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Abstract� We present a model based on continuum elasticity and energy

minimization for the study of ferroelastic domain walls close to a surface� We focus

on walls orthogonal to the surface� and predict a double�peak structure in the surface

values of the squared elastic strain� which is directly related to the chemical reactivity�

We also compute the height pro
le� which can be measured� in principle� e�g� with

AFM� and the strain distribution in the bulk� Our results are in good agreement with

previous atomistic simulations� which had required much bigger computational e�ort�

Our approach is also used to explore the e�ect of the cubic anisotropy �C���C��
 on

the surface structure of the intersection between the twin wall and the crystal surface�

�� Introduction

Domain walls o�er a rare opportunity to selectively dope two�dimensional sections in

the bulk of crystalline materials� The enhanced chemical reactivity of the elastically

strained region around the domain wall has been demonstrated experimentally� and

has been used to form two�dimensional superconducting regions in an insulating matrix

��� ��� The process of selective doping is in large part controlled by the elastic strains

present in the material� and by their interaction with surface relaxation� which is still

poorly understood�

Spontaneous formation of microstructure in bulk ferroelastic materials under

cooling below the transition temperature is well understood from a thermodynamic

point of view ���� Existing theories focus on average properties and do not provide a

precise local description of the microstructure� except for few characteristics� such as

the one�dimensional pro	le of 
at domain walls in the bulk� for which the long�standing

theoretical predictions have recently been con	rmed experimentally by X�ray scattering

��� ��� The resulting picture� at least in oxide ferroelastics� is that of a smooth change

of the order parameter from one value to the other� over a distance of many unit cells�

which is well described by continuum theories�
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Much less attention has been devoted to surface relaxation e�ects� It may be

expected that the ferroelastic order parameter is reduced close to a surface� suggesting

local deformations in the surface layer comparable to those found in the interior of the

domain wall� Theoretical models for the surface relaxation indicate the possibility of

oscillations on the unit�cell scale close to the surface �
� �� in some parameter ranges�

The interaction of the wall structure with surface relaxation necessarily generates

two�dimensional patterns� which are relevant both for real�space probing of the material

properties� e�g� via atomic force microscopy ���� and for interacting with the material�

e�g� via doping ��� �� ��� Domain walls constitute a region of higher chemical reactivity

inside the material� and are a natural candidate for selective doping�

The surface structure of domain walls has been 	rst studied theoretically by

Novak and Salje ���� ��� who performed extensive numerical simulations of a two�

dimensional atomistic model� chosen to represent typical perovskite elastic properties�

They predicted that the resulting elastic strains generate a complex pattern� which

includes a thinning of both the domain wall and the surface relaxation around their

intersection� and a double�peak structure in the surface values of the square of the

order parameter� However� the large computational e�ort required by their atomistic

computations prevented an analysis of the dependence of the results on the material

parameters� including the assessment of the robustness of such features with respect to

parameter changes� Further� their method is unpractical for application to speci	c

materials� due to the extremely high number of atoms which are present in such

two�dimensional structures� In this paper we present a continuum� linearly elastic

model which captures the essential features of their results without requiring large

numerical e�ort for the solution� We are thus able to study the material behaviour in

function of material parameters� and observe that the double�peak structure observed

by Novak and Salje is a signature of cubic anisotropy� which was very strong in their

model� In approximately isotropic materials instead we predict a di�erent pattern�

with much stronger e�ects on the surface height pro	les� but smoother order�parameter

distributions� Except for the bulk elastic constants� which are at least approximately

known for most materials� our model has only two parameters� the wall width and the

strength of surface relaxation� We expect this model to be applicable to real�world

problems� with experimentally determined material parameters�

�� Model

We consider a cubic material which undergoes a C�� shear instability� We restrict to

two variants separated by a single domain wall� and reduce to two spatial dimensions

assuming that the geometry is invariant under translations in the third one� Let the

material occupy the y � � half�plane� and the domain wall be located on x � �� This

	xes the phase distribution� and allows us to replace the nonconvex elastic potential

with a �phase�dependent� convex one� which for simplicity we take to be quadratic�

Since the ferroelastic transition corresponds to a small shear deformation� we take all
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elastic constants to be those of the parent cubic phase� except of course the unstable

one� C��� This amounts to reducing the number of independent constants to those of a

cubic crystal� and leads to

Wb�ru� x� �
�

�
C���u

�
x�x � u�y�y� � C��ux�xuy�y �

�

�
C���ux�y � uy�x � ���� ���

where ��x� � j�jsgn�x� is the spontaneous shear� The C�� constant is very small around

the transition� and indeed it vanishes at second�order transition points ����� Whereas

in isotropic materials C�� � C��� the perovskites in which we are interested have a

signi	cant cubic anisotropy� due to the strong metal�oxygen bonds� We shall consider

the range � � C�� � C��� C�� � C��� For comparison� the linearization of the discrete

