order of §. Further we suggest that function wyz belongs
to the Hélder class C?77[0,a], 0 < B < 1 and satisfies the compatibility
conditions wy(0) = wy(a) = 0. This fact ensures the convergence of the
series (3.5) in metric of the space C?+/#1+5/2(5).

Function (") (n) is determined as a solution of the linear Cauchy prob-

lem:
dypl® 1 { 4ar)p(© 1 N
dn  log(l+a) l+a l+a
3/2 a
+oza4 [U(O)(x,n)]de} at n >0, (3.6)
0
v(0) = 0. (3.7)
In accordance with (3.5)—(3.7)
1 +a 1 aa®/?
1 1 —
nbr&{ﬁ 4a i 1+a (2+a)?]
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moreover this convergence to the limit has an exponential character; this
limit is denoted by x(?). So taking into account this fact and (2.4) one can
see that
. 0 .
Jim 9 = x(0) = lim (0).

In order to obtain the equation for the function v"(z,7) one must
substitute the expansions (3.1) and y = y© + §yV 4+ ... into the equa-
tion(1.10) and keep the terms with zero and first orders on ¢ in the re-
sulting equality, then pass to the limit when 7 — 0 in the expansion of
the function y(7). Taking into account the equality (3.2) and the fact that
y©@(0) = 1, y(0) = 0 we derive the equation

(2 + 1)oV], = 4[(@ + 1)*V] +42e —a)(2+a) O (). (38)

This equation must be solved in the semistrip S, with homogeneous bound-
ary and initial conditions

Ugrl)(ovn) - U:E:I)(a7 n) =0, n>0, (3.9)

vW(z,0)=0, 0<z<a. (3.10)

The solution of the problem (3.8)—(3.10) is expressed by the Fourier
series analogous with (3.5). The following representation takes place at
n— o

v = 20() 4 Olexp(—)] (3.11)
(with some v > 0, uniformly in z, 0 < 2 < a). Here

1+a 1 aa®?
W __—T7 |14 _

a(2 + a) Vita (24 a)?
l1+a a(6+T7a)
l+z 6(2+a)

In accordance with (3.12) the comparison of (3.11) with (2.7) shows that

1
a;—|—(2—|—a)log<1j:z>—

1
+ - log(1+ a)

. (3.12)

lim v = 2 = lim w(l), 0<zx<a.
1—00 70
The Cauchy problem for determination of function () (n) is derived in

the same way; it has the following form:

dy') 1 da ) _ () a0 _ 02
dn _log(l—l—a)l_l—i—aw R )+1—|—a(¢ —X)H
aa®? £ ) 1) 1)
ty— J o (@ mv (x,n)dxl, n>0; ¢7(0)=0,

0
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where (1) is a constant not determined at this step. In accordance with
exponential decay of functions ¥ (n) — x9, v(¥(z,n) when n — co and
represenation (3.11) for the function v!)(z, n) we have: ¥ (n) — x) when
n — oo. Now let ') = ©1)(0); the necessary compatibility condition is
derived
: 1 1 : 1
nll>r£10¢( ) :X( ) :ll_r%@( ).
The process of construction of functions v (z,n), z* (), ¥* (n) and

determination of constants y*) can be continued upto any natural N. As
a result all members of the first formal power series (3.1) are determined in
terms of solutions of the linear Cauchy problems for ordinary differential
equations of the first order, and the members of the second series (3.1) — by
means of solving the second initial boundary value problem for the linear
parabolic equations of the (3.8) type.

4 Justification of the asymptotic expansion (case A).

Let us define N-approximate solution of the problem (1.10) — (1.15) (N =
1,2,...) by formulae

N
wy = vz, 5) + ¥ 8w (@, 1) + 0¥ (@, ) - 2P ()]
k=1
N
Yy = 2_;0 Sty (1), (4.1)

N . |
oN = ;}5[90(’)(7) +99(5) —x"]

Our aim is to obtain some estimates of closeness of N-approximate solu-
tion to the exact solution of the problem (1.10) — (1.15) when § — 0.
One must distinguish the two cases, A and B (see Section 2). Case A
is considered in this section: function ¥ = Y(7) determined as the
solution of the Cauchy problem (2.5), (2.6) is positive for all 7 > 0.
In this case functions wy, yny, ¢n are determined for 0 < 7 < T,
0 <z < aforany T > 0 and the following inclusions take place: yy €
C?0,T], on € C?0,T], wy € CSW’”W?(QT), where QQr — the rectan-
gle{z,7: 0 <z <a, 0<7<T}and C§+’3’1+ﬁ/2(QT) — the subspace
of C2+A1+8/2(Qr) generated by functions u(z, ) satisfying the conditions
uz(0,7) = uz(a, 7)=0for 0 <7< T, z(x + 1)u(z,0)dz = 0.

Let us rewrite the equalities (1.10)—(1.15) in the operator form

A(f) =0, (4.2)

12



where f = {w,y, ¢} is the totality of the unknown functions and A —
6-component operator—function defined by the following relations:

Ay =6y + z)w], — 4[(y + x)2w$]a, — 462z — a)(2y + a)_2<,0,

Ay = % — 2,
A3:5d£— 1 l_ago(él—égo)_ 11 N
dr  log(1+a/y) y(y + a) VI y+a
aad!? add? @
+(2y—|—a) /w z,7)dz|,
Ay = w(z, 0) — wo(z),
As =y(0) — 1,
As = »(0) — 0.

Let us define two Banach spaces: B; = C’Qw 1+ﬂ/2(QT) x C?[0,T] x
C2[0,T] and B, = C* ﬂ/?(QT) x C10,T] % 01[0 T] x C3*700,a] x R x R,
where the subspace C377[0,a] of the space of functions z(z) € C**4[0, d]
is separated by the conditions 2'(0) = 2'(a) = 0, f(a: + 1)z(z)dx = 0.

