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Abstract

A method with optimal (up to logarithmic terms) complexity for solving elliptic prob-
lems is proposed. The method relies on interior regularity but the solution may have
globally low regularity due to rough boundary data or geometries. Elliptic regularity
results, high order approximation results, and an efficient preconditioner are presented.

The method is utilized to realize, with linear-logarithmic complexity, an accurate and
data-sparse approximations to the associated elliptic Poincaré-Steklov operators. Further
applications include the treatment of exterior boundary value problems and its use in the
framework of domain decomposition methods.

Keywords: hp-finite element methods, preconditioning, data-sparse approximation to Poincaré-
Steklov operator, meshes refined toward boundary
AMS Subject Classification: 65N35,65F10, 35D10

1 Introduction

In this paper, we present the boundary concentrated finite element method. This method is de-
signed to solve numerically elliptic boundary value problems with low global Sobolev regularity.
The coefficients of the underlying PDE, however, are assumed to be smooth so that, owing to
interior elliptic regularity, the low global Sobolev regularity is due to boundary effects such
as low-regularity boundary data or geometries. The key idea of the method is to exploit this
interior regularity in the framework of the hp-version of the finite element method (hp-FEM)
by using low order elements on refined meshes near the boundary and high order polynomials
on large elements in the interior of the domain. The combination of mesh refinement near
the boundary and polynomial degree distribution proposed in this paper concentrates most
degrees of freedom in a narrow neighborhood of the boundary, explaining the name boundary
concentrated FEM.

Since the boundary concentrated FEM may be viewed as a generalization of the boundary ele-
ment method (BEM), we illustrate its most important properties by a side-by-side comparison
with the classical BEM. In the BEM (see, e.g., [17] for an introduction to the topic), an elliptic
boundary value problem on a domain Q C R? is reduced to a problem posed on the boundary
0%2 thereby effecting a dimensional reduction. This dimensional reduction immediately leads
to a reduction of the problem size of the discrete problems. In the present paper, we show that
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in the “error vs. degrees of freedom” perspective, the boundary concentrated FEM achieves the
same rate of convergence as the classical, low order Galerkin h-BEMs that are formulated on
quasi-uniform boundary triangulations. In this respect, therefore, the boundary concentrated
FEM is comparable to the classical BEM. However, it represents a generalization of the BEM
in that it can be formulated for equations with variable (albeit piecewise analytic) coefficients
while the BEM is effectively restricted to equations with constant coefficients because explicit
knowledge of a fundamental solution is required.

A second difference between the classical BEM and the boundary concentrated FEM manifests
itself in the structure of the resulting linear system of equations. The boundary concentrated
FEM, being a FEM, naturally leads to sparse stiffness matrices. In contrast, the stiffness
matrix in BEM is in general fully populated. We mention, however, that this drawback of the
classical BEM has been successfully overcome in recent years by various compression schemes,
notably the panel clustering techniques [20], multi-pole expansions (see the survey [12] and the
references therein), and wavelet compression methods [10]. A generalization of the clustering
techniques are the recently introduced H-matrices, [18,19].

A further interesting point of comparison is the cost of setting up and solving the linear system.
We show in this paper that the stiffness matrix of the boundary concentrated FEM can be
computed with optimal complexity O(N), where N is the problem size. The classical BEM,
which, as we mentioned above, achieves a comparable accuracy with the same number of degrees
of freedom N, requires O(N?) operations to set up the linear system due to the fact that the
stiffness matrix is fully populated. Again, only recent progress in compression schemes for the
BEM has led to methods with complexity O (N log? N) for suitable ¢ € Ny.

Another important observation is that our technique leads to the accurate and data-sparse
approximation of complexity O(N log N) to Poincaré-Steklov operators associated with elliptic
equations with variable coefficients. This generalizes previously known methods for equations
with piecewise constant coefficients in polygonal domains such as [22-25].

In this paper we present a complete theory in the two-dimensional setting. Many results, how-
ever, have analogs in higher dimensions. In particular, the regularity assertion (Theorem 1.4)
and hp-approximation results on shape regular meshes (Theorem 2.13) can be extended in a
straightforward way to three dimensions. Preconditioning techniques for hp-FEM/hp-BEM in
three dimensions have recently been proposed, [1,15,35], and we expect that these ideas can
be employed for the successful development of preconditioners for the boundary concentrated
FEM in 3D.

The paper is organized as follows: We start with a formulation of the model problem and
provide analytic regularity results for the solution. In Section 2, we present convergence results
for the hp-FEM applied to the model problem and show that the method yields the same
optimal convergence rate as the h-BEM on quasi-uniform meshes. In Section 3, we address
the question of efficiently solving the resulting linear system. For Dirichlet problems we show
that the condition number of the linear system grows only polylogarithmically with the problem
size. For Neumann problems, we exhibit a block-diagonal preconditioner such that the condition
number of the preconditioned system grows again polylogarithmically. We show in Section 4
how the boundary concentrated FEM can be employed to realize an application of the Poincaré-
Steklov operator with linear-logarithmic complexity with respect to the boundary degrees of
freedom (both in operation count and memory requirement). So far, for the sake of simplicity,
our discussion has been mainly restricted to interior problems with analytic coefficients. Further
applications of our approach in the case of exterior problems and in the domain decomposition



framework (piecewise smooth data with respect to a regular geometric decomposition) are
addressed in Section 5. Numerical experiments in Section 6 illustrate the theoretical results of
Sections 2 and 3.

1.1 Notation

For a Lipschitz domain © C R?, the Sobolev spaces H*(Q), Hf(Q), k € Ny, are defined in
the standard way. Fractional order Sobolev spaces H*(Q2) are defined by interpolation (the
real method) between integer order Sobolev spaces. Negative order space such as H~'(Q2) are
defined by duality: H=*(Q) = (H3(Q2))'. Spaces on the boundary dQ are defined in the usual
way:
{ulog |u € H*H'2(Q)} if s >0
H*(0Q) = ¢ L*(0%2) ifs=10
(H=5(09))' if s < 0.