Novak�Salje model ���� ��� delivers C�� � ����� C�� � C�� � ��

The spontaneous strain is reduced at the surface� To model this e�ect� we use a

di�erent elastic energy in the surface region with respect to the bulk� Whereas the

reduced symmetry along the surface would in principle allow for a variety of di�erent

terms� in practice� only C�� is relevant for the present purposes� We choose

Ws�ru� �
�

�
�C���ux�y � uy�x�

� � ���

Here� � represents the relative strength of the surface relaxation� and the minimum ofWs

has been set at zero shear for simplicity� More general �but still quadratic� expressions

for Ws can be included in the present formalism without any change� however the

little available knowledge of the material parameters entering such energies limits the

usefullness of more complex expressions�

Finally� the microscopic length scale �� which represents the wall thickness �and� as

we shall see� the surface relaxation length as well�� enters the energy though the simplest

second�order singular perturbation� the squared norm of the second gradient ��jr�uj��

The full energy is then

E�u� �
Z
fy��g

Wb�ru� �
�

�
C���

�jr�uj� dxdy �
Z
fy��g

�Ws�ru� dx � ���

where the coe�cient � in front of the surface term arises because Ws is active only in

a small strip around the surface� whose width is of the order of the microscopic length

scale � �this makes � an adimensional parameter�� The coe�cient C���� in front of the

�� term has been chosen for convenience� so that � has the dimensions of length and

coincides with the decay length of domain walls �see below��

The symmetry of the problem under re
ections with respect to the domain wall

fx � �g allows us to restrict attention to the 	rst quadrant� Continuity of ru and

simmetry give then the boundary conditions

ux � uy�x � � for x � � � ���

From now on� equations shall be specialized to the 	rst quadrant� and � � j�j will always

take the positive value �results for the second quadrant are obtained by changing a few

signs�� In the numerical results we shall use � as unit of length� � as unit of deformation�
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and C�� as unit of energy �in the present linear approach deformations can be scaled

independently of lengths��

In the rest of this paper we analyze the shape of the minimizers of ��� for various

values of the parameters� in the given geometry� We start with the surface relaxation�

In the bulk of the system the minimizer is ub�x� y� � ��� ��x�� Approaching the surface

fy � �g� we seek a solution such that the perturbation is invariant under translations

in x� i�e� of the form us�x� y� � ub�x� � w�y�� Explicit minimization gives

us�x� y� � ��

�
� �
���

e�y��

x

�
� ���

which does not depend on the elastic constants C�� and C��� The value of the order

parameter on the surface

usx�y � usy�x
�

�����
y��

�
�

� � �
�
�

turns out to be reduced by a factor � � � with respect to the bulk value� providing a

physical interpretation for the parameter ��

We now turn to the domain wall� Away from the surface� its structure is invariant

under translations in y� hence we seek uw�x� y� � uw�x� which obeys ��� at x � � and

approaches ub at large x� We obtain

uw�x� �

�
�

���x� �e�x���

�
���

�the parameter � is� hence� physically equivalent to the �wall thickness� parameter w in

Landau�Ginzburg theory ����� For x � � the order parameter is obviously �� The second

derivative uy�xx is discontinuous at x � �� This is due to the linearization of Wb around

the two minima� and would be absent for a smooth� nonconvex Wb�

From a qualitative point of view� the strain 	eld at the intersection of surface

and interface is generated because the boundary condition given in Equation ����

ux��� y� � �� is incompatible with the surface relaxation us computed in Equation

���� This incompatibility has to be accomodated by elastic deformation� We can get a

rough idea of the resulting strain patterns� in the relevant C�� � C�� case� by assuming

uniform relaxation of the strain in a region of size ��� ��� ��� ��� From Equation ���� the

mismatch ux��� y� is of order g � ������ � ��� Hence� ux�x � g�� and �ux�y � g� The

strain enerty is then C���u
�
x�x��C���

��� � �����C�����C����� giving � � �C���C���
���

�the second�gradient bending term is of lower order� since � � ��� This computation

assumes that no additional strains are developed in the y direction� which is correct if

C�� � C��� If C�� � C�� instead� it is convenient to rewrite Wb as

Wb�ru� x� �
�

�
C���ux�x � uy�y�

� � �C�� � C���ux�xuy�y �
�

�
C���ux�y � uy�x � ���� ���

which emphasizes the softening of the uy�y � �ux�x mode� In this case the deformation

can be accomodated by volume�preserving transformations which couple only to the

small energy coe�cients C�� and C�� � C��� The length scale is then � � ��
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Figure �� Contour plot of the absolute value of the order parameter jexyj for