The norms (in the spaces By and Bs) are determlned as sums of norms of
corresponding elements. For example, if f = {w,y, ¢} € B; then

1l = llwllezeasrorngr + llyllezor + [lelle2orr

Let us introduce the notation fy = {wn, yn, on}. Operator A is defined
in some ball Q. : ||f — fn||p, < v < 1 of the space By and acts into the
space By. This operator is differentiable by Frechét in this ball and its
Frechét derivative A} satisfies the Lipschitz condition:

145 — Ablls, < Kllg = Rllp, for g,h€Q,, (4.3)

where the quantity K > 0 depends on the parameter §. It is essential for
the further investigation that if the inequality 0 < § < dq is fulfilled then
the estimate (4.3) takes place with constant K not depanding on § (the
former notation K is kept). This fact follows directly from the definition
of operator A.

Further the positive quantities not depending on § (however their de-
pendence on §; and T is possible) are denoted by Ci(k = 1,2,...). The
following inequality

JA(fw)llB, < C16™ (4.4)
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takes place with 6 € (0, o] and any natural N by definition of the approxi-
mate solution (the process of its construction was described above). It will
be proved below that the exact solution of the equation (4.2) exists in the
vicinity of the approximate solution of this equation for any 7' > 0 and
sufficiently small § > 0.

Proposition 1. Let the following assumptions to be fulfilled:

i) wor € C*™[0,a), 0 < 8 <1; w)(0) =wj(a) =0
/(:L‘ + Dwy(x)dzx = 0;
0
ii) the solution Y (7) of the Cauchy problem (2.5), (2.6) is positive for all
T > 0.
Then one can find such §y > 0 that for § € (0, dy] the equation (4.2) has
the unique solution f* € 5_27 and the following inequality is valid

£ = flls, < Co6™ (4.5)

Proof. The proof is grounded on examination of the applicability con-
ditions of the Kantorovich theorem about the convergence of the Newton
method to the equation (4.2). It is comfortable to use the variant of this
theorem stated in [8]. Let us remind you this formulation.

Let A(f) to be the operator defined in the convex domain D of the
Banach space B; acting into the Banach space By and differentiable by
Frechét. Let us assume that the Frechét derivative A} of the operator A
satisfies the Lipschitz condition in the domain D with constant K and that
for some fy € D operator A’ has bounded inverse operator (A, )~! as a
linear operator acting from By to Bj.If the following inequality is fulfilled

K[| A(fo)lln||(4%) 7 == < 1/2, (4.6)

then the equation (4.2) has the solution f* unique in some ball of the space
Bq with center in the point f;, moreover

1/ = folls, < [1— (1 —2¢) /25| A% 1. (4.7)

It was noted above that constant K can be chosen not depending on
d € (0,0¢] in the inequality (4.3) in the conditions of the Proposition 1. If
we choose the N-approximate solution fy = {wy, yn, pn} of the problem
(1.10)—(1.15) as fp then the estimate (4.4) is valid. So now one must
estimate from above the norm of operator (A}N)_1 in order to apply the

14



Kantorovich theorem. It is evident that this norm grows indefinitely when
0 — 0. If we will manage to prove that this growth has the power nature

(A}, < C367™ for 6 — 0 (4.8)

with fixed m > 0 then it will be possible to guarantee the fulfillment of
inequality (4.6) for 0y < 1 and sufficiently large N as it follows from (4.4)
and (4.8).

Let us consider the linear equation

w(g) =0, (4.9)

where g = {w(z,7),q(7),£(7)} € Byand b = {h(z,7), 2(7), x(7),l(x), c1, c2}
€ By (c1 and ¢y are constants). Starting from the definition of the operator
A we can rewrite the equation (4.9) in the form of the dependent system
of one parabolic equation and two ordinary equations with the initial and
boundary conditions. As a result we obtain the following problem

S[(yn + z)w + wyglr — 4[(yn + )%ws + 2(yx + T)wygl+

+168(22 — a)(2yn + a) Pong— (4.10)
—46(2z — a)(2yy +a) %€ = h(z,7), (2,7) € Qr,

dg
— — 2 = T 4.11
U _se=x(r), Te.D) (a1)
54 aq _apn(—dey) 11

dr yn(yv +a)log’(1+a/yx)l  yn(yv+a)  un Vv ta
aa3/2 aa5/2 a 9 1 2&(2 — 5@]\])&
+ + wy(z, T dx] — { — +
2yn +a)* 4 0/ v ) log(1+a/yn) yn (yv + a)
q[ 1 1 40za3/2q
"’5[ 3/2 + 3/2| 3
yn.  (ynv+a) (2yn +a)
5/2 a
aa2 /wN(x,T)w(x,T)dx} =x(r), 7€(0,7), (4.12)
0

w(z,0)=1(z), 0<z<a, (4.13)
q(0) = c1, (4.14)
€0) = o, (415
we(0,7) = wy(a,7) =0, 0<7<T. (4.16)
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The univalent solvability of the problem (4.10) — (4.16) is obvious under
the conditions of the Proposition 1. The proof of the inequality (4.8) is
equivalent to the obtaining of estimate of its solution in the form

|wllgztaavar2qp) + lallczom + [IEllo2or < Cs6™ " ([|Rllgosr2gry+

+lzlleror) + +lixlleror) + loz+op,q + ler] + c2) (4.17)
when § — 0. The obtaining of this estimate is grounded on the passage to
the "rapid time” n = 7/§ in the equations (4.10) — (4.12).

