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Abstract

We give a classification of almost complex algebraic curvature tensors in spaces
of signature (0,4) and (2,2) which are almost complex spacelike IP. We describe
the components of these curvature tensors with respect to the decomposition of
the space of all algebraic curvature tensors into irreducible SO(4)- (or SO(2,2)-)
representations.

1 Introduction

In differential geometry to each semi-Riemannian manifold one assigns the Riemannian
curvature tensor R. This tensor field carries geometric information about the manifold.
We are interested in the following general question. Assume that the Riemannian
curvature tensor satifies certain algebraic conditions. Which geometric consequences
do we obtain for the manifold? In particular we consider conditions regarding the
eigenvalue structure of the skew-symmetric curvature operator which is associated with
the Riemannian curvature tensor. This was first done by Ivanova and Stanilov in [IS 95].
The curvature operator is defined as follows. Denote by Gry (T M) the Grassmannian
of non-degenerate oriented 2-planes in T'M and define

R: Grj(TM)— Hom(TM)

by R(mw) = R(X,Y), where X, Y is an oriented orthonormal basis of w. Our general
aim is to study manifolds for which in a certain sense the Jordan form of R;(7) does not
depend on 7 for all z € M. More exactly, let (V,(-,-)) be a pseudo-Euclidean vector
space of signature (p,q) and let CV C Sym? /\2V be the space of algebraic curvature
tensors on V. Then R € CV is called a spacelike Jordan IP curvature tensor (or an
IP curvature tensor in case p = 0) if the Jordan form of the complexification of R(-) is
constant on the Grassmannian of all oriented spacelike 2-planes. A semi-Riemannian
metric on a manifold M is called spacelike Jordan IP (or IP in the Riemannian case)
if its curvature tensor is a spacelike Jordan IP curvature tensor (or an IP curvature
tensor) in each point of M. Such curvature tensors and metrics were first classified
by Ivanov and Petrova in spaces of signature (0,4), see [IP 98]. For signature (0,n),
n > 5, n # 7 Gilkey, Leahy, Sadowsky obtained a classification in [G 99], [GLS 99].
Furthermore, there are some partial results for higher signatures due to Gilkey and
Zhang, see [GZ 00], [Z 00]. Here we will consider a slightly different notion of an IP
curvature tensor which is adapted to Hermitian vector spaces and almost Hermitian



manifolds. Let (V,J,(-,-)) be a Hermitian vector space. An algebraic curvature tensor
R is said to be almost complex if Jo R(w) = R(w)o J for every non-degenerate complex
line 7. An almost complex algebraic curvature tensor R is said to be almost complex
spacelike IP if the Jordan form of R(-) is constant on the Grassmannian of spacelike
complex lines. In [GI 00] Gilkey and Ivanova construct many examples of such curvature
tensors using Clifford matrices. The aim of this paper is to give a classification of almost
complex algebraic curvature tensors in spaces of signature (0,4) and (2,2) which are
spacelike IP. We describe the components of these curvature tensors with respect to the
decomposition of the space of all algebraic curvature tensors into irreducible SO(4)-
(or SO(2,2)-) representations.

Acknowledgements. I wish to thank P. B. Gilkey for introducing me to the problems
of IP curvature tensors and for a valuable hint which leads to a shorter proof of the
preceeding theorem.

2 Classification results

Let (V,{(-,-),J) be a 4-dimensional Hermitian vector space of signature (0,4) or (2,2).
Let w := (-, J-) be the Kéhler form and let the orientation of V' be given by the form
w A w. The space /\2 V of alternating 2-forms decomposes into /\i Ve /\2_ V', where

/\i V and A% V are the eigenspaces of the Hodge operator x : A2V — A?V with

eigenvalues 1 and —1. The inner product (-,-) induces an inner product on A?V.
Restricted to /\ft V' this inner product has signature (0, 3) in the definite and signature

(2,1) in the split case. The complex structure J maps /\i V to /\i V and we denote

by U C /\3_ Vand U_ C /\i V' the eigenspaces of J on /\i V with eigenvalues 1 and
—1. Then dimU; =1 and dimU_ = 2.

