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Abstract

The discrete-time dynamics of particular two and three neuron
networks is studied with respect to non-trivial bifurcation scenar-
ios. Interesting dynamical properties like periodic, quasi-periodic and
chaotic attractors are observed, many of them coexisting for one and
the same set of parameters. Symmetries in parameter space leading to
equivalent dynamics are considered. Conditions on the connectivity
of these small netwoks, involving excitation as well as inhibition, are
derived which admit complex dynamics for these systems.



1 Introduction

For biological brains anatomical as well as physiological observations indicate
that neurons are grouped together into functional circuits, and that certain
small neural populations can be assumed to represent basic building blocks
of a modular organization of brains [1], [3], [29], [38]. Although such hypoth-
esized modules, like the hyper-columns [32], can be composed of as many
as 10 neurons, already 2-neuron circuits like the recurrent inhibitory loop
[17], [36], [39] or 3-neuron circuits, serving, for instance, as central pattern
generators [11] are considered to represent the basic feedback mechanisms
regulating neural activity in biological brains.

The widespread recurrent structures found in biological neural networks
imply the possibility of complex neural dynamics and, in fact, oscillatory and
chaotic activity has been observed frequently in brains [9], [12], [13], [20].
This suggests that complex dynamics may play an important role for specific
functions of the brain. Therefore these dynamical properties have found
steadily increasing attention in recent years; but it still remains an open
question to which extent and through what kind of mechanisms oscillatory
and chaotic dynamics can contribute to effective signal processing in the
brain.

It seems obvious that also artificial neural networks with higher informa-
tion processing capabilities will be build from a large collection of neurons,
and a modular structure of these systems suggests itself. Following such a
modular approach implies the attempt to understand the emergent dynami-
cal properties of such a network in terms of interacting smaller subnetworks.
Thus, it is considered as a rational first step to study small networks, called
neuromodules in the following for obvious reasons, which already exhibit
a complex dynamical behavior. In various articles the dynamics of 2- and
3-neuron networks has been studied for different paradigms of artificial net-
works, for time-continuous systems as well as for the time-discrete case, for
spiking neurons as well as for formal neurons [4], [18], [30], [37], [6], [10],
(7], [5], [24], [25], [19], [8], [16], [35]. Often the time-discrete dynamics of
small recurrent networks has been investigated because their dynamics is
easy to simulate, and their observed dynamical properties can be assumed
to exist also in corresponding higher-dimensional time-continuous dynamical
systems.

Of interest therefore are parameter domains, for which non-convergent
dynamics of the neuromodules has to be expected; i.e. we are looking for
domains for which there exist periodic or chaotic attractors. Thus, not only
a fixed point analysis has to be done here, but the crucial data are obtained
by the corresponding bifurcation sets in parameter space. A complete fixed



point analysis for recurrent 2-neuron networks has been given e.g. in [5] for
the time-continuous case and in [35] for the time-discrete case.

This paper concentrates on the bifurcation structure of 2- and 3-neuron
recurrent networks. They are composed of standard additive neurons having
a strictly positive sigmoidal transfer function, and they will be considered
as parameterized discrete-time dynamical systems. Relevant parameters are
given by the strength of synaptic connections, the bias terms of neurons, and
stationary or slowly varying external inputs, respectively. It is assumed that
the connectivity structure of modules satisfies Dale’s rule; i.e., a given neuron
has the same type of action at all its synapses, or otherwise stated, its out-
going connections are all either positive (excitatory) or negative (inhibitory).
Correspondingly, a neuron is said to be excitatory or inhibitory. Although
this rule is not always realized in biological networks, it will be used here as
a simplifying paradigm for the organization of networks.

In the following studies emphasis is layed on chaotic dynamics, not be-
cause it is assumed that chaotic dynamics will play an essential role for
functional neural processing, but because of the following fact: If a neural
circuit allows for parameter values such that chaotic behavior is observed,
then in general there also exist parameter values for any kind of periodic
behavior (including, of course, also fixed point attractors). In this sense,
these so called chaotic neuromodules provide a large reservoir of dynamical
properties. From this reservoir, a learning algorithm or convenient external
driving signals may select those parameter values which lead, perhaps in co-
operative interaction with other neuromodules of the system, to a desired or
appropriate functional behavior.

A second point which should be emphasized here, is the fact, that for
fixed parameter values neuromodules can have different non-trivial attrac-
tors at the same time; for instance, a p-periodic attractor may co-exist with
a chaotic attractor. Thus it depends on the initial conditions which asymp-
totic behavior is finally observed. Co-existence of different attractors may
lead also to the observation of what has been called a generalized hysteresis
phenomenon [24]:

If a path of slowly varying parameters is crossing a bifurcation set, it
depends on the direction of the path, leaving or entering a hysteresis domain,
if there is a sudden jump in the qualitative behavior of the system or not.
A path in parameter space crossing the whole hysteresis domain in both
directions will cause such jumps at different parameter values, generating
a hysteresis loop in the state space. In the simplest case, referring to bi-
stability of a system with two parameters, this phenomenon is associated with
the so called cusp catastrophe [33], [28], [21]. As is shown in the following,
already 2-neuron networks have coexisting non-trivial attractors, like periodic



attractors existing together with quasiperiodic or chaotic ones, and in 3-
neuron networks also co-existing chaotic attractors can be observed.

