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TRANSLATING SOLUTIONS TO THE SECOND
BOUNDARY VALUE PROBLEM FOR CURVATURE FLOWS

OLIVER C. SCHNURER

ABSTRACT. We consider the flow of strictly convex hypersurfaces driven
by curvature functions subject to the second boundary condition and
show that they converge to translating solutions. We also discuss trans-
lating solutions for Hessian equations.

1. INTRODUCTION

We counsider the parabolic initial value problem describing the evolution of
a hypersurface in R**!

X = —(log F — log f)v,
v(M) = v(Mo), (1.1)
M|t:0 = Mo,

where X is the embedding vector of a smooth strictly convex hypersurface
with boundary, M = graph ul, w : 0 — R, X is its total time derivative
and Q C R", n > 2, is a smooth strictly convex domain. The strictly
convex hypersurface M evolves such that its velocity in direction of the
upwards pointing unit normal vector v is determined by a given smooth

positive function f : @ — R and a curvature function F' of the class (f( *)

defined below. We remark that this class of curvature functions contains
especially the Gaufl curvature. The curvature function F' is evaluated at
the vector (k;(X)) the components of which are the principal curvatures of
M at X € M, f is evaluated at X where the (n + 1)-th component of X
is ignored. The image of the normal of M, v(M), coincides with the image
of the normal of the smooth strictly convex hypersurface My = graph |,
we start with. We will assume that the closure of v (M) is a geodesically
strictly convex subset of the unit sphere S™ contained in S™ N {z"*! > 0}.

From the definition of the unit normal v of M it follows that prescribing
v(M) = v(My) is equivalent to prescribing Du(2) = Dug(2) =: Q*, where
Q* is a strictly convex subset of R”. Thus we consider a flow equation
subject to a second boundary value condition.
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To formulate our main theorem we introduce — referring also to the defini-
tions in Section 2.2 —

1 < OF
v=1+/14+|Dul?> and d:= sup—Z—-/@i

kel 4 F i=1 8K’i

where I'; is the positive cone in R”. If F' is a positive homogeneous function,
then ¢y equals the degree of F. We assume the following inequality

v-(logF —log f) <dp fort=0, (1.2)

i. e. the initial velocity is not too large. This restriction (1.2) for the initial
velocity is unattractive. At the moment, however, we need this assumption
to prove uniform a priori estimates for the principal curvatures of M during
the evolution.

Under the assumptions stated above, we obtain the following main theorem.

Theorem 1.1. The initial value problem (1.1) admits a convex solution
M (t) = graph u(t)|q, that exists for all times t > 0 and converges smoothly
to a translating solution M ™ = graphu® of the flow equation

X = —(log F —log f)v,
4 oan o, )

i. e. there exists v>° € R such that u™(z,t) = u™>(z,0) + 0> -t. Up to
additive constants, the translating solution is independent of the choice of
My, but depends on v(My), F, f and Q. The function u is smooth fort >0
and u, Du, D?*u, U are continuous up to t = 0.

We will also consider flow equations for Hessian equations in Section B.
There we do not need a condition like (1.2) for the initial velocity.

We mention some similar papers. In [1] the authors study translating solu-
tions for the mean curvature flow whereas flow equations are considered in
[3, 5, 7] to prove existence for elliptic problems. Flows with boundary con-
ditions are studied in [8, 10, 14]. Elliptic Hessian equations with Neumann
and oblique boundary conditions are solved in [13, 18], the second boundary
value problem is considered in [17, 19] for Hessian and in [16] for curvature
equations.

Some techniques used in [14, 16] are useful for our proof of the a priori
estimates, although we found a different notation more appropriate for our
C?-a priori estimates. For the proof of the convergence to a stationary
solution we can adapt a proof of [1]. We do not explicitly cite these papers
each time we use them in the following.

Our paper is organized as follows. In Section 2 we describe our differential-
geometric notations, introduce a class of curvature functions, rewrite our
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evolution equation in non-parametric form, define the Legendre transfor-
mation, state some properties of the curvature functions introduced, and
describe the effects of compatibility conditions to solution for short time in-
tervals. We show that our boundary condition is strictly oblique and prove
lower order estimates in Section 3. In Section 4 we derive geometric evo-
lution equations needed for the C2-a priori estimates proved in Section 5.
Then, we prove our main theorem in Section 6 and conclude with some re-
marks on convergence to hypersurfaces of prescribed curvature in Section A
and on translating solutions for Hessian equations in Section B.

We wish to thank Jirgen Jost and the Max Planck Institute for Mathematics
in the Sciences, Leipzig/Germany, for support during this research.

2. PRELIMINARIES

2.1. Geometric notations. The notation used is very similar to [7]. Hav-
ing fixed coordinate systems in R"*! and M, we use Greek indices running
from 0 to n to denote components of geometric quantities defined in R*+!
and Latin indices starting at 1 for quantities related to the hypersurface M.
Lower and upper indices refer to covariant and contravariant transforma-
tion properties, respectively. We use the Einstein summation convention.
Covariant derivatives are indicated by (additional) indices, sometimes pre-
ceded by a semicolon for greater clarity, whereas a comma, indicates partial
derivatives, so we have

Xjj = X% - TXE,
where (I‘%) denotes the Christoffel symbols of M. These derivatives of the

embedding vector M are related to the second fundamental form (h;;) and
to the upwards pointing unit normal (v®) of M by the Gauf} formula

[0 e
Xij = —hiv®.

Using M = graphu, partial derivatives and lifting the indices with respect
to the Kronecker-delta, we see that v is given by

() = % (1,—u"), v=1+1+ulu,.