We mention at this point the important fact that for polygonal domains €2, the spaces H*(0%),
|s|] < 3/2 are invariant under piecewise smooth changes of parametrization of 0€2. In partic-
ular, the parametrization ¢ : [0, L) — 0 by arc length provides an isomorphism u — u o ¢
from H*(0Q) to H},.([0,L)) for |s| < 3/2. Here, for s > 0 we set Hy, ([0,L)) := {u €
H*(R)| uis L-periodic} with the corresponding topology and H, ([0, L)) = (H,,([0, L)))’ for
s < 0.
Duality pairings will be denoted by (-, -) with subscripts indicating with respect to which spaces
the pairing is taken. Since the spaces H'/2(0Q), H~'/?(0) arise frequently in this paper, we
abbreviate

Y = HY*(0Q), Y':=H Q). (1.1)

1.2 Problem Class

For simplicity of exposition, we will restrict our attention to problems formulated on polygons,
and we will not consider the case of mixed boundary conditions. That is, we consider for a
polygonal Lipschitz domain Q C R? either the Dirichlet problem

Lu = fe€L*Q), in €, (1.2a)
You = Xe HY*0Q) on 99, (1.2b)
or the Neumann problem
Lu = fe€L*Q) in Q, (1.3a)
v = e H Y?0Q) on 0S). (1.3b)

Here, the differential operator L is given by
Lu:=—V - (AVu) +b-Vu+ apu (1.4)

2 - the vector-valued

with uniformly (in = € Q) symmetric positive definite matrix A = (a;;)7;_;;

function b, and the scalar valued function a, are assumed to be analytic on Q. The operator 7,



2

is the trace operator v : H'(Q) — H'Y2(0Q) and v, := Y n;a;;0; is the co-normal derivative
2,7=1

operator. We assume that the operator £ generates an H'(Q)-elliptic bilinear form

2 2
B(u,v) = Z a;;0;ud;v + Z b;0;uv + aguv dx, (1.5)
o ig=1 i=1
ie.,
collullig < Blu,u) <allullig  YueV, (1.6)

where we introduced the space V' C H'(Q2) in the standard way as

Vo { H}(Q) if the Dirichlet problem (1.2) is considered

H'(Q) if the Neumann problem (1.3) is considered. (1.7)

The boundary value problems (1.2), (1.3) are understood in the usual, variational sense. Solving
(1.2) is equivalent to

Find v € H'(Q) with you = X and B(u,v) = / fode  Yv e Hy(9). (1.8)
Q
Solving (1.3) reads:

Find u € HY(Q) st. Bu, v) = / fode+ (6 y)vey Yo H'(Q).  (L9)
Q

1.3 Assumptions on the data

In this paper we make the following assumptions on the data:

the coefficients A, b, ag, and the right-hand side f are analytic on  and

the solution v € H'*°(Q) for some 6 € (0, 1]. (1.10)

Such a situation arises, for example, if the boundary data A, 1) are not smooth and/or of the
domain €2 is merely a Lipschitz domain.

The problem class under consideration may be viewed as a generalization of the setting of the
classical BEM in that, while the boundary input data are allowed to be rough, the coefficients
of the differential equation are smooth on 2. The particular case of constant coefficients and
homogeneous right-hand side, which is the setting of the BEM, is a special case.

Remark 1.1 The method proposed in this paper could be easily adapted to the case of piece-
wise analytic coefficients A, b, ay and right-hand side f. The further discussion on this topic
can be found in Section 5.3. .

Remark 1.2 Methodologically, the analysis of the present paper is closely related to the clas-
sical hp-FEM, [37,39]. In the classical hp-FEM, stronger regularity assumptions are made,
namely, piecewise analyticity of the boundary 02 and the boundary data A, v is stipulated.
These stronger regularity assumptions imply stronger regularity results for the solution u. In
the classical hp-FEM, these stronger regularity assertions for u are exploited to design ex-
ponentially convergent methods by using meshes that are graded geometrically towards few
singularities located at the boundary. Our weaker regularity assumptions (1.10) require geo-
metric refinement towards the whole boundary and lead to algebraic rates of convergence only.
Nevertheless, the algebraic rates obtained in this paper are optimal (in the sense of n-widths)
for the class of problems characterized by the regularity assumptions (1.10). .
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Remark 1.3 Our regularity assumption (1.10) makes strong smoothness assumptions on the
right-hand side f. However, the techniques presented in this paper could be employed for
methods for solving

Lu=f, — mu=1

with f € H™'"*(Q) and v € H'*(Q), § € (0,1/2). In that case, let ug € H;™(Q) be the
particular solution of Lu = f in €2 solving

B(ug,v) = / f(x)vde Vv € Hy(Q). (1.11)
Q
For the remaining £-harmonic component of the solution uy = u — ug € Vy, where

Vi={veV:B,z) =0 Vze H(Q)?}, (1.12)

we have the equation

B(ug,v) = . Yuds + (1o, V) ir-1/2(90) x 11/2(09) Vv e H'(Q) (1.13)
and note that uy solves an equation satisfying the regularity assumptions (1.10). For finite
element discretizations, we may use different ansatz spaces to approximate the solutions to
equations (1.11) and (1.13). The only constraint is that these spaces have to provide the same
trace space on 0). In particular, we obtain u = ug+ug with ug € H'*(Q), uy € gfﬂ;, where
the countably normed space B2 ; is defined in (1.17) below. n

1.4 Regularity of the solution

The key to efficiently treating (1.2), (1.3) numerically are precise regularity assertions for their
solutions. In the case analyzed in the classical hp-FEM (see Remark 1.2), the regularity of the
solution u is best described in terms of the countably normed spaces B%, [3,4]. This regularity
assertion allows for a rigorous proof of exponential convergence of the hAp-FEM on suitably
chosen meshes, [37]. We are interested in the case of the weakened regularity assumptions (1.10).
That is, we seek regularity assertions for the solution u to the differential equation

Lu=f on {2 (1.14)

for f analytic on Q; the boundary conditions—of Dirichlet, Neumann, or mixed type—however,
may be rough. By standard interior regularity, [32, Chapter 5], any solution u to (1.14) is
analytic on 2 but control of higher order derivatives is lost as one approaches the boundary
09). Yet, it is possible to measure the blow-up of higher order derivatives near the boundary
in terms of weighted spaces. A very precise control, which is suitable for the hp-FEM error
analysis below, is achieved with the countably normed space B% that we define as follows: We
introduce the distance function r by

r(z) := dist (z, 0Q) (1.15)
and define for 3 € [0,1) the space H3(S?) as the completion of C*°(€2) under the norm
el 0y = lullin @) + 17 V2ullZz o). (1.16)
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For analytic coefficients in the differential operator £, the regularity of the solutions to (1.14)
can be described in terms of countably normed spaces, akin to the spaces B%(C’, 7) introduced

in [3,4]. Specifically, for C, v > 0, 5 € [0,1) we define the space gg(C, v) by
BHC.) = {u € B lullyzoy < C, [r5V sy < Cy#pl WpeN).  (117)

We then have the following result (see Theorem A.1 for the proof, where in fact the assumptions
on the right-hand side f are slightly weaker).

Theorem 1.4 Let Q be a Lipschitz domain. Let A, b, ag, f be analytic on Q and assume that
u € H™(Q), 6 € (0,1], solves (1.14). Then u is analytic on 2, and there exist C, v > 0
depending only on Q, A, b, ag, 6, and ||u||gi+s(q) such that

u € g%*(?(oa 7)

Remark 1.5 An analogous result can be formulated if the data A, b, ¢, f are piecewise analytic.

It is of interest to state conditions under which a solution u to (1.14) satisfies u € H'*°(Q).
For example, for a general Lipschitz domain € the solution u of the Dirichlet problem (1.2)
satisfies the following shift theorem, [33]:

ull ir+sy < Cs [I1f |r-1+5c) + I m1/245 00y ] 5 §€1[0,1/2), (1.18)

provided the right-hand side of (1.18) is finite. (1.18) represents a shift theorem with restriction
d € [0,1/2). Shift theorems where one can shift further (i.e., § > 1/2) are known for piecewise
smooth boundaries (e.g., polygons). Using the techniques of [13], [5] shows that for a polygon
Q C R? there exists dy € (1/2,1] (depending on Q and A) such that the solution u of the
Dirichlet problem (1.2) satisfies

||’LL||H1+6(Q) S C(; |:||f||H*1+5(Q) + ||)\||H1/2+5(3Q)] , (S € [0,(50) (]_]_9)

We recall further that for convex polygons 6y = 1.