Finally, we want to point out, that with respect to the neurodynamics
approach to cognitive systems [27], we understand attractors only as classify-
ing instruments. For neural networks serving as embodied cognitive systems,
for example as neuro-controllers acting in a sensori-motor loop, the dynamics
always will be that of a driven system. Of relevance for the behavior of such
biological or artificial embodied systems is only the structure of the basins
of attraction in their phase space. Or otherwise stated, what relates to a
specific functional brain process are the transients in one and the same basin
of attraction, not specific orbits in the state space of the system, especially
not the attractor itself. Of course, the number, structure and size of basins,
as well as their defining attractors, are controlled by the parameters of the
neuromodules. Thus, different modes of behavior may appear or disappear
while crossing corresponding bifurcation sets.

The following section will give a short introduction to neurodynamics and
section 3 and 4 will illustrate these ideas with some simple examples of 2-
and 3-neuron networks.

2 Discrete-time Neurodynamics

In this section we will describe an n-neuron module, or n-module for short, as
a parameterized n-dimensional discrete-time dynamical system (A, f,, Q) on
an n-dimensional activity phase space A C R", where the map f,: A — A,
p € Q is given by the equation

az(t+1):01+i1w”a(aj(t)), Z:L,n (1)

Here a; denotes the activity of unit ¢, w;; denotes the synaptic weight from
unit j to unit 7, and §; = @, + I; denotes the sum of its fixed bias term 6, and
its stationary external input I;. The output o; = o(a;) of the units is given
by the sigmoidal transfer function

1
o(a) == . 2
()= 1 )
Furthermore, @ C RY denotes the parameter space, and p € Q the ¢-
dimensional parameter vector with components #1,...,60, and w, ..., wy,.

The module dynamics (1) is always dissipative and bounded on an open
domain 4 C A with bounds given by

n

9i—2|wi}| <a; < 9i+zw{;, (3)

J=1 J=1



where w;; = w;; iff wi; > 0, wj; = wy; iff wi; < 0, and wij][- = 0 else.

As explained in the introduction we are mainly interested in network
configurations for which complex dynamics has to be espected; i.e. we want
to study parameter domains for which there exist interesting bifurcation
scenarios like period-doubling routes to chaos, bifurcations from stable fixed
points to higher-periodic or quasi-periodic attractors, and the like. To find
such parameter domains is in general a difficult analytical task, and usually
this will be done with the help of simulation techniques. But in the following
we will be guided by the idea that at least one neuron in the network has to
receive an excitatory as well as an inhibitory input. Before formulating this
idea more precisely we will consider some simple operations on neuromodules.

We define the flip operators I, : A — A, k =1,...,n acting on the k-th
component of a state vector a € A as a sign reflection; i.e.,

s ={ 4 b (@)

Recall, that two dynamical systems (A, f), (B, g) are called topologically
conjugate, iff there exists a homeomorphism h : A — B, such that goh = hof.
Using the symmetry of the sigmoid (2), given by o(—x) = (1 — o(x)), it is
then easy to prove by direct calculation that for every neuro-module with n
neurons there exists a set of 2" parameter vectors, all leading to qualitatively
equivalent dynamical behavior. We have

Lemma 1 Given an n-neuro-module (A, f,), p € Q C RY. If the activity
dynamics (1) of a neuro-module is changed by a sign reflection operator Iy,
then there exists an induced transformation o(Ix) = Tp : Q@ — Q on the
parameter space Q, such that with p' := Ty (p) the dynamical system (A, fy)
is topological conjugate to (A, f,); i.e., the following diagram commutes

fo
OxA — A
T'xe \J I
OxA — A
fp’
The action of the transformations T}, on the parameters is given as follows
mo={ ez 5

—Wij if k=i or k :j
w;; else

(T w)i; = {



We will call the associated transformations ¢(I) = T}, also flip operators
on the parameter space Q. Equations (5), (6) show that ¢(I)) = T} simul-
taneously changes the sign of all input and output connections of neuron k,
except a self-connection, which is invariant under (7).

We now want to come back to our guiding idea that complex dynamics
has to be expected if at least one neuron receives an excitatory as well as an
inhibitory input. To be more precise we formulate this criterion as follows:

Given an n-dimensional parameterized discrete-time dynamical system
(A, f,, @ bounded to a domain & C A, and let Df, denote the Jacobian of
this system. Then (A, f,) can display complex dynamics in the above sense,
if there exists a parameter vector p € Q and a state a* € U such that at least
for one row 7 of the linearization by D f, the row sum is zero, i.e.

n

Y (Df,)ij (a*) =0, (7)

J=1

This criterion is suggested by the many observations we made by simu-
lating the dynamics of recurrent networks. But in the light of lemma 1 we
know that the dynamics does not change qualitatively if we change the sign
of all input and output connections (without a possible self-connection) to
a neuron simultaneously. Because rows and columns of the Jacobian Df,
seem to play an interesting role, and we may refer to them as vectors and
co-vectors, respectively, we define the following objects.

The i-th in-field on A is defined as vector field Z; on A with components
given by the row elements of the linearization Df,, and the i-th out-field on
A is defined as differential 1-form w; on A with components the components
of the i-th column of Df,; i.e.