Covariant derivatives of v can be expressed by the Weingarten equation
Via = hi'CXl? )

where we lifted the index of the second fundamental form with respect to
(g”), the inverse of the induced metric (g;;) of M,

9ij = 0ij +uing, g7 =Y — —-.
If not stated otherwise we will lift and lower indices with respect to the
induced metric when we use covariant derivatives and with respect to the



4 Oliver C. Schniirer

Kronecker-delta if we use partial derivatives. The Codazzi equation — to-
gether with the symmetry of the second fundamental form — states that h;;,
is unchanged under permutations of the indices. The Gaufl equation gives
the Riemannian curvature tensor (R;jx;) of M

Rijri = highjr — hiythjg,
used in the Ricci identity which we mention only for the second fundamental
form
hikyj = hikji + hiRaij + b Rakij
From the 0-th component of the Gaufl formula we obtain

1
Jhii = —uij,

so M is strictly convex if (—u;;) is positive definite. Calculating u;; =
Ugj — I‘fjuk = u%“:ijv we see that the convexity of M is equivalent to the
concavity of u. Of course, the function u is called concave if u(-, t) is concave
for all t.

In what follows we rewrite our evolution equation as follows

X =—(logF —log f)v = — (F—f) v.

Sometimes it will be convenient to work with indices that indicate partial
derivatives. We will point out this in the respective sections. In contrast to
the lifting of indices as mentioned above, (u/) denotes the inverse of (u;;).
We also wish to introduce the abbreviation u, = w;v* for a vector v. The
letter c is used to denote constants. These constants are positive estimated
quantities that may change its value from line to line. Inequalities remain
valid if a constant ¢ on the "right-hand“ side is enlarged.

2.2. Curvature functions. We introduce some classes of curvature func-
tions similar to [5, 15]. A slightly different class of curvature functions is
considered in [16]. Our choice of the class of curvature functions used in our
main theorem is not the most general choice possible. Instead we preferred
a choice that corresponds to the examples of curvature functions we know
for which such a theorem holds.

Let T, C R" be the open positive cone and F € C®(I';) N C?(Ty) a
symmetric function satisfying the condition

oF
then, F' can also be viewed as a function defined on the space of symmetric,
positive definite matrices Sym™ (n), for, let (h;;) € Sym™(n) with eigenval-
ues ki, 1 < i < n, then define F on Sym™(n) by
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We have F € C®(Sym™)n C° (Sym+>. If we define

OF
Ooh; j ’

then we get in an appropriate coordinate system

FY =

. OF | ;2
FZ]fifj:%‘fz‘ VEeR,
(3

and F¥ is diagonal, if h;; is diagonal. We define furthermore

gkl O*F
8hij Ohy, '
Definition 2.1. A curvature function F' is said to be of the class (K), if
Fec™Ty)nc’(Ty), (2.1)
F' is symmetric, (2.2)

F' is positive homogeneous of degree dy > 0,

oF )
Fi = a—m >0 in F+, (23)
Flop, =0, (2.4)

and
Fkyy iy < F (l*ﬁijmj)2 — F*pI,mm Y € Sym,
where <iLZ] ) denotes the inverse of (h;;), or, equivalently, if we set F=1ogF,
F9Rim < —F*1W'ngne ¥ € Sym,
where F' is evaluated at (h;;).

If F satisfies
Jeo>0: eoFH =eoFtrh! < FPhyht

for any (h;j) € Sym™, where the index is lifted by means of the Kronecker-
Delta, then we indicate this by using an additional star, F' € (K*).

The class of curvature functions F' which fulfill, instead of the homogeneity
condition, the following weaker assumption

1
34 : —F < Fik; < 6 F 2.
0>0 0<50 _; Ki < 0g (2.5)
is denoted by an additional tilde, F' € (f( ) or F' e (f( *).

A curvature function F' which satisfies for any € > 0

F(e,...,e,R) = +o00, as R— +o0,
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or equivalently
F(1,...,1,R) - 400, as R— o0,

in the homogeneous case, a condition similar to an assumption in [2], is said

to be of the class (CNS).

Example 2.2. We mention examples of curvature functions of the class
(f(*) as given in [5, 15].

Let Hj be the k-th elementary symmetric polynomials,
Hy(ki) = Z Kip * oo Kip, 1<k <n, (2.6)

1<i1 <..<ip<n
1
o = (Hk) k

the respective curvature functions homogeneous of degree 1 and define fur-
thermore

=

Ok (Ki) == P e (Snn—k)* -

The functions S, ;, belong to the class (K) for 1 <k <n—1 and H,, belongs
to the class (K™).

Furthermore, see [5],
N
F:=H%. HF(‘%, a; >0, (2.7)
i=1
belongs to the class (f(*) provided F; € (K’ ), and we may even allow
F(Z) ;é 0 on 8P+

An additional construction gives inhomogeneous examples [15]. Let F' be as
in (2.7), n € C*°(R>¢) and ¢, > 0 such that
1
0<—§77§Cm nISOa
n
then
i

F(ki) :==F | exp /MdT
1

T

belongs to the class (K’*)

The considerations above remain applicable if we evaluate F' in what follows
at the eigenvalues (x;) of the second fundamental form (h;;) with respect to
the metric (g;;), i. e. x is an eigenvalue if there exists £ € R \ {0} such that

k- gij€ = hijel.
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Then OF
F =
8hi j

is a symmetric covariant tensor of second order.

2.3. Non-parametric flow equation. Our boundary condition guaran-
tees that we can represent our solution as graphu. Now we will derive a
parabolic evolution equation for u equivalent to

K= (ki)

Therefore we choose local coordinates (z') of R and obtain

4o _ A iy _Ou i (p_ AL
aX = v (x’.t)’t)_atJr“ZX_ (F f)v’
d . . A\ ut .

X1 = (F—f);, 1<i<n,

where we used the definition of v and (1.1). Combining these equations
yields

d ou A
u(e,t) = St =—v (F - f

2.4. Legendre transformation. In this section we use indices to denote
partial derivatives and ignore our convention that upper and lower indices
correspond to contravariant and covariant quantities, respectively.

