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TRANSLATING SOLUTIONS TO THE SECOND

BOUNDARY VALUE PROBLEM FOR CURVATURE FLOWS

OLIVER C� SCHN�URER

Abstract� We consider the �ow of strictly convex hypersurfaces driven
by curvature functions subject to the second boundary condition and
show that they converge to translating solutions� We also discuss trans�
lating solutions for Hessian equations�

�� Introduction

We consider the parabolic initial value problem describing the evolution of
a hypersurface in R

n����
�

�X � ��logF � log f���

��M� � ��M���

M jt�� � M��

�����

where X is the embedding vector of a smooth strictly convex hypersurface
with boundary� M � graph uj�� u � � � R� �X is its total time derivative
and � � R

n � n � 	� is a smooth strictly convex domain� The strictly
convex hypersurface M evolves such that its velocity in direction of the
upwards pointing unit normal vector � is determined by a given smooth

positive function f � � � R and a curvature function F of the class
�

K�
�

de�ned below� We remark that this class of curvature functions contains
especially the Gau� curvature� The curvature function F is evaluated at
the vector ��i�X�� the components of which are the principal curvatures of
M at X � M � f is evaluated at X where the �n  ���th component of X
is ignored� The image of the normal of M � ��M�� coincides with the image
of the normal of the smooth strictly convex hypersurface M� � graph u�j�
we start with� We will assume that the closure of ��M�� is a geodesically
strictly convex subset of the unit sphere Sn contained in Sn � fxn�� � �g�
From the de�nition of the unit normal � of M it follows that prescribing
��M� � ��M�� is equivalent to prescribing Du��� � Du���� �� ��� where
�� is a strictly convex subset of Rn � Thus we consider a �ow equation
subject to a second boundary value condition�

Date� May �����
���� Mathematics Subject Classi�cation� Primary �	C

� Secondary 	�K��� �	C
��

�
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To formulate our main theorem we introduce � referring also to the de�ni�
tions in Section 	�	 �

v �
p

�  jDuj� and �� �� sup
����

�

F

nX
i��

�F

��i
� �i

where �� is the positive cone in Rn � If F is a positive homogeneous function�
then �� equals the degree of F � We assume the following inequality

v � �logF � log f� � �� for t � �� ���	�

i� e� the initial velocity is not too large� This restriction ���	� for the initial
velocity is unattractive� At the moment� however� we need this assumption
to prove uniform a priori estimates for the principal curvatures of M during
the evolution�

Under the assumptions stated above� we obtain the following main theorem�

Theorem ���� The initial value problem ����� admits a convex solution
M�t� � graph u�t�j� that exists for all times t � � and converges smoothly
to a translating solution M� � graphu� of the �ow equation�

�X � ��logF � log f���

��M� � ��M���
�����

i� e� there exists v� � R such that u��x� t� � u��x� ��  v� � t� Up to
additive constants� the translating solution is independent of the choice of
M�� but depends on ��M��� F � f and �� The function u is smooth for t � �
and u� Du� D�u� �u are continuous up to t � ��

We will also consider �ow equations for Hessian equations in Section B�
There we do not need a condition like ���	� for the initial velocity�

We mention some similar papers� In ��� the authors study translating solu�
tions for the mean curvature �ow whereas �ow equations are considered in
��� �� �� to prove existence for elliptic problems� Flows with boundary con�
ditions are studied in ��� ��� ���� Elliptic Hessian equations with Neumann
and oblique boundary conditions are solved in ���� ���� the second boundary
value problem is considered in ���� ��� for Hessian and in ���� for curvature
equations�

Some techniques used in ���� ��� are useful for our proof of the a priori
estimates� although we found a di�erent notation more appropriate for our
C��a priori estimates� For the proof of the convergence to a stationary
solution we can adapt a proof of ���� We do not explicitly cite these papers
each time we use them in the following�

Our paper is organized as follows� In Section 	 we describe our di�erential�
geometric notations� introduce a class of curvature functions� rewrite our
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evolution equation in non�parametric form� de�ne the Legendre transfor�
mation� state some properties of the curvature functions introduced� and
describe the e�ects of compatibility conditions to solution for short time in�
tervals� We show that our boundary condition is strictly oblique and prove
lower order estimates in Section �� In Section � we derive geometric evo�
lution equations needed for the C��a priori estimates proved in Section ��
Then� we prove our main theorem in Section � and conclude with some re�
marks on convergence to hypersurfaces of prescribed curvature in Section A
and on translating solutions for Hessian equations in Section B�

We wish to thank J�urgen Jost and the Max Planck Institute for Mathematics
in the Sciences� Leipzig�Germany� for support during this research�

	� Preliminaries

	��� Geometric notations� The notation used is very similar to ���� Hav�
ing �xed coordinate systems in R

n�� and M � we use Greek indices running
from � to n to denote components of geometric quantities de�ned in Rn��

and Latin indices starting at � for quantities related to the hypersurface M �
Lower and upper indices refer to covariant and contravariant transforma�
tion properties� respectively� We use the Einstein summation convention�
Covariant derivatives are indicated by �additional� indices� sometimes pre�
ceded by a semicolon for greater clarity� whereas a comma indicates partial
derivatives� so we have

X�
ij � X�

�ij � �kijX
�
k �

where
�
�kij

�
denotes the Christo�el symbols of M � These derivatives of the

embedding vector M are related to the second fundamental form �hij� and
to the upwards pointing unit normal ���� of M by the Gau� formula

X�
ij � �hij���

Using M � graphu� partial derivatives and lifting the indices with respect
to the Kronecker�delta� we see that � is given by

���� �
�

v

�
���ui� � v �

p
�  uiui�

Covariant derivatives of � can be expressed by the Weingarten equation

��i � hkiX
�
k �

where we lifted the index of the second fundamental form with respect to�
gij
�
� the inverse of the induced metric �gij� of M �

gij � �ij  uiuj� gij � �ij � uiuj

v�
�

If not stated otherwise we will lift and lower indices with respect to the
induced metric when we use covariant derivatives and with respect to the