Zi(a) = (wy o'(ar), ..., wpo'(a,)), a€A, (8)

wi(a) == (wy;0'(a;), ..., wp;0'(a;)), a€A. (9)

The contraction of w; on Z; is a function Inv; on A, called the first loop
function of neuron i; i.e.,

Invi(a) == o'(a;) - Z wii - wj; o' (a;), a€lU, i fixed. (10)
j=1

According to lemma 1 I'nwv; is invariant under the action of flip operators.
Equation (7) turned out to be a good guide to parameter domains were
complex dynamics can occur; at least higher-periodic up to quasi-periodic
attractors have been found in corresponding networks. But there are ex-
amples where this equation holds but still there is no chaos, or at least no



period-doubling route to chaos observed. For the existence of chaos it seems,
that in addition to equation (7) the following has to be satisfied: There exists
a parameter vector p € Q and a state a € U such that Inv;(a) = 0 holds for
the same i as in equation (7). With equation (10) this corresponds to

Y wij-wji-o'(a;)) =0, acl. (11)
j=1

These conditions turned out to be satisfied whenever complex dynamics
appeared in the considered cases of two and three dimensional neurodynam-
ics. Here only 1- and 2-loops can be involved. So these equations probably
refer to a special case of a more general condition for higher dimensions.
Thus, in the following we will always consider networks with excitatory and
inhibitory neurons. A few examples will now be discussed.

3 The Chaotic 2-Neuron Module

The simplest neuro-module to discuss is a network of two neurons. In general,
its dynamics is given by a 6-parameter family of maps f, : R> = R?, p =
(01, w1z, w1169, wor, waey) € RE, but for simplicity one may set wyy = 0 for the
following. Thus we will discuss the dynamics defined by

ai(t+1) = 601 +wiio(a(t)) +wizo(ax(t)),
as(t+1) = b+ wy o(ai()) . (12)

This configuration is known to allow also chaotic dynamics for some param-
eter values p € R (see for example [24]), and we will therefore call it a
chaotic 2-module. To test our criteria for complex dynamics we first observe
that condition (7) can be satisfied for the first row of the linearization of this
neuro-module, i.e.
! !
w110 (al) + w120 (CLQ) =0

if only if wj w2 < 0, because ¢’ > 0 is a strictly positive function. Of
course the necessary range of activities a; and as can be chosen by fixing
corresponding bias terms 6; and 6, conveniently. We will use a self-inhibitory
neuron here; i.e. wy; < 0. The condition (11) reads now

’LU%IO', (al) + ’LU12’UJ210"(02) =0 5

for some a € A. This can be satisfied only if wiswse; < 0, and for respecting
Dale’s rule we choose ws; < 0. Thus, we consider the dynamics of a 2-neuron
network consisting of an excitatory and an inhibitory unit.

7



higher periods

Figure 1: Iso-periodic plot in the (wyi,w;s)-subspace for fixed parameters
Wo1 = —6, 91 = —3, 92 =4.

Without self-connections (wq; = wey = 0) the resulting recurrent feed-
back loop has, besides parameter domains for which there exist global fixed
point attractors, parameter domains where two fixed point attractors coexist
with a period-2 attractor (wjs - we; > 0), and an other domain where there
is a global period-4 attractor (wi2 - wer < 0) [23]. A rough sketch of the
complex dynamical properties of the 2-module can be found in the so called
iso-periodic plot of figure 1, where color coded we find the periodic attractors
existing for corresponding points in the 2-dimensional (w1, w;2)-parameter
subspace.

At this point we may remark that, according to lemma 1, the dynamics
of this module is topologically conjugate for the following four parameter
vectors :

P = (91, wyi, Wiz, B, w21) ) (13)
p2 = (—(0r +wi1), wir, —wiz, (B2 +wz), —wa), (14)
p3 = ((0h +wi2), w1, —wia, —b, —wy) , (15)
ps = (—(01 + wir + wiz), wir, wig, — (02 + war), wor), (16)

where pa = T1(p1), p3 = Ta(p1), and py = T1 0 To(p1) = To 0 Ty (p1) -
Interesting dynamical parameter domains will be those, for which all sta-
tionary states are unstable. So we will look for the set of all fixed points
a* such that the Jacobian Df,(a*) of the dynamics f at a* has at least one
eigenvalue with modulus larger than one. The fixed point equations reads

2
af:9i+zwz’j0(a;(t)) , =12, (17)

J=1



and the Jacobian Df,(a*) of the dynamics (12) with wqs = 0 is given by

Dy ar) = (e werle))., (15)
T A

24
1 /
% -
1 i B D
Neimark-Sacker
C bifurcation
period-doubling ‘
bifurcation /

2 A

Figure 2: The stability domain for a fixed point in terms of trace 7 and deter-
minant D of the linearization Df,; shaded domain corresponds to recurrent
coupling of a self-inhibitory with an excitatory neuron.

We will discuss stability criteria for the stationary states [34] in terms of
the trace 7 and the determinant D of Df,(a*), which are here given by

T =wno'(a)), D= —wpwyo (ai)o'(a}) .
The eigenvalues of Df,(a*) are then given by

1
)\1’2 — 5 (T:i: \/7'2 —4D) .
The domain of stability for a fixed point a* in the (7, D)-plane is given by
a triangle bounded by the three straight lines T — D =1,T+ D = —1, and
D =1 [34]. For the case considered here, i.e. wy; <0, we; < 0, and wyy > 0,
we have

—|wi| < T <0, 0<D<|wywyl|o(a)) o (a). (19)

Thus,at least two types of bifurcations have to be expected: Along the line
T 4+ D = —1 there will be a period-doubling or flip bifurcation from a fixed
point attractor to a period-2 attractor; along the line D = 1, |T| < 2 there



will be a Neimark-Sacker bifurcation from a fixed point attractor to a periodic
or quasiperiodic attractor [34].

