Max-Planck-Institut
fur Mathematik
in den Naturwissenschaften

Leipzig

A form of Alexandrov-Fenchel inequality
by

Pengfei Guan, Xi-Nan Ma, Neil Trudinger and
Xiaohua Zhu

Preprint no.: 44 2001







A FORM OF ALEXANDROV-FENCHEL INEQUALITY

PENGFEI GUAN, XI-NAN MA, NEIL TRUDINGER, AND XIAOHUA ZHU

1. INTRODUCTION

There are many important integral formulas and integral inequalities for convex
bodies (see [5], [16]). Brunn-Minkowski inequality and Alexandrov-Fenchel inequal-
ity are among the most important integral inequalities in the theory of convex bodies,
and the Minkowski type integral formulas and more general formulas of Chern are
very useful in global geometry of convex hypersurfaces. Most of these formulas and
inequalities can be stated in the integral forms on S™ with the convexity assumption.
It seems of interest to establish similar results without the convexity assumption. In
[17], Trudinger generalized quermassintegral inequalities for k-convex bodies. For
a convex body, the polar of the body is also convex. The support function of the
convex body corresponds to the gauge function of its polar body. In other words,
the geometry of a convex body can be reflected from its polar dual. With this
relation, we will introduce a class of domains in R**! called k*-convex (see Defi-
nition 4.2) as a natural generalization of convex bodies. We will derive a form of
the Alexandrov-Fenchel inequality for this class of domains. k*-convexity is related
to a Hessian equation on S™ by its distance function. It will also be shown that
the assumption of convezity is not necessary for some of the integral formulas. We
will also prove a uniqueness theorem for the Hessian equation, which generalizes the
classical Alexandrov-Fenchel-Jensen theorem.

In most cases, our proofs are not far different of those known in the convex case
with two exceptions. First, we work directly on the functions and related vector-
valued forms on S™ without convezity assumptions. Secondly, we make use of hy-
perbolic polynomial theory instead of Alexandrov’s mixed discriminant inequality,
which enable us to replace the convezity by the more general notions. Our argu-
ments are drawn mainly from three important papers: Chern [8], Cheng-Yau [7]

and Garding [10]. In fact, the hyperbolic polynomial theory was already used by
1



2 PENGFEI GUAN, XI-NAN MA, NEIL TRUDINGER, AND XIAOHUA ZHU

Chern in [8] in the proof the uniqueness theorem and in the proof of Alexandrov-
Fenchel inequality for convex bodies in Hérmander [14]. It should be noted that
the hyperbolicity of the elementary symmetric functions plays important role in the
development of fully nonlinear equations in the work of Caffarelli-Nirenberg-Spruck
[6]. So, it is not a coincident the this theory is used here in a crucial way.

2. INTEGRAL FORMULAS FOR THE FUNCTIONS ON S"

Let eq,..., ey, is an orthonormal frame on S™, let wy, ...,w, be the corresponding
1-forms. For each function v € C?(S™), let u; be the covariant derivative of u with
respect to e;. We define a vector valued function

n
7 = Zuiei + uepny1-

i=1
where e, is the position vector on S, that is, the outer normal vector field of S™.
We note that Z is globally defined on S™. We write the hessian matrix of u with
respect to the frame as

W = {uij + udzj}
We calculate that,
U=2Z"enyqt,

n
dz = Z(duiei + uide;) + duep 1 + uden 41

i=1
n n . n ) n n+l
= gl = e + o we)
i=1 j=1 j=1 i=1 a=1
n . n )
+ Z(Uz'wl)en-i-l +u Z w'e;
i=1 i=1
n n
=3 (O (uij + diju)es)w’.
j=1 i=1

Let u',...,u"™! € C%(S"), we define VI = 1,...,n + 1,
n
A Zuéei + ulen+1,
i=1

and

Wl = {ui] + uléij}
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Set,

(2.1) Qu',...,u") = (2, dZ% dZ3, ..., dZ" ).

and

(2.2) V(e u?..,u"t) :/ Qu', ..., u" ).