The Legendre-transformation of w: Q x [0,7) — R, v* : Q* x [0,T) — R, is
defined by

U*(yat) = (I;iui(xat) - U((L‘,t) = xiyi - u, yi = ui(m,t).
We look for an evolution equation for v*. From the definition of u* we get

. . o 0*u’ 2, \-1\ — ki

u = —u, 8—yk:$k, W:((DU) )kl:u ,

where y is considered as a time independent variable. We use (\/gg ) and
<\/g*15> to denote the square roots of (g;;) and (gij), respectively, which
are pqsitive deﬁnite symmetric matrices such that \/§g \/Efékl = g;; and
\/g_lz- g_liékl = ¢", explicitly

j: ? . =0 - —
V9 =0+ 97 =0 v(l 4+ v)

1+’
Then, following [9], the principal curvatures r;, 1 <1 < k, are the eigenval-
ues of the matrix (a;j), where

k 1
Qjj = —\/ 971 %\/ g_lj'
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We may consider /g as a function of y and set

ikl =) k !
aj; = —o\/gu" /g = =1+ [y2V/g; (v)uipv/g; ().
Then the eigenvalues of a;; are given by %, 1<i<n Weset fork €'}

F* (1) o= ——

and
fr=
Thus we obtain the following evolution equation for u*
= —/1+ |y|? <log F*(a;) — log f*(Du*)) in QF,
Du*(Q*) = Q,
where F'™* is evaluated at the eigenvalues of a . For later use we differentiate
this flow equation using the index k for derlvatlves with respect to y¥

sk Yk nes at) — £ u* )

~ VI WP (B iy + B — i) -
We compute F;* and F*,C explicitly,
ij

*z* __F* V1+|y \/_k\/_l

and

R X b
= —F;;j ((v 1+ |y|2\/§?) ab\/_ + V1 + |y Vaiug, gj,k) :

2.5. Properties of curvature functions. Important properties of the
class (f(*) for the a priori estimates of the second derivatives of u at the
boundary are stated in the following lemmata.

Lemma 2.3. Let F € (.f{*), then for fized € > 0
F(e,...,e,R) >0 as R — oo,

i. e. (f(*) C (K) N (CNS), moreover, when F € ( ) (CNS),0< 1<
F <c¢, and

0< A <o <Ay,
then the following three conditions are equivalent

M —0, A\ — o0, and trF9 — co.

Proof. We refer to [15]. O
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For the dual functions we have a similar lemma.
Lemma 2.4. Let F € (.f{*),
0< A <.l < Ay,
and 0 < % < F < c. Then the following three conditions are equivalent

M =0, M —o00, and trF* — .

Proof. We have Fy > ... > F,, > 0, see [6, 17], so we get in view of the
definition of F™*

e =T (F? N
Thus F} — oo as A\; — 0 gives the result as (F*)~! = F, and )\, — oo
forces Ay = 0 in view of Lemma 2.3. To get tr F*Y — oo, A has to leave
any compact subset of I'y. O

Lemma 2.5. Let F € (f() N(CNS). Then F* as defined above satisfies

(2.1), (2.2), (2.3), (2.4) and F* € (CNS). For F = (Spz)7F, 1 <k <
n — 1, and obviously, see Lemma 2.3, also for F € (f() N (CNS) we have
for any e >0

D FA < (cle) +e-IN) - D B (2.9)

Proof. See [17]. O

2.6. Shorttime existence and compatibility conditions. In this sec-
tion we use partial derivatives. In the introduction, we have rewritten our
boundary condition v(M) = v(My) equivalently as Du(Q) = Q*. Now, we
take a smooth strictly concave function h : R” — R such that A~ = 0 and
|IVh| = 1 on 0Q*. In what follows we use h,, instead of hj as h will be
evaluated by using the gradient of a function. For smooth strictly convex
functions u, our boundary condition is equivalent to h(Dwu) = 0 on 0f.

We will derive compatibility conditions fulfilled by a smooth solution u : Q x
[0,7) — R and show then how compatibility conditions affect the regularity
of u at ¢ = 0. We take a solution u, smooth up to t = 0, and compute time
derivatives of our boundary condition,

=0 ond, meN

(%)m MO

For fixed m, we call this equation the compatibility condition of order m. For
m = 0 we get back our boundary condition. In the case m > 1 we can sub-

stitute time derivatives of u, Du, ... , inductively by using @ = —v (F‘ — f)
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and derivatives of this equation. Thus we can express compatibility con-
ditions of any order so that they contain only spatial derivatives of w at
t = 0. These necessary conditions for smoothness of a solution of (1.1) at
t = 0 are also sufficient for smoothness, more precisely, let My = graphug
satisfy the compatibility conditions of m-th order for 0 < m < my. Later-on
we will prove that our boundary condition is strictly oblique, so we deduce
from Theorem 5.3, p. 320 [11], and the implicit function theorem, see also
[4], that there exists a solution of our initial value problem (1.1) on a max-
imal time interval [0,7"), T' > 0. This solution is smooth for ¢t € (0,7) and
has continuous derivatives up to 2(mg + 1)-th order at ¢ = 0, where time
derivatives have to be counted twice.

As usual, longtime existence follows from shorttime existence and uniform
a priori estimates as follows. Assume that we have - as long as a solution
exists - estimates for the function u of the form

||U||ck(ﬁx(§7t)) <cp-(1+t), keN,

where it would be sufficient to have a locally bounded function — defined for
t > 0 - of t on the right-hand side. We assume that [0, T") is the maximal time
interval where our solution exists. Then the a priori estimates guarantee
that we can extend our solution to [0,7]. As we have a smooth solution, it
satisfies the compatibility conditions of any order at ¢ = T, so applying our
considerations above, we get a solution on a time interval [0,T +¢) for some
e > 0, which is smooth for ¢ € (0,7 + ¢) contradicting the maximality of 7T'.

3. OBLIQUENESS AND LOWER ORDER ESTIMATES

In this section we use indices to denote partial derivatives and v is the inner
unit normal vector to 0.

3.1. Strict obliqueness.

Lemma 3.1. As long as a solution of (1.1) exists, our boundary condition
18 strictly oblique, 1. e.

(v(z),v* (Du(z,t))) >0, =z €, (3.1)

where v and v* denote the inner unit normals of Q and Q*, respectively.

