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Abstract

We obtain a Bernstein theorem for special Lagrangian graphs in

C n � R�n for arbitrary n only assuming bounded slope but no quan�

titative restriction�

� Introduction

Let M be the graph in C n �� R�n of a smooth map f � � � Rn � with
� � Rn an open domain� M is a Lagrangian submanifold of C n if and only

if the matrix
�
�f i

�xj

�
is symmetric� In particular� in that case if � is simply

connected� then there exists a function F � �� R with

rF � f�

The second�named author is grateful to the Max Planck Institute for Mathematics in

the Sciences in Leipzig for its hospitality and support�
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A Lagrangian submanifold of C n is called special if it is a minimal sub�
manifold at the same time� In the above situation� the graph of rF is a
special Lagrangian submanifold of C n if and only if for some constant ��

Im �det�ei��I � i Hess �F 			 � 
����	

�Im � imaginary part� I � identity matrix� Hess F � � ��F
�xi�xj

		�

Special Lagrangian calibration constitute an example of a calibrated geo�
metry in the sense of Harvey and Lawson ����� More recently� Strominger�
Yau�Zaslow ��
� established a conjectural relation of �brations by special
Lagrangian tori with mirror symmetry� However� in general� some of these
tori are singular� More generally� understanding such �brations systemati�
cally means understanding the moduli space of special Lagrangian tori� and
for that purpose� one needs to study the possible singularities of special
Lagrangian submanifolds in �at space� By asymptotic expansions at sin�
gularities� the so�called blow�ups� the study of singular special Lagrangian
spaces is reduced to the study of special Lagrangian cones�

In the theory of minimal submanifolds� there exists a close link between
the rigidity of minimal cones and Bernstein type theorems� saying that �
under suitable boundedness assumptions � entire minimal graphs are nec�
essarily planar� Of course� the known Bernstein type theorems for entire
minimal graphs� in particular ���� and ����� apply here� Those results seem
to be close to optimal already� It turns out� however� that under the La�
grangian condition� one may prove still stronger such results� This is the
content of the present paper�

Returning to ����	� the Bernstein question then is whether� or more
precisely� under which conditions� an entire solution has to be a quadratic
polynomial�

Fu ��� showed that for n � �� any solution de�ned on all of R� is har�
monic or a quadratic polynomial� Before stating our results on this ques�
tion� however� let us brie�y observe that the equation ����	 is similar to the
Monge�Amp�ere equation

det

�
��F

�xi�xj

�
� �����	

that naturally arises in a�ne di�erential geometry� There� one is interested
in convex solutions� and Calabi ��� showed that� for n � �� any convex
solution of ����	 that is de�ned on all of Rn has to be a quadratic polynomial�
Pogorolev subsequently extended this result to all n ������ ����	�

In that direction� we have

�



Theorem �� Let F � Rn � R be a smooth function de�ned on the whole
Rn � Assume that the graph of rF is a special Lagrangian submanifold M
in C n � Rn � Rn � namely F satis�es equation ������ If

�i� F is convex�

�ii� there is a constant � �� such that

�F � ������	

where

�F � fdet�I � �Hess �F 		�g
�

� �����	

then F is a quadratic polynomial and M is an a�ne n�plane�

For the proof of this theorem� we shall use the same strategy as in our
previous paper ����� dealing with minimal graphs in general�

As M is a minimal submanifold of Euclidean space� by the theorem of
Ruh�Vilms ����� its Gauss map is harmonic� The Gauss map takes its values
in the Grassmannian Gn�n of n�planes in �n�space� In order to show that
M is a�ne linear� we need to show that the Gauss map is constant� The
strategy of Hildebrandt�Jost�Widman ���� then was to show that the image
of the Gauss map is contained in some geodesically convex ball� and to show
a Liouville type theorem to the extent that any such harmonic map with
values in such a ball is constant� The method works optimally if we look
at harmonic maps with values in a space of constant sectional curvature�
i�e� a sphere� In the case of higher codimension k� the Grassmannian Gn�k�
however� does not have the same sectional curvature in all directions any�
more� The strategy of Jost�Xin ���� then was to exploit the Grassmannian
geometry more carefully and to construct other geodesically convex sets for
which such a Liouville type theorem for harmonic maps still holds� This led
to a considerable strengthening of the Bernstein type theorems for minimal
graphs of higher codimension� Still� however� those results do not yet imply
the preceding theorem� We need to exploit the fact that M is not only min�
imal� but also Lagrangian� In other words� its Gauss map takes its values
in a certain subspace of Gn�n� namely the Lagrangian Grassmannian LGn