We note that

(2.3) Qu', ..., ™) = u' S, (W2, ..., W )ds

where S, (W2, ..., W"*t1) is the mixed determinant and ds is the standard area form
on S". In particular, V1 < k < n, if we set u#*2 = ... = u"*! = 1, we obtained
(2.4) Qul, ..., u" ) = S, (W2, ..., WFt)ds

where Si(W?2,...,WWF+1) is the complete polarization of the symmetric function Sy
defined for symmetric matrices.
Lemma 2.1. V is a symmetric multilinear form on (C?(S™))"*+.
Proof. The multilinearility follows directly from the definition. Also, by the
definition, for any permutation o of {2,...,n + 1},
Qut,u?... u"l) = Q(ul,u”(2)...,u”("+1)),

so V(u!,u?...,u™) = V(u',u@ .., u’™*t1)). To see V is a symmetric form, we

only need to show
(2.5) V(ul,u?,ud. L u ) = Viw? ul el .
We first assume u’ € C3(S™),Vi. Let,

w(ut, ..., u") = (24, 2%,dZ3, ..., dZ" ),

we have

do(ul, .., u™) = —Q(u?, vt udu ) + Qut, u? ud, u T,
Now, (2.5) follows from Stokes theorem. The identity (2.5) is valid for C? function
by approximation. O

We remark that if w!,...,u”*! are the support functions of some convex bodies

2., u™1) is exactly the Minkowski mixed

Ki,...,K, 1 respectively, then V(u', u
volume V(Ky, ..., Kpt1).
The following is a direct corollary of the lemma. If u is a support function of a

convex body, it is well known as Minkowski type integral.
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Corollary 2.2. For any functionu € C%(S™), W = {u;;+d;ju}. Foranyl <k <n,
we have the Minkowski type integral formulas.
(2.6) / uSE(W)ds = Sk+1(W) ds,
n gn
where ds 1is the standard area element on S™.

For any n X n symmetric matrice W1, ..., Wy, let Si(W7i, ..., W) be the complete
polarization of S;. Let w and @ are two C? functions on S”. Let W and W
are the corresponding Hessian matrice of u and @ respectively. Following Chern’s
notations in [8], we let Py = Syp45(W, ..., W, W,..W) where W appears r times and
W appears s times. So, P, is a polynomial in Wij, Wij, homogeneous of degrees r
and s respectively. The following dual generalization of Chern’s formulas is another
corollary of Lemma, 2.1.

Corollary 2.3. Suppose u and @ are two C? functions on S™, then the following
identities hold.

(2.7) / [uPor, — WPy —1]dz = 0,
(28) / [UPk—l,l - ﬁpkg]dﬂi == 0,
and,

2/ u(Pop — Py—1,1)dx
Sn

(29) = /Sn{ﬂ(Pl’k_l - Pkg) - U(Pk:—l,l - P()k)}dﬂj =0.

3. k-CONVEX FUNCTIONS ON S"
Now, we consider functions satisfying the following equation,
(3.1) Sgk(W)=¢ on S™
Definition 3.1. For 1 <k < n, let 'y is a convex cone in R"” determined by
Fr={XAeR": Si(A)>0,..,5:(\) >0}

Suppose u € C?(S™), we say u is k-convex, if W (z) = {u;j(z) +u(z)d;;} is in Ty, for
each z € S™. v is convex on S™ if W is semi-positive definite on S™. Furthermore,
u is called an admissible solution of (3.1), if u is k-convex and satisfies (3.1).
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The next is a uniqueness theorem which generalizes Alexandrov-Fenchel-Jessen
theorem ([2], [9] and [8]) to k-convex case.

Theorem 3.2. Suppose u and @ are two C? k-convex functions on S™ satisfying
(8.1). If Sp(W) = Si(W), and if one of u and @ is nonnegative, then u — i €
Span{zy,...,cpy1} on S™.

Proof of Theorem 3.2. We follow the same lines as in [8]. We may assume
u is nonnegative. Since Si(W) is positive, we conclude that u is positive almost

everywhere on S™. By the hyperbolicity of Sy, VW' € T'y,i = 1,..., k,
(3.2) Se(W . WF) > S, (W) - Sp(WF),

with the equality holds if and only if the &k matrices are pairwise proportional.

Suppose Si(W) = Sk(W) on S, where W = {u;; + d;u} and W = {a;; + d;5u}
The left hand side of the integral formula (2.9) in Corollary 2.3 is non-positive.The
same is therefore true of the right hand side of (2.9). The latter is ansti-symmetric
on the two function u and %, and hence must be zero. It follows that P_;; =
Py, by (3.2). Again, the equality gives that W and W are proportional. Since
Sp(W) = Sx(W), we conclude that W = W at each point of S™, that is, u — @ €
Span{zy, ..., Tn+1} O

The following is an infinitesimal version of Theorem 3.2, which we will use in our
proof of the generalized Alexandrov-Fenchel inequality.