Proof. To prove (3.1) we use
vi(z) - vf (Du(z,t)) = V' - hy,(Du(z,t)).

As h(Dwu) is positive in €2 and vanishes on 0€2, we get on 0f) for 7 orthogonal
to v

hp,ukr =0,  hy up, > 0. (3.2)
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Thus we see from
hpkllk = hpkukiuijl/j = hp, upy - v’ >0 (3.3)

that the quantity whose positivity we wish to show is at least nonnegative.

We compute in view of (3.2) and (3.3) on 02

2
(hpk I/k) = u"hy, up,u” uyihy,
= u””hpkukiuijujlhpl
= u””uklhpkhpl,
so we deduce the positivity of the quantity considered. U

3.2. 1~ and C’-estimates. We define the function
ra= (1)*
and consider F(k;) as a function of (Du, D?u), F = F(Du, D?u). Calcu-

lations similar to those in Section 2.4 show that (Fu”) is negative definite.
We get '
. A A u'; L
= o (Fuying + Byie) — (5 7)),
( AR O 1+ |Dul? f
These preparations allow to deduce the following parabolic evolution equa-
tion for r

i y ~ ~
u'r; (F B f) '
V14 |Dul?
Lemma 3.2. As long as a smooth solution of (1.1) exists, we obtain the
estimate

T+ oky;ri; = 20Fy, a0 — vFp T —

min {rtrli(l)ld, 0} <1 < max {r{@g{d,O} .

Proof. If (11)? admits a local maximum at = € 92 for some positive time,
we differentiate our boundary condition and get there

hp, 0y, = 0.
As hyp, is strictly oblique, this contradicts the Hopf maximum principle un-
less @ is constant. On the other hand, the evolution equation for r implies
A A uZT‘Z A A
r+olFy, ri; < —vFpr — ————— (F—f) .
Uij 1] pife /1 + |Du|2

This excludes an increasing local maximum of (%)? in Q x (0,7) and we get
the claimed inequality. O

Corollary 3.3. As long as a smooth solution of (1.1) exists, we get
s )l gy < T Ol gy + - i, )l

and F is uniformly a priori bounded.
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Remark 3.4. Applying the strong maximum principle to % we deduce that
either v - (F f) < §o uniformly provided ¢ > ¢ for fixed € > 0 or v -

(F’ — f) = Jp everywhere independent of ¢, because (1.2) tells us that v -
(F’ — f) < §p for t = 0. Thus we may assume in view of the shorttime
existence — by restricting to ¢ > ¢ — that v - (F — f ) < ¢ uniformly during

the flow as the trivial case v - (f?’ — f = Jp corresponds to a translating

solution and needs no further considerations. This difference between v -
F — f) and &y will be used in the proof of the C?-a priori estimates, we
set

0 < 0. :=juf {50— (F—f)} (3.4)

3.3. Strict obliqueness estimates. The purpose of this section is to quan-
tify the strict obliqueness of our boundary condition.

Lemma 3.5. For a smooth solution of (1.1) we have the strict obliqueness
estimate

(w(z), v (Du(z, 1)) > % >0, zeon,

where v and v* denote the inner unit normals of Q and QF, respectively.
The positive lower bound is independent of time.

Proof. We fix a time interval (0,7], where a smooth solution of our flow
(1.1) exists and prove that there exists a positive lower bound for hy,, v* for
(x,t) € 02 x [0,T] which is independent of T. To establish this positive
lower bound, we choose (z9,%9) € 9Q x [0,7] such that hy v* is minimal
there. As we have a positive lower bound for h,, v* on 9Q x {0}, we may
assume that g > 0. Further on, we may assume that v(z() = e, and extend
v smoothly to a tubular neighborhood of 02 such that in the matrix sense

Dt =1l < ——6k (3.5)

there for a positive constant ¢;. For a positive constant A to be chosen
below we define
w = hy, V¥ + Ah(Du).
The function w|yq o 7y attains its minimum over 9 x (0,77 in (2o, to), so
we deduce there
0 = w, = hy ptgy +hp v+ Ahpupy, 1<r<n—1, (3.6)
0 > w. (3.7)
We assume for a moment that there holds
wn($07t0) > _C(A)7 (38)
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show that this estimate yields a positive lower bound for uy;h,, hy,, and prove
(3.8) afterwards. Then the lemma follows from the calculations in the proof
of Lemma 3.1 and from a positive lower bound for u*”.

We rewrite (3.8) as
Pppytiin + By VE 4+ Ahy, gy > —c(A).
Multiplying this with h,, and adding (3.6) multiplied with &, we obtain at
($07 tO)
Auphp, hp, = —c(A)hp, — by, Vlkhpl — hpyhpy,py Uik
Using (3.2), the concavity of h and (3.5), we get there

1
Augihphp, > _C(A)hpn + =

C1

as [Vh| = 1 on 09*. We may assume that the right-hand side of the in-
equality above is positive as otherwise h,, = hp, v¥ is bounded from below.
Thus we deduce a positive lower bound for wughyp, hyp,.

We now sketch the proof of (3.8). As for a similar proof with more details
we refer to [14]. We differentiate our flow equation @ = —v (ﬁ’ - f) and
obtain

uk = -0 (FUUUZ]]C + Fpiuik - fk) - (F - f) Up; Wik- (39)

This is a motivation to introduce the following linear parabolic differential
operator L by

Lw := —l'f) — Uﬁu”’lf)ij — Uﬁpiﬁ)i — (F — f) ’Upi’lf)z'.

We remark that the chain rule and (2.5) show that Fpi is bounded, the chain
rule and (2.3) give a positive lower bound for —tr Fuij = —ﬁ’uij d;j. Direct
calculations give for A sufficiently large

~

Lw < _UFuijuliumijhpkplpm — AvFy, by pugiug — c(A) - tr Fy,,
< —c(A) - tr Fuij.