The space CV of algebraic curvature tensors decomposes as a SO(V, (-, -))-represen-
tation into the following irreducible components,

CV=Uvew'vew VezV,
where
uv = ]Rld/\gv
WV = {ReSymi\’V |+R=R«=R}=Sym} \>V
WV = {ReSym2A’V |+R=R+=—R} ~Sym2 A\ V
ZV = {ReSym’A\’V |+R = —Rx} = Hom(A\2V,\%V).
Here we identify Sym? with self-adjoint maps and Sym3 with traceless selfadjoint maps.
For R € CV we denote by TId/\2V, W+, W~, and Z the components of R with respect

to this decomposition. The number 7 is related to the scalar curvature s of R by
T =12s.

Proposition 2.1 Let (V,(-,-),J) be a 4-dimensional Hermitian vector space of signa-
ture (2,2) or (0,4) and R € CV an algebraic curvature tensor. Then R = TId 2y +

W+t + W™ +7Z is almost complez if and only if Z(N* V) C Uy and WT(Ux) C Ux.



Theorem 2.1 Let (V,(-,-),J) be a 4-dimensional Hermitian vector space of signature
(2,2) or (0,4) and R € CV an algebraic curvature tensor. Then R = TId/\2V +WT +

W™ + Z is almost complex spacelike IP if and only if the following conditions are
satisfied,

(i) Z =0, i.e. R is Einstein,
(ii) W := Tldp2  + W satisfies W )2 = Aldpz v, AER,
(iii) WH(UL) C Uy, WH(U_) C U_.

In case of signature (0,4) the curvature operator of an almost complex IP curvature
tensor is diagonalizable (as a complex map). Its eigenvalues are equal if and only if
A = 0 which is equivalent to W~ = 0. In signature (2,2) a spacelike complex IP

curvature tensor has a diagonalizable curvature operator if and only if A\ # 0 or W = 0.
The eigenvalues are different if and only if A # 0.

3 Proof of the theorem

First we want to reformulate the property of the curvature tensor to be almost complex.
P. B. Gilkey proved in [GI 00] that a curvature tensor R is almost complex if and only
if

R(X,Y,JU,JW) = R(JX,JY,U,W) (1)
holds for all X, Y, U W € V.
Proof of Proposition 2.1. We consider R and J as maps from A?V into A?V. Then
(1) is equivalent to Ro J = J o R. Hence, R preserves the eigenspaces of J, which

are Uy @ /\2, V and U_. The proposition is only a reformulation of this fact using the
components W+, W~ and Z of R. O

In the following we will make use of the fact that the eigenvalues of a complex k x k-
matrix A are determined by Tr A, Tr A%, ..., Tr A¥. We recall the following well-known
fact.

Lemma 3.1 If R is almost complex spacelike IP, then (X, X) ' R(X, JX) has the same
eigenvalues for all non-isotropic vectors X.

Proof. Let V© =V @ C be the complexification of V and (-, )¢ the complex bilinear
extension of (-,-). By (1) the maps R(X,JX) and R(X,JY) + R(Y, JX) are complex
for all X, Y € V. Hence, for Z = X +iY € VC we can define a complex endomorphism
RY(Z,JZ) on V by

RY(Z,JZ) .= R(X,JX) — R(Y,JY) +i(R(X,JY) + R(Y, JX)).

Using the trace of this complex endomorphism we define

f1(Z2) =2, 2)c" Tt RY(Z, 1 Z)



and
f2(Z) =(Z,Z)c* Tt RY(Z, T Z)?,

for Z € V. Both functions are holomorphic on the open connected set
Q={Z2ecV"|(2,Z)c#0}cVC"

and they determine the eigenvalues of (Z, Z)'R(Z, JZ). Since they are constant on
the set of all spacelike vectors in V, they have to be constant on €. In particular, they
are constant on the set of non-isotropic vectors in V. U

Proof of Theorem 2.1. In the first part of the proof we will concentrate on signature
(0,4), the calculations in the (2, 2)-case are essentially the same. We fix an orthonormal
basis e1, es = Jeq, e3, e4 = Jeg and define

fljE = e NegtezNey
f2:|: = e Ne3FerNey
f?it = e NegtesNes.