Proposition 3.3. For any C? function u, let L, be the linearized operator of the
Hessian operator Si({ui; + d;ju}). Then L, is self-adjoint. If in addition, u is
nonnegative admissible solution of (3.1), the kernel of Ly, is Span{xi,...,xn11}.

The above proposition is a special case of the following result.

Proposition 3.4. Vu?,...,u* € C%(S™) fized, define
(3.3) L(v) = Q1,v,u2...,u*,1,...,1),

then, L is self-adjoint. If in addition, u?,...,uF are k-convez, and at least one of

them is nonnegative, the kernel of L is Span{xy,...,xn11}.

Proof of Proposition 3.4. First if u € C?, the linearized operator L, of Sj
is self-adjoint (see, e.g., [15]). Let to,...,tx be real numbers, let u; = Zfﬂ tiul,
the operator L in (3.3) is the coefficient of the linearized operator L,, of to-- - t.
Since L,, is self-adjoint for all ¢ = (¢2,...,t;), we conclude that L is self-adjoint,if
ul € C3,¥2 <1 < k. By approximation, the same conclusion is true for C? functions.
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2

To compute the kernel, we may assume u? is nonnegative. Since u? is k-convex,

it is positive almost everywhere. Suppose v is in kernel of L, i.e.,
(3.4) L(v) =0.
Simple calculation shows that
Q(L,v,0,u, . uP 1, 1) = Sp(A, A, W3, .., WF)ds,
where A = {v;j + 6;;0} and W' = {uﬁj + 0;jul}.
We claim that, if (3.4) holds, then
(3.5) Sp(A A W3, W) <o,
with equality if and only if A =0, i.e., v € Span{zy, ..., Tp41}-
We note that,
0 = / vL(v) = / Qv,v,u?,u?, ... uF, 1,...,1)
= V(v,v,u?,u®, .. ub1,..,1) = V(w2 o0, .. 0 1 ..1)

= / w2 Q(1,v,0,u3, . uF 1, 1)

= /u2Sk(A,A,W3,...,W’“)ds.

If the claim is true, we will conclude that v is in Span{zi,..., 711} since u? is

positive almost everywhere.

To prove the claim, we make use of the result of Garding [10] result on hy-
perbolicity of Sy in the cone T in [10] (see also [14]). Since u' is k-convex,
W eTy, V2 <1<k For W3, ..., WP fixed, the polarization S(B, B, W3,...,W¥) is
also hyperbolic and complete for B € I'y. Let W; = W2 + tA, we have

Se(Wy, Wy, W3, Wk = S, (W2, W2, W3, ..., WF)

+26S, (A, W2, W3, ., WF) +128,(A, A, W3, ..., WF).
Since

Sy (W2, W2 w3.. . wk) > o,
and
Se(A, W2, .., Wk =o.

By the hyperbolicity, Sy (W;, Wy, W3, ..., W) has only real roots in t variable, so
(3.5) must be true. If in addition, Sx(A, A, W,...,W) = 0, we would have

Sk(Wta Wi, W, ..., W) = Sk(m ey W)a
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for all ¢t € R. By the completeness, A = 0. The claim is proved. (|

4. k*-CONVEX BODIES AND ALEXANDROV-FENCHEL INEQUALITY

For any n > k > 1 fixed, set u¥*? = ... = ™! = 1 we define Vu!,...,uf*t! €
C*(S™),
(4.1) Vit (uh, u?, o uf T = Vit u?, . .

Now we state a form of Alexandrov-Fenchel inequality for positive k-convex func-

tions.

Theorem 4.1. If u', ..., u* are k-convex, and u; positive, and at least one of u! is
nonnegative on S™ (for 2 <1< k), then Yv € C?(S™),
(4.2) Vk2+1(v,u1, oy t®) > Vi (ul ul w2, uF Vi (v, 0,02, L ub),
the equality holds if and only if v = aul—i—zgl;l a;x; for some constants a, @y, ..., Gp41.-
Our proof of the theorem follows the similar arguments of Alexandrov’s second
proof of Alexandrov-Fenchel inequality in [2] (see also [14]), which in turn is adapted
from Hilbert’s proof of the Brunn-Minkowski inequality when n = 3. Instead of
using Alexandrov’s inequality for mixed discriminants in his original proof, we will
make use of the hyperbolicity of the elementary symmetric functions as in [14]. This
replacement enable us to drop the convezity assumption. We sketch here some key
steps.