In general, the eigenvalues A, » (a*) are functions not only of the weights
w;; but also of the bias terms 6;, i.e. of all five parameters. This makes
a deeper analytical treatment of the bifurcation behavior very difficult [35].
But to get an idea how the structure observed in figure 1 is generated we
may look instead for the stability of the origin (0,0) € R? which is a fixed
point for parameters satisfying

1 1
0, = D) (Wi +wia), 6= ) Woy - (20)

For this stationary state we get from equations (19) and o(0) = .5

1
T:Zwu, D:—1—6w12w21-

So, a flip bifurcation will appear if the weights satisfy the following equations
4wy — wip wep = —16 .
and the Neimark-Sacker bifurcation will occur for
|wy | <8, |wigwey|=16.

To compare these results with the iso-periodic plot in the (w;q,w2)-plane
shown in figure 3, where now in addition to equation (20) we set wg; = —ws2,
we obtain for the flip bifurcation set

Wiz =24 —-wy, —-8<w; <-4, (21)

and, correspondingly, for the Neimark-Sacker bifurcation set we get the
straight line
’U)1224, -8 <wy; <0. (22)

The corners of stability domain in the (D, T')-space O = (0,0), A := (1, —2),
B := (1,0), C := (0,—1) in figure 2 correspond to the points O', A', B’
C" in (wy;,wyz)-parameter subspace of figure 3: Points B, B’ correspond
to a bifurcation from a fixed point attractor to a global period-4 attractor
observed for an odd 2-ring network [23], points C', C’ correspond to a single
self-inhibitory neuron bifurcating from a stable fixed point to a stable period-
2 orbit [21]. Of course, the lines AB and AC of the stability domain OABC
are mapped to the bifurcation sets A’B’ and A’C’, given by equations (21)
and (22), correspondingly.

10



Figure 3: Chaotic 2-module: Iso-periodic plot in the (w;;, w2)-subspace for
wie = —wsyy, 6 = —0.5(wy; + wia), O = —0.5wy;. For these parameter
values the origin in activity space is always a stationary state.

In general, the components of a fixed point a* depend on all five param-
eters of the system [12), and generically they will satisfy a} # 0, i,...,n, i.e.
we have o'(a}) < 0'(0) = 0.25. Thus, the stability domain O'A’B'C" will be
smoothly deformed, and, correspondingly, the bifurcation sets A’B’ and A’C"
will be smoothly deformed with smoothly varying fixed points a*. And for
wia = —wsy; complex dynamics will be found only outside of these stability
domains.

Figure 4. Chaotic 2-module: Bifurcation sequence for wy; of the 2-module
with 91 == —3.8, 92 == 3, Wi = 59, Wo1 = —6.6.

11



Especially, figure 1 shows that there exist larger parameter domains where
period-3 attractors are dominant. In these period-3 domains there often coex-
ists a whole cascade of period-doubling bifurcations to chaos with a period-
3 attractor (compare figure 4). And there are also Neimark-Sacker bifur-
cations from fixed points to quasiperiodic attractors coexisting with stable
period-3 orbits in these domains. These bifurcation diagrams are obtained
by multiple passes using different fixed initial conditions. Plotted are the
averaged outputs 0 := % >y 0; of the actual network. For instance, the
figure 4 reveals a period-3 attractor coexisting with a period doubling route
to chaos in the domain —17.4 < wy;; — 11.4, then a fixed point attractor for
—11.4 < wy; < —10.1 and a domain of quasi-periodic and higher periodic
attractors between —10.1 < wy; < —8.5. A domain of global quasi-periodic
and higher periodic attractors exists also between —4.2 < wy; < —1.5 fol-
lowed by global period-4 attractors. Noticeable is also a generalized hysteresis
effect over the whole interval —17.4 < wy; < —1.5: starting with a chaotic
attractor, crossing this hysteresis interval with w;; increasing, a period dou-
bling route is followed backward to a fixed point attractor and to quasi-
periodic and periodic attractors with the system suddenly jumping into the
period-3 attractor. Crossing the interval now again with w;; decreasing only
the period-3 will appear until the system jumps back to a chaotic attractor
around wy; = —17.4.

8)

I

125 0 2 I 0 8
a) b)

Figure 5: Chaotic 2-module: a.) A period-2 attractor co-existing with a peri-
odic attractor. b.) Basins of period-2 attractor (black) and chaotic attractor
(white) for the parameter values §; = —0.45, f = 3.9, wy; = —16, wiy =
8, Wo1 = —8&.

Although the basin structure of coexisting chaotic and period-3 attrac-

tors seems to be quite regular in general, there exist also chaotic attractors
together with period-2 orbits, having fractal basin boundaries. An exam-

12



ple is given in figures 5a and 5b for the parameter values 6, = —0.45, 0, =
3.9, wy; = —16, w2 = 8, wy = —8.

Figure 6: Chaotic 2-module: Bifurcation sequence for 6, of the chaotic 2-
module with 91 = —]_74, w11 = —16,w12 = 6, Wo1 = —6.

The existence of even more complex dynamical behavior can be detected
in the bifurcation sequence for the parameter fy shown in figure 6; the other
parameters are fixed as follows: 6; = —1.74, wy; = —16, wiy = 6, we; = —6.
To analyze this situation recall, that a chaotic attractor is called p-cyclic, if
it has p connected components which are permuted cyclically by the map f,.
Every component of a p-cyclic attractor is an attractor of the p-th iterate [
2].

Now, over the interval 2.72 < 0y < 2.9 there coexist two different chaotic
attractors. One is 2-cyclic, the other is 5-cyclic. Both are shown in figure 7a.
Thus, over this interval we observe a generalized hysteresis effect, switching
between two different cyclic chaotic behaviors. A second hysteresis interval
3.18 > f#, > 3.28 can be seen, where a chaotic attractor coexists with a
period-5 attractor. This configuration is depicted in 7b.