Let us introduce the notations w(z,n) = w(z, dn), 4(n) = q(on), £(n) =
£(6m), h(z,n) = h(z,8n), 2(z,n) = 2(6n), X(n) = x(dn). z/s denotes the
rectangle 0 < z < a, 0 <1 < T/§ and Iy/5 - the interval 0 < n < T'/4.
Problem (4.10) — (4.16) takes the following form in these notations:

A

[(yn + )@y — 4l(yn + 2)°@ele + A1 (z,7)G + Aoz, n)E = (4.18)
= h(z,n) — dwn2(n), (z,n) € Mgy,
dq

ﬁ —20€ = 62(n), € lyys, (4.19)

dé a )
2 T ) + pa(n / n)dx = x(n), n€lr;, (4.20)

n 0

o(z,0)=1(z), 0<z<a, (4.21)
G(0) = ¢y, (4.22)
£(0) = ¢, (4.23)
dj:c(oa 77) = wx(aa 77) = 07 ne IT/(S- (424)

Here the following notations were used
A1 = wn,y — 8[(yn + 2)wy ) + 166(22 — a) (2yn + a) ey,

Ay = 26wy — 462z — a)(2yy + a) 7,

B 2a(2 — dpn) _ adPwy(z, 6n)
H yn(yy + a)log(l+a/yy)’ . 2log(1+a/yy)’
4—9 1
yn(yy +a)log” (1 +a/yn)l yn(yny +a) — /un
1 aa’/? aa’’? ¢ 5
+ — — ,on)d ]+
fyn +a  (2yy +a)? 4 O/U’N(fﬁ n)dx
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N 1 dora®/? 1 1
log(1+a/yn) L2y +a)®  243*  2(yv +a)*/?]
Equation (4.11) was used for derivation of the equation (4.18) from (4.10).

Let us list the characteristics of coefficients and right parts of the equa-
tions (4.18) — (4.20) essential for the further consideration. The inequalities

0<m<yn(dn) <M < oo, n€lp;

are fulfilled in the conditions of Proposition 1. This fact guarantees both
the uniform parabolicity of the equation (4.18) in the rectangle 1:[T/5 and
the boundedness both of functions py(n) and their derivatives dux/dn, k =
1,2 on the interval Iy/;. Using the definition (4.1) of function wy and
representation (3.5) of the function vy we derive the inequality

e, m)| + g, )| < Crexp(—Csn) +6Cs,  (w,m) € Tlyys,  (4:25)
where one can put any positive number less then A\; instead of Cj.
Let us denote the quantity 1%2/1;( lon(6n)| as C7 and choose dg less then
2C-1. Then the estimate
pi(n) > Cs >0, n€lpy, (4.26)
is valid for any 6 € (0, dp]. Let us introduce the notations

Ay =wny — 8[(yv + 2)wngle, A3 = A1 — Ay

The inequalities

U looor iy, + NlwnEllonsr iy, + [ Adllessrm,,,) < Co, (4.27)
Akl cooriy,,) < 0Ch, k=23, (4.28)
|Aa(z,n)| < Criexp(=Csn) 4 6Ca,  (x,1) € Ty (4.29)

follow from the assumptions about the functions iL, z and the character-
istics of functions wy, yn, @n. Note that constants Cy, ..., 12 used in
inequalities (4.25) — (4.29) do not depend on 6.

Now our aim is to obtain the estimate of max|w(z,n)| uniform with
T/s
respect to d. With this aim we represent @ in the form of the sum w; +

Wy + W3, where the functions Wy satisfy the relations

(ynv + )01y — 4(yn + )21 00 — S(yny + T) D1, + Cy =
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= —dwnz — N3¢ — Aok, (z,m) € ygys, (4.30)

wi1(z,0) =U(z), z€]0,al, (4.31)

W1,2(0,n) = 1a(a,n) =0, 1 € Igys, (4.32)

[(yn + 2)@aly — 4l(yn + 2)°Gole = b, (2,m) € Tgys, (4.33)
wy(x,0)=0, =z €]0,al, (4.34)

W,0(0,m) = 20(a;n) =0, 1€ Ly, (4.35)

[(yn + 2)@sly — 4(yn + 7)@30)e = —Aag,  (z,7m) € Iy, (4.36)
G3(2,0) =0, =z €]0,a, (4.37)

w32(0,m) = W34(a,m) =0, n€lp; (4.38)

Here the notation ((n) = dyy(dn)/dn was introduced. Note that
dyy(7)/dT = 2¢n(7) + O(6M*!) when § — 0 in accordance with defini-
tion of yy so that

[C(n)| < Chzd, € Iyys. (4.39)

Let us pass to the new sought for function
s1 = w1 exp[—6Cyn + §Ci5z(a — )]

in the relations (4.30) — (4.32). This function is the solution of the following
problem

(yn + 2)s1, — 4(yn + 2)*s1.00 — [B(yn + ) + 83C15(yn + 2)* (22 — a)]s1..+

HCH[Cra(yn+a)+8CT; (yn +2)* (22 —a)*~8Cus(yn +2) (yn+3z—a) }s1 =
= —(dwnE+A3G+Asf) exp[—0Cun+8Ciz(a—x)], (z,1) € s, (4.41)
s1(z,0) = l(z) exp[6Ci52(a — x)], = € [0,q], (4.42)

$12(0,m) — 6Ci5as1(0,n) =0, n € Irys, (4.43)

s1z(a,n) +0C52s1(a,n) =0, n € Iy (4.44)

Constants C14 and Cj; can be chosen in the following form Cyy = (2 +
Ci3)/m, C15 = 1/8m(2M + a). We obtain the lower bound for the coeffi-
cient j at the function s; in the equation (4.41)

j(xvn) > 9, (377 77) € ﬁT/57 (4-45)
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on the basis of inequality (4.39). This estimate permits to apply the max-
imum principle [9] to the solution s; of the problem (4.41) — (4.44). Using
the estimates (4.27), (4.28) and (4.25) we obtain

max |s1| < Cyg max 11| + Cy7 max 12| + C’lg(nlaax|q| + max|£]).  (4.46)

T/ T/S T/S T/s

The estimate of max |&| by max|§| and max |€| follows from the above
T/é T/é T/S

formula and (4.40).