Proof.
Statement: If

(4.3) Vig1(v,ut,u?, ... uf) =0, for some v e C*(S"),
then
(4.4) Vi1 (v, 0,62, ..., uF) <0,

with equality if and only if v = Z?:Jrll a; T;.

The theorem follows directly from above statement. The proof of the Statement
will be reduced to an eigenvalue problem for certain elliptic differential operators.
Fisrt, for u?,...,u* € T}, fixed, we set

L(v) = Q1,v,u2...,ub 1,...,1).



8 PENGFEI GUAN, XI-NAN MA, NEIL TRUDINGER, AND XIAOHUA ZHU

By Garding [10] L(v) > 0 if v is k-convex. We claim that L is an elliptic differential
operator with negative principal symbol. This can be done following the same line
as in [14]. The principal symbol of L at the co-tangent vector 8 = (04,...,0,) is
obtained when A is replaced by —0 ® 6 in

Sp(A, W2, . WH.
So it is equal to
—Sp(0 @0, W2, ... . Wh).
Since S}, is hyperbolic with respect to the positive cone I'y, and 8 ®6 is semi-positive
definite and is not a 0 matrix if # not 0. By the complete hyperbolicity,
—Sp0®0,W?, ... Wk <o.

We now use continuity method to finish the job. For 0 <t < 1, let u} = t+(1—t)u?,

and set
Q1 u),u2.. uk 1, ...,1)

Pt = 1 ’
U

We examine the eigenvalue problem:
(4.5) Li(v) = Apyo.

If for we set Q;(u,v) = [q, uL;(v), the eigenvalue problem (4.5) is corresponding to
the quadratic form Q; with respect to the inner-product < u,v >,,= |, gn UVPL.

We want to show Claim: A\ = 1 is the only positive eigenvalue of multiplicity
1 with eigenfunction uj, and A = 0 is the eigenvalue of multiplicity n + 1 with
eigenspace Span{zi,....,x,11} for the eigenvalue problem of (4.5).

We note that u; is an eigenfunction corresponding to the eigenvalue A\ = 1. If
the Claim is true, (4.3) implies that v is orthogonal to eigenspace corresponding to
A =1 with respect to the inner product < .,. >, . If the claim is true, Statement
follows from the standard spectral theory of self-adjoint elliptic operators.

We now prove the Claim. When ¢t = 0, the problem can be reduced to the
following simple form by straightforward calculations:

Av + nv = nlw.

The eigenvectors of A are the spherical harmonics of degree v = 0,1, ..., with the
corresponding eigenvalues —v(v +n — 1). v = 0 corresponds to A = 1l and v =1
corresponds to A = 0 in the eigenvalue problem (4.5) respectively in this special
case. And A < 0 when v > 1. It is well known that spherical harmonics of de-
gree 0 are constants, and spherical harmonics of degree 1 are linear functions, i.e.,



A FORM OF ALEXANDROV-FENCHEL INEQUALITY 9

Span{xi,...,tn4+1}. Therefore, the Claim is true for ¢ = 0. For arbitrary ¢, since 1
is an eigenvalue of the problem (4.5) with eigenfunction uj, by the theory of elliptic
equations, we only need to prove that 0 is the eigenvalue of multiplicity n + 1. It’s
obvious that z1, ..., z,+1 are the eigenfunctions of L corresponding to the eigenvalue
0. The theorem now follows from Proposition 3.4. (|

Now, we consider a class of domains which will be named k*-convex. They can be
viewed as a generalization of convex bodies via polar dual. Let D be a star-shaped
bounded domain in R"*! with C? boundary. The distance function of D is defined

as,
(4.6) u(z) = min{\z € AD}, Vz e S".
When D is convex, the distance function is also called the gauge function of D.

Definition 4.2. Let D be a star-shaped bounded domain in R**! with C? boundary.
We say D is k*-convex if its distance function u is k-convex on S™. We day D is
polar centrized if its distance function u satisfies

/ zju(zr)ds =0, Vj=1,2,...,n+1.