4 Three Neuron Modules

In this section we will discuss different types of 3-neuron modules. According
to our guide line, for producing interesting dynamical properties these mod-
ules should have at least one neuron getting excitatory as well as inhibitory
inputs. This can be realized, for example, by the three configurations shown
in figure 8. The first one has a self-inhibiting neuron in the middle of a
bi-directional 3-chain. The second one uses an inhibitory neuron at one end

13
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a) ()ju 1I.(|= b) (ljﬂ ll.u:
Figure 7: Chaotic 2-module: for parameters ; = —1.75, wy; = —16, wiy =
6, wg; = —6 one observes a.) a 2-cyclic chaotic attractor coexisting with

a b-cyclic one for ; = 2.78, and b.) a chaotic attractor coexisting with a
period-5 attractor for #, = 3.25.

of such a chain. The third configuration is a bi-directional 3-ring with one
inhibitory neuron. All these configurations can display chaotic dynamics.

a) b) % c)

Figure 8: Three 3-neuron modules, both with one inhibitory neuron. Arrows
denote excitatory, dots inhibitory connections.

4.1 3-chain with self-inhibiting center neuron

This module is described as a discrete-time dynamical system with eight
parameters given by

CL1(t+ ].) = 91 “+ w11 O'(CLl(t) + w12 O'(CLQ(t)) —|—UJ13 O'(ag(t)) N
ar(t+1) = 0o+ wy olar(t)) (23)
as(t+1) = 03+ ws o(ai(t)) .

14



To go to dynamically interesting parameter domains for this configuration
the first condition (7) of the complex dynamics criterion

wua'(al) + w120'(a2) + ’U)130'I(03) =0

can be satisfied if we assume for the first row of the linearization wy; < 0
and wis, w3 > 0. Then the bias terms can again be arranged in such a way,
so that this condition holds. The chaos condition (11) now reads

Imjl = wfla'(al) + w12w210'(a2) + ’U)13U)310'I(a3) =0 ,

for some a € A. This can be satisfied only if wiswe; < 0 and/or wyzwes < 0,
and for respecting Dale’s rule we choose ws;, ws; < 0. Thus, we consider the
dynamics of a self-inhibiting neuron coupled bi-directionally to two excitatory
neurons as shown in figure 8a.
It can be easily shown that the 3-dimensional dynamics (23) is essentially
a 2-dimensional one, living on a 2-dimensional sub-manifold in 3-dimensional
activity space A. This is the case, because neurons 2 and 3 are synchronized
in the general sense [22]; i.e. their activities are related by the equation:
as(t) = 05 + —(ax(t) — 0) . (24)
W1
Although the 3-module (23) is effectively a 2-dimensional systems, it can of
course not be reduced to a 2-neuron network. This can be done only in the
special case, for which the excitatory neurons 2 and 3 are synchronized, i.e.
as(t) = az(t) for all ¢ > to. This is realized iff the following synchronization
condition is satisfied:
O = 03, wo = wy . (25)

Then the dynamics (23) of the module reduces to the dynamics (12) of a two
neuron network A having a connection wi, = (wyy + wy3).
Suppose the eight parameters of the dynamics (23) satisfy

-2 91 = (’LU11 + W12 + ’U)13) s -2 92 = w21 , -2 93 = W3y - (26)

Then the origin a* = (0,0, 0) is a stationary state, and the eigenvalues of the
linearization Df,(a*) at a* are given by

1
N(0), Ao(0) = 5 (win £ Jwh — 4 (wigwar + wizws1)) .

This stationary state will become non-hyperbolic if one of these eigenvalues
has modulus 1. Because wiswy; < 0 and wizws; < 0 (both loops are odd)

15



AWy

Figure 9: 3-chain 4.1: Iso-periodic plot in the (w1, wy; )-parameter subspace
for which the origin a* = 0 is always a fixed point (see text for parameters).

there will be only real eigenvalues, and the bifurcation sets in parameter
space are defined by

16 + (wlg’wgl + ’LU13UJ31) + 41011 =0.

For the special case where in addition to equations 26 parameters satisfy
also wy; = ws; and wis = wyz = 4, an iso-periodic plot in the (wyy, wa)-
parameter subspace is depicted in figure 12. In this figure the line AC corre-
spond to period -doubling bifurcations, the line AC' to Neimark-Sacker bifur-
cations. Points have coordinates A = (=8, —2), B = (0. — 2), C' = (—4,0).
Because the dynamics of the module is essentially a 2-dimensional one - as
was stated above - this figure is clearly equivalent to that of the 2-module in
figure 3.

According to lemma 1, there are now in general 8 different parameter
vectors p € R® generated by the basic transformation T, k = 1, 2,3, all
giving topologically conjugate dynamics. Knowing that for 6y = 3, wy; =
ws; the module dynamics reduces to the known 2-dimensional one, we may
ask what happens if 6, # 5. So, for a first simulation, shown again in terms
of an iso-periodic plot for the (65, f3)-parameter space in figure 10, we choose
Wi = W13 = 4, Wo1 =— W31 — —6, w11 = —]_6, and 91 = —3.4.