The estimate of max |ws| is grounded on the integral identity
T/s

1d ¢
id_/yN—l_x deaz—l—/ (Y + z)°w) ,+
o

— / hisdz, 1 € Tpys. (4.47)
0

The solution of the problem (4.33) — (4.35) satisfies this identity. The
inclusion h(z,T) € b /2 (Qr) implies the fulfillment of the equality

il($7n)d$ =0, ne IT/67

S ~—c

so that the problem (4.33) — (4.35) possess the conservation law
[(uy + 2)indz =0, 7 € Irys. (4.48)
0

The smooth function &y(z, ) satisfying the relation (4.48) for any n € Iz
is subjected to the inequality

[@dz < a® [&5 . dw, n € Trys.
0 0
Using this inequality, the estimate (4.39) and choosing Jy less then
201_31(m/a + 1)? we obtain from (4.47)
1d

id_n (?JN + z)@idx + 2< ) /dex < maX|h\ / \waldz, n € TT/(;,

Hrys

indepedently on 6 € (0, dp]. So the following conclusion

a 1/2 . _
(/ (z,n dﬂ?) < Chg IIIIlaX|h|a n € Iy
0

T/S

19



can be made from the above inequality and (4.47). The existence of es-
timate (4.49) together with uniform boundedness and continuity of coeffi-
cients and the right part of the equation (4.33) in the domain 1:[T/5 gives
possibility to apply the results of L9—theory of linear parabolic equations
of the second order [9] to the problem (4.33) — (4.35). This fact leads to
the inequality

max || < Cy max 1. (4.50)

75 T/6
The identity analogous to (4.47) is valid for the solution ws of the prob-
lem (4.36) — (4.38); it has the form

1d

2 dn / yn+z w3d$+/[4(yN+$)2@§,x+C@§]d$ = —d//\4@3d$, n € Irys.
0 0

0

According to the inequalities (4.29), (4.39) the last identity leads to the
inequality

1d ¢
id_/ yn + z)3dr — 0135/w3dx <
0
< [Crrexp(~Cs) + 6C1] max|g] / @3ldz, € Tpys. (4.51)
T/6

Integration of the differential inequality (4.51) with the initial condition
(4.37) leads to the estimate

a

(/

1/2 )
@g(xyﬁ)dJT) < Cyrmax|gl, 7€ Igys,
0

T/6
and together with this estimate to the estimate

max |ws| < Cyy I%laX|(_ﬂ. (4.52)

T/6 T/s

The inequality

max |&| < Chs(max || + max |2 + maX || + max |G| + max [€]). (4.53)

/s 75 Irss [0,a] Irss Ip/s
follows from (4.40), (4.46), (4.50) and (4.52).

Let us pass to derivation of a priori estimate of functions ¢(n) and &(n).
The number &, > 0 is chosen less then min[2C5 !, Cg(CgCasa) L, 2035 (m/a+
1)?]. Then we obtain

d¢

—  Coy€ < max |x| + Cos max 4] + C4Chsa exp(—Csn) max [€|+
d?? Ip/s Iy/s [0,7]
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+Chs(max |h| + max | 2| + max |1]). (4.54)
Mr/s Ir/s [0,a]

on the basis of the equation (4.20) and inequalities (4.25), (4.53). Taking

into account the fact that the positive constants entering the inequality

(4.54) do not depend on 6 € (0, §y] and integrating this inequality with the

initial condition (4.23) we obtain

max €] < Cgﬁ(max|h\—|—max|z\—|—max\X|—|—r[nax|l\—|—\02\—|—max|q\) (4.55)

Irs T/6 T/6 T/6 T/6

So a priori estimate

max |§| < Cyr(max |h| + max | 2| + max [§| + max | + |e1]| + |e2])  (4.56)
Lr/s 75 Irss Irss [0,a
follows from the above inequality and (4.19), (4.22). A priori estimate

analogous to (4.56) of quantities max |£| and max |&| follows from the above
T/6 75

estimate in view of (4.53) and (4.55).
On account of the equations (4.19) and (4.20) the similar estimates are
valid for the quantities max |d€/dn| and max\dq/dn\ The existence of

T/s
these estimates guarantees the belonging of the "free term” v = —A1q —

A€ + h — w2 of the equation (4.18) to the class CP812(Iy/5), moreover

IV lossr ity < Cosllbllossrmy,) + Ellora,,)+
+ max |x| + I[IlaX 11| + |e1| + |e2))- (4.57)
T/6
We may apply the results of general theory of linear parabolic equations in
Holder spaces [9] to the problem (4.18), (4.21), (4.24) in view of the esti-
mate (4.57). It follows from these results that the solution @ of mentioned
problem belongs to the class C*+41+5/ 2(IZIT/(;) and the inequality

||l zroarareqiy ) < Coolllhllsory, ) + 112ller @y, +
+max x| + [[ll| oo + ler] +ez) (4.58)
Iys
is valid.
The last step is to obtain the estimates of norms ||£| 2 (Iz)s) and 1141 2 (Tr)s)"
In order to obtain the first estimate we differentiate the equation (4.20) and
use the inequality (4.25) with already existing estimates ||&||g2+s.10572((11,,5);

I|€ loray,s) and [[¢llen,,,)- Function d€ /dn satisfies the linear equation of
the first order with the coefficient p; permitting the estimate (4.26) and
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the right part module-bounded by some constant on the interval I /s inde-
pendently on 6 € (0, ). So the demanded inequality is derived

[€lle2(@rye) < CaolllPllcmoriy s + 112ler @)+
Hxllor @) + Wllozsi0,0 + lesl + leal)- (4.59)

The estimate of the norm |[|g[[c2,,,) analogous to (4.59) is obtained di-
rectly from the equation (4.19). Returning to the ”slow” time 7 = é7 in
this inequality and in inequalities (4.58), (4.59) we obtain the demanded
estimate (4.17) with m = 2 equipotent with the estimate (4.8).