2 Discretization by hp-FEM

2.1 Abstract FEM

2.1.1 Formulation

The finite element method (FEM) is obtained from the weak formulations (1.8), (1.9) by re-
placing the space V with finite dimensional space. For a space Vy C H'(Q2) the FEM for the
Neumann problem (1.9) reads:

Find uy € Vy s.t.  B(un,v) = / fodz + (W, vv)yixy Vv € Viy. (2.1)
Q

For the Dirichlet problem (1.2), we introduce the space

Yy := Vylan = {nov |v € Vx} C H'/?(09). (2.2)
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For an approximation Ay € Yy to A we can then define the FEM for (1.8) as
Find uy € Vy s.t. uy = Ay and  B(uy,v) = / fvde  YwveVynHyQ). (2.3)
Q

The coercivity assumption (1.6) ensures existence of the finite element approximation wuy.
Furthermore, by Céa’s Lemma, there is C' > 0 independent of Vi such that

lu —unllm@ < € mf flu—vlmaq (2.4)
for the solution uy of (2.1) and
Ju=unllme < € inf (el + Ihx — Mmon) (25)
Yov=AN

for the solution uy of the Dirichlet problem (2.3).
In practice, the approximations Ay are obtained with the aid of a linear operator Py : HY/?(0Q) —

Yn by setting Ay = Py A. In most of the present paper, we will choose this operator Py to be
the L2-projection Qy, i.e., for A € L?(0€) the function Qy )\ is defined by

<QN)\; U>0’39 = <)\, 'U>0’3Q Yv € YN. (26)

2.1.2 Discrete harmonic extension

In the paper, we will only consider families of approximation spaces Vy that are sufficiently
large in the following sense: There exists C' > 0 such that

inf{||u — v||g1() |v € Vv and v]sq = ulsa} < 5||U/||H1(Q) Yu € H'(Q) with ulsq € Yy (2.7)

Remark 2.1 Condition (2.7) is satisfied for all approximation spaces considered in this paper.
For the standard piecewise linear spaces, condition (2.7) may be verified with the aid of the
Clément-type interpolation operator of [38]. For the high-order spaces employed in the present
paper, the corresponding hp-Clément-type interpolation operator is constructed in [31]. .

Condition (2.7) is required for the discrete harmonic extension to have the following stability
properties:

Lemma 2.2 Let Q C R? be a Lipschitz domain. Assume that a family of approzimation spaces
Vy C HY(Q) satisfies (2.7). Then there exists C > 0 such that the discrete harmonic extension
operator Ey : Yy — Vi given by

B(Eyu,v) =0 Vv € Vy N HY () (2.8)

18 stable
||ENU||H1(Q) < C“u“Hl/?(BQ) Yu € Yy.

Moreover, the Galerkin orthogonality implies

B(z,z) = B(z — Ex(72),2 — Ex(72)) + B(Ex(702), Ex(702)) Vz € Vy.



2.2 Geometric meshes and hp-FEM spaces
2.2.1 The geometric mesh

For simplicity of notation, we will restrict our attention to triangulations consisting of affine
triangles. We emphasize, however, that an extension to quadrilateral elements is possible. The
triangulation 7 = {K} of Q consists of elements K. Each element K is the image Fy (K) of
the equilateral reference triangle
1
l‘ _ =
2

under the affine map Fi. We furthermore assume that the triangulation 7 is y-shape-regular,
ie.,

N 1
K:{(x,y)|0<x<1,0<y<\/§<§—

hi' |l ) + hiell(Fi) Mz <7 VK €T (2.9)

Here, hg denotes the diameter of the element K. Of particular importance to us will be the
“geometric meshes”, which are strongly refined meshes near the boundary 0€2:

Definition 2.3 (geometric mesh) A ~y-shape-reqular (cf. (2.9)) mesh T is called a geometric
mesh with boundary mesh size h if there exist ¢i, ¢ > 0 such that for all K € T :

1. if KNoQ # 0, then h < hi < coh;
2. if KNOQ =0, then ¢ inlf; dist (z,09) < hx < cpsup dist (x, 09).
FAS

zeK
A typical example of a geometric mesh is depicted in Fig. 1. Note that the restriction to
the boundary 02 of a geometric mesh is a quasi-uniform mesh, which justifies speaking of a
“boundary mesh size h.”

Figure 1: Example of a geometric mesh in the sense of Definition 2.3.

Remark 2.4 An important algorithmic issue is the automatic generation of geometric meshes.
Such meshes can be generated with the algorithm of [36]. .



2.2.2 hp-FEM spaces

In order to define hp-FEM spaces on a mesh 7, we associate a polynomial degree px € N with
each element K, collect these px in the polynomial degree vector p := (px)xe7 and set

SP(Q,T) = {ue HY(Q)|uo Fx € P, (K) VK €T}, (2.10)
SP(Q,T) == SP(Q,T)NHy (), (2.11)

where for p € N we introduced the space of all polynomials of degree p as
Pp(K) = span {z'y’ [0 < i+ j < p}.

For the approximation of solutions to (1.14) on geometric meshes (in the sense of Definition 2.3),
the so-called linear degree vector is a particularly useful polynomial degree distribution:

Definition 2.5 (linear degree vector) Let T be a geometric mesh in the sense of Defini-
tion 2.3. A polynomial degree vector p = (pi)ker 18 said to be a linear degree vector with
slope a > 0 of

h h
1 —i—acllogTK <pg <1 +a0210gTK.
Here, h := mingc7 is a measure for the mesh-size of the quasi-uniform mesh T |aq.

Remark 2.6 Linear degree vectors p have the additional property that the polynomial degree
varies slowly, i.e., there exists C' > 0 such that

C g <pg <Cpgr VK, K'€T with KNnK'#0. (2.12)
u

We conclude this section by showing that for geometric meshes in the sense of Definition 2.3, the
number of elements of 7 is proportional to the number of elements on the boundary. Similarly,
for linear degree vectors (Definition 2.5), the dimension dim SP(2,7) is proportional to the
number of unknowns on the boundary:

Proposition 2.7 Let T be a geometric mesh with boundary mesh size h. Let p be a linear
degree vector with slope a > 0 on T. Then there exists C > 0 depending only on the shape-
reqularity constant v and the constants c¢1, co, o of Definitions 2.3, 2.5 such that

Y1 < o,

KeT
dim SP(Q,T) ~ > pi <Ch,
KeT
< :
maxpi < C|loghl

Proof. We will only prove the second estimate as the first one is proved similarly.

ovk = > okt Y. pk (2.13)