of Lagrangian linear subspaces of R�n � LGn is a totally geodesic subspace
of Gn�n� and so the Gauss map of M as a map into LGn is still harmonic�
We can now exploit the geometry of LGn to construct suitable geodesically
convex subsets in that space and deduce a corresponding Liouville type the�
orem� In that way� we shall show that the Gauss map of M is constant
under the conditions stated in Theorem �� and so M is planar�
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For proving that M is �at another possible approach is to study its
tangent cone C �M at in�nity� In our situation C �M is a special Lagrangian
cone� Its link is a compact minimal Legendrian submanifold in S�n��� Thus�
we prove Theorem �� It is interesting in its own right�

Theorem �� Let M be a simple �in the sense of 	�
�� or compact minimal
Legendrian submanifold in S�n��� Suppose that there are a �xed n�plane P�
and some � � 
� such that

hP� P�i � �����	

holds for all normal n�planes P of M in S�n��� Then M is contained in a
totally geodesic subsphere of S�n���

Although in general� any minimal ��sphere in a sphere Sm is totally
geodesic �see ���	� there exist higher dimensional minimal submanifolds of
Sm that are not totally geodesic and by ����� we know that the analogue of
Theorem � does not hold for minimal submanifolds of spheres for arbitrarily
small values of �� In fact� there even exist nontrivial minimal Legendrian
S��s in S� ���� and already for n � �� one �nds in�nitely many di�erent
minimal Legendrian two�dimensional Legendrian tori in S� ��
�� Thus� con�
dition ����	 cannot be dropped even in the Legendrian case�

By using Theorem � we can remove the convexity condition for the func�
tion F in Theorem �� This is in fact our main result�

Theorem �� Let F � Rn � R be a smooth function on the whole Rn � The
graph of rF de�nes a special Lagrangian submanifold M in C n � Rn �Rn �
In other words� F satis�es equation ������ If there is a constant � �� that
satis�es ����� and ���
�� then F is a quadratic polynomial and M is �at�

The celebrated theorem of Bernstein says that the only entire minimal
graphs in Euclidean ��space are planes� This result has been partially ge�
neralized to higher codimension� If f � Rk � Rn is an entire solution of the
minimal surface system with bounded gradient� then f is linear for k � � by
a theorem of Osserman�Chern and for k � � by a result of Fischer�Colbrie
�
�� For larger k� however� there exist counterexamples of Lawson�Osserman�
By way of contrast� our Theorem � shows that minimal Lagrangian graphs
with bounded gradient are always planar�

� Geometry of Lagrangian Grassmannian mani�

folds

Let Rm�n be an �m�n	�dimensional Euclidean space� The set of all oriented
n�subspaces �called n�planes	 constitutes the Grassmannian manifold Gn�m�
which is the irreducible symmetric space SO�m� n	�SO�m	� SO�n	�
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Let fe�� en�ig be a local orthonormal frame �eld in Rm�n � where i� j� ��� �
�� ����m�	� �� ��� � �� ���� n� a� b� ��� � �� ����m�n �say� n � m	� Let f
�� 
n�ig
be its dual frame �eld so that the Euclidean metric is

g �
X
�


�
� �

X
i


�
n�i�

The Levi�Civita connection forms 
ab of R
m�n are uniquely determined by

the equation

d
a � 
ab � 
b�����	


ab � 
ba � 
�

The canonical Riemannian metric on Gn�m can be de�ned by

ds� �
X
��i


�
�n�i�����	

From ����	 and ����	 it is easily seen that the curvature tensor of Gn�m is

R�i �j �k �l � �������ik�jl � �������ij�kl

��������il�kj � �������ij�kl
����	

in a local orthonormal frame �eld fe�ig� which is dual to f
�n��g�

Let P� be an oriented n�plane in Rm�n � We represent it by n vectors
e�� which are complemented by m vectors en�i� such that fe�� en�ig form
an orthonormal base of Rm�n � Then we can span the n�planes P in a
neighborhood U of P� by n vectors f��

f� � e� � z�zee�i�

where �z�i	 are the local coordinates of P in U� The metric ����	 on Gn�m

in those local coordinates can be described as

ds� � tr��In � ZZT 	��dZ�Im � ZTZ	��dZT 	����	

where Z � �z�i	 is an �n�m	�matrix and In �res� Im	 denotes the �n� n	�
identity �res� m�m	 matrix�

Now we consider the case R�n � C n which has the usual complex struc�
ture J � For any u � �x� y	 � �x�� ���xn� y�� ���yn	 in R

�n

Ju � ��y�� �����yn�x�� ���� xn	�

For an n�plane � 	 R�n if any u 
 � satis�es

hu� Jui � 
�

�



then � is called a Lagrangian plane� The Lagrangian planes yield the La�
grangian Grassmannian manifold� It is the symmetric space U�n	�SO�n	�

For the Grassmannian Gn�n its local coordinates are described by �n�n	�
matrices� For any A 
 LGn 	 Gn�n� let u � �x� xA	 and �u � ��x� �xA	 be two
vectors in A� By de�nition hu� J �ui � 
 and so we have

A � AT

From ����	 it is easy to see that the transpose is an isometry of Gn�n� Hence
the �x point set LGn is a totally geodesic submanifold of Gn�n� By the
Gauss equation the Riemannian curvature tensor of LGn is also de�ned by
����	�

Let �� � x�ie�i be a unit tangent vector at P�� where fe�ig is a local
orthonormal frame �eld� By an action of SO�n	

x�i � 
���i�

there
P
�


�� � �� In our previous paper ���� we have computed the eigen�

values of the Hessian of the distance function from a �xed print P� at the
direction �� � �x�i	 � �
���i	� Considering the present situation� when
m � n and the eigenvectors are symmetric matrices� the eigenvalues are as
follows�

�
� � 
�	 cot�
� � 
�	r with multiplicity �����	

�

r
with multiplicity n� �

where r is the distance from P�� for su�ciently small r�

The geodesic from P� at �x�i	 � �
���i	 in the local coordinates neigh�
borhood U is �see ��
�	

�z�i�t		 �

�
B�
tan�
�t	 


� � �


 tan�
nt	

�
CA����	

where t is the arc length parameter and 
 � t � �
�j�nj with j
nj � max�j
�j� ���� j
nj	�

� Gauss map

Let M be an n�dimensional oriented submanifold in Rm�n � Choose an or�
thonormal frame �eld fe�� ���� em�ng in Rm�n such that the e��s are tangent
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to M � Let f
�� ���� 
m�ng be its coframe �eld� Then� the structure equations
of Rm�n along M are as follows�


n�i � 
�

d
� � 
�� � 
�� 
�� � 
�� � 
�


n�i � � hi��
��

d
ij � 
i	 � 
	j � 
i� � 
�j �

where the hi�� � the coe�cients of the second fundamental form of M in
Rm�n � are symmetric in 	 and �� Let 
 be the origin of Rm�n � Let SO�m�n	
be the manifold consisting of all the orthonormal frames �
� e�� en�i	� Let
P � f�x� e�� ���� en	�x 
 M� e� 
 TxMg be the principal bundle of orthonor�
mal tangent frames over M�Q � f�x� en��� ���� em�n	�x 
 M� en�i 
 NxMg
be the principal bundle of orthonormal normal frames over M � then �� � P �
Q�M is the projection with �ber SO�m	�SO�n	� i � P�Q �� SO�m�n	
is the natural inclusion�

We de�ne the generalized Gauss map � � M � Gn�m by

��x	 � TxM 
 Gn�m

via the parallel translation in Rm�n for �x 
 M � Thus� the following com�
mutative diagram holds

P �Q
i

���� SO�m� n	

��

��y ��y�
M

�
���� Gn�m

Using the above diagram� we have

��
n�i � � hi��
������	

Now� we assume that M is a Lagrangian submanifold in R�n � The image
of the Gauss map � � M � Gn�m then lies in its Lagrangian Grassmannian
LGn� We then have e� 
 TM and Je� 
 NM �

Furthermore�

hi�� � hre�e�� Jeii � �hre�Jei� e�i � hre�ei� Je�i � h��i�

Thus� the hi�� are symmetric in all their indices� ����	 can also be written
as its dual form