We observe that the 3-dimensional dynamics around the main diagonal,
which corresponds to the synchronization condition (25) for neurons 2 and
3, has qualitatively the same properties as the chaotic 2-neuron module:
Besides fixed point attractors, we have large domains for period-2 and period-
3 attractors, period doubling routes to chaos, also co-existing with period-3

16



Figure 10: 3-chain 4.1: Iso-periodic plot for (s, 83)-parameter space for wyy =
W13 = 4, Wo1 =— W31 = —6, w11 = —16, 01 = —3.4 fixed.

attractors in the middle of the figure, and domains for higher periodic and
quasi-periodic attractors crossing the 6;- and f#,-axis.

The synchronization condition (25) is violated for the situation depicted
in figure 11 where an iso-period plot in the (s, w9 )-parameter space is shown
for 91 = —2, 93 = 34, w11 = —]_6, Wo1 — W31 — —6, w13 = 4. Again we find
the typical dynamical properties like period-doubling routes to chaos, higher-
and quasi-periodic attractors and large period-3 domains as described before.

W12
10

Figure 11: 3-chain 4.1: Iso-periodic plot or (6s, wo;)-parameters with 6; =
—2, 03 = 34, w11 = —].6, Wo1 = W31 = —6, w13 = 4 fixed.
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4.2 3-chain with inhibitory neuron at one end

The second 3-neuron module corresponds to a bi-directional 3-chain with an
inhibitory neuron at one end (figure 8b). Its discrete dynamics is given by a
seven parameter family of maps f, : R* — R? defined by

al(t—l— 1) = 91 “+ Wi2 O'(CLQ(t)) ,
as(t +1) = Oy + woy o(ai(t)) + woz o(az(t)) , (27)
az(t+1) = 03+ wsyo(as(t)) .

A complex dynamics condition (7) for this configuration is given for neu-
ron 2 by
w210'1(a1) + w23a'(a3) =0 R

and it can be satisfied with wywy3 < 0 by adjusting the corresponding bias
terms. In the following we choose neuron 1 to be inhibitory, i.e., wy; < 0.
The chaos condition (11) for the second component reads

Invy = wiswy 0’ (ay) + wazwseo'(az) =0,

for some a € A in this case. Having chosen wy; < 0 we will set all other
connections to be excitatory: wisg, w3, wss > 0. Thus, for satisfying Dale’s
rule we have chosen a bi-directional 3-chain with inhibitory neuron at one
end (figure 8b).

Due to lemma 1 this dynamics f, (27) is now topologically conjugate to
that of 8 other parameter vectors p' € R7 generated again by the basic trans-
formations Ty, k = 1, 2, 3 of equations (5), (6). Furthermore, the dynamics
of this module is again essentially a 2-dimensional one, because now the neu-
rons 1 and 3 are synchronized in a general sense [22]; i.e. their activities are
related by the equation

as(t) = 05 + —2(ar(t) — 01) . (28)
W12
This can be seen, for instance, in figure 15, where the projection onto the
(01, 03)-subspace of a chaotic attractor appears to be 1-dimensional. Al-
though the dynamic of this module is again 2-dimensional, its dynamics
seems to be more complex than that of the last module (23) as will be dis-
cussed next.
The point a* = (0,0,0) is always a fixed point of the dynamics (27), iff
the parameters satisfy —291 = W19, —292 = w91 + wa3, and —293 = W32. It
becomes non-hyperbolic if one of the eigenvalues

1
A2 3(0) = iZ\/wuwﬂ + Wo3Ws2
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has modulus 1. The first eigenvalue \;(0) is always zero.

To study dynamically interesting parameter domains we now choose com-
peting even and odd loops, i.e., wiy - w9y < 0 and wyz - w3 > 0. The ap-
pearance of periodic and chaotic parameter domains is revealed, for instance,
in figure 12 for the (wo3, wy;)-parameter subspace. Following Dale’s rule the
other five parameters are fixed conveniently as follows: 6; = —3, 6, = 3.95,
93 = —7, Wi = W32 = 8.

W1

16

Figure 12: 3-chain 4.2: Iso-periodic plot in the (wyg, we3)-parameter subspace
with fixed parameters wis = w3y =8, ; = —3, 0 = 3.95, O3 = —T7.

We will not describe the dynamics as detailed as for the 2-module: we
observe mainly the same features: periodic and quasi-periodic attractors,
period doubling routes to chaos, etc. What is new for this 3-neuron module
is its even greater complexity: Here we not only observe one period-doubling
sequence, but coexisting period-doubling routes to chaos leading to coexisting
chaotic attractors. For example figure 12 indicates period-doubling to chaos
(black domain) starting from period-4 orbit attractors indicated by the red
domain. In fact, simulations show, that the period-4 attractor bifurcates into
two period-8 attractors, inducing two separated routes to chaos.

The same holds for the period-6 domain (yellow) of figure 12 included in
the chaotic region: It stands for coexisting period-3 and period-6 attractors
bifurcating along different routes to chaos. After staying separate for a while,
these coexisting chaotic attractors experience an attractor merging crisis at
specific parameter values; i.e. they end up in one attractor.

For wy; > 4 there is a cusp shaped region (green) of period-2 attractors
that, for decreasing w3 undergo period-doubling to chaos. All these different
routes to chaos coexist in parameter domains around ws3 = 7 and wy; > 8.
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Figure 13: 3-chain 4.2: Bifurcation sequence for 6, and fixed parameters
—Wo = Wy3 = Wiy = w3y = 8, 6y = =3, 03 = —T7.