KeT KeT:KNoQ#£D KeT:Kno=0



For the first sum, we note that the assumptions on a geometric mesh 7 and the linear degree
vector give that px < C for all K € T with K N 9Q # (). Thus,

> opk<Cc > 1<on
KET:KNoQ#D KeT:KNoQ#D
For the second sum in (2.13) we bound

> h=c ¥ [ 1+“jgzg>/h>l d

KeT:KnaQ=0 KeT:KNoQ=0

2 00 2
< C 1+ |In(r(z)/h)| do < C’/ 1+ |In(z/h)| dr < Ch .
ch

z€Qr(z)>ch r? (l‘) 2’

where in the penultimate step we locally flattened the boundary with Lipschitz maps. The inte-
gral represents the integration normal to the boundary whereas the integration in the tangential
direction was absorbed in the constant C'. ]

2.3 hp-FEM Approximation on geometric meshes
2.3.1 Approximation on the boundary 0f)

If 7 is a geometric mesh and Viy = SP(Q,7) with linear degree vector p then the space Yy
defined in (2.2) is a space of piecewise polynomials of fixed, low degree (depending on « and
the constants ¢j, ¢ appearing in Definition 2.5) on a quasi-uniform mesh. It can be shown
(with the aid of Proposition C.3) that for 0 < s < 3/2 the L2-projector Qy is in fact stable on
H*(09); in particular, therefore, Yy C H*(02) for 0 < s < 3/2. This allows us to extend the
operator @x by duality to an operator H *(0€2) — Yy with 0 < s < 3/2 by

<QNU, U>0,3Q = <’LL, U>H—s(3Q)XHs(3Q) Yu € H_S(SQ) Yv € YN. (214)

By a slight abuse of notation, the extended operator is again denoted by @n. It has the
following properties:

Lemma 2.8 Let ) be a polygon and let T be a geometric mesh with boundary mesh size h in the

sense of Definition 2.3. Let p be a linear degree vector given by Definition 2.5, Vi := SP(Q,T),
Yy defined by (2.2), Qn the L? projection given by (2.6) and (2.14). Then

1Qnullms@ay < Csllullms@ay Yu e HY0Q), 0<|s| < 3/2; (2.15)

||u — QNUHHS((?Q) < Cs,s/hs,_s||U| ¥ (6Q) Yu € HSI(GQ), —3/2 <s< s’ < 3/2 (216)

The constants Cs, Cs g depend only on the s, s', and the constants appearing in Defini-
tions 2.3, 2.5.

Proof. Let ¢ : [0,L) — 02 be a parametrization by arclength. The fact that  is a polygon
together with Lemma C.1 implies that the map v — w o ¢ is an isomorphism between the
Sobolev spaces H*(992) and H.,.([0, L)), 0 < s < 3/2. The stability result (2.15) for s > 0 now
follows from Proposition C.3 and by duality for s € (—3/2,0). For 0 < s, the approximation
result (2.16) follows from (2.15) and standard approximation results in the usual way. The case

s € (—3/2,0) is again obtained by duality. ]
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2.3.2 Approximation of g%-functions from SP(Q2,7T)

Our hp-FEM approximation results for functions of BV% will be based on the following lemma:

Lemma 2.9 Let K be the reference triangle with edges T';, i € {1,2,3}. Let @ be analytic on

E and assume that
||V"+21l||L2 < Cu"}/u Vn € N()

for some Cy, v, > 0. Let c € (0,1]. Then for each p, p1, p2, ps € N with
there exists a polynomial w, € Py(K) with

1. mylr, = ip,r;(ulr,) fori € {1,2,3}. Here, i,,r, denote the Gauss-Lobatto interpolant of
degree p; on edge I';.

2. |lu = mpllyro iy < CCue™ P,
The constants C', b > 0 depend only on c and ~,.

Proof. The case py = p, = p3 = p is considered in [28, Thm. 6.2.6]. The extension to the
present case is straightforward. [ ]

Proposition 2.10 Let T be a geometric mesh with boundary mesh size h_as defined in Defi-
nition 2.3. Let p be a linear degree vector on T with slope o > 0. Let u € B%(C’u, Yu) for some
B €0,1), Cy, vu > 0. Then there exist C', b > 0 depending only on shape-regularity constant
v and the constants ¢y, co of Definition 2.3 as well as C,, ., [ such that

inf {|lu — v|| g1y v € SP(Q,T)} < Ch'™P + Ch*. (2.17)

In terms of degrees of freedom, we have by setting N = dimSP(Q,T) that

h~ N
Proof. For u € g%(Cu, Y.) we define
- 1
2 . __ n+Byvrn+2, 12
Cr=>_ WHT V2
n=0 u )

The assumption u € g%(C’u, Yu) guarantees

3 Gk <3 gl e <Y =30
Hence, we conclude that u € B%(Cu, vu) implies
POV 2u) 2y < Cr(27,)"n! VneN,, VKEeT, (2.18a)
k< gcg. (2.18b)

KeT
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We explicitly construct an element of SP(£2,7) with the desired approximation properties. To
that end, we first assume, as we may, that px = 1 for all elements abutting 0€2. Next, we
associate with each edge e of 7 a polynomial degree p, := min{pg | e is an edge of element K}.
After these preparations, we construct the approximant element by element. We distinguish
the cases K N0 # () and K N o = 0.

Using Theorem B.4 and a scaling argument, we obtain for all elements K abutting on 0f2 that
the linear interpolant Iu satisfies

lu — Tul| i xy < Chy P |rPV2ul| oy < OWPPCk

For the elements not abutting on 02, we employ Lemma 2.9. Using (2.18a) we see that the
pull-back @ := u o F satisfies

D ~ 2(n+1 n n n n
V" 2alF i, < ChE"™ VIV Pulfage < Oh ™ I V™ 2ul g

< COx B2 7P (24,7 (n])?,

with C' > 0 independent of n and K. The approximant /u of Lemma 2.9 then satisfies
| — Tul| gy < CCxhl Pe=tr

for some C', b > 0 independent of the element K. We note that the interpolant constructed
element-wise in this fashion is indeed an element of SP(€Q, 7)) (the edge polynomial degrees p;
in Lemma 2.9 are taken to be the polynomial degrees p. of the corresponding edges e).

Using px > caln(hk/h), we arrive at

lJu — Tul| g rey < CCOxh?~ ¥
for some b’ > 0. Exploiting that hx > ch, a simple calculation reveals that

h}(—ﬁ—ab'hab’ < Crhmin{l—ﬁ,ab’}‘
We thus conclude in view of (2.18b) that

Z ||U — [UJH?{l(K) < C Z C?{hmin{lfﬁ,ab’} < Chmin{lfﬁ’ab/},
KeT KeT

which is the desired estimate. The bound for the dimension of SP(2, T) follows from Proposi-
tion 2.7. |

Remark 2.11 The meshes 7 considered here consist of triangles only. Likewise, the approxi-
mation result in Proposition 2.10 is formulated for triangles only. This restriction is not essential
and was done for simplicity of exposition only. The approximation results can be formulated for
meshes consisting of non-affine elements (quadrilaterals, curved elements) as well. To handle
this case, it is required that the element maps F for elements K not abutting on the boundary
the element be analytic (with a controlled domain of analyticity; see, e.g., [28]) and that the
error on elements abutting 9Q be O(h'~#). .