If Dy,..., D41 are k*-convex bodies, let uq,...,ux41 are the corresponding distance
functions, and Wy, ..., Wi, be the corresponding hessians of the gauge functions
respectively. For 0 <[ < k, we define mixed polar surface area functions

(47) Sl(Dla"'aDl7$) :Sl(Wl,.-.,VI/l)-
We call S)(D,z) = S)(W,..., W) the Ith polar surface are function of D. We also

define a mixed polar volume,

1
Vi1 (u, oy upy1)
where Vi1 (u1, ..., up41) defined as in (4.1). We also write, V0 <[ < k+1, V,*(D) =
Vi (D, ..., D, B, ..., B), where B is the unit ball centered at the origin in R+ D
appears [ times, and B appears k + 1 — [ times in the formula.

(4.8) Vi1 (D1, ooy Diy1) =

We note that if D is convex, D is polar centrized if and only if the Steiner point
of the polar of D is the origin. If D is convex, V;*(D) in Definition 4.2 is the is the
reciprocal of the [th quermassintegral of the polar of D. The geometric quantities
of D and its polar D* in this case are related by some important inequalities, like
Blascke-Santalo inequality, Mahler’s conjecture. When D is a centrally symmetric
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convex body and [ = n + 1, by the work of [4], V(D)V(D*) > ¢, for some positive
constant ¢, depending only on the dimensionality.
As an application, we have the following consequences of Theorem 3.2 and The-

orem 4.1.
Theorem 4.3. Suppose D1, Dy are two k*-convex domains in R*T. If kth polar
surface area functions of D1 and Dy are the same, i.e.,

Sl(Dl,ZU) :SI(DQam)a V.’L‘ESn,
then, the distance functions of D1, Dy are equal upto a linear function. In particular,
if both D1 and Do are polar centrized, then Dy = Ds.
Theorem 4.4. Suppose Dy, ..., Dy 1 are k*-convexr domains in R**! then we have
the following Alexandrov-Fenchel inequality for the mized polar volumes:

(Vk*-l—l(Dla "'7Dk+1))2 < Vk*—l—l(Dla DlaD3-'-7Dk+1)vk*+1(D27D27 D3---7Dk+1)7

with the equality if and only if the distance functions of D1 and Do are equal upto
a linear function. In particular, if both D1, Do are polar centerized, then D1 = ADo
for some X > 0.

The above theorem indicates that the reciprocal of the mixed polar volume is
log-concave. Therefore, one may deduce a sequence of inequalities for k*-convex
domains from Theorem 4.1 as in the convex case (see section 20 in [5], section
6.4 in [16] and appendix in [14]). In particular, one can obtain the corresponding
Brunn-Minkowski inequality and quermassintegral inequalities for V*.

Corollary 4.5. Suppose D1, Do are k*-convez, then for 0 <t <1,
—1 —1 —1
Vi (L =2)Dy +tD2) 51 > (1 =) Vi (D) 51 + £V (Do) F51,

if D1, Dy are polar centralized, the equality for some 0 < t < 1 holds if and only if
Dy = ADs for some A > 0. If D is k*-convez, then for 0 <i<j<I<k+1,

(Vi (D))" < (VD) I (Vi (D).

if D is polar centralized, the equality holds if and only if D is a ball centered at the
origin. In particular, if we let o, be the volume of the unit ball B in R*+1,

o, (V7 (D) < (Vi (D),

if D is polar centralized, the equality holds if and only if D is a ball centered at the

origin.
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We discuss some problems arising from the subject we discussed.

(1). Tt is important to study the Steiner and Schwarz symmetrization processes
for k*-convex bodies ([18]), that would provide us better understanding of the Hes-
sian equation (3.1).

(2). The next is prescribing k* surface area function problem. The equivalent
analytical problem is to find a positive solution of the equation (3.1).Of course, ¢ has
to satisfy [, z¢(x) = 0. The existence and regularity of admissible solutions have
been established in [13]. The questions is when an admissible solution is positive?
This means that, to find a necessary and sufficient conditions for ¢ such that the
above equation has a positive solution. We note that if u is a solution of (3.1),
u(z) + I(x) is also a solution for any linear function /(x). Therefore, it is required
to put some restriction on the solutions. One of that is to require u orthogonal
to the span of z1,...,2,41, that corresponds to find a polar centralized k*-convex
body. The uniqueness of the positive solutions for the problem is a consequence of
Theorem 3.2.

(3). Equation (3.1) has another important geometric connection, it is related to
the Christoffel-Minkowski problem. In that case, one looks for convex solutions of
(3.1). The intermediate Christoffel-Minkowski problem is still unsolved. A sufficient
condition was obtained in a recent paper [12], further references of this problem can
be found in [12].