� Oliver C� Schn�urer

Kronecker�delta if we use partial derivatives� The Codazzi equation � to�
gether with the symmetry of the second fundamental form � states that hij�k
is unchanged under permutations of the indices� The Gau� equation gives
the Riemannian curvature tensor �Rijkl� of M

Rijkl � hikhjl � hilhjk�

used in the Ricci identity which we mention only for the second fundamental
form

hik�lj � hik�jl  hakRailj  haiRaklj �

From the ��th component of the Gau� formula we obtain

�

v
hij � �uij �

so M is strictly convex if ��uij� is positive de�nite� Calculating uij �

u�ij � �kijuk � �
v�
u�ij � we see that the convexity of M is equivalent to the

concavity of u� Of course� the function u is called concave if u��� t� is concave
for all t�

In what follows we rewrite our evolution equation as follows

�X � ��logF � log f�� � �
�
�F � �f

�
��

Sometimes it will be convenient to work with indices that indicate partial
derivatives� We will point out this in the respective sections� In contrast to
the lifting of indices as mentioned above�

�
uij
�
denotes the inverse of �uij��

We also wish to introduce the abbreviation u� � ui�
i for a vector �� The

letter c is used to denote constants� These constants are positive estimated
quantities that may change its value from line to line� Inequalities remain
valid if a constant c on the  right�hand! side is enlarged�

	�	� Curvature functions� We introduce some classes of curvature func�
tions similar to ��� ���� A slightly di�erent class of curvature functions is
considered in ����� Our choice of the class of curvature functions used in our
main theorem is not the most general choice possible� Instead we preferred
a choice that corresponds to the examples of curvature functions we know
for which such a theorem holds�

Let �� � R
n be the open positive cone and F � C����� � C�

�
��

�
a

symmetric function satisfying the condition

Fi �
�F

��i
� �"

then� F can also be viewed as a function de�ned on the space of symmetric�
positive de�nite matrices Sym��n�� for� let �hij� � Sym��n� with eigenval�
ues �i� � � i � n� then de�ne F on Sym��n� by

F �hij� � F ��i��
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We have F � C��Sym�� � C�
�
Sym�

�
� If we de�ne

F ij �
�F

�hij
�

then we get in an appropriate coordinate system

F ij�i�j �
�F

��i

���i��� 	 � � R
n �

and F ij is diagonal� if hij is diagonal� We de�ne furthermore

F ij�kl �
��F

�hij�hkl
�

De�nition ���� A curvature function F is said to be of the class �K�� if

F � C����� � C�
�
��

�
� �	���

F is symmetric� �	�	�

F is positive homogeneous of degree d� � ��

Fi �
�F

��i
� � in ��� �	���

F j��� � �� �	���

and

F ij�kl�ij�kl � F��
�
F ij�ij

�� � F ik
hjl�ij�kl 	 � � Sym�

where
�

hij
�
denotes the inverse of �hij�� or� equivalently� if we set �F � logF �

�F ij�kl�ij�kl � � �F ik
hjl�ij�kl 	 � � Sym�

where F is evaluated at �hij��

If F satis�es


 	� � � � 	�FH � 	�F trhji � F ijhikh
k
j

for any �hij� � Sym�� where the index is lifted by means of the Kronecker�
Delta� then we indicate this by using an additional star� F � �K���

The class of curvature functions F which ful�ll� instead of the homogeneity
condition� the following weaker assumption


 �� � � � � 

�

��
F �

X
i

Fi�i � ��F �	���

is denoted by an additional tilde� F �
�

K
�
or F �

�

K�
�
�

A curvature function F which satis�es for any 	 � �

F �	� � � � � 	� R�� �� as R� ��
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or equivalently

F ��� � � � � �� R�� �� as R� ��

in the homogeneous case� a condition similar to an assumption in �	�� is said
to be of the class �CNS��

Example ���� We mention examples of curvature functions of the class�

K�
�
as given in ��� ����

Let Hk be the k�th elementary symmetric polynomials�

Hk��i� ��
X

��i������ik�n

�i� � � � � � �ik � � � k � n� �	���

�k �� �Hk�
�

k

the respective curvature functions homogeneous of degree � and de�ne fur�
thermore


�k��i� ��
�

�k
�
���i

� � �Sn�n�k�
�

k �

The functions Sn�k belong to the class �K� for � � k � n�� and Hn belongs
to the class �K���

Furthermore� see ����

F �� Ha�
n �

NY
i��

F ai
�i�� ai � �� �	���

belongs to the class
�

K�
�

provided F�i� � � 
K�� and we may even allow

F�i� �� � on ����

An additional construction gives inhomogeneous examples ����� Let F be as
in �	���� � � C� �R��� and c� � � such that

� 

�

c�
� � � c�� �� � ��

then


F ��i� �� F

	

exp

	

 �iZ

�

����

�
d�

�
A
�
A

belongs to the class
�

K�
�
�

The considerations above remain applicable if we evaluate F in what follows
at the eigenvalues ��i� of the second fundamental form �hij� with respect to
the metric �gij�� i� e� � is an eigenvalue if there exists � � R

n n f�g such that

� � gij�j � hij�
j �
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Then

F ij �
�F

�hij

is a symmetric covariant tensor of second order�

	��� Non�parametric �ow equation� Our boundary condition guaran�
tees that we can represent our solution as graphu� Now we will derive a
parabolic evolution equation for u equivalent to

�X � �
�
�F � �f

�
��

Therefore we choose local coordinates �xi� of Rn and obtain

d

dt
X� �

d

dt
u
�
Xi�x� t�� t

�
�
�u

�t
 ui �X

i � �
�
�F � �f

� �

v
�

d

dt
Xi �

�
�F � �f

� ui
v
� � � i � n�

where we used the de�nition of � and ������ Combining these equations
yields

d

dt
u�x� t� �

�u

�t
� �v

�
�F � �f

�
�

	��� Legendre transformation� In this section we use indices to denote
partial derivatives and ignore our convention that upper and lower indices
correspond to contravariant and covariant quantities� respectively�

The Legendre�transformation of u � � ��� T �� R� u� � ��  ��� T � � R� is
de�ned by

u��y� t� �� xiui�x� t�� u�x� t� � xiyi � u� yi � ui�x� t��

We look for an evolution equation for u�� From the de�nition of u� we get

�u� � � �u�
�u�

�yk
� xk�

��u�

�yk�yl
�
�
�D�u���

�
kl
� ukl�

where y is considered as a time independent variable� We use
�p

gj
i

�
and�p

g��
j

i

�
to denote the square roots of �gij� and

�
gij
�
� respectively� which

are positive de�nite symmetric matrices such that
p
gj
i

p
gk
j
�kl � gil andp

g��
i

j

p
g��

j

k�
kl � gil� explicitly

p
gj
i
� �

j
i 

uiu
j

�  v
�
p
g��

j

i � �
j
i �

uiu
j

v��  v�
�

Then� following ���� the principal curvatures �i� � � i � k� are the eigenval�
ues of the matrix �aij�� where

aij � �
p
g��

k

i

ukl

v

p
g��

l

j�
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We may consider
p
g as a function of y and set

a�ij � �vpgikukl
p
g
j
l � �

p
�  jyj�pgki �y�u�kl

p
glj�y��

Then the eigenvalues of a�ij are given by �
�i
� � � i � n� We set for � � ��

F ���i� ��
�

F
�

�
�i

�
and

f� �
�

f
�

Thus we obtain the following evolution equation for u��
�u� � �

p
�  jyj�

�
logF ��a�ij�� log f��Du��

�
in ���

Du����� � ��

where F � is evaluated at the eigenvalues of a�ij � For later use we di�erentiate

this �ow equation using the index k for derivatives with respect to yk

�u�k � � ykp
�  jyj�

�
�F ��a�ij�� �f��Du��

�
�	���

�
p

�  jyj�
�
�F �u�iju

�
ijk 

�F �yk � �f�qiu
�
ik

�
�

We compute �F �u�ij
and �F �

yk
explicitly�

�F �u�ij � � �F �a�
kl

p
�  jyj�pgik

p
g
j
l

and

�F �
yk

� � �F �a�ij

��p
�  jyj�pga

i

�
k
u�ab

p
gb
j

p

�  jyj�pga
i
u�ab

p
gb
j�k

�
�

	��� Properties of curvature functions� Important properties of the

class
�

K�
�
for the a priori estimates of the second derivatives of u at the

boundary are stated in the following lemmata�

Lemma ���� Let F �
�

K�
�
� then for �xed 	 � �

F �	� � � � � 	� R��� as R���

i� e�
�

K�
�
� � 
K� � �CNS�� moreover� when F �

�

K
�
� �CNS�� � 
 �

c
�

F � c� and

� 
 � � � � � � n�

then the following three conditions are equivalent

� � �� n ��� and trF ij ���

Proof� We refer to �����
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For the dual functions we have a similar lemma�

Lemma ���� Let F �
�

K�
�
�

� 
 � � � � � � n�

and � 
 �
c
� F � c� Then the following three conditions are equivalent

� � �� n ��� and trF �ij ���

Proof� We have F� � � � � � Fn � �� see ��� ���� so we get in view of the
de�nition of F �

F �i ��� � � � � n� �
Fi

�
�
	i

�
�F ���

� �

�i
�

Thus F �� � � as � � � gives the result as �F ���� � F � and n � �
forces � � � in view of Lemma 	��� To get trF �ij � ��  has to leave
any compact subset of ���

Lemma ���� Let F �
�

K
�
� �CNS�� Then F � as de�ned above satis�es

������ ������ ������ ���	� and F � � �CNS�� For F � �Sn�k�
�

n�k � � � k �
n� �� and obviously� see Lemma ���� also for F �

�

K
�
� �CNS� we have

for any 	 � � X
i

Fi
�
i � �c�	�  	 � jj� �

X
i

Fi� �	���

Proof� See �����

	��� Shorttime existence and compatibility conditions� In this sec�
tion we use partial derivatives� In the introduction� we have rewritten our
boundary condition ��M� � ��M�� equivalently as Du��� � ��� Now� we
take a smooth strictly concave function h � Rn � R such that h � � and
jrhj � � on ���� In what follows we use hpk instead of hk as h will be
evaluated by using the gradient of a function� For smooth strictly convex
functions u� our boundary condition is equivalent to h�Du� � � on ���

We will derive compatibility conditions ful�lled by a smooth solution u � �
��� T �� R and show then how compatibility conditions a�ect the regularity
of u at t � �� We take a solution u� smooth up to t � �� and compute time
derivatives of our boundary condition�

d

dt

�m

h�Du�

����
t��

� � on ��� m � N�

For �xedm� we call this equation the compatibility condition of orderm� For
m � � we get back our boundary condition� In the case m � � we can sub�

stitute time derivatives of u� Du� � � � � inductively by using �u � �v
�
�F � �f

�
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and derivatives of this equation� Thus we can express compatibility con�
ditions of any order so that they contain only spatial derivatives of u at
t � �� These necessary conditions for smoothness of a solution of ����� at
t � � are also su#cient for smoothness� more precisely� let M� � graphu�
satisfy the compatibility conditions of m�th order for � � m � m�� Later�on
we will prove that our boundary condition is strictly oblique� so we deduce
from Theorem ���� p� �	� ����� and the implicit function theorem� see also
���� that there exists a solution of our initial value problem ����� on a max�
imal time interval ��� T �� T � �� This solution is smooth for t � ��� T � and
has continuous derivatives up to 	�m�  ���th order at t � �� where time
derivatives have to be counted twice�

As usual� longtime existence follows from shorttime existence and uniform
a priori estimates as follows� Assume that we have � as long as a solution
exists � estimates for the function u of the form

kukCk���� t
�
�t�� � ck � ��  t�� k � N�

where it would be su#cient to have a locally bounded function � de�ned for
t � � � of t on the right�hand side� We assume that ��� T � is the maximal time
interval where our solution exists� Then the a priori estimates guarantee
that we can extend our solution to ��� T �� As we have a smooth solution� it
satis�es the compatibility conditions of any order at t � T � so applying our
considerations above� we get a solution on a time interval ��� T 	� for some
	 � �� which is smooth for t � ��� T  	� contradicting the maximality of T �

�� Obliqueness and lower order estimates

In this section we use indices to denote partial derivatives and � is the inner
unit normal vector to ���

���� Strict obliqueness�

Lemma ���� As long as a solution of ����� exists� our boundary condition
is strictly oblique� i� e�

h��x�� ���Du�x� t��i � �� x � ��� �����

where � and �� denote the inner unit normals of � and ��� respectively�

Proof� To prove ����� we use

�i�x� � ��i �Du�x� t�� � �i � hpi�Du�x� t���
As h�Du� is positive in � and vanishes on ��� we get on �� for � orthogonal
to �

hpkuk
 � �� hpkuk� � �� ���	�
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Thus we see from

hpk�
k � hpkukiu

ij�j � hpkuk� � u�� � � �����

that the quantity whose positivity we wish to show is at least nonnegative�

We compute in view of ���	� and ����� on ���
hpk�

k
��

� u��hpkuk�u
��u�lhpl

� u��hpkukiu
ijujlhpl

� u��uklhpkhpl �

so we deduce the positivity of the quantity considered�

��	� �u� and C��estimates� We de�ne the function

r �� � �u��

and consider F ��i� as a function of �Du�D�u�� F � F �Du�D�u�� Calcu�
lations similar to those in Section 	�� show that

�
Fuij

�
is negative de�nite�

We get

�u � �v
�
�Fuij �uij 

�Fpi �ui

�
� ui �uip

�  jDuj�
�
�F � �f

�
�

These preparations allow to deduce the following parabolic evolution equa�
tion for r

�r  v �Fuijrij � 	v �Fuij �ui �uj � v �Fpiri �
uirip

�  jDuj�
�
�F � �f

�
�

Lemma ���� As long as a smooth solution of ����� exists� we obtain the
estimate

min
n
min
t��

�u� �
o
� �u � max

n
max
t��

�u� �
o
�

Proof� If � �u�� admits a local maximum at x � �� for some positive time�
we di�erentiate our boundary condition and get there

hpk �uk � ��

As hpk is strictly oblique� this contradicts the Hopf maximum principle un�
less �u is constant� On the other hand� the evolution equation for r implies

�r  v �Fuijrij � �v �Fpiri �
uirip

�  jDuj�
�
�F � �f

�
�

This excludes an increasing local maximum of � �u�� in � ��� T � and we get
the claimed inequality�

Corollary ���� As long as a smooth solution of ����� exists� we get

ku��� t�k
C���� � ku��� ��k

C����  t � k �u��� ��k
C����

and �F is uniformly a priori bounded�
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Remark ���� Applying the strong maximum principle to �u we deduce that

either v �
�
�F � �f

�

 �� uniformly provided t � 	 for �xed 	 � � or v ��

�F � �f
�
� �� everywhere independent of t� because ���	� tells us that v ��

�F � �f
�
� �� for t � �� Thus we may assume in view of the shorttime

existence � by restricting to t � 	 � that v �
�
�F � �f

�

 �� uniformly during

the �ow as the trivial case v �
�
�F � �f

�
� �� corresponds to a translating

solution and needs no further considerations� This di�erence between v ��
�F � �f

�
and �� will be used in the proof of the C��a priori estimates� we

set

� 
 �� �� inf
t��

n
�� �

�
�F � �f

�o
� �����

���� Strict obliqueness estimates� The purpose of this section is to quan�
tify the strict obliqueness of our boundary condition�

Lemma ���� For a smooth solution of ����� we have the strict obliqueness
estimate

h��x�� ���Du�x� t��i � �

c
� �� x � ���

where � and �� denote the inner unit normals of � and ��� respectively�
The positive lower bound is independent of time�

Proof� We �x a time interval ��� T �� where a smooth solution of our �ow
����� exists and prove that there exists a positive lower bound for hpk�

k for
�x� t� � ��  ��� T � which is independent of T � To establish this positive
lower bound� we choose �x�� t�� � ��  ��� T � such that hpk�

k is minimal

there� As we have a positive lower bound for hpk�
k on ��  f�g� we may

assume that t� � �� Further on� we may assume that ��x�� � en and extend
� smoothly to a tubular neighborhood of �� such that in the matrix sense

Dk�
l � �lk � � �

c�
�lk �����

there for a positive constant c�� For a positive constant A to be chosen
below we de�ne

w � hpk�
k Ah�Du��

The function wj������T � attains its minimum over �� ��� T � in �x�� t��� so

we deduce there

� � wr � hpnpkukr  hpk�
k
r Ahpkukr� � � r � n� �� �����

� � �w� �����

We assume for a moment that there holds

wn�x�� t�� � �c�A�� �����
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show that this estimate yields a positive lower bound for uklhpkhpl and prove
����� afterwards� Then the lemma follows from the calculations in the proof
of Lemma ��� and from a positive lower bound for u�� �

We rewrite ����� as

hpnpluln  hpk�
k
n Ahpkukn � �c�A��

Multiplying this with hpn and adding ����� multiplied with hpr we obtain at
�x�� t��

Auklhpkhpl � �c�A�hpn � hpk�
k
l hpl � hpkhpnplulk�

Using ���	�� the concavity of h and ������ we get there

Auklhpkhpl � �c�A�hpn 
�

c�

as jrhj � � on ���� We may assume that the right�hand side of the in�
equality above is positive as otherwise hpn � hpk�

k is bounded from below�
Thus we deduce a positive lower bound for uklhpkhpl �

We now sketch the proof of ������ As for a similar proof with more details

we refer to ����� We di�erentiate our �ow equation �u � �v
�
�F � �f

�
and

obtain

�uk � �v
�
�Fuijuijk 

�Fpiuik � �fk

�
�
�
�F � �f

�
vpiuik� �����

This is a motivation to introduce the following linear parabolic di�erential
operator L by