As Q is strictly convex, there exist p > 1 and ¢ > 0 such that for 9 :=
d — pd?, where d = dist (-, 92), we have near J in view of Lemma, 2.3

LY < +e-tr By, . (3.10)

The proof of this inequality is omitted here as it is carried out in [14] and in
Lemma 5.4 in similar situations. We consider ¢ only in Qg5 := Q N Bj(xo),
where 6 > 0 is chosen so small that ¢ is smooth and nonnegative there and
the above inequality holds. As w is bounded and attains its minimum over
0 x [0,T] in (zg,tp) we find C > B > 1 such that the function

@::C-QS‘+B-|m—x0|2+w—w(x0,t0)
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satisfies
© > 0 on (095 x[0,T]) U (Qs x {0}),
LO < 0 in Q5 x[0,T)].
Thus the maximum principle gives
(C -1 + U))n(ZL‘o,to) Z 0

as the function C -9 + B - |x — x¢|? +w — w(x¢, to) vanishes in (xg,to). This
shows Inequality (3.8).

Similar to the argument above we extend v* smoothly to a tubular neigh-
borhood of 9€2* such that V;‘k < —%55 in the matrix sense and take h* as a
smooth strictly concave function such that {h* = 0} = 9Q and |Dh*| =1
on 0f). We define

w* = th(Du*)V*]C + AR*(Du™)

and in view of (2.8) we define furthermore

*~-—_L_ n ~.._ A*
L™ := —w vFu;,«ij] vfg

W

As before we obtain that w*|89X[07T} is positive. We fix 7" > 0 and assume

that w*|yq, (o, attains its minimum in (z9,%0). As we wish to establish a

positive lower bound for w* we may assume that £y > 0. Direct calculations

and Lemma 2.4, which implies a positive lower bound for —tr F. , give for
ij

A sufficiently large

%,k [ 1% 1 [k 7k *
L*w* < ¢ (1+ A) ‘Fyk - EA”Fu;‘thkqluki

uj; — c(A) - tr F;:j. (3.11)
Then

Py == P Vo o
and Young’s inequality imply for any € > 0

[1%
5

N g C A
< _ * *' * i (A * .
< —eFy: upug;o 6tr Fy.

Combining this with (3.11) gives

L*w* < ¢(A) -

tr B
u;‘j

Now we can proceed as above, use Lemma 2.4 and get at (¢, tp) an inequal-
ity of the form

k !
Aupihy, hy, > —c(A)hy, v — vi'hy, by, (3.12)
Since h;ku*k = (v*,v), we may assume again that this quantity is small.

The second term on the right-hand side is bounded below by a positive
constant in view of the convexity of Q* and |Dh*| = 1 on 9Q*, so we deduce
up hg, hy, > % > 0. Using uy;, = u* and hg, = v¥ we obtain a positive lower
bound for u4*” completing the strict obliqueness estimate. ]
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4. GEOMETRIC EVOLUTION EQUATIONS

In this section we describe how geometric quantities evolve during the flow.
Proofs for these results in a similar notation can be found in [7]. We start
with the evolution equation for the metric

gij = —2 (F—f> hij
and for the unit normal of the hypersurface M
e = gid (F - f)in.

For the second fundamental form of M we state the evolution equation both
for the mixed and for the covariant form

W= (ﬁ_f)iu(ﬁ_f)h;mg;,
hij = (F=1) —(F=1) b

Applying the chain rule to the term F— f there and interchanging covariant
derivatives by means of the Codazzi equations and Ricci identities gives

W= PR = BN hih] — B hhin] 4 (B = f) RERL (41)
+ Fkl’rshkl;ihrs;j - fa,@XiaX]fgkj + foﬂ/ahg-

For the scalar product © of v and e,11 = eg, i. e. for v = (v,n) = V*7q,
where (7o) = (1,0,...,0), we get the evolution equation

o — Fg; = FIRERyo — faX ) X009
and for v = #~! we get thus
L L . g 1 ..
0 — FYv = —vF”hfhkj + UQfﬁXfX]qnag” — 25F”vivj.

For these two evolution equations we assumed Euclidean coordinates in
R**1 5o derivatives of 7, vanish. In the following we will always assume
that we have chosen Euclidean coordinates in R"*!. As a direct consequence
of the evolution equations obtained so far we get for the mean curvature,
H = hz'jgij = hé,

)

H—FMEy = FRp i H — BRhyhiee + (F - f) hEhi

+ Fkl’rshkl;ihrs;jgij — faﬂXio‘Xjﬂgij + fal/aH.

The right-hand side of (4.1) is a tensor with a covariant index ¢ and a
contravariant index j. Thus we can multiply this equation with vector fields
and the result at a fixed point depends only on the value of these vector
fields there but especially not on any derivatives. We deduce that the same
is true for both terms on the left-hand side.
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Taking any non-vanishing vector field € : R* — R" we can project £ (z) to
the tangential hyperplane to M at X = (u(z,t),z) and normalize it such
that the result {(z) satisfies g;;¢'¢? = 1. We set & = g;;¢’. In view of the

above considerations we get directly an evolution equation for hg fjfi. For
simplicity we set hl := hg fjfi and consider h! as a scalar function. Thus we
get for W := hl - v the following evolution equation

. Ny 1 .. . .
W — B+ 2= Fiow; = v ((F - f) - Fiing) ntn} (4.2)
v
+ h% (vzfﬂX%Bqunagij + 'Ufoﬂ/a>
+ ’Uﬁkl’rshkl;lhrs;l - ’Ufa/ng‘ngkl.

For a similar combination, W :=log(H - v), we get

W= Wy — FIw (W 2L ) = (4.3)
1 [ £ (1] 1 - TS i
- = ((F = F) = Fiiny;) ninf + R it g7

1 - iy A A .
— o XPX] g7 + far™ + 0fs X[ X 1ag".

5. C2-ESTIMATES

Making T slightly smaller we may assume the existence of a solution to
our flow equation (1.1) on the compact time interval [0,7]. This is no
restriction as the a priori estimates obtained will not depend on 7. We
remark, however, that our estimate depends on the constant chosen in (3.4),
see also the beginning of the proof of Lemma 5.2.