This complicated dynamical properties are clearly visible in the bifurca-
tion diagram of figure 13 for ,. Here the weights are fixed at —wq; = wo3 =
w1 = w3z = 8, and bias terms at §; = —3, #3 = —7. Starting with 0y = 8
we have a global fixed point attractor. With 6, decreasing, at 6, = 6.72 a
period-2 (marked by () and a fixed point attractor (marked by «) appear in
addition. At #y = 6.23 coexisting period-doubling routes to chaos start with
the period-2 attractor bifurcating into a period-4 orbit and the fixed point
attractor bifurcating with a strong resonance of order 4 also into period-4
attractors. The upper sequence (starting from the period-2 orbit) vanishes
together with the fixed point attractor at 65 = 5.63 and only the lower se-
quence remains, ending up in a period-4 orbit around €, = 2.35. These
period-4 attractors appear through a strong resonance bifurcation of order 4
from a global fixed point at 6, = —0.58.

We notice, that for this configuration there exists a general hysteresis
phenomenon over the interval 5.63 < 0y < 6.72, where a whole period-
doubling route to chaos and a fixed point attractor is involved: Crossing this
hysteresis interval with 6y increasing, only the reverse bifurcation sequence
to the fixed point is visible; crossing it with #, decreasing, only the fixed
point attractor appears. The bifurcation sequence in between stays invisible
as well as the hidden bifurcation sequence belonging to the period-2 orbit.

The two chaotic attractors coexisting with the fixed point attractor in
this hysteresis domain for #, = 5.65 in figure 13 are shown in figure 14 in
a pseudo orbit representation, where (¢ + 1) is plotted against o(¢), and
0 denotes again the averaged module output o := % % | 0;. In figure 14
the projections of these attractors onto the three subspaces (01,02, ((01,03),
(02,03): One of the chaotic attractor has the form of two straight lines, the
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Figure 14: 3-chain 4.2: First return map of two chaotic attractors coexisting
with one fixed point attractor for parameter values —wy; = woz = Wiy =
W32 = 8, 91 = —3, 92 = 565, 93 = -T.
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Figure 15: 3-chain 4.2: Same attractors as in figure 14, but shown in terms
of the three projections.

other one comes as a rectangle; the fixed point is magnified. Parameters are
again —wg; = Wy = Wiy = wW3e = 8, O = =3, O, = 5.65, 03 = —7. It is
clearly seen from these projections that the attractors live on a 2-dimensional
sub-manifold.
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4.3 Bi-directional 3-ring with one inhibitory neuron

The third candidate for complex dynamics is a 3-neuron module correspond-
ing to a bi-directional ring (figure 8c). Its discrete dynamics is given by a
nine parameter family of maps f, : R* — R? defined by

al(t—l— 1) = 01 + wig O’(Cl,g(t)) + wi3 O’(Cl,3(t)) R
as(t+1) = Oy + woy o(ai(t)) + woz o(az(t)) , (29)
as(t+1) = O35+ ws o(a(t)) +wso(ax(t)) .

To expect complex dynamical behavior for this module there should be
a inhibitory neuron involved, neuron 1 say; i.e. ws, w3; < 0. The other
neurons are chosen to be excitatory. Then the second and third row of the
linearization D f, can satisfy condition (7) of our complex dynamics criterion.
For instance for neuron 3 we get

’U)310”(Cll) + 'U)320',(C1,2) =0. (30)
The chaos condition (11) for the third component reads
ITLUg = 'U)31'U)130',(CL1) + 'U)23'U)320',(CL2) = 0,

which can be satisfied because in addition to ws; < 0 we have chosen
w13, W3z, wez > 0.

Figure 16: 3-ring 4.3: Iso-periodic plot in the (6, 6;)-parameter subspace
with fixed parameters —W91 = —W31 = W3 =— W19 — W32 =— W13 — 8, 03 = 5.5.

The dynamics of this module, different to that of the other 3-neuron
modules discussed above, is in general 3-dimensional. Furthermore, due to
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lemma 1, the dynamics f, (29) is again topologically conjugate to that of
8 other parameter vectors p € RY generated by the transformations T},
k=1, 2, 3 of equations (5), (6).

Figure 17: 3-ring 4.3: A bifurcation diagram for #; with parameters 6, = 1,
93 = 55, —W91 = —W31 = W3 = W12 = W32 = W13 = 8 fixed.

™

10,

Figure 18: 3-ring 4.3: Three projections of an chaotic attractor at parameter
values —W9o1 = —W31 — W23 = W12 =— W32 — W13 — 8, 91 = —]_75, 92 = 0,

93 = 55

To get an impression of the dynamical complexity of this 3-neuron mod-
ule, we may take a look at the iso-periodic plot in the (6, 6;)-subspace in
figure 16. Obviously we have to expect a complex dynamical behavior again
with coexisting attractors of different kind. This can be read from the over-
lapping regions in figure 16 around ¢, = —4, #, = 4. A bifurcation sequence
in this domain will reveal further details, as , for instance, the one shown
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in figure 17. There we observe quasiperiodic attractors bifurcating from a
fixed pint attractor at around #; = 0.46. For a short interval these attractors
coexist with period-5 attractors (around #; = 0). With 6; further decreasing,
a chaotic domain is entered which ends around 6; = —1.31. Then a domain
with period-2 attractors follows up to #; = —4.88, where a period-doubling
route to chaos starts. Over the long interval —5.77 < 6; < —1.64 together
with the period-2 attractors there exist period-21 attractors.

That the dynamics (29) is a genuine 3-dimensional one can be seen in
figure 18, where three projections of a chaotic attractor are shown. This
attractor exists for parameter values —ws; = —ws3; = Woz = Wiy = W3y =
w1z = 8, 91 = —175, 92 = 0, 93 = 5.9.