L 
w �� � �
w � v �Fuij 
wij � v �Fpi 
wi �
�
�F � �f

�
vpi 
wi�

We remark that the chain rule and �	��� show that �Fpi is bounded� the chain

rule and �	��� give a positive lower bound for �tr �Fuij � � �Fuij�ij � Direct
calculations give for A su#ciently large

Lw � �v �Fuijuliumj�
khpkplpm �Av �Fuijhpkplukiulj � c�A� � tr �Fuij

� �c�A� � tr �Fuij �

As � is strictly convex� there exist � � � and 	 � � such that for � ��
d� �d�� where d � dist ��� ���� we have near �� in view of Lemma 	��

L� � 	 � tr �Fuij � ������

The proof of this inequality is omitted here as it is carried out in ���� and in
Lemma ��� in similar situations� We consider � only in � �� � � B�x���
where � � � is chosen so small that � is smooth and nonnegative there and
the above inequality holds� As w is bounded and attains its minimum over
�� ��� T � in �x�� t�� we �nd C � B � � such that the function

$ �� C � �B � jx� x�j� w � w�x�� t��
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satis�es �
$ � � on ���  ��� T �� � ��  f�g��

L$ � � in �  ��� T ��

Thus the maximum principle gives

�C � � w�n�x�� t�� � �

as the function C ��B � jx� x�j�w�w�x�� t�� vanishes in �x�� t��� This
shows Inequality ������

Similar to the argument above we extend �� smoothly to a tubular neigh�
borhood of ��� such that ��ki � ��

c
�ki in the matrix sense and take h� as a

smooth strictly concave function such that fh� � �g � �� and jDh�j � �
on ��� We de�ne

w� � h�qk�Du
����k Ah��Du��

and in view of �	��� we de�ne furthermore

L� 
w �� � �
w � v �Fu�ij 
wij � v �f�qi 
wi�

As before we obtain that w�j������T � is positive� We �x T � � and assume

that w�j������T � attains its minimum in �x�� t��� As we wish to establish a

positive lower bound for w� we may assume that t� � �� Direct calculations
and Lemma 	��� which implies a positive lower bound for �tr �F �u�ij

� give for

A su#ciently large

L�w� � ck�� A�
��� �F �yk ���� �

	
Av �F �u�ijh

�
qkql

u�kiu
�
lj � c�A� � tr �F �u�ij � ������

Then

�F �a�ij � ��

v
�F �u�rs

p
g��

r

i

p
g��

s

j

and Young%s inequality imply for any 	 � ���� �F �yk ��� � �	 �F �u�rsu�riu�sj�ij �
c

	
tr �F �u�rs �

Combining this with ������ gives

L�w� � c�A� �
���tr �F �u�ij

��� �
Now we can proceed as above� use Lemma 	�� and get at �x�� t�� an inequal�
ity of the form

Au�klh
�
qk
h�ql � �c�A�h�qk��k � ��lk h

�
qk
h�ql � ����	�

Since h�qk�
�k � h��� �i� we may assume again that this quantity is small�

The second term on the right�hand side is bounded below by a positive
constant in view of the convexity of �� and jDh�j � � on ���� so we deduce
u�klh

�
qk
h�ql � �

c
� �� Using u�kl � ukl and h�qk � �k we obtain a positive lower

bound for u�� completing the strict obliqueness estimate�
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�� Geometric evolution equations

In this section we describe how geometric quantities evolve during the �ow�
Proofs for these results in a similar notation can be found in ���� We start
with the evolution equation for the metric

�gij � �	
�
�F � �f

�
hij

and for the unit normal of the hypersurface M

��� � gij
�
�F � �f

�
i
X�

j �

For the second fundamental form of M we state the evolution equation both
for the mixed and for the covariant form

�hji �
�
�F � �f

�
i

j 
�
�F � �f

�
hki h

j
k�

�hij �
�
�F � �f

�
ij
�
�
�F � �f

�
hki hkj �

Applying the chain rule to the term �F � �f there and interchanging covariant
derivatives by means of the Codazzi equations and Ricci identities gives

�hji � �F klh
j
i�kl � �F klhkrh

r
l h

j
i � �F klhklh

r
ih

j
r 

�
�F � �f

�
hki h

j
k �����

 �F kl�rshkl�ihrs�
j � �f��X

�
i X

�
k g

kj  �f��
�h

j
i �

For the scalar product 
v of � and en�� � e�� i� e� for 
v � h�� �i � �����
where ���� � ��� �� � � � � ��� we get the evolution equation

�
v � �F ij
vij � �F ijhki hkj
v � �f�X
�
i X

�
j ��g

ij

and for v � 
v�� we get thus

�v � �F ijvij � �v �F ijhki hkj  v� �f�X
�
i X

�
j ��g

ij � 	
�

v
�F ijvivj �

For these two evolution equations we assumed Euclidean coordinates in
R
n�� � so derivatives of �� vanish� In the following we will always assume

that we have chosen Euclidean coordinates in Rn�� � As a direct consequence
of the evolution equations obtained so far we get for the mean curvature�
H � hijg

ij � hii�

�H � �F klHkl � �F klhkrh
r
lH � �F klhklh

r
ih

i
r 

�
�F � �f

�
hki h

i
k

 �F kl�rshkl�ihrs�jg
ij � �f��X

�
i X

�
j g

ij  �f��
�H�

The right�hand side of ����� is a tensor with a covariant index i and a
contravariant index j� Thus we can multiply this equation with vector �elds
and the result at a �xed point depends only on the value of these vector
�elds there but especially not on any derivatives� We deduce that the same
is true for both terms on the left�hand side�
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Taking any non�vanishing vector �eld 
� � Rn � R
n we can project 
��x� to

the tangential hyperplane to M at X � �u�x� t�� x� and normalize it such
that the result ��x� satis�es gij�

i�j � �� We set �i � gij�
j� In view of the

above considerations we get directly an evolution equation for hji�j�
i� For

simplicity we set h�� �� h
j
i �j�

i and consider h�� as a scalar function� Thus we
get for W �� h�� � v the following evolution equation