Lemma 5.1. For a solution of our flow equation (1.1), we have the follow-
ing bounds for partial derivatives of u on 0€,

u;3 =0 and |ugg| < (c(e) +e- M) for any e >0,

where T denotes a vector tangential to 02, B* is an abbreviation for hop,. »
and

M := sup |D%ul.
Qx[0,17]

Proof. We use indices to denote partial derivatives and differentiate the
boundary condition A(Du) = 0 on 952 tangentially to obtain
u;3 =0 on 0.

To prove our second assertion, we apply the linear operator L defined by

Lw := —lb — 'UFuijwij — ’UFpi’lI)Z’ — (F — f) ’Upi’lf)z'
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to w := h(Du) and obtain using (3.9), (2.5) or Lemma 2.5

|Lw| < (c(e) +€- M) - |tr Is’uij

for any € > 0. Applying the barrier used near Equation (3.10) we obtain
the claimed estimate for ugg. U

Lemma 5.2 (Interior estimates). For a solution of our flow equation (1.1),
we can estimates the second derivatives of u in  x [0,T] compared to those
at the parabolic boundary, more precisely

sup |D*u| < c- (1 + sup |D2u|>
Qx[0,T] (89%[0,T])U(2x {0})
c- (1 + sup |D2u|> .
o0 x[0,T

Proof. In view of the shorttime existence we fix € > 0 sufficiently small such
that |D?u|(-,7), 0 < 7 < ¢, is a priori bounded by a constant depending only
on ug and use (3.4), i. e. we exclude especially the trivial flow by translation.
Using u(-, -+¢) instead of u(-, -) we may assume again that our flow is defined
on a time interval of the form [0, 7] and that (3.4) holds.

IN

We consider the quantity W := log(H -v) and take (zo,%9) € Q x [0, 7] such
that W (zo,t0) > W(z,t) for (z,t) € Q x [0,T]. As our claim is obvious if
(x0,t0) belongs to the parabolic boundary, we may assume that (z¢,%9) €
2 x (0,T]. Further on we may assume H > 1 there. Equation (4.3) implies
1
0< _6€Eh§ch'é€ +c at (:E(),t()).

Thus H is bounded there. This yields the assertion of our lemma. U

It remains to bound the second derivatives of u on 9Q x (0,7]. The next
lemma reduces this estimate to an estimate for tangential directions.

Lemma 5.3. For a solution of our flow equation (1.1) we have
sup |D*u|<c- <1 + SupuTT> ,
Qx[0,1] T

where T runs through all directions, i. e. vectors with || = 1, tangential to

092.

Proof. We consider a fixed point in 0Q x [0,7]. Let ¢ be any direction in
R"™. This direction can be decomposed as

& =a7+ b3,
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where T is a tangential direction to J<2 at the fixed point and ¥ = h,, (Du)
there. The constants a, b € R are uniformly a priori bounded due to our
strict obliqueness estimates. Using Lemma 5.1 we get

Uge = au,, + 2abu,g + b2u/3/g <c- <sup Urr +c(e) + €+ M>
T

with M as in the cited lemma. Fixing ¢ > 0 sufficiently small and using
Lemma 5.2 twice gives the claimed estimate. O

In the next lemma we bound the second tangential derivatives of u on 92 x
[0,T].

Lemma 5.4. For a solution of our flow equation (1.1), the second deriva-
tives of u are a priori bounded,

sup |D%*u| < ec.
Qx[0,17]

Proof. Here we use covariant derivatives. We proceed as in the proof of

Lemma (5.2) and may assume that (3.4) holds. We may furthermore assume

that

B £8gT
S8 (1)

S

where (z,t) € 0Q x [0,7] and £ runs through vectors tangentially to M (t)

and 02 x R, attains its maximum in (zg,%,&) with typ > 0. Here we

identified (z,t) and ({z} x R) N M (t). Constructing a vector field £ as in

Section 4 near xy we get

(ZE,t,f) =

v - hi(zo,tg) >v-hi(z,t), (z,t) €0 x[0,T].

We may assume that this inequality holds also for (z,t) € 2 x {0} as other-
wise the estimate claimed in this lemma is obvious. Setting W := v - hi we
obtain, see (4.2),

. s 1 ~..
W—FUWZ’]‘ +2—FZJU]‘WZ' S C,
v

where we used (3.4). We remark that (2.5) yields that ‘2%Fijvj‘ is a priori

bounded. We may assume that W (xo,t9) > 1 and set Cs := Bs(zg) x R.
The a priori estimates obtained so far imply for

L 1 ..
Lw :=w — FYwj + 2= FYvw;
v

that for small § > 0 and
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we get
LW < ¢ on M N Cs,
W < ¢ onMnNCy,
W < 0 ondMnNCy,
W < 0 on M(0),
W = 0 at ($0,t0).

We start to construct a barrier which will be used to obtain the claimed
estimate. The main part of this barrier function consists of

¥ = —d + pd?,

where d = dist (-, 02 x R) is the Euclidean distance to the cylinder over 0f2
and p > 1 will be fixed later-on. Direct computations yield on M N Cjs

LY < FUdggXPX) —2uF'do X0dsX)!
te-(I+p-0)+c-p-0-tr F9  tr B = Fiig;.
We use that in an Euclidean coordinate system d,s is equal to the respec-

tive partial derivatives and the strict convexity of 02 to get for a positive
constant ¢ > 0 that depends only on the principal curvatures of 0f2

LY < —2-tr B9 — pFd, X0dgX)
te-(M+p-0)+e-p-d-tr Y,

By virtue of Lemma 2.3 we can fix p sufficiently large and then § sufficiently
small to control the third term on the right-hand side. Fixing 6 > 0 even
smaller if necessary, we can absorb the fourth term and get

LY < —e-tr FY.
Further on we may assume that J is so small that
¥ <0 on JCs.
As a barrier function we choose
©:=A9—B- |z — x>+ W,

where |z—1z¢| denotes the Euclidean distance for points in 2 and is evaluated
on M by projecting €2 x R orthogonally to 2. We fix B > 1 to obtain an
appropriate behavior on the boundary and then A sufficiently large to obtain
an appropriate sign in the differential inequality, more precisely

L < 0 on MnNCy,
®© < 0 ond(MnCy),
®© < 0 on M(0),
©® = 0 at ((I,‘(),t()).