Then f;", £, f5 is a basis of /\i Vand f, fy, f3 isa basis of A% V. Furthermore,
fi spans U;. Now let R be an almost complex curvature tensor. By (1) the linear
maps R(er,ea), R(es,eq), R(e1,es3)+R(ez,eq), R(e1,e4)—R(ez,e3): V — V commute
with J and taking into account the symmetry properties of the curvature tensor we
may assume

. _ a  —b+ic o _ id  —e+if
A'_R(el’e2)_<b+z‘c id > B'_R(e3’e4)_<e+if ig )
. (2 —h+ij
C .= R(€1,€3) + R(€2,€4) = < h+ij %e ) (2)
. _ _ 2ic —j+il
D := R(e1,e4) — R(eg,e3) = < itil  2if )

with respect to the basis ej, e3 of the complex vector space (V,J). Conversely, if (2)
holds, than

R(u,v,2,y) = R(uey + ves + xes + yey, J(ue; + vey + zes + yey))
= (W4 v)A+ (#*+y*)B+ (—uy + vz)C + (ux +vy)D  (3)

commutes with J and, thus, R is almost complex.

By Proposition 2.1 an almost complex curvature tensor maps Uy & /\2_ V' into
U, @ A% V and U_ into U_. Hence, condition (iii) is automatically satisfied. Therefore
we consider only R|U+®/\2_ v+ With respect to the basis i fify o fs of Uy @ /\2_ Vv
the map R|U+®/\3 v 18 given by

(a+g+2d)/2 (a—g)/2 b+e c+ f
R B (a—g)/2 (a+g—2d)/2 b—e c—f
lvconz v = b+e b—e h j

c+f c—f J [



Using this a simple calculation shows, that for an almost complex curvature tensor
conditions (i) and (ii) are satisfied if and only if

(i) TrA=TrB, TrC=TrD =0
(ii’) TrAC = TrAD = TrCD =0, Tr(A — B)? = Tr C? = Tr D%

Now let R be an almost complex spacelike IP curvature tensor. Then the eigenvalues
of R(u,v,z,y) and, hence, the functions Tr R (u,v,,y) and Tr R(u,v,z,y)? must be
constant for all u,v,z,y € R with u? + v?2 + 22 + y? = 1. In particular, we have
Tr A = Tr B and Tr A? = Tr B%. Furthermore, the trace of

R(cost,0,sint,0) = cos? tA 4 sin® tB + cos tsintD
is constant for all t € R. Hence, Tr D = 0. Similarly, Tr C' = 0. Now consider

(R(cost,0,sint,0))? = cos'tA? +sin*t B2 + cos?tsin’t (AB + BA + D?)
+cos® tsint (AD + DA) + costsin® t(BD + DB)
= A?+t(AD + DA) +t*(=24% + AB + BA + D?) + O(t%).

The trace of this map must be constant for all ¢ € R. Using Tr AB = Tr BA and
Tr A? = Tr B? we obtain

Tr(R(cost,0,sint,0))* = Tr A2 + 2t Tr AD + t*(—(A — B)* + D?) + O(#*)

and, hence, Tr AD = 0, Tr(A—B)? = Tr D?. Similarly, Tr AC = 0, Tr(A—B)? = Tr C.
It remains to prove Tr C'D = 0. For this let us consider

(R(cos t, 0, sint, sint))? = cos* t A? + sin ¢ B

Sl
+cos’tsin’t (AB + BA + = (D C) )+%costsin3t(B(D—C)+(D—C)B)
1 :
+% cos®tsint (A(D — C) + (D — C)A)
- A2+%t(A(D—C)+(D—C)A)+t2( 24?4 AB + BA+ + (D )2
+0O(t3).

Since also for this family of operators the trace must be constant we get
0 = Tr(—242 + AB+ BA + — ( - 0)?)
2, 1.9 2
= Tr(—(A - B) +§D +§C )+ TrCD.

Using Tr(A — B)? = Tr C? = Tr D? we obtain TrCD = 0. Consequently, (i’) and (ii’)
and therefore (i) and (ii) are satisfied.