Proposition 2.10 is a result for unconstrained approximation in H'(Q). For treating Dirich-
let problems, constrained approximation as in (2.5) is required. This is accomplished in the
following corollary.
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Corollary 2.12 Assume the hypotheses of Proposition 2.10 and additionally u € H*7#(Q) N
B3(Cu, ) for some Cy, vy > 0, f € (0,1). Let Yy be the restriction of SP(Q,T) to 0Q as
given by (2.2). Let Qy be the L*-projection into Yy (cf. (2.6)). Then

inf{|lu — v||mi(0) |v € SP( T) such that vov = Qn(you)} < C [A'7F + hbe]. (2.19)

The constants C', b > 0 depend only on the shape-regularity constant v, the constants ci, co
appearing in Definition 2.3, and Cy, vu, B, ||u|lg2-5().-

Proof. We first observe that the trace theorem gives ||youl| z3/2-5(50) < Cllullg2-5(q)- Lemma 2.8
and Proposition 2.10 therefore imply the existence of vy € SP(£2,7) such that

C [0 + "],
Ch*=Jull 25

|u — vn||a (@)

<
|vou — QN(%U)“HU?(,?Q) <

The desired result now follows with the aid of the discrete harmonic extension operator Ey
of Lemma 2.2: Since yovy — Qn(7ou) € Yy, we get that the function vy := vy — Enx(yovy —

Qn(ou)) € Vy satisfies vovy = Qn(You) and

oy —ullm@) < Jlu—vnllm@ + | Exv(ovy — Q@n(vow))| m )
< Nlu—=wnllai@) + Cllvovy — @n(vou)ll 1250y
< fu- UN||H1(Q) +C [||70(UN - U)||H1/2(asz) + [|you — QN(%U)||H1/2(39)] :
The result now follows. [ ]

Corollary 2.12 allows us to finally formulate an approximation result for the hp-FEM on geo-
metric meshes applied to (1.2) and (1.3):

Theorem 2.13 Let T be a geometric mesh with boundary mesh size h as defined in Defini-
tion 2.3. Let p be a linear degree vector on T with slope o > 0 (cf. Definition 2.5). Let Qn be
the L*-projection onto Y = SP(Q, T)|aq.
Letu € H(Q), § € (0,1), be the solution to (1.2) (resp. the solution to (1.3)) with coefficients
A, b, ag, and right-hand side f analytic on Q. Then the FE-solution uy given by (2.3) (resp.
(2.1)) satisfies

lu—un|lm@y < C [R° +h*]. (2.20)

The constants C, b > 0 depend only on the shape-regqularity constant -y, the constants ¢y, co
appearing in Definition 2.3, and the data A, b, ¢, f, Q.

Proof. Theorem 1.4 implies that the solution u € H™(Q) is in B? ;(C,,7,) for some C,,
v > 0. In view of the best approximation properties (2.5), (2.4), the assertion (2.20) now
follows from Corollary 2.12. [ ]
For « sufficiently large the boundary concentrated FEM achieves the optimal rate of convergence

||U — UNHHI(Q) < Ch6 = O(Nits)
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bdy. cond. | p = p(N) | DOF cond (A) cond (A°) cond (C~'A)
Dirichlet | O(log N) O(p*(1+1logp)) | O(p(1+1logp)) | O(1 +log’p)
Neumann | O(log N) O(Np*(1+1logp)) | O(Np(1 +1logp)) | O(1 + log” p)

N
N

Table 1: Conditioning of the hp-FEM stiffness matrices: N = # elements, p = maxge7 pr-

3 hp-FEM solution procedure

Choosing the slope « of the polynomial degree vector sufficiently large, we obtain for the FEM
approximation the optimal rate ||u — uy/||#i(0) < CN7’. In the present section we discuss how
the FE solution uy can be computed with complexity O(N log® N).
We consider iterative methods for solving the Dirichlet and Neumann problems on geometric
meshes in the sense of Definition 2.3. We restrict our attention to the symmetric positive
definite case, i.e., we take in (1.4)

bp =0, ag>0.

The main results of this section are collected in Table 1: A is the stiffness matrix, A¢ stands for
the statically condensed stiffness matrix (with the shape functions discussed in Example 3.1),
and C stands for the preconditioners proposed here.

We focus in this section on the design of preconditioners for Neumann problems. The reason for
our concentrating on this case can be seen in Table 1: While the Dirichlet problem is fairly well-
conditioned (the condition number without preconditioning grows only polylogarithmically in N
since p = O(log N)) the Neumann problem leads to at least linearly (in V) growing conditioning
numbers, thus requiring preconditioning.

Our approach for the design of a preconditioner for the Neumann problem is based on the
results of [2] (see also [37, Sec. 4.7]).

3.1 Shape functions and assembling
3.1.1 Element shape functions

In order to set up the stiffness matrix, bases of the polynomial spaces P, have to be chosen.
It is customary in p- and hp-FEM to split a basis of P,, into vertez, side, and internal shape
functions. These three types of shape functions are characterized as follows:

1. Vertex shape functions V: These are the usual linear nodal shape functions, which are
equal to one in one node and vanish on the edge opposite that node. We write V = span V.

2. Side shape functions ‘? = &1 U S, U S3: The side shape functions from §; are associated
with the edge I'; of 0K and vanish on the edges I'; for j # i. We write S; = span S; and

S :=span {S; US, U S3}.
3. Internal shape functions Z: The functions from Z vanish on OK. We write T = spanZ.

The side and internal shape functions are not uniquely defined with the above separation.
An important consideration for an actual choice is the conditioning of the resulting stiffness
matrix. We will discuss this point further below. One possible choice of a basis of P, is based
on Lagrange interpolation polynomials with respect to the Gauss-Lobatto points on the sides,
which we elaborate in the following example.
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Example 3.1 Denote by v;, i = 1,...,3, the three vertices of K and by I';, i =1,...,3 the
three edges (we assume I'; = {(z,0) € R?|0 < = < 1}). Let p; € N be polynomial degrees
associated with the edges I'; and let p € N be the polynomial degree of the internal shape
functions. We then define vertex shape functions V, side shape functions S = & US; U S3, and
internal shape functions 7 as follows:

VY := the usual linear nodal shape functions n; with n;(v;) = d;;,
y—V3ry+V3(x—1),
81 = {lj,pl(x) T 1— 2 |j:177p1_1 )
L p—3)(p—2
T = (s~ VI + V3l - )LL) 0<i+j < L2y

Here, the polynomials L; are the Legendre polynomials scaled to the interval [0, 1]. The polyno-
mials [;,,, are the Lagrange interpolation polynomials with respect to the p; +1 Gauss-Lobatto
points on [0,1]: Letting 0 = zy < 77 < -+ < z,, = 1 be the zeros of the polynomials

x> (1 —x)L; (), the functions [, (z) are defined by

p1

xr — XI;
l; = : i =0,...,p1. 3.1
7,P1 (‘T) H -'I;j _ -'I:z', ] ) y P1 ( )
i#j

The side shape functions Sy, S3 are obtained similarly with p; replaced with ps (resp. ps3) and
a suitable coordinate transformation. "

3.1.2 Global bases and assembling

The decomposition of a basis Bx of P,, facilitates the assembly process in hp-FEM with
variable polynomial degree. For a detailed discussion of this procedure we refer for example
to [11,34]. The basis of Example 3.1, however, may serve to illustrate the main point. The
topological entities “edge” and “element” carry a polynomial degree: the polynomial degree
associated with an element K is pg, whereas the polynomial degree p, associated with an edge
e = KNK'is p, := min{pg,px'}. This edge polynomial degrees p, then correspond to the
polynomial degree p;, i = 1,...,3, in Example 3.1; since the side shape functions are Lagrange
interpolation polynomials on the edges, the assembly process is straightforward.