Thus the maximum principle implies that © < 0 in M N Cs5. We consider ©
as being defined on Q x [0, T], use partial derivatives and get

Op = hp,Or <0 at (w0, o)
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and thus by direct computations and Lemma 5.1
ung <c-(cle) +e-M)-uir  at (zo,t). (5.1)
We differentiate the boundary condition twice and get at (zo,to)
hpp uk1wn + hyp, ugi1 + by, ugpwin = 0,

where w is a function such that locally 02 = graph w|g,—1 and Dw = 0
at the point corresponding to zg. The index n corresponds to a direction
orthogonal to 9€2. Combining this with the Inequality (5.1) and with the
Lemmata 5.1 and 5.3 we get at (xq, to)

—hppukiun < c- (c(s) +¢€- (u11)2) .

As h is strictly concave we can estimate the left-hand side from below by
irklf(_hpkpk) - (u11)? > 0, thus fixing £ > 0 sufficiently small bounds u1; and

the claimed estimate follows. O

6. PROOF OF THE MAIN THEOREM

6.1. Longtime existence. Here and in the following we may restrict our
considerations to time intervals starting at ¢ > 0 instead of 0. Thus we
may ignore questions concerning compatibility conditions and smoothness
at t = 0. We get uniform C?-estimates for the partial derivatives of u and a
positive lower bound for F' and conclude that the flow operator is uniformly
parabolic and concave. So we can apply the results of chapter 14 in [12]
to obtain uniform C?%©-estimates for u, with a small positive constant c.
Then standard Schauder estimates [11, 12] imply uniform bounds in C* for
all £ > 1. It follows from the considerations concerning shorttime existence
that a smooth solution of (1.1) exists for all £ > 0.

6.2. Convergence to a translating solution. We finish the proof of our
Main Theorem 1.1 by showing that our solution that exists for all positive
times converges to a translation solution. In this section we use partial
derivatives.

A similar proof can be found in [1], where the existence of a translating
solution is established differently. In our situation, however, the existence
of a translating solution is in general not obvious.

We fix ty > 0 and establish a boundary value problem fulfilled by
w(z,t) = u(z,t) —ulz,t + o).

By the mean value theorem we find a positive definite matrix (aij ) and a
vector field (bz) — both depending on « and ¢ — such that

W = a%w;ij + b'w; in Q x (0, 00).
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The boundary value condition for w is derived as follows. For any function
h:R" = R with {h = 0} = 0Q* and for any smooth strictly convex function
u: Q — R, the boundary condition Du(Q) = Q* is equivalent to h(Du) = 0
on 9. We have proved that h,, (Du)v¥ is uniformly bounded from below
by a positive constant on 0€2, if [Vh| =1 on 092* and Vh points inside *
there. Here we use h = min{dist (-, 0Q*), €} for ¢ > 0 sufficiently small.
We could also mollify & slightly near {dist (-, 0Q2*) = €} to obtain a smooth
function h. We get

0 = h(Du(z,t)) — h(Du(z,t +1to))

1
= /hpk (tDu(z,t) + (1 — 7)Du(z,t + tg)) dr - wy, = Brwy,
0

so for € > 0 sufficiently small, ¥ is almost equal to
0 - by, (Du(z,t)) + (1 = 0) - hy, (Du(z, t +1o)),

for some o € [0,1]. Since we have uniform obliqueness estimates during the
evolution, it is possible to fix ¢ > 0 sufficiently small, depending only on the
obliqueness estimates and on the domain %, such that § as defined above
is a uniformly strictly oblique vector field, i. e. S*1), > % > 0.

The strong maximum principle implies that
osc (t) := maxw(z,t) — minw(z,t)
TEQN z€N
is a strictly decreasing function or w is constant. Next, we will exclude
the case when osc (t) is strictly decreasing but tends to a positive constant
e > 0 as t — oo. For any sequence t, — oo we find — in view of our a priori
estimates — a subsequence (again denoted by) ¢, such that for zo € Q fixed

U(lE,t + tn) - u(x(]atn) and U(lE,t +to + tn) - U((L‘(),to + tn)a

(z,t) € Q x [~ty,,00), converge locally uniformly in any C*-norm and their
limits ©® and u!>* satisfy our flow equation in © x R. We define o :=
u™® —u'>° and observe — as the oscillation is monotone —, that the oscillation
of w is € > 0. This, however, is impossible, as the strong maximum principle
shows that a positive oscillation is strictly decreasing. So we obtain that

w(z,t) —u(z,t +tg) > —v™ -ty ast— oo, (6.1)
uniformly in z € Q. As we will see later-on, the constant v> has been

introduced such that it equals the velocity of any translating solution. For
an arbitrary sequence t,, — oo, we consider

u(a,t +ty) —u(wo,tn), (z,t) € QX [~ty, 0).

In view of our a priori estimates we may extract a not relabeled subsequence
t, — oo such that

u(z, t + t,) — u(zo, tn) — u(z, 1) (6.2)
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locally uniformly in Q x R in any C*-norm as n — co. Equations (6.1) and
(6.2) give

u®(z,t +to) = u®(z,t) + 0> -ty for (z,1) € A x R

The function «° is again a solution to our flow equation. We repeat the

argument given above with (u% #), t; > 0, instead of (u,ty) and obtain a
solution u! of our flow equation satisfying

u(z,t +t;) = ul(z,t) +v>° - t; for (z,t) € A xR, i€{0,1},

where it is easy to see that v is the same constant as above. We get a
smooth function u® : 2 x R — R, that satisfies our flow equation and

u®(z,t +7) = u™(2,7) + Coo - 7 for (z,t) €A xR

for any 7 > 0. To see this we can either take ¢y and ¢; as incommensurable
positive numbers or we iterate the above argument for appropriate tx > 0,
k € N, and consider a diagonal sequence. Thus we have established the
existence of a translating solution to our flow equation. We remark that
this solution is — up to additive constants — the only translating solution of
our flow equation. This follows from the strong maximum principle applied
to the difference of two translating solutions similar as at the beginning of
this section.