Now let us choose N = 4 and fix it. Then it follows from (4.4), (4.8)
that

e = KIJA(fo)llnl|(A%) 71" < KC1C36™ 7%, 6 € (0, 60)- (4.60)

We can achieve the fulfillment of inequality e < 1/2 with § € (0, §y| guaran-
teeing the solvability of the equation (4.2) by decreasing (if it is necessary)
the quantity dp. We must derive the inequality (4.5) in order to com-
plete the proof of Proposition 1. Let N to be an arbitrary natural number.
Choosing the N*-approximate (N* = N +4) solution of the problem (1.10)
— (1.15) as fp and using the triangle inequality, (4.7) and (4.60) we obtain

Lf* = fnlls, < If* = fn=ll + [ fv = e
if 0 € (0, o). Proposition 1 is proved.

5 Justification of the asymptotic expansion (case B).

In this case one can find such 7* that solution Y (7) of the problem (2.5),
(2.6) is positive for 7 € [0,7*) but Y = 0 for 7 > 7. As it was already
mentioned in Section 2, here it is appropriate to pass to the new indepen-
dent variable y instead of 7 and new sought for functions ®[y(7)] = (1),
Wiz, y(r)] = w(z, 7). As aresult the problem (1.10) — (1.15) takes the form
of relations (2.15) — (2.19). Note that yy = y(7) in these relations and 7y €
(0, 7*) is chosen in a special way so that dy/dr = 2 < 0 when 1) < 7 < 7%,
We may assume that the asymptotic solution fy = {wy,yn,pn} of the
problem (1.10) — (1.15) is already built on the interval 0 < 7 < 7 and its
closeness to the exact solution f* = {w, y, ¢} is defined by inequality (4.5).
In particular this inequality gives the relations

HW($7 yO) - WN(:E’ yO) | ‘C“ﬁ[O,a] < CE’)Z’)‘SN‘H,
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[@(yo) — P (yo)| < Caud™ ™, 6 € (0,60], (5.1)
where

N N
Wy =Y "Wl (z,y), &y=>600(), (5.2)
1=0

k=1
and the terms of the external expansion W) &) are defined by the
algorithm suggested in subsection 2.

The terms depending on quick evolutionary variable are absent in repre-
sentation (5.2) of N-approximate solution {Wy, ®y} of the problem (2.15)
— (2.19) in contrast to (4.1). We can explain it by the fact that func-
tions v®) (z, 7/8) — 2¥), @ (7/8) — x) used in definition (4.1) satisfy the
inequalities

1o, 7/8) = 2 @)l c2rop0.) < Casexp(—Cs 9),

W D(7/6) — x| < Cyrexp(—Cis/6)

when 0 < 79 < 7 < 7,0 < § < Jy. The estimate of the "approximate
conservation law”

| [(y+2)W(z,y)de| < Css6™*', ye (0,40, 5€(0,6]  (5.3)
0

is the other important property of the approximate solution of the problem
(2.15) — (2.19). The identity

/ (y + ) ,y)der =0, y € (0,yo), (5.4)
0

equipotent with (1.9) is used for the proof of (5.3). The exact solution of
the problem (2.15) — (2.19), the first estimate (5.1) and the equality

d a
d—/y—l—x z,y)dz =0, ye(0,y], k=12,... (5.5)
0

satisfy this identity. The equality (5.5) is proved by induction starting
from the definition of functions W®). For k = 1 (5.5) follows directly from
the relations

V(y +2)WW], = 2[(y + 2)*W P, — 2(22 — a)(2y + a) 2@,

O<z<a, 0<y<uyj,
W(0,y) =W (a,y) =0, 0<y<yy
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(function W) satisfies these relations).
The equality (5.5) means practically that

/?J‘HU Wi (z,y)dr = k(9),
0

where the function k not depending on y supposes the estimate |k| <
O350Vt when § — 0. This fact permits to introduce the new function
W (z,y) satisfying the exact equality

/y+x YW (z,y)dz = 0, (5.6)
0
and 24(6)
. K
Wy =Wy+ —7"7— 5.7
T afa+2y) oD

It is essential that both functions Wy and Wy satisfy the homogeneous
boundary conditions (2.16) and an addition with the order §V*! arises in
the initial condition for Wy so that inequality (5.1) remains valid (may be
with some new constant) after the change of Wy on Wy. The order of
discrepancy is not changed at substitution of the pair Wy, ®x instead of
Wy, @y in the equalities (2.15), (2.18); the corresponding norms of each
of them are estimated from above by quantity proportional to §V+!
o — 0.

Further it is suggested that for the solution W ,® of the problem (2.15)—
(2.19) the inequality ®(y) < 0 is fulfilled if 0 < y < yo. As it was noted
before for o < o* ~ 5.89 this inequality can be provided by choice of

when

sufficiently small yo. In this case the following estimate can be written:

1
— VLt

&
In(1+4a/y)

1
<e <2V 0<y <w, (5.8)

where the positive constant Csg is independent of 6 € (0,dp]. Estimate
(5.8) was derived in [1]. Estimate written below is valid for the element
® of the approximate solution of current problem:

1 1
7@[1 +Cuyiln

0<y<y <1, (5.9)

constants Cyy > Cy; > 0 are independent of §. Estimate (5.9) follows
from inequalities (2.22), inclusions ®*) ¢ C*+9/2[0, 4], 0 < B < 1 and

1 1
< dy < —Z\/éll +Caviln |,
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recursion relations of (2.21) type for ®*) with k£ = 1,2,.... Further we’ll
suppose that yy < 1 without loss of generality.