��e� � hi��e�i�����	

For each e�� �hi��	 is a symmetric matrix�

�



� Minimal Legendrian submanifolds in the sphere

and minimal Lagrangian cones

In the sphere S�n�� �� R�n there is a standard contact structure� Let X
be the position vector �eld of the sphere and � be the dual form of JX in
S�n��� where J is the complex structure of C n � R�n � It is easily seen that

d� � �
�����	

where 
 is the K ahler form of C n � Therefore�

� � �d�	n�� 
� 
����	

everywhere and � is a constant form in S�n��� The maximal dimensional
integral submanifolds of the distribution

� � 
����	

are �n� �	�dimensional and are called Legendrian submanifolds in S�n���

Now� let us consider the cone CM over M � CM is the image under the
map M � �
��	 into R�n de�ned by �x� t	 � tx� where x 
 M� t 
 �
��	�
CM has a singularity at t � 
� The associated truncated cone CM
 is the
image of M � ����	 under the same map� where � is any positive number�

We have �see ����	

Proposition ���� CM
 is minimal submanifold in R�n if and only if M is
a minimal submanifold in S�n���

For a �xed point x 
 M choose a local orthonormal frame �eld fesg
�s � �� ���� n � �	 near x in M with resetjx � 
�

By parallel translating along rays from the origin� we obtain a local
vector �eld Es in CM � Obviously� Es � �

r
es� where r is the distance from

the origin� Thus� fEs� �g is a frame �eld in CM � where � � �
�r

is the unit
tangent vector along rays� Obviously r�� � 
�

In the case of M being Legendrian

��es	 � 
�

and
d��es� et	 � �res�	et � �ret�	es

� res��et	�ret��es	� ���es� et�	 � 
�






From ����	 it follows that


�Es� Et	 �
�

r�

�es� et	 � 
�����	

Obviously


�Es� �	 � hEs� J�i �
�

r
��es	 � 
����	

����	 and ����	 mean that CM is a Lagrangian submanifold in R�n if and
only if M is a Legendrian submanifold in S�n���

Now� let us compute the coe�cients of the second fundamental form of
CM in R�n �

We have a local orthonormal frame �eld fEs� �� JEs� J�g in R�n along
CM � where fEs� �g is a local orthonormal frame �eld in CM �

Note

rEs� � rEs

X

r
�

�

r
Es�

where X denotes the position vector of the concernd point�
Then

hrEsEt� �i � �hEs�rEt�i � �
�

r
�st�

and

d

dr
hrEsEt� Eui � hr�rEsEt� Eui

� hrEsr�Et� Eui� hr���Es	Et� Eui

� �
�

r
hrEsEt� Eui�

d

dr
hrEsEt� JEui � �

�

r
hrEsEt� JEui�

Integrating them gives

hrEsEt� Eui �
Cust

r
and

hrEsEt� JEui �
Dust

r
�

where Cust� Dust are constants along the ray� They can be determined by
the conditions at r � � as follows

Cust � 
 � Dust � hust�

where hust are the coe�cients of the second fundamental form ofM in S�n��

in the Jeu directions� We also have

hrEsEt� J�i � �hEt�rEsJ�i � �
�

r
hEt� JEsi � 
�

�



Thus� we obtain the coe�cients of the second fundamental form CM in R�n

as follows� In the JEu directions

Buij �

�
huij
r




 


�
����	

and in the J� direction

Bnij � 
����	

From ����	� ����	 and ����	 we know that the Gauss map of the cone CM
has rank n� � at most� We summarize the results of this section as

Proposition ���� Let M be an �n� �	�dimensional submanifold in S�n���
It is minimal and Legendrian if and only if the cone CM over M is a
minimal Lagrangian submanifold in R�n � Furthermore� the Gauss map � �
CM � LGn has rank n� � at most�

� Harmonic Maps

Let �M� g	 and �N�h	 be Riemannian manifolds with metric tensors g and h�
respectively� Harmonic maps are described as critical points of the following
energy functional

E�f	 �
�

�

Z
M

e�f	 � ������	

where e�f	 stands for the energy density� The Euler�Lagrange equation of
the energy functional is

��f	 � 
�����	

where ��f	 is the tension �eld� In local coordinates

e�f	 � gif
�f�

�xi
�f�

�xj
h�� �����	

��f	 � ��Mf� � gij!���
�f�

�xi
�f�

�xj
	
�

�y�
�����	

where !��� denotes the Christo�el symbols of the target manifold N � For
more details on harmonic maps consult ����

A Riemannian manifold M is said to be simple� if it can be described by
coordinates x on Rn with a metric

ds� � gijdx
idxj �����	

�




for which there exist positive numbers 
 and � such that


j�j� � gij�
i�j � �j�j�����	

for all x and � in Rn � In other words� M is topologically Rn with a metric
for which the associated Laplace operator is uniformly elliptic on Rn �

Hildebrandt�Jost�Widman proved a Liouville�type theorem for harmonic
maps in �����

Theorem ���� Let f be a harmonic map from a simple or compact Rie�
mannian manifold M into a complete Riemannian manifold N � the sectional
curvature of which is bounded above by a constand � � 
� Denote by BR�Q	
a geodesic ball in N with radius R � �

�
p
	
which does not meet the cut locus

of its center Q� Assume also that the range f�M	 of the map f is contained
in BR�Q	� Then f is a constand map�

Remark� In the case whereBR�Q	 is replaced by another geodesically convex
neighborhood� the iteration technique in ���� is still applicable and the result
remains true �for example� a general version of that iteration technique that
directly applies here has been given in ���	�

By using the composition formula for the tension �eld� one easily veri�es
that the composition of a harmonic map f � M � N with a convex function
� � f�M	 � R is a subharmonic function on M � The maximum principle
then implies

Proposition ���� Let M be a compact manifold without boundary� f �
M � N a harmonic map with f�M	 	 V 	 N � Assume that there ex�
ists a strictly convex function on V � Then f is a constant map�

Let M � Rm�n be an n�dimensional oriented submanifold in Euclidean
space� We have the relation between the property of the submanifold and
the harmonicity of its Gauss map in �����

Theorem ���� Let M be a submanifold in Rm�n � Then the mean curvature
vector of M is parallel if and only if its Gauss map is a harmonic map�

Let M � Sm�n �� Rm�n�� be an m�dimensional submanifold in the
sphere� For any x 
M � by parallel translation in Rm�n�� � the normal space
NxM of M in Sm�n is moved to the origin of Rm�n�� � We then obtain an
n�subspace in Rm�n�� � Thus� the so�called normal Gauss map � � M �
Gn�m�� has been de�ned� There is a natural isometry � between Gn�m��

and Gm���n which maps any n�subspace into its orthogonal complementary
�m��	�subspace� The map �� � ��� maps any point x 
M into an �m��	�
subspace spanned by TxM and the position vector of x� From Theorem ���
and Proposition ��� it follows that

Proposition ���� M is a minimalm�dimensional submanifold in the sphere
Sm�n if and only if its normal Gauss map � � M � Gn�m�� is a harmonic
map�

��



� Proofs of the theorems

Proof of Theorem �

Since M is a graph in R�n de�ned by rF � the induced metric g on M is

ds� � g��dx
�dx��

where

g�� � ��� �
��F

�x��x�
��F

�x��x�
�

It is obvious that the eigenvalues of the matrix �g��	 at each point are � ��
The condition ����	 implies that the eigenvalues of the matrix �g��	 are
� ���

The condition ����	 is satis�ed and M is a simple Riemannian manifold�

Let fe�� en��g be the standard orthonormal base of R�n � Choose P� as
an n�plane spanned by e� � ��� � en� At each point in M its image n�plane
P under the Gauss map is spanned by

f� � e� �
��F

�x��x�
en���

which lies in the Lagrangian Grassmannian manifold LGn�
Suppose the eigenvalues of Hess �F 	 at each point x are ���x	 which are

positive by the convexity of the function F � The condition ����	 meansY
�

�� � ���	 � ��

Hence�

�� �
p
�� � �����	

De�ne in the normal polar coordinates of P� in LG�n	

�BLG�P�	 � f�X� t	�X � �
���i	� 
� � 
� 
 � t � tx � tan ��
p
�� � �g�

Two points P� and P can be joined by a unique geodesic P �t	 spanned by

�f��t	 � e� � z���t	en���

where

z���t	 �

�
B�
tan�
�t	 


� � �


 tan�
nt	

�
CA �

��



Therefore� the image under the Gauss map � of M lies in �BLG�P�	�

On the other hand� from ����	 we see that when 
� � 
 the square of
the distance function r� from P� is a strictly convex smooth function in
�BLG�P�	� Furthermore� it is a geodesically convex set�

Now� we have the Gauss map � � M � �BLG�P�	 	 LGn which is har�
monic by Thoerem ���� Hence the conclusion follows by using Theorem
����

Remark� If the graph of rF is a submanifold with parallel mean curvature
instead of a minimal submanifold the Theorem remains true as well�

Proof of Theorem �

From Proposition ��� we know that the normal Gauss map � � M � Gn�n

is harmonic� Let � be the isometry in Gn�n which maps any n�plane into its
orthogonal complementary n�plane� Hence � � � is also harmonic� On the
other hand� from the discussion in x � it follows that

� � ��M	 � ���CM
	�����	

where �� � CM
 � Gn�n is the Gauss map� Now let ��P�	 be spanned by
n vectors e�� which are complemented by n vectors en�i� The condition
����	 ensures that for all normal n�planes P of M in S�n��� ��P 	 lies in the
coordinate neighborhood U of ��P�	 and ��P 	 is spanned by n vectors f��

f� � e� � z�ien�i�

where �z�i	 are local coordinates of ��P 	 in U � Noting ����	� ��P 	 lies in LGn

and �z�i	 is a symmetric matrix� the geodesic from ��P�	 at �X�i	 � �
���i	
in U is described by ����	�

Noting Proposition ��� there exists 	� such that 
�� � 
� Then by
actions of SO�n	 we can achieve that at most one of 
��s is negative� Then
by one more action of SO�n	 all the 
��s are nonnegative�

Take any point ��p	 in � � ��M	 � ���CM
	� Draw a geodesic P �t	 from
��P�	 to ��P 	� Let P �t	 be spanned by

f� � e� � z�ien�i

where z�i is de�ned by ����	� Let

�f� � cos�
�t	f�� ���� �fn � cos�
nt	fn�

Those �f�� ���� �fn are orthonormal� Therefore�

h��P�	� P �t	i �

nY
�
�

cos�
�t	�

��



where 
� � 
 and "
�� � �� From ����	 it follows that

t �
cos�� �
max
�

�
�	
�����	

De�ne in the normal polar coordinates around ��P�	

�BLG���P�		 � f�X� t	�X � �
���i	� 
 � t � tX �
cos�� �
max
�

�
�	
g�����	

From ����	 we see that �BLG���P�		 lies inside the cut locus of ��P�	� We
also know from ����	 that the square of the distance function r� from ��P�	
is a strictly convex smooth function in �BLG���P�		� By a similar argument
as for BG�P�	 in our previous paper ���� it can be shown that �BLG�P�	 is a
geodesically convex set�

We thus have a harmonic map � � � from M into a geodesically convex
set �BLG���P�		� By using Theorem ��� we conclude that � � � is a constant
map� and then so is the map �� This completes the proof�

Proof of Theorem �

Let us consider the tangent cone of M at � as Fleming in ���� Take
the intersection of M with the ball of radius t and contract by �

t
to get a

family of minimal submanifolds in the unit ball with submanifolds of S�n��

as boundaries� More precisely� we de�ne a sequence

F t �
�

t�
F �tx	�

For each t
��F t

�x��x�
�

��F

�u��u�
�

where u� � tx�� It turns out F t satis�es the same conditions as F � More�
over� there is a subsequence tj �� such that

lim
tj��F t�x	 � �F �x	�

�F satis�es ����	� ����	 and ����	 and the graph r �F is a special Lagrangian
cone C �M whose link is a compact minimal Legendrian submanifold �M �

Let fe�� en��g be the standard orthonormal base of R�n � Choose P� as
an n�plane spanned by e� � ��� � en� At each point of C �M its image n�plane
P under the Gauss map is spanned by

f� � e� �
�� �F

�x��x�
en��

��



It follows that

jf� � ��� � fnj
� � det

�
��� �

�� �F

�x��x�
�� �F

�x��x�

	

and
�f � jf� � ��� � fnj�

The n�plane P is also spanned by

P� � �
� �

n

f f��

moreover�
jp� � ��� � pnj � ��

We then have

hP� P�i � det�he�� P�i	

� ���
f � ����

Let � be the isometry in Gn�n that maps any n�plane into its orthogonal
complementary n�plane� We thus have

h�P� �P�i � ����

By the discussion in x � we know that �P is just the normal n�plane of
�M in S�n��� Then Theorem � tells us that �M is a totally geodesic sphere
Sn�� in S�n�� and therefore� C �M is an n�plane in R�n � Allard�s result ���
then implies that the original special Lagrangian submanifoldM is an a�ne
n�plane and F is a quadratic polynomial�

��
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