Finally, we show that u converges to a translating solution. As above we
get a linear parabolic differential equation for W := u — u®°,

W = aW;; + 6'W; in Q x (0,00),
0 = gkw;, on 9 x [0, 0),

with a strictly oblique vector field 8. Then we get that the oscillation of W
tends to zero, thus u — u° tends to a constant cy, as t — oco. We can use
interpolation inequalities of the form

1DwllEo < e(Q) - wllco - ([[D?wl] o + [1Dwllc0)

for w = W — ¢y and its derivatives and get smooth convergence of u to a
translating solution. This finishes the proof that any solution of our flow
equation (1.1) exists for all positive times and tends eventually smoothly to
a translating solution.

APPENDIX A. PRESCRIBED CURVATURE

If we assume in contrast to the assumptions above that f : @ x R — R is
smooth, positive and satisfies f, > 0 we can prove as in [14] that our flow
converges to a hypersurface of prescribed curvature provided that either

e

= >cr>0
f—f
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or both the first two compatibility conditions for ugy and
<0 fort=0

are fulfilled. (The derivative of f with respect to the second argument is
denoted by f,.)

The a priori estimates obtained in the sections above guarantee that we get
a solution for all positive times with estimates as above. Convergence to a
hypersurface of prescribed curvature follows then similar to [14].

APPENDIX B. HESSIAN FLOWS

B.1. Second boundary value problems. We consider the second bound-
ary value problem for non-parametric logarithmic Hessian flows

EDZU) —logg(z, Du) in Qx[0,T), (B.1)

{ Duion — 6

on a maximal time interval [0,7), T > 0, u : Q x [0,7) — R. The Hessian
function F' belongs to the class (f(*) or equals S, 5, 1 <k <n—-1. We

assume that Q, Q" CR", n > 2, are strictly convex domains, g : Q= Ris
a strictly convex function, Duy(2) = Q*, and g : Q@ x Q* — R is a smooth
function. As initial condition for u we take

ul,—y = Uo-

It is known [14] that this initial value problem has a smooth solution u :
Q% (0,00) and u, 1, Du, and D?u are continuous up to ¢ = 0. For t € [g, o0),
e > 0, we have uniform bounds for all C¥-norms besides for |u| that may
increase as follows

[u(-t)llco < llul-, 0)llco + ¢ - [l 0)l[co-

These estimates are not stated explicitly in [14], but follow immediately
from the calculations there. For the longtime behavior of solutions we have
the following result.

Theorem B.1. Under the assumptions stated above, u converges smoothly
to a translating solution u™ with velocity v™°, i. e. u™(x,t) = u*>(z,0) +
v - t, of (B.1) as t — oco. The translating solution u* is independent —

up to additive constants — of the choice of ug. If F(D?u) = det D?u and

g(z,p) = Z;gg with smooth positive functions g1 and go, then v™° is given by

v = 10g/92(p) dp—log/gl(x) de.

Q= Q
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Proof. 1t follows from [14] that a solution to our initial value problem exists
for all positive times. Furthermore we get bounds for the C*-norms as in
the proof of our Main Theorem 1.1 and thus longtime existence of solutions.
As above we conclude that our solutions converge to translating solutions,
that are unique up to additive constants.

It remains to compute the velocity of a translating solution in the special
case mentioned above. Let u be a translating solution. We get

91(z)

v™® = log det D*u — lo
g g e (Du)

or equivalently
g1(z) - " = det D*u - go(Du).

We integrate this equation over ) and get

- [a@ds = [ qet D go(Du)ds = [ galo)

Q Q Q-
where we have used the transformation rule. This implies that v is as
claimed. 0
91(x)

92(p)
F(D?u) = det D?u, it is possible to obtain the translating solution directly

as in Theorem 2 [19]. The second boundary value problem

and

Remark B.2. In the special case of Theorem B.1 when g(z,p) =

det D%y, = efutv™ . % in Q,
Du. () = QF,

is known [19, 14] to have a solution u. for 0 < ¢ < 1. We integrate this
equation and use the transformation formula for integrals

e’ / e . gy (z) dz = / g92(p) dp,
Q Qx*

so we infer from the definition of v*>

[ awrin = [ g1(a) ds,

Q Q

and deduce that u. is zero somewhere in . Now, uniform C¥-a priori
estimates follow from the proofs in [19, 14]. We let € — 0, extract a suitable
subsequence of u, and obtain a solution u of

v>® = log det D?u — log g(z) in €,
Du

@ - o (B.2)

Then we define

u®(z,t) ;= u(z) +v>° ¢, (x,t) € AxXR,
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and get a solution u™ of
4™ = logdet D?u™>® —logg(r) in Q x R,
Du>(Q) = Q*

that moves by translation with velocity v*°.

(B.3)

B.2. Neumann and oblique boundary value problems. In[14] we con-
sidered flows for Hessian equations subject to Neumann and oblique bound-
ary conditions, e. g. flow equations of the form

4 = log det u;; — log f(z,u, Du) in Q
for boundary conditions of the form
uy, = p(z,u) or ug=p(zr,u) on df,

where v is the inner unit normal vector to 2 and 3 is a vector that is C'-close
to v. For more details we refer to [14].

If we assume in contrast to the cited paper that both f and ¢ depend only on
x, then both for Neumann and oblique boundary conditions with 3 C''-close
to v, it follows immediately from the techniques used here and in [14], that
any solution converges smoothly to a translating solution of the respective
flow equation.

We remark that it is also true for the remaining flow equations in [14] that
solutions converge smoothly to translating solutions if f and ¢ are as as-
sumed above.
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