4.4 Complex dynamics, no chaos

Finally we want to introduce two 3-neuron modules for which apparently
no chaotic attractors exist, although there are higher-periodic attractors and
interesting bifurcation sequences. The first example starts again with the bi-
direction 3-ring (29) but now with one of the weights equal to zero, wyz = 0
say. Then the complexity condition (30) for the third unit can still be satisfied
but the chaos condition can not be satisfied because it now reads

[Tl'Ul(Cl) = U)glwl?,O',(Cl,l)O'l(ag) <0 , a¢€ A X

which is strictly negative.
The second example is given by a uni-directional 3-ring with one self-
inhibitory neuron. Its dynamics is given by the equation

ai(t+1) = 601 +wio(a(t)) +wizo(as(t)),
az(t+1) = Oy +wo o(ar(t)), (31)
az(t+1) = 03+ wsyo(as(t)) .

The satisfiable complex dynamics condition (7) for the first component is
here given by the equation

W11 O'I(Cll) + w13 0"(@3) =0 ,

i.e. with wi;wi3 < 0 and, for instance, wy; < 0. But the chaos condition can
not be satisfied because it reads

Invi(a) = w? (0")*(a1) >0, acA,

which is strictly positive.
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5 Discussion

From the very simple example networks discussed in this paper there are
some lessons to learn about artificial recurrent networks: First, from the
point of view of dynamical systems theory, the sigmoidal transfer functions
of these neural networks provide an interesting nonlinearity into these sys-
tems. Already for the simple chaotic 2-module many dynamical effects can be
studied just in this one system alone; i.e. there are period doubling routes to
chaos, like in the quadratic map; there are Neimark-Sacker bifurcations from
fixed point attractors to attractors with higher periodicity as well. All kinds
of attractors can be observed: fixed points, higher periods, quasi-periodic
and chaotic attractors. Furthermore, for one and the same parameter vector
attractors of different type can exist simultaneously, even different chaotic
attractors.

This co-existence of attractors often gives rise to a so-called generalized
hysteresis effect. In the simplest case this corresponds to a parameter do-
main where two fixed point attractors co-exist with an unstable fixed point.
Passing forward and backward over this domain makes the system switch
between these different stationary states at different parameter values. As
was shown in figures 14 and 15, even dynamic attractors can co-exist and the
corresponding generalized hysteresis effect may serve as a kind of short-term
memory of dynamical behaviors. Much in the same way as the usual hys-
teresis effect serves as a memory of stationary states in magnets or computer
chips. Thinking of attractors as representatives of mental or behavior rele-
vant states would explain for instance the flipping of the ambiguous figures
in the visual domain or hysteresis effects in finger tapping [15] or bimanual
coordination experiments [14].

It should be remarked that with respect to cognitive processes attractors
will be always considered as representatives of a class of different dynamical
solutions or trajectories. In fact, as part of cognitive systems the dynamics
of the system will hardly ever be that of an attractor because these systems
are permanently driven by stimulating external sensor signals or by internal
stimuli coming from other parts of the cognitive system. Thus, what should
be considered relevant for the discussion or interpretation of ”cognitive dy-
namics” are the basins of attraction of these systems; and the properties of
basin boundaries may be more relevant for the understanding than the exact
"shape” of the representing attractor.

With respect to higher information processing or cognitive abilities these
dynamical neural networks represent a practically unlimited reservoir of pos-
sible behaviors. They can be coupled in very different ways, using excitatory
as well as inhibitory connections between the neurons of subsystems. FEs-
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pecially if recurrent couplings of such neuromodules are involved one can
observe new or more ”"complex” dynamical properties in the coupled sys-
tem. This phenomenon of emergent dynamics is the basis for hopes that it
should be possible to generate more powerful systems from specific coupling
schemes of ”simple” neuromodules. At some point even ”cognitive” abilities
may emerge (the flip from quantity to quality). At the same time, these non-
linear dynamical effects are an absolute drawback for design or engineering
approaches to these kind of systems. In general there never can be construc-
tion rules for this approach to cognitive systems, at least not at the moment,
where there is no theory available to predict the behavior of these coupled
systems.

A question often heard is the following: ”Now you have complex dynam-
ics, even chaos; so what?” There may be chaos in the brain as stated years
ago by Skarda and Freeman [31], and if one looks for chaos in biological
brains it would be a surprise if one will not find signals indicating chaotic
dynamics in this very high-dimension, highly connected recurrent network
with inhibitory and excitatory signal lines. But even if so, the functional role
is still debatable and an open problem. The point we want to make in favour
of chaotic neuromodules here is, that they provide the richest reservoir of
possible dynamical features which are accessable by tuning the parameters
correctly. If one needs stationary states, well you can find them, if you need
a specific periodic orbit, you will find it, if you want chaos for representing
“emptiness”, a rest state or a specific function, its to your proposal. In this
sense, chaotic modules are just powerful and versatile building blocks for
systems which have to have a large reservoir of different behaviors at their
disposal to survive in a changing environment.

The choice of specific attractors or attractor combination is of course up
to a kind of adaptive self-organizing process on the parameter space of net-
works, which one may call learning. Learning is still a challenging problem
for neural networks of a general recurrent type. Thinking of these networks
as controllers for the behavior of biological or artificial autonomous systems
makes the problem even more challenging because there is no way to deter-
mine the correct function of a subsystem during the process generating a
goal oriented behavior. One way to get an idea about module function and
the coupling of neuromodules is to study them as evolved controllers for the
behavior of robots. This is done for instance in [26].
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