We introduce the assembly operator Axcr of [21] to combine the bases By of the spaces P,
into a global basis B of the FE-space Vy:

B= A Bkg.

KeT

One can also assemble only the functions from V, S, or Z:
= = = Tk. 2
W Ké’T Vic, Vs Kéfr Sic: vz Ké?’ K (3-22)

Of course, the functions of V), are just the standard piecewise linear hat functions spanning the
space S*(Q2,T). The shape functions of V7 are supported by a single element and the shape
function of Vs are supported by at most two adjacent elements. We can further split Vs

Vs = @edges e Ve, Ve={veVs|v, =0 forall edges ¢' # e}. (3.2b)
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3.2 Cost of setting up the stiffness matrix and local condensation

We first show that setting up the stiffness matrix and the optional local static condensation
can be performed with optimal complexity on geometric meshes with linear degree vectors.
To see that, we introduce the elementwise bilinear form By by restricting B to the element K:

Bk (u,v) := / (AVu - Vv + apuv) dz.
K
Furthermore, for functions u, v € Vy, we write ug := u|g, v := v|g. With this understanding

we can write
B(u,v) = Z Bk (ug, vi). (3.3)
KeT

The actual evaluation of Bk (ug,vk) is performed by integrating on the reference element K
instead of K. That is, writing & = ux o Fi, 0 = vk o Fg, we set Bi(u,v) := Bg(u,v), where

B (i1, 9) == / AV - 0 + agud d,
K
A= (F,)" (Ao Fx) (Fi) "det Fly, g = ag o Fi - detFl.

In practice, the integration over K that is required for the evaluation of By is performed with a
quadrature rule with O(p%) points. In a standard hp-FEM code, the bilinear form Bx defines
the element stiffness matrix

Ag = (BK(ua v))u,vGVUSUI’

which is an O(pk) X O(pk)-matrix. Finally, in the assembly the local stiffness matrices A are
combined into the global stiffness matrix A. As in [21], we write this assembly process as

A= Ké’/’ A
In hp-FEM it is also customary to perform local static condensation. The partitioning of the
basis of Pk in vertex, side, and internal shape functions implies a corresponding block structure
of AKZ
AV qs qvT
Ag = ASS AST
sym. AL

Since AZI is invertible, one can form the following Schur complement
A o= A — AT (4T) 7 (457)
where we introduce the notion of external shape functions
E=VUS. (3.4)

The condensed global stiffness matrix A° is obtained by assembling the condensed local matrices
A%
A= A A%. (3.5)

KeT

An important observation is that the condensed stiffness matrix A° is the stiffness matrix
corresponding to elementwise discrete harmonic external shape functions.
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Proposition 3.2 Let T be a geometric mesh with boundary mesh size h and let px be a linear
degree vector with slope o in the sense of Definition 2.5. Assume that for all elements quadrature
rule with O(p%) points are used. Then the stiffness matriz A is generated with work

where N ~ h™t. Additionally, the local static condensation, i.e., forming the Schur complement
with respect to the internal shape functions is performed with work W (A¢) = O(N).

Proof. The cost of setting up the local stiffness matrix with O(p% x p?%) entries using numerical
quadrature with O(p%) points is O(p%). Thus, the total cost to set up the global stiffness

matrix is
W~ (%) = O(N)

where the last bound is obtained by arguments similar to those in the proof of Proposition 2.7.
Also computing the condensed stiffness matrix AS is done with work O((p%)?) = O(p%).
Again, summing this work estimate over all elements K of the geometric mesh we arrive at
W(A€) = O(N). ]

Remark 3.3 The presence of numerical quadrature introduces variational crimes. It can be
shown, [30], that the bilinear form B obtained by numerical quadrature induces an inner product
on Vy that is equivalent with the inner product generated by B, and the approximation result
Theorem 2.13 still holds. "

3.3 The Dirichlet problem

The aim of the present section is to show that the stiffness matrix resulting from the discretiza-
tion of a Dirichlet problem is fairly well-conditioned. We have

Proposition 3.4 Given a geometric mesh T with boundary mesh size h, let p be a polynomial
degree distribution satisfying (2.12) and let the element shape functions be taken as described in
Example 3.1. Then there exists C' > 0 independent of h and p such that the condensed stiffness
matriz A¢ corresponding to the Dirichlet problem has [2-condition number

k(A%) < Clp|(1 +log|p|), (3.6)
where |p| = maxgerpr. In the case of Neumann boundary conditions, there holds
K(A%) < Ch™" |p[(1 + log|p]). (3.7)

Proof. The O(1)-condition number estimate for the case p = 1 has been proved in [41]. For the
reader’s convenience, however, we include a simple proof; we refer to the examples in Section 6
for numerical verifications of this result. The bound is based on the embedding results in
weighted Sobolev spaces (i.e., the well-known Hardy inequality, see, e.g., [13]): there exists the
constant C' = C'(2), such that

Ir= (@)ullog < Cllullo,  Yu€ Hy(). (3.8)
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Recall that for any u € Hg(€2) there holds B(u, u) < ||[Vul[§ . Now, for the usual linear/bilinear

nodal shape functions n;, any u € S§(£2,7) can be written in the form u = Y u;n;; we then
i

obtain

N
douw<e Y hllully g < e >l ulls g = cllr M ullf o < e Vullf . (3.9)
=1 KeT KeT

N
Combining (3.9) with the trivial estimate ||[Vul|§, < ¢>" u7, which holds due to the shape
i=1

N
regularity of mesh, we arrive at the desired bound B(u,u) < Y u? for all u € S§(Q2,T). For

i=1
the case p > 1 and Dirichlet boundary conditions, we refer to [29, Theorem 2.2]. The case of the
Neumann boundary conditions is obtained combining the results of [29] for the p-dependence
with those of [6, Theorem 4.1] for the h-dependence. [
Applied to the case of linear degree vector p, Proposition 3.4 yields that in the case of a Dirichlet
problem the condensed stiffness matrix satisfies

k(A% < Clog N(1+ loglogN)

because |p| < C'log N = C|log h|. Thus, solving Dirichlet problems on geometric meshes can be
accomplished efficiently by simple CG-iterations. Note that the condition number k(A), of the
full hp-FEM stiffness matrix is shown to be O(|p|*log|p|). In this situation the CG-iterations
again lead to the linear-logarithmic complexity.