Let us inroduce the notations Il. = {z,y : 0 <z < a, ¢ <y < Yo},
I. ={y: e <y <wyo}. Our aim is to prove the proximity of functions ¢
and ®y on the interval I; and functions W and Wy in the rectangle Il.

New notations Uy = W — WN and Wy = & — &y are introduced here.
Function Wy satisfies the equation (2.15) (in accordance with construction
of the approximate solution) if ® is replaced by ®y and the right part is
added by residual denoted by Zy. If Uy is known then function Uy(z,y)
is determined as the solution of the linear initial boundary value problem:

0@[(y + z)Un]y = 2[(y + x)ZUN,x}x+

+0UN{(2y 4+ a) 22z — a) — [(y + )W), } — 2w, (z,y) € Ty,  (5.10)
UN,w(an) = UN,w(aay) - 07 Yy E [07 (511)
Un(z,y0) = U'(z) = Wy(z) — Wi (z, 1), 0 <z < a. (5.12)

Analogously in the case of given Uy function ¥y(y) is the solution of the
linear Cauchy problem:

dV YASN Wy l 1
dy  2yly+a)ln(l+a/y) 20dyIn(l1+a/y)l/y
1 oza3/2 oza5/2 a
T - — W2da |+
Vita (u+a? 4 0/ v
aa’’? a 0 e 0 . »
+2<I>N1n(1+a/y)0/( + W) Undr + Qy, y € I, (5.13)
U (yo) = T = @ — P (yo)- (5.14)

Here denoted by €2y is the residual obtained by substitution of the approx-
imate solution @y, Wy to the equation (2.18).

Functions Zy(z,y), Qn(y) with N = 2,3,... satisfy the following in-
equalities that will be necessary for us in future:

‘ZN| S C426N+1\/§a ($7y) € ﬁOa (515)

|QN| < C43(5N+1, Yy c [_0. (516)

If N = 1 then the right parts of these inequalities will be added with
factor In (1/y). Used for obtaining of the estimates (5.15), (5.16) are the
explicit expressions of Zy, Qy in terms of ®©0 ... &), WO @)
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the smoothness properties of these functions expressed by the inclussions
B e CWHR210, o), W) € Ck+B-D/2(T]y), and the fact that ®*)(0) =
0, WH)(z,0) =0 for € [0,a] and any k = 1,2,....
It will be convenient for further considerations to distinguish the singu-
larities of functions ® and ® for y — 0 and to introduce the new functions
['and I'y by relations

P — —i\/gu +T), @y = —i@u +Ty). (5.17)

As it follows from inequalities (5.8), (5.9) functions I' and I'y are nonneg-

ative for y € Inand I' — 0, 'y — 0 when y — 0. Let us denote the

difference I' — I'y by Ay. It proves to be that it is easier to obtain the

estimate of function Ay then the direct estimate of function ¥y = & — & .
In consequence of (5.13), (5.17) function Ay satisfies the equation

d?—yN +gAy = wy, y € I, (5.18)
where
1 8a 16 16
I S+ a/y)(1+T)(1L+Ty) l_y3/2(y+a) Twita Jita)

16ca®/? ) da dava®!
Tt e T T W2dx] 5.19
y(2y+a)? 2y yly+a)ln(l+aly) / (5.19)
40N 20va®/? ¢
= - - W + Wy)Undz. 5.20
NT TS/ dyln(l+a/y)(1+71) 0/( v)Undz (5.20)

Then the initial condition

An(yo) = A = —40Y/, /. (5.21)

following from (5.14), (5.17) is joined to the equation (5.18). The equation
(5.10) is rewritten in new terms as:

5<I>[(y + :L‘)UN]y = 2[(y + $)2UN7$]$ — N+ CNAN, (:L‘, y) e 11, (5.22)

where

ev ==Yyt a0 —a) - [+ W)} (529

The correctness of 1nequa11tles
‘CN‘ < 044(5\/§, (a:,y) - 1:[0 (524)
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forany N = 2,3,...is defined from representation (2.7) for any w"(z, 7) =
WW(z,y), recursion relations for functions W &k = 2,3,... and the
induction.

The equation (5.22) degenerates on the part y = 0, 0 < z < a of
the boundary of the domain Ily; the equation (5.18) degenerates in the
endpoint y = 0 of the interval I,. Hence we will consider the problem
(5.22), (5.11), (5.12) in the contracted domain II. with £ > 0; analogously
the problem (5.18), (5.21) will be considered on the interval .. At the
same time the obtained estimates of functions Uy, Ay will be independent
on €. This fact will permit to pass to the limit for ¢ — 0. We will use the
following statements for obtaining of these estimates.

Lemma: Let u(z,y) to be the classical solution of the problem

0P(y + z)uly = 2[(y + 2)*usls + b, (2, y) € Iy, (5.25)
uz(0,9) = uz(a,y) =0, 0 <y < yp, (5.26)
u(z, yo) = up(z), 0 <z < a, (5.27)

where ®(y), ug(z), h(z,y) are the functions continuous respectively on the
segments [0, yo], [0,a] and in the restangle II;. We assume the fulfillment
of inequalities

® < 0 when 0 < y < g, (5.28)
h| < Cus\/y, (z,y) € Ty, (5.29)
Then the estimate
y+zx Yy =
ul < C In + , (r,y) eIl 5.30
[ul < Ciov/y| In = =+~ (#.9) € lly (5.30)

is valid for any 6 € (0,dg], where the constant Cys > 0 depends only on
a, Yo, Cy5 and Cy7 = max |up(z)|, 0 <z < a.