C�� � ���C��� C�� � � and � � �� All curves come closer to the x�axis around

x � �� the two higher ones �the most internal ones
 also approach the y�axis�

�� Numerical solution

In order to solve numerically our model� we 	rst obtain an analytic approximate solution

u� which satis	es the boundary conditions �Equation ����� the asymptotic behaviours at

large x �Equation ��� and at large y �Equation ����� then expand the di�erence in a set

of localized basis functions�

u�x� y� � u��x� y� �
X
n

cnu
�n��x� y� � ���

The approximate solution we chose� which is obtained combining ��� and ���� is

u��x� y� � ��

�
� �
���

e�y����� e�x���

x� �e�x��

�
� ����

The localized basis is composed by polynomials and exponentials�

u�n��x� y� � e�n�xanybn exp

�
�

x

�n
�

y

	n

�
� ����

Here� e�n� is the polarization vector� i�e� a unit vector in the �x or �y direction� an and bn are

nonnegative integers� �n and 	n positive constants� The values of e
�n�� an� bn� �n and 	n

are 	xed a priori� with �n and 	n chosen to reproduce the length scales which we expect

to be present in the solution� The qualitative analysis above suggests that it is useful to

include some �n of order �
q
C���C��� some of order � and some of order �

q
C���C��� The

boundary condition ��� is implemented avoiding all functions with an � �� and replacing

x with �x��n� in those with an � �� e�n� � �y� All integrals appearing in the energy ���

can be reduced to sums of monomials times decaying exponentials� hence can be done

analytically� The resulting quadratic problem in the coe�cients cn can be then solved

numerically using standard linear�algebra packages� We used both LU Decomposition

and Singular Value Decomposition from ����� with no appreciable di�erence� Increasing
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Figure �� Squared order parameter e�
xy

as a function of x at y � � for C�� � �� � � �

and C���C�� � ����� ���� ��� and �� �from upper to lower curve
�

the number of basis functions gives a systematic way to improve the results and to

control convergence� In practice� we used a basis of around ��� vectors�

Figure � displays a contour plot of the absolute value of the order parameter

exy � �ux�y� uy�x��� for C�� � ���C��� C�� � � and � � �� This choice of � corresponds

to a reduction by a factor of � of the order parameter on the surface� which is the same

used in the atomistic simulations by Novak and Salje� The choice C�� � � corresponds to

a very strong cubic anisotropy� this however does not strongly in
uence the results� see

below� Finally� the large value of C���C�� corresponds to the softness of the active mode

close to the transition temperature� and is the main large parameter that determines

the aspect of the solution�

Figure � shows that both the wall width and the surface relaxation depth are

reduced near their intersection� The same fact can be seen by plotting the squared

order parameter on the surface� which is directly related to the chemical reactivity of

the material� Figure � shows e�xy�x� �� for various values of C��� It is evident that the

double�peak structure� corresponding to the reduction of the surface relaxation displayed

in Figure �� is more prominent for large C���C��� The role of C�� is analyzed in Figure

�� for 	xed C���C��� Whereas the double�peak is almost absent in the isotropic case

C�� � C��� it is clearly present already with a ��� reduction in C�� with respect to

C��� which corresponds to a moderate cubic anisotropy� and its height does not sensibly

depend on C�� in the regime � � C���C�� � ���� The disappearence of the peak for

C�� � C�� corresponds to the softening of the shear mode ux�x� uy�y �see Equation �����

The role of � is investigated in Figure �� Since the order parameter on the surface

scales as �� � ����� we plot the normalized values e�xy�� � ���� The relative importance
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Figure �� Squared order parameter e�
xy

as a function of x at y � � for C���C�� � ���

and C���C�� � �� ��	� ��� and � �from upper to lower curve
�

Figure �� Squared rescaled order parameter e�
xy
�x� �
�e�

xy
��� �
 as a function of x for

C���C�� � ��� and C���C�� � ��	� for � � ��� �� � and � �from upper to lower curve
�
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Figure �� Left panel� Surface topography uy�x� �
 for C�� � ���C��� � � ��

and C���C�� � �� ���� � �from top to bottom� the two lower curves are barely

distinguishable
� compared with the unrelaxed wall pro
le uy�x��
 �dashed curve
�

Right panel� surface topography referred to the bulk wall pro
les� uy�x� �
�uy�x��
�

for C���C�� � �� ����� ���	� ���� ���� and � �from higher to lower curve at x � �
 �

of the peak increases with increasing �� This e�ect is however rather small in absolute

values� since for example at � � �� even at the peak exy�x� �� reaches only about ���

of its bulk value�

Figure � displays the resulting surface topography� as an absolute value and as

di�erence with the bulk value u�x��� �which corresponds to the result without surface

relaxation� i�e� with � � ��� In all the considered cases the part of the domain wall close

to the surface is contracted in the y�direction� leading to an additional smoothing of the

corner� Qualitatively� this can be attributed to the tensile stresses present on the surface�

as discussed at the end of Section �� As a consequence� we see that measuring the height

of the surface as an estimate of the wall pro	le will underestimate the curvature in the

central region� This e�ect is particularly pronounced in the case C�� � C��� where the

presence of an additional soft mode leads to a much larger relaxation� Indeed� in the

latter case the dilative ux�x strain due to the surface relaxation is relaxed via the shear

ux�x � uy�y channel� resulting in stronger compression along uy�y�
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