(4). Equation (3.1) is a model case for general equation of the form:
F({UZ] + (5l]u) = .

F is assumed to be elliptic and concave. One would like to understand the unique-
ness and existence questions for the equation. We also want to know when a solution
is convex. When F' is a quotient of Hessians, the equation related to prescribing
Weingarten curvatures on outer normals, we refer [3], [8] and [11] for further refer-

ences.

REFERENCES

[1] A.D. Alexandrov, Zur Theorie der gemischten Volumina von konvezen korpern, II. Neue Un-
gleichungen zwischen den gemischten Volumina und ihre Anwendungen ( in Russian) Mat.
Sbornik N.S. 2 (1937), 1205-1238.

[2] A.D. Alexandrov, Zur Theorie der gemischten Volumina von konvezen korpern, III. Die
Erweiterung zweeier Lehrsatze Minkowskis uber die konvezen polyeder auf beliebige konvere
Flachen ( in Russian) Mat. Sbornik N.S. 3, (1938), 27-46.



12

PENGFEI GUAN, XI-NAN MA, NEIL TRUDINGER, AND XIAOHUA ZHU

[3] A. D. Alexandrov, Uniqueness theorems for surfaces in the large, I, Vestnik Leningrad. Univ.,

11 (1956), 5-17.

[4] J. Bourgain and V. Milman, New volume ratio properties for conver symmetric bodies in R",

Invent. Math. 88 (1987), 319-340.

[6] Y. D. Burago and V.A. Zalgaller, Geometric Inequalities, Springer, Berlin, 1988.
[6] L.Caffarelli, L.Nirenberg and J.Spruck, The Dirichlet problem for nonlinear second order el-

liptic equations, III: Functions of the eigenvalues of the Hessian Acta Math. 155, (1985),261
- 301.

[7] S.Y. Cheng and S.T.Yau, On the reqularity of the solution of the n-dimensional Minkowski

problem Comm. Pure Appl. Math. 29, (1976), 495-516.

[8] S.S. Chern, Integral formulas for hypersurfaces in euclidean space and their applications to

uniqueness theorems, J. Math. Mech. 8, (1959), 947-955.

[9] W.Fenchel and B.Jessen, Mengenfunktionen und konveze korper, Det. Kgl. Danske Videnskab.

Selskab, Math.-fys. Medd. 16(3), (1938), 1-31.

[10] L. Garding, An inequality for hyperbolic polynomials, J. Math. Mech, 8, (1959), 957-965.
[11] B. Guan and P. Guan, Convez Hypersurfaces of Prescribed Curvature, preprint, 2000.
[12] P. Guan and X. Ma, Christoffel-Minkowski problem I: convezity of solutions of a Hessian

equation , Preprint, Issac Newton Institute, University of Cambridge, 2001.

[13] P. Guan and X. Ma, On a Hessian equation on S™, Preprint, Max-Planck Institute for Math-

ematics in the Sciences, Leipzig, 2001.

[14] L. Hérmander, Notions of Convezity, Birkhauser, Boston, (1994).
[15] R. C. Reilly, On the Hessian of a function and the curvatures of its graph, Michigan Math. J.

20, (1973), 373-383.

[16] R. Schneider, Convez bodies: The Brunn-Minkowski theory, Cambridge University, (1993).
[17] N. Trudinger, Isoperimetric inequalities for quermassintegrals, Ann. Inst. H. Poincaré Anal.

Non Lineaire 11, (1994), 411-425.

[18] N. Trudinger, On new isoperimetric inequalities and symmetrization, J. Reine Angew. Math.

488, (1997), 203-220.

DEPARTMENT OF MATHEMATICS, MCMASTER UNIVERSITY, HAMILTON, ON L8S 4K 1, CANADA.
E-mail address: guan@math.mcmaster.ca

DEPARTMENT OF MATHEMATICS, EAST CHINA NORMAL UNIVERSITY, SHANGHAI, 200062, CHINA.
E-mail address: xnma@math.ecnu.edu.cn

SCHOOL OF MATHEMATICAL SCIENCES7 AUSTRALIA NATIONAL UNIVERSITY, CANBERRA, Avus-

TRALIA

E-mail address: neil.trudinger@maths.anu.edu.au

SCHOOL OF MATHEMATICAL SCIENCES, BEIJING UNIVERSITY, BEIJING, 100871, CHINA.
E-mail address: zxh@math.pku.edu.cn