Applied to the Neumann problem on geometric meshes with linear degree vectors, Proposi-
tion 3.4 yields a bound of the form x(A°) < CNlog N(1 + loglog N). In this case, precondi-
tioning seems to be desirable for the efficient solution of the resulting linear system. We propose
a preconditioner in the following two subsections.

3.4 Neumann problem: Reduction to preconditioning on piecewise
linear spaces

The bilinear form B is expressed in (3.3) as a sum of element contributions. The preconditioner
C' is also constructed elementwise:

C(u,v) = Z Ck(ug, vk). (3.10)

KeT

For the construction of the preconditioner, we use the fact that by our discussion in Section 3.1.1
the space P,,. can be written as P, =V ®;_; S; ®Z, where the polynomial degrees associated
with sets of side shape functions §; and the internal shape functions Z implicitly depend on K.
Correspondingly, a function ux € P,, can be written as

3
(e :u})(+2uf§+uf(. (3.11)
i=1

We then define the element contributions C'x of the preconditioner C' as

3

Cc(u,v) = Bi(ug, vg) + Y Bre(ug, vg) + Bre (ufe, vio). (3.12)
i=1
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We mentioned in Section 3.1.1 that the splitting of a basis of P, in vertex, side, and internal
shape functions is not unique. The following result, which is due to [2], asserts that for discrete
harmonic side shape functions the preconditioner C' given by (3.10) is only weakly dependent
on p and independent of the mesh:

Proposition 3.5 ( [2]) Let T be a shape regular mesh consisting of triangles. Assume that
the side shape functions are discrete harmonic, i.e.,

Bi(u,v)=0 VYueS VYvel. (3.13)

Then there exist ¢1, co > 0 depending only on the coefficients A, ag and the shape-reqularity
constant vy such that

c1B(u,u) < C(u,u) < (1 +1n|p|)?Bu,u)  Vu € SP(Q,T),
where |p| = maxger Pr-

Remark 3.6 The condition (3.13) can be achieved by a process akin to the local static con-
densation described in Section 3.2. By Proposition 3.2, the condition (3.13) can be enforced
with work O(N). n

Remark 3.7 When solving the system by local static condensation as described in Section 3.2,
the condition (3.13) should be substituted by

Bg(u,v)=0 VYuef Vwel. (3.14)

It is easy to see that the energy minimization property of the discrete B-harmonic functions
now implies the same condition number for the preconditioner (3.12), (3.14) as in Proposition
3.5. On the other hand, the former preconditioner (3.12), (3.13) can be shown to have the same
condition number as the modified one. n

We now analyze the cost of applying the preconditioner C| i.e., solving the variational problem
C(u,v) = I(v) Yv € Vy.

By the decomposition (3.2) of the basis B of Vi, the sought function u € Viy can be written in
the form

w=u"+ Z u® + Z uk., u’ € SYQT), u.€spanV,, uk € spanVy. (3.15)
edges e KeT

Computing the components u”, u®, uZ. amounts to solving a global problem corresponding to

a discretization with piecewise linear functions and two sets of local problems:

B, v) = I(v) Yo € Vi (3.16)
Bu,v) = I(v) Yo eV, for all edges e (3.17)
B(uk,v) = 1(v) YoeVz VKeT (3.18)

We now show that solving (3.17) and (3.18) can be accomplished with work O(/N) on geometric
meshes with linear degree vectors:
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Proposition 3.8 Let T be a geometric mesh with boundary mesh size h and p be a linear
degree vector. Then the problems (3.17) and (3.18) can be solved with work W = O(N), where
N~ ht

Proof. First, we note that the stiffness matrices corresponding to (3.17), (3.18) are submatrices
of the global stiffness matrix; this guarantees that the problems can be set up with optimal
complexity O(N). For the solution step, we observe that the problems decouple into prob-
lems associated with single elements or two adjacent elements. Specifically, using Gaussian
elimination for each element with cost O(pS), we arrive at the total cost for the solution of
(3.18)
W <O pi=0(N),
KeT

by a reasoning as in the proof of Proposition 2.7. The solution of (3.17) decouples into problems
associated with each edge of the mesh and a calculation shows again that the required work is
O(N). n
Since dim S'(Q2, T7) = O(N), the cost for solving (3.16) is at least O(N); hence, by Proposi-
tion 3.8, the total cost of applying the preconditioner C' is controlled by the cost of solving
(3.16).

3.5 Efficient solution of piecewise linear discretization

The analysis of the preceding section allowed us to restrict our attention to the case of piecewise
linear approximation on geometric meshes 7. By the general theory of preconditioning, it
suffices to find a spectrally equivalent bilinear form B on S'(Q2,T) x SY(Q, 7). To that end,
the space S'(Q,T) is decomposed further

SHOLT) = Vi (512, T) 0 H(@) (3.19)
where, for the S*(Q, T)-discrete harmonic extension operator

Ey:v(S'(T) — SYQ,T)
u + FEyu with B(Eyu,v)=0 Vve SYQ,T)NH ),

the space V3 is given by

Vi = Range E)y,.
By definition, decomposition (3.19) provides also the B-orthogonal splitting, see Lemma 2.2,
B(u,v) = B(Eyyyu, Eyyyv) + B(u — Eyyyu, v — Eyyv) Vu,v € SY(Q,T). (3.20)

Due to Proposition 3.4, any spectrally equivalent approximation to the first term on the right
hand side of (3.20) yields the desired bilinear form B. For simplicity of exposition, we now
assume that €2 is simply connected. Following the standard construction in the domain de-
composition methods we apply a circulant preconditioning matrix. Let Fn : C' — 0Q be
the bi-Lipschitz mapping providing the global parameterization of 0€2 by 2mw-periodic function.
Assume that our quasi-uniform partitioning of 7jsq is the image of the uniform grid 75 on

~

C :=[0,27]. Let Az, be the discrete Laplacian defined on the set 75 and associated with the

-~

corresponding FE space of periodic piecewise linear functions V,(C),

SEAGTURMINGES /AV’U, -Vuds +/Auv ds  Yu,veV,(0). (3.21)
¢ ¢
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The bilinear form B is then defined on S*(Q,7) x S(Q, T) by

B(u,v) := ((—A@’h)lﬂ(%u o Fg), (vov o Fa))y g + B(u — Evyou, v — Eyyov). (3.22)

The symmetric positive definite bilinear form B is spectrally equivalent with B on S'(Q,T)
since

((=2)"2(you o Fa), you o Fa) ~ [[voull} 2,00 ~ | EBv(10u)[[3 pa-
We are thus left with the efficient solution of the problem

Find u € SY(Q,T) s.t. B(u,v) = I(v) Yo e SH(Q,T). (3.23)
Problem (3.23) can be solved in four steps:

Algorithm 3.9 (Preconditioner for p.w. linear discretization)

1. Determine @ € S*(Q,T) N H(Y) as the solution of
B(a,v) = 1(v) Vo € SHQ,T) N Hy(Q). (3.24)

This can be done efficiently by CG-iteration, because the stiffness matriz has uniformly
bounded condition number.