�W � �F ijWij  	
�

v
�F ijvjWi � v

��
�F � �f

�
� �F ijhij

�
hk�h

�
k ���	�

 h��

�
v� �f�X

�
i X

�
j ��g

ij  v �f��
�
�

 v �F kl�rshkl��hrs�
� � v �f��X

�
�X

�
k g

k��

For a similar combination� W �� log�H � v�� we get

�W � �F ijWij � �F ijWi

�
Wj � 	

vj

v

�
� �����

�
�

H

��
�F � �f

�
� �F ijhij

�
hlkh

k
l 

�

H
�F kl�rshkl�ihrs�jg

ij

� �

H
�f��X

�
i X

�
j g

ij  �f��
�  v �f�X

�
i X

�
j ��g

ij �

�� C��estimates

Making T slightly smaller we may assume the existence of a solution to
our �ow equation ����� on the compact time interval ��� T �� This is no
restriction as the a priori estimates obtained will not depend on T � We
remark� however� that our estimate depends on the constant chosen in ������
see also the beginning of the proof of Lemma ��	�

Lemma ���� For a solution of our �ow equation ������ we have the follow

ing bounds for partial derivatives of u on ���

u
� � � and ju��j � �c�	�  	 �M� for any 	 � ��

where � denotes a vector tangential to ��� �k is an abbreviation for hpk �
and

M �� sup
�����T �

jD�uj�

Proof� We use indices to denote partial derivatives and di�erentiate the
boundary condition h�Du� � � on �� tangentially to obtain

u
� � � on ���

To prove our second assertion� we apply the linear operator L de�ned by

L 
w �� � �
w � v �Fuij 
wij � v �Fpi 
wi �
�
�F � �f

�
vpi 
wi
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to w �� h�Du� and obtain using ������ �	��� or Lemma 	��

jLwj � �c�	�  	 �M� �
���tr �Fuij

���
for any 	 � �� Applying the barrier used near Equation ������ we obtain
the claimed estimate for u���

Lemma ��� �Interior estimates�� For a solution of our �ow equation ������
we can estimates the second derivatives of u in � ��� T � compared to those
at the parabolic boundary� more precisely

sup
�����T �

jD�uj � c �
�
�  sup

�������T ������f�g�
jD�uj

�

� c �
�
�  sup

������T �
jD�uj

�
�

Proof� In view of the shorttime existence we �x 	 � � su#ciently small such
that jD�uj��� ��� � � � � 	� is a priori bounded by a constant depending only
on u� and use ������ i� e� we exclude especially the trivial �ow by translation�
Using u��� �	� instead of u��� �� we may assume again that our �ow is de�ned
on a time interval of the form ��� T � and that ����� holds�

We consider the quantity W �� log�H � v� and take �x�� t�� � � ��� T � such
that W �x�� t�� � W �x� t� for �x� t� � �  ��� T �� As our claim is obvious if
�x�� t�� belongs to the parabolic boundary� we may assume that �x�� t�� �
� ��� T �� Further on we may assume H � � there� Equation ����� implies

� � ��� �
H
hlkh

k
l  c at �x�� t���

Thus H is bounded there� This yields the assertion of our lemma�

It remains to bound the second derivatives of u on ��  ��� T �� The next
lemma reduces this estimate to an estimate for tangential directions�

Lemma ���� For a solution of our �ow equation ����� we have

sup
�����T �

jD�uj � c �

�  sup



u



�
�

where � runs through all directions� i� e� vectors with j� j � �� tangential to
���

Proof� We consider a �xed point in ��  ��� T �� Let � be any direction in
R
n � This direction can be decomposed as

� � a�  b��
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where � is a tangential direction to �� at the �xed point and �k � hpk�Du�
there� The constants a� b � R are uniformly a priori bounded due to our
strict obliqueness estimates� Using Lemma ��� we get

u�� � a�u

  	abu
�  b�u�� � c �

sup


u

  c�	�  	 �M

�

with M as in the cited lemma� Fixing 	 � � su#ciently small and using
Lemma ��	 twice gives the claimed estimate�

In the next lemma we bound the second tangential derivatives of u on ��
��� T ��

Lemma ���� For a solution of our �ow equation ������ the second deriva

tives of u are a priori bounded�

sup
�����T �

jD�uj � c�

Proof� Here we use covariant derivatives� We proceed as in the proof of
Lemma ���	� and may assume that ����� holds� We may furthermore assume
that

�x� t� �� �� v � hij�
i�j

gij�i�j
�x� t��

where �x� t� � ��  ��� T � and � runs through vectors tangentially to M�t�
and ��  R� attains its maximum in �x�� t�� ��� with t� � �� Here we
identi�ed �x� t� and �fxg  R� �M�t�� Constructing a vector �eld � as in
Section � near x� we get

v � h���x�� t�� � v � h���x� t�� �x� t� � �� ��� T ��

We may assume that this inequality holds also for �x� t� � �f�g as other�
wise the estimate claimed in this lemma is obvious� Setting W �� v � h�� we
obtain� see ���	��

�W � �F ijWij  	
�

v
�F ijvjWi � c�

where we used ������ We remark that �	��� yields that
���	 �v �F ijvj

��� is a priori

bounded� We may assume that W �x�� t�� � � and set C �� B�x��  R�
The a priori estimates obtained so far imply for

Lw �� �w � �F ijwij  	
�

v
�F ijvjwi

that for small � � � and


W ��
W

W �x�� t��
� �
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we get ������
�����

L 
W � c on M � C�

W � c on M � C�

W � � on �M � C�

W � � on M����

W � � at �x�� t���

We start to construct a barrier which will be used to obtain the claimed
estimate� The main part of this barrier function consists of

� �� �d �d��

where d � dist ��� ��R� is the Euclidean distance to the cylinder over ��
and �� � will be �xed later�on� Direct computations yield on M �C

L� � �F ijd��X
�
i X

�
j � 	� �F ijd�X

�
i d�X

�
j

 c � ��  � � ��  c � � � � � tr �F ij� tr �F ij � �F ijgij �

We use that in an Euclidean coordinate system d�� is equal to the respec�
tive partial derivatives and the strict convexity of �� to get for a positive
constant 	 � � that depends only on the principal curvatures of ��

L� � �		 � tr �F ij � � �F ijd�X
�
i d�X

�
j

 c � ��  � � ��  c � � � � � tr �F ij�

By virtue of Lemma 	�� we can �x � su#ciently large and then � su#ciently
small to control the third term on the right�hand side� Fixing � � � even
smaller if necessary� we can absorb the fourth term and get

L� � �	 � tr �F ij �

Further on we may assume that � is so small that

� � � on �C�

As a barrier function we choose

$ �� A��B � jx� x�j�  
W�

where jx�x�j denotes the Euclidean distance for points in � and is evaluated
on M by projecting �  R orthogonally to �� We �x B � � to obtain an
appropriate behavior on the boundary and then A su#ciently large to obtain
an appropriate sign in the di�erential inequality� more precisely����

���
L$ � � on M � C�

$ � � on ��M � C��
$ � � on M����
$ � � at �x�� t���

Thus the maximum principle implies that $ � � in M �C� We consider $
as being de�ned on � ��� T �� use partial derivatives and get

$� � hpk$k � � at �x�� t��
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and thus by direct computations and Lemma ���

u��� � c � �c�	�  	 �M� � u�� at �x�� t��� �����

We di�erentiate the boundary condition twice and get at �x�� t��

hpkpluk�ul�  hpkuk��  hpkukn��� � ��

where � is a function such that locally �� � graph �j
Rn��

and D� � �
at the point corresponding to x�� The index n corresponds to a direction
orthogonal to ��� Combining this with the Inequality ����� and with the
Lemmata ��� and ��� we get at �x�� t��

�hpkpluk�ul� � c � �c�	�  	 � �u����
�
�

As h is strictly concave we can estimate the left�hand side from below by
inf
k
��hpkpk� � �u���� � �� thus �xing 	 � � su#ciently small bounds u�� and

the claimed estimate follows�

�� Proof of the main theorem

���� Longtime existence� Here and in the following we may restrict our
considerations to time intervals starting at 	 � � instead of �� Thus we
may ignore questions concerning compatibility conditions and smoothness
at t � �� We get uniform C��estimates for the partial derivatives of u and a
positive lower bound for F and conclude that the �ow operator is uniformly
parabolic and concave� So we can apply the results of chapter �� in ��	�
to obtain uniform C����estimates for u� with a small positive constant ��
Then standard Schauder estimates ���� �	� imply uniform bounds in Ck for
all k � �� It follows from the considerations concerning shorttime existence
that a smooth solution of ����� exists for all t � ��

��	� Convergence to a translating solution� We �nish the proof of our
Main Theorem ��� by showing that our solution that exists for all positive
times converges to a translation solution� In this section we use partial
derivatives�

A similar proof can be found in ���� where the existence of a translating
solution is established di�erently� In our situation� however� the existence
of a translating solution is in general not obvious�

We �x t� � � and establish a boundary value problem ful�lled by

w�x� t� �� u�x� t�� u�x� t t���

By the mean value theorem we �nd a positive de�nite matrix
�
aij
�
and a

vector �eld
�
bi
�
� both depending on x and t � such that

�w � aijwij  biwi in � ������
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The boundary value condition for w is derived as follows� For any function
h � Rn � R with fh � �g � ��� and for any smooth strictly convex function
u � �� R� the boundary condition Du��� � �� is equivalent to h�Du� � �
on ��� We have proved that hpk�Du��

k is uniformly bounded from below
by a positive constant on ��� if jrhj � � on ��� and rh points inside ��

there� Here we use h � minfdist ��� ����� 	g for 	 � � su#ciently small�
We could also mollify h slightly near fdist ��� ���� � 	g to obtain a smooth
function h� We get

� � h�Du�x� t�� � h�Du�x� t  t���

�

�Z
�

hpk��Du�x� t�  ��� ��Du�x� t t��� d� � wk � �kwk�

so for 	 � � su#ciently small� �k is almost equal to

� � hpk�Du�x� t��  ��� �� � hpk�Du�x� t t����

for some � � ��� ��� Since we have uniform obliqueness estimates during the
evolution� it is possible to �x 	 � � su#ciently small� depending only on the
obliqueness estimates and on the domain ��� such that � as de�ned above
is a uniformly strictly oblique vector �eld� i� e� �k�k � �

c
� ��

The strong maximum principle implies that

osc �t� �� max
x��

w�x� t� �min
x��

w�x� t�

is a strictly decreasing function or w is constant� Next� we will exclude
the case when osc �t� is strictly decreasing but tends to a positive constant
	 � � as t��� For any sequence tn �� we �nd � in view of our a priori
estimates � a subsequence �again denoted by� tn such that for x� � � �xed

u�x� t tn�� u�x�� tn� and u�x� t t�  tn�� u�x�� t�  tn��

�x� t� � � ��tn���� converge locally uniformly in any Ck�norm and their
limits u� and ut��� satisfy our �ow equation in �  R� We de�ne 
w ��
u��ut��� and observe � as the oscillation is monotone �� that the oscillation
of 
w is 	 � �� This� however� is impossible� as the strong maximum principle
shows that a positive oscillation is strictly decreasing� So we obtain that

u�x� t�� u�x� t t��� �v� � t� as t��� �����

uniformly in x � �� As we will see later�on� the constant v� has been
introduced such that it equals the velocity of any translating solution� For
an arbitrary sequence tn ��� we consider

u�x� t tn�� u�x�� tn�� �x� t� � � ��tn����

In view of our a priori estimates we may extract a not relabeled subsequence
tn �� such that

u�x� t tn�� u�x�� tn�� u��x� t� ���	�
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locally uniformly in � R in any Ck�norm as n��� Equations ����� and
���	� give

u��x� t t�� � u��x� t�  v� � t� for �x� t� � � R�

The function u� is again a solution to our �ow equation� We repeat the
argument given above with �u�� t��� t� � �� instead of �u� t�� and obtain a
solution u� of our �ow equation satisfying

u��x� t ti� � u��x� t�  v� � ti for �x� t� � � R� i � f�� �g�
where it is easy to see that v� is the same constant as above� We get a
smooth function u� � � R � R� that satis�es our �ow equation and

u��x� t �� � u��x� ��  c� � � for �x� t� � � R

for any � � �� To see this we can either take t� and t� as incommensurable
positive numbers or we iterate the above argument for appropriate tk � ��
k � N� and consider a diagonal sequence� Thus we have established the
existence of a translating solution to our �ow equation� We remark that
this solution is � up to additive constants � the only translating solution of
our �ow equation� This follows from the strong maximum principle applied
to the di�erence of two translating solutions similar as at the beginning of
this section�

Finally� we show that u converges to a translating solution� As above we
get a linear parabolic di�erential equation for W �� u� u���

�W � aijWij  biWi in � ������

� � �kWk on �� ������

with a strictly oblique vector �eld �� Then we get that the oscillation of W
tends to zero� thus u � u� tends to a constant c� as t � �� We can use
interpolation inequalities of the form

kDwk�C� � c��� � kwkC� � ���D�w
��
C�  kDwkC�

�
for w � W � c� and its derivatives and get smooth convergence of u to a
translating solution� This �nishes the proof that any solution of our �ow
equation ����� exists for all positive times and tends eventually smoothly to
a translating solution�

Appendix A� Prescribed curvature

If we assume in contrast to the assumptions above that f � �  R � R is
smooth� positive and satis�es fz � � we can prove as in ���� that our �ow
converges to a hypersurface of prescribed curvature provided that either

fz

f
� cf � �
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or both the �rst two compatibility conditions for u� and

�u � � for t � �

are ful�lled� �The derivative of f with respect to the second argument is
denoted by fz��

The a priori estimates obtained in the sections above guarantee that we get
a solution for all positive times with estimates as above� Convergence to a
hypersurface of prescribed curvature follows then similar to �����

Appendix B� Hessian flows

B��� Second boundary value problems� We consider the second bound�
ary value problem for non�parametric logarithmic Hessian �ows�

�u � �F �D�u�� log g�x�Du� in � ��� T ��

Du��� � ���
�B���

on a maximal time interval ��� T �� T � �� u � � ��� T � � R� The Hessian

function F belongs to the class
�

K�
�
or equals Sn�k� � � k � n � �� We

assume that �� �� � R
n � n � 	� are strictly convex domains� u� � �� R is

a strictly convex function� Du���� � ��� and g � � �� � R is a smooth
function� As initial condition for u we take

ujt�� � u��

It is known ���� that this initial value problem has a smooth solution u �
������ and u� �u� Du� and D�u are continuous up to t � �� For t � �	����
	 � �� we have uniform bounds for all Ck�norms besides for juj that may
increase as follows

ku��� t�kC� � ku��� ��kC�  t � k �u��� ��kC� �

These estimates are not stated explicitly in ����� but follow immediately
from the calculations there� For the longtime behavior of solutions we have
the following result�

Theorem B��� Under the assumptions stated above� u converges smoothly
to a translating solution u� with velocity v�� i� e� u��x� t� � u��x� �� 
v� � t� of �B��� as t � �� The translating solution u� is independent �
up to additive constants � of the choice of u�� If F �D�u� � detD�u and

g�x� p� � g��x�
g��p�

with smooth positive functions g� and g�� then v� is given by

v� �� log

Z
��

g��p� dp� log

Z
�

g��x� dx�
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Proof� It follows from ���� that a solution to our initial value problem exists
for all positive times� Furthermore we get bounds for the Ck�norms as in
the proof of our Main Theorem ��� and thus longtime existence of solutions�
As above we conclude that our solutions converge to translating solutions�
that are unique up to additive constants�

It remains to compute the velocity of a translating solution in the special
case mentioned above� Let u be a translating solution� We get

v� � log detD�u� log
g��x�

g��Du�

or equivalently

g��x� � ev� � detD�u � g��Du��
We integrate this equation over � and get

ev
� �
Z
�

g��x� dx �

Z
�

detD�u � g��Du� dx �

Z
��

g��p� dp�

where we have used the transformation rule� This implies that v� is as
claimed�

Remark B�	� In the special case of Theorem B�� when g�x� p� � g��x�
g��p�

and

F �D�u� � detD�u� it is possible to obtain the translating solution directly
as in Theorem 	 ����� The second boundary value problem�

detD�u� � e�u��v
� � g��x�

g��Du� in ��

Du���� � ���

is known ���� ��� to have a solution u� for � 
 	 
 �� We integrate this
equation and use the transformation formula for integrals

ev
� �
Z
�

e�u� � g��x� dx �

Z
��

g��p� dp�

so we infer from the de�nition of v�Z
�

e�u� � g��x� dx �

Z
�

g��x� dx�

and deduce that u� is zero somewhere in �� Now� uniform Ck�a priori
estimates follow from the proofs in ���� ���� We let 	� �� extract a suitable
subsequence of u� and obtain a solution u of�

v� � log detD�u� log g�x� in ��

Du��� � ���
�B�	�

Then we de�ne

u��x� t� �� u�x�  v� � t� �x� t� � � R�
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and get a solution u� of�
�u� � log detD�u� � log g�x� in � R�

Du���� � ��
�B���

that moves by translation with velocity v��

B�	� Neumann and oblique boundary value problems� In ���� we con�
sidered �ows for Hessian equations subject to Neumann and oblique bound�
ary conditions� e� g� �ow equations of the form

�u � log detuij � log f�x� u�Du� in �

for boundary conditions of the form

u� � ��x� u� or u� � ��x� u� on ���

where � is the inner unit normal vector to � and � is a vector that is C��close
to �� For more details we refer to �����

If we assume in contrast to the cited paper that both f and � depend only on
x� then both for Neumann and oblique boundary conditions with � C��close
to �� it follows immediately from the techniques used here and in ����� that
any solution converges smoothly to a translating solution of the respective
�ow equation�

We remark that it is also true for the remaining �ow equations in ���� that
solutions converge smoothly to translating solutions if f and � are as as�
sumed above�
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