Proof: Let us consider the problem (5.25)—(5.27) in the restangle II.
when € > 0 and pass from z to the new independent variable £ = z/y. The
domain ¥, = {&,y: 0< & <a/y, € <y < yo} is the image of II. on the
plane &, y. We introduce the new sought for function z(§,y) with the help
of relation

() = Vi| 0 (L4 €) + 1 #6:0) (5.31)

In view of (5.25)—(5.27) this function satisfied the equation

oy®[(1+ &) In(1+&) + 12, =2(1+ (1 + &) In (1 + &) + 1z et
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+2{2(14+ & In(1+&) +3+ &+ gcpg[(l +&)In(14+&) + 1]} ze+

H2- S E+OMA+O + e+ JHEv), (€69) €. (532

the boundary conditions

2(0,y) =0, £ <y < yo, (5.33)
S e i ) R 2l ()
In + zel =y | + 2=y =0,e<y<y, (.34
(y) a+yl " \y (a+y)? \y 0 (5:34)
and the initial condition
-1/2 1 -1 a
2(&y) =y T|In(1+E&) +——| wo(yo§), 0<E< —. (5.35)
1+¢ Yo

As it follows from (5.28) the equation (5.32) is parabolic in the domain
Y. for any € > 0. (Here we take into account the fact that the problem
(5.33) —(5.35) is solved in the direction of y diminution with respect to this
equation.) The coefficient at z has the "required” sign in this equation per-
mitting to apply the Maximum principle [9, 10]; moreover this coefficient
is not less then 2 when (£,y) € X. independently of e. Therefore func-
tion |z| can’t exceed Cy5/2 (where Cys is the constant from the inequality
(5.29)) in inner points of the domain 3. or on the part of its boundary
0 <& < a/e, y=ce. Asit follows from Theorem 14, Chapter II [10],
function 2z can’t reach its positive maximum or negative minimum on side
boundaries of the domain3. so far as it satisfies the homogeneous Neu-
mann condition (5.33) on the left boundary and homogeneous condition of
the third genus with positive constant at z (5.34) on the right boundary.
So it follows that

2(€, y)| < max (% 047648), (&) € X, (5.36)

?

where Cy; = max lup(z)| and Cys(a,yo) > 0 — the maximum value of coef-

ficient at ug in the equality (5.35) on the interval [0, a/yq].

Returning to the function u(z,y) by formula (5.31) and using the in-
equality (5.36) we obtain the estimate (5.30) in the domain II.. So far as
constants appearing in the right part of (5.36) don’t depend on e (note
that the inequality (5.29) is assumed to be fulfilled in the whole domain
I1y ) the desired eatimate (5.30) is valid for (z,y) € IIy too. Lemma is
proved.
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Proposition 2. Let us suppose that a < o* and yy, > 0 is sufficiently
small. Then such §; > 0 can be found that for § € (0,0¢] and N =1,2,...
the following inequalities are fulfilled

Ux] < oo™y (P20 4 Y] 0w e, 02y <y, (5:3)

Y Y+

|Un| < Cs08™ /Y, 0 <y < o, (5.38)

where Uy = W — Wy, Uy = & — Oy, (W, ®) is the exact solution and
(W, ®y) — the approximate solution of the problem (2.15)—(2.19).
Proof: At first we consider the case N > 2. Let us assume that function
Apn(y) used in the equation (5.22) is continuous on the interval [e, yo] and
then estimate the free term of this equation with the help of inequalities

(5.15), (5.24):

max lenANx — Zx| < Cud\/y max |AN| + Cyd™ /Y. (5.39)

Our aim is to obtain the estimate of max |Uy| uniform with respect to e
in the domain II. in terms of input data of the problem (5.22), (5.11),
(5.12) and the estimate of max |An|. In view of the estimate (5.39) and

the inequality (5.8) we may use the Lemma statement and conclude that

‘UN‘ < Cx16 r[naa]c ‘AN| + C52(5N+1, (.CC, y) S 1:[5. (540)
&,90

(The boundedness of the right part of the inequality (5.30) in the domain
[Ty is sufficient for us on this step.) As it follows from the inequality (5.8)
the Lemma statement is applicable to the solution of the problem (2.15)—
(2.17); this fact leads to inequality

(W < Cs36, (z,y) € I, (5.41)
The analogous inequality for the function Wy is evident:
Wx| < Cs46, (z,y) € T, (5.42)
These inequalities permit to estimate the integrals used in the relations
(5.19), (5.20):
/GWQ(:B,y)d:E < COs56%, 0 <y < o, (5.43)
0

|/ (W 4+ Wy)Uydz| < Csg6* max\AN| + C576™ 2 e <y <wy, (5.44)
0
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moreover constants Cg, C57 are independent of e.

Here we use the representation of the solution of the Cauchy problem
(5.18), (5.21) in the form

An(y) = Mesp ([ alndn - [ep][ alQdCon(mdn.  (5.45)

Starting from the equality (5.19) and taking into account (5.41) we obtain
the estimate

v*?In (1/y)q(y) < —Css/3, 0 <y < wo. (5.46)
The inequalities (5.16), (5.44) used for estimating of |wy(y)| give
lwy| < @5]\[ 07(5maX\AN| + Ceod™ ™), e <y <yy (5.47)
VY yIn(1/y)" vl

with constants Cs9, Cgo independent of e. The following estimate is derived
from the representation (5.45) with the help of the inequalities(5.46), (5.47)
and the fact that A® = O(§V*!) when § — 0 on the basis of (5.14), (5.21):

Av(y)] < Cord max |An| + Cad™ ™1, e <y <o,

where Cg1, Cgo are independent of €. So the inequality
[An|(y)] < Cesd™ !, e <y <o (5.48)

is obtained if 0 < § < 6y < Cg;* (further it is assumed that this restriction
on quantity dy is fulfilled). Hence quantity Cgs is independent of e the
inequality (5.48) is valid in the limit € = 0 too.