Conversely, let R be a curvature tensor which satisfies (i), (ii) and (iii). Conditions
(i) and (iii) imply that R is almost complex. Hence, (i) and (ii) imply (i’) and (ii’) and



it remains to prove that an almost complex curvature tensor which satisfies (i’) and (ii’)
is spacelike IP. First we derive some further equations from (i’) and (ii’). Condition (i’)
implies

a=4g, b:_ea C:—f

and, thus,
TrA?> = TrB? (4)
TTBC = —TrAC = 0 (5)
TrBD = —TrAD = 0. (6)

Let u, v, z, y be real numbers such that u?+v?+22+y? = 1. By (3) and Condition (i’)
TrR(u,v,z,y) = (W2 +v? + 2?2 +9y?*) Tr A=Tr A= const.
According to (ii’), (5), (6) we have

Tr(R(u,v,2,y))* = (u* +02)? Tr A® + (2% + 4?)? Tr B? + (—uy + vx)? Tr C?
+(uz + vy)? Tr D? + (u? + v?)(2? + y*) Tr(AB + BA) .

Now using
Tr(AB + BA) = —Tr(A— B)? + Tr A2 + Tr B> = — Tr(A — B)? + 2 Tr A2
(ii’) and (4) yield

Tr(R(u,v,2,9))° = ((u?+0%)+ (2° + %)% + 2(u® + v*)(a® + y*)) Tr 47
+((—uy + vz)? + (uz + vy)? — (u? + v?)(2? + y?)) Tr C?
= (W+0v*+22+9y%)?TrA? = TrA? = const.

Consequently, the eigenvalues of R(u,v,z,y) are constant for all u, v, z, y € R such
that u? + v2 4+ 22 + y? = 1. These eigenvalues are equal if and only if those of A are
equal. This is the case if and only if (a — d)? + 4b*> + 4¢2 = 0. On the other hand,
A = (a—d)? +4b* + 4c?. The last statement of the theorem is clear in the Riemannian
case.

We finish the proof with a few remarks concerning the split case. According to
Lemma 3.1 we can proceed as in the Riemannian case up to some changes of signs.
Now we obtain that the curvature operator is almost complex and the eigenvalues are
constant if and only if

—ia b—1c —id  b—1c
R(61’62)2<b+ic z’d) R(e3’e4):<b+ic m)

—2tb h—1j
R(e1,e3) + R(ez, eq) = < h _|_Zz'j 2'&()2] ) g
| —2ic j—il
R(e1,eq) — R(ez,e3) = < j+il 2 )
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with respect to any orthonormal basis e, eo = Jeq, e3, e4 = Jeg with timelike e; and
€2,

a+d 2b 2¢
W = -2b —h —j
—2¢ —j -l

with respect to the basis f|” = ejAea+e3zNes, fo = e1Ne3+eales, f3 = e1Nea—eaNe3
of A2V, and

(W )2 =2ldy .
The eigenvalues are different if and only if A\ # 0. If W = 0 then the curvature
operator is diagonalizable. Now we consider the case A = 0 and W # 0. Recall that
the inner product induced on /\% V has signature (2,1). The first column vector of

W does not vanish, since W # 0 implies a +d # 0. Furthermore, the column vectors
are all isotropic and pairwise orthogonal, hence they must be multiples of the first one.
More exactly, we have

4be 42 4h?

I axd atd atd (8)

In order to show that R is almost complex spacelike IP in this case we will prove
that R(X,JX) is not diagonalizable for all spacelike vectors X. Since the eigenvalues
are equal we have to show that R(u,v,z,y) is not diagonal for all u,v,z,y such that
—u? —v? + 22 + y? = 1. Assume that it is diagonal. Then

(u? +0* + 2% + y?) (b +ic) + (—uy +vz)(h +4j) + (uz +vy)(j +il) = 0.

By (8) we obtain

4b? 4bc
2,2, .2 2 I _
(u*+ v+ 2" +y° )b+ (—uy vw)a+d+(uw+vy)a+d 0
4b 4¢?
(u2+v2+m2+y2)c+(—uy—vm)a+cd+(um+vy)aid = 0.

Since b% + ¢ # 0 this implies
(a + d)(u® 4+ v+ 22 + y?) + 4b(—uy + vz) + 4c(uz 4 vy) = 0

which is equivalent to

a+d u? +v? + 22 + o2
< -2b |, 2(—uy + vz) > =
—2c 2(uz + vy)

The first vector of the Lh.s. is isotropic since it equals the first column vector of W .
The second one is spacelike because of

(w? + v+ 22 + 5?2 —d(—uy +v2)? —4(uz +vy)? = (WP +0° — 2 —y?) = 1.

This is a contradiction to the fact that the orthogonal complement of a spacelike vector
with respect to an inner product of signature (2, 1) is timelike.
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