The inequality (5.38) for N = 2,3, ... follows directly from the estimate
(5.48) and definition ¥y = —,/yAy/4. Using the estimate (5.48) with
e = 0 and the inequality (5.39) with Cyy and Cjs independent of ¢ we
obtain the estimate of free term of the equation (5.22) in the form

lenANn — Zn| < Coan/y, (z,y) € M.

This fact permits to apply the Lemma statement to the solution of the
problem (5.22), (5.11), (5.12). Formula (5.12) and estimate |Uy(z,yo)| =
O(6Y*1) when 6 — 0 give us second desired inequality (5.37) if N > 2.
Now it is necessary to obtain the estimates (5.37), (5.38) for N = 1.
Starting from representation ¥; = §2®(? —¥,, taking into account the third
equality (5.22) and using the triangle mequahty and the inequality (5.38)
for N = 2 we conclude that |¥q| < const52\/§, 0 <y < 1. The analogous
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reasoning proves the correctness of the estimate (5.37) for the case N = 1;
here we take into account the fact that [W®| < const\/y[ln (14 z/y) +
y(y + z)~!] when (z,y) € IIy. The proof of Proposition 2 is complete.

Proposition 2 means that differences Uy, ¥y between the exact and ap-
proximate solutions of the problem (2.15) — (2.19) have the same smooth-
ness with respect to variables x and y as the main terms of the asymptotic
expansions (2.20). It follows from (2.7) that W (z,y) € C%/?(Ily) where
B is an arbitrary number from the interval (0, 1), but in the case of =1
this inclusion loses its validity. According to (2.22) ®© ¢ CV%(I;) and
here the Hélder exponent can’t be substituted by any larger value. These
concepts show that it is impossible to wait for smallness of more strong
norms of functions Uy, ¥y (when 6 — 0) considered in the whole rect-
angle Iy or on the whole interval I respectively. However we can obtain
the corresponding estimates in subdomains of IIy and I;. With this aim
we must deviate from the degeneration line of the equations(2.15), (2.18)
y = 0 on the distance with the order ¢, n > 0. Let us show that for any
§ € (0,60) and N =1,2... the following inequalities are valid:

dV¥
—N < CesdN, 782 < y < yo, (5.49)

/UN,;U LC, y)d:c S 06652(N+1)7 752 S Yy S Yo, (550)
0

where v > 0 is constant independent of 4.
In order to prove the inequality (5.49) we must start from representation
d¥y 1 _dAy Ay
R S __\/g + :
dy 4 dy 8\/Y
following from (5.17) and definition of functions Uy = & — &y, Ay =
I' = I'y. In view of (5.38) the second term in the right part of (5.51)
already has the necessary order when y € [y62, yo]. For estimating of the

first term we use the inequality

‘dANHﬂ CorAnir | Cerd"
dy 5y3/2
where N and k are arbitrary natural numbers. This inequality follows from

the relations (5.18)—(5.20) and the estimates (5.47), (5.48). Let us choose
k = 4 and consider the obvious representation
Ay _ d¥ni N . d®W

5 )
dy dy i:JEV:H dy

(5.51)

62 <y < yo (5.52)
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Using the triangle inequality, the relation (5.51) where N is replaced by
N + 4, the estimate (5.52) and taking into account the fact that functions
d®® /dy are bounded on the interval [yd2, yo] for any i = 2,3 ... we obtain
the first of required estimates (5.49).

In order to obtain the inequality (5.50) we choose some natural number
M > N and consider the initial boundary value problem (5.22), (5.11),
(5.12) for functions Up/(z,y) (number N must be replaced by M in all
mentioned relations). In view of the estimates (5.15), (5.24) and (5.48) the
free term of the equation (5.22) for Uy satisfies the inequality

lerr Ay — Zy| < Ceo6™ 0 <z < a, v6* <y < wo. (5.53)

The estimate
|UM,;U(£C, yo)‘ S C70(5M+1, 0 S T S a. (554)

is valid in the ”initial moment” y = yq in accordance with (5.12) and the
statement of Proposition 1.
Here we use the identity

a d a
0D 0/{[(90 + y)UM}y}de = —@ O/(x + y)?’Uj%md:c—F

+ [ (@ +9)°Ubrode + [(exdur = Zu) (@ +y) U de.
0 0

Solution Uy, of the equation (5.22) with boundary conditions (5.11) satis-
fies this identity. With the aim of estimating of the last term of this identity
we use the Cauchy—Bunyakovsky inequality and the inequality (5.53), in-
tegrate the obtained inequality from the current value y to yy and then use
the inequality (5.54) and throw off wittingly positive terms. As the final
result we come to the inequality

a

/(:L‘ + y)?’U_,%/_,jw(x, y)dz < Cpy6?MH1 (5.55)

0
where & € (0, g] uniformly with respect to y, 6> < y < yo. Then we use
the representation

M
Uv=Uu+ Y &w®,
k=N+1

Using the triangle inequality for estimating of the norm ||Un (-, ¥)||12(0,0),
taking into account the smoothness of function W®) (z,) (independent of
d) in the domain IL 4, using the inequality (5.55) and choosing M = N +4
we obtain the estimate (5.50).
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