2. Determine yyu as the solution of
(=D V(00 Fa), (3000 Fa)ly o = I(v) = B(@v) Vo€ SHQ.T).  (3.29)

Note that the right hand side in (3.25) depends only on ~vov, which makes it possible to
compute it with the test functions supported within one near-boundary grid layer. Due to
the special structure of the operator Ags, on uniform meshes, solving (3.25) is efficiently
accomplished by a forward and a backward Fast Fourier Transform.

3. Compute (approximately) the discrete B-harmonic extension Eyygu. This can be achieved
with the aid of explicit extension operator [16] or by CG-iteration of the problem

B(Eyyou,v) =0 Yo € SY(Q,T) N Hy (),

since the stiffness matrix corresponding to this problem has condition number bounded
uniformly in N by Proposition 3.4.

4. Set v :=u+ Eyyu.
Algorithm 3.9 has the following complexity:

Proposition 3.10 If Steps 1, 3 in Algorithm 3.9 are solved iteratively with a tolerance ¢ =
O(N™9), then the solution of (3.23) with Algorithm 3.9 requires O(N log N) floating point op-
erations.

Proof. The solution of the problem in Step 1 requires O(N|loge|) work. The cost of the FFT
is O(Nlog N). Finally, the calculation of the harmonic extension by the CG-iteration requires
O(N|loge|) arithmetic operations, where ¢ > 0 is the desired accuracy. Setting ¢ = O(N9)
completes the proof. [ ]
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3.6 Remarks on implementations with static condensation

In computational practice one would likely base an iterative solution fully on local static con-
densation. One of the advantages of such a procedure is the reduction of the size of the problem
that is solved iteratively. We recall the classical static condensation based scheme:

Algorithm 3.11 (Solution based on local static condensation)

1. Compute the local stiffness matrices Ax and the local load vectors l.

2. Compute the condensed local stiffness matrices A (note that this enforces (3.14)) and
compute the condensed load vectors [5,.

3. Assemble A° = A1 A% and assemble the condensed load vectors I° (see, e.g., [39]).

4. Solve the linear system A°x = [° by a preconditioned CG-iteration with the modified
preconditioner of Algorithm 3.12 below.

5. Sweep through the mesh and solve for the internal degrees of freedom.

Note that with the exception of solving the condensed system A°xr = [° all steps of this
algorithm can be accomplished with work O(N). For Dirichlet problems, Proposition 3.4 shows
that the condition number of the matrix A¢ grows polylogarithmically with the problem size and
can thus be treated efficiently by CG-iterations. For the Neumann problem, a preconditioner
C° similar to the one introduced above is required.

Static condensation on the element level can be interpreted as choosing new nodal shape func-
tions V{5 and side shape functions V§. Specifically, the mapping Z that accomplishes this
transformation of shape functions is given by

Zule = ul, V edgese

B(Zu,v) =0 Vv e V. (3.26)

Z:u v Zu, Zu satisﬁes{

The mapping Z maps the set of piecewise linears V3, and the the set of side shape functions
Vs onto discrete harmonic nodal shape functions V}f := ZVj, and discrete harmonic side shape
functions V§ := ZVgs, respectively. The preconditioner C'* employed for the solution of the
condensed linear system can then be realized with the following algorithm:

Algorithm 3.12 (Preconditioner C° for statically condensed stiffness matrix)
Output: solution u = uye + use € span Vi5 U V§ such that

C(u,v) =l(v) Vo € span Vj5 U V5.
1. (a) Determine u € span Vis N Hy(Q) as the solution to
B(a,v) = (v) Vv € span V35 N H; (Q). (3.27)

This can be done efficiently by a CG-iteration as the stiffness matrixz has uniformly
bounded condition number (cf. [29]). Note that the stiffness matriz corresponding to
(3.27) is a submatriz of A°.
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(b) Determine you as the solution of
((—Aah)lﬂ(%u o Fg), (vov © Fa))oa = l(v) — B(i,v) Vv € span V5.
(¢) Find Eyyu € span V5 such that
B(Eyyu,v) =0 Vo € span V5. (3.28)

This could be accomplished by a CG-iteration as the stiffness matriz corresponding
to (3.28) has uniformly bounded condition number by Proposition 3.4. Note again
that the stiffness matriz is a submatriz of A°.

(d) Set uye := i + Eyyu.

2. Introduce V° := {v € V§|v, =0 for all edges ¢’ # e}. Then us. € span Vg is given
by uge = Zedges o US with u® € VO° solving

B(u®,v) =1(v) Vo € Vo©. (3.29)

Note that the stiffness matrices for these edge-based problems are submatrices of A°. Solv-
ing all edge problems (3.29) can be achieved with work O(N) by Gaussian elimination.

We will not analyze the scheme consisting of Algorithms 3.11, 3.12. In view of the following
lemma, however, we expect complexity estimates for this scheme as in Proposition 3.10.

Lemma 3.13 The mapping Z of (3.26) is an isomorphism between S'(Q,T) and ZS'(Q,T),
i.e., for some C' > 0 there holds

Proof. The lower bound || Zu|| g1 (q) < C||u||gi ) follows from the fact that the energy norm is
equivalent to the H'-norm and the energy minimization properties of the mapping Z. For the
upper bound, we write € as the union of elements. For a fixed element K, we write u, Zu for
the pull-backs to the reference element K of the functions ulk, Zu|k. We then calculate using
the trace theorem on K and exploiting that @ is linear:

IVl g2y ~ [al oy = 1Zul iy < ClIIV Zull 2z

where the implied constant in the ~ notation and the constant C are independent of the
polynomial degree px and the element K. Scaling to the physical element K and summing
over all elements yields:

||Vu||L2(Q) S C||VZU||L2(Q)

Since u = Zu on 02, we arrive at the upper bound |[u||g1(q) < C||Zul| g1 in (3.30). n

4 Approximation to Poincaré-Steklov operators

4.1 Poincaré-Steklov Operators in Elliptic Problems

In some applications, the solution u to (1.2) or (1.3) is not the principal quantity of interest
but rather the missing data for a complete set of Cauchy data. The Poincaré-Steklov operator
T (also known as the Dirichlet-to-Neumann map) is defined as

T:HY2(0Q) — H™Y2(0Q)

A = mu, wusolves (1.2) with f = 0. (4.1)
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Likewise, we define the Steklov-Poincaré operator S (also called the Neumann-to-Dirichlet map)
by
S:HY2(00) — HY2(0Q)

Y —  yu, wusolves (1.3) with f =0. (4.2)

We note that the operators S, T are in fact inverses to each other, i.e., S~ = T. Akin to
the situations in (1.18), (1.19), the operator 7" admits a shift theorem. For general Lipschitz
domains 2, [8, Lemma 3.7] asserts for each s € [0,1/2] the existence of Cs > 0 such that

||T)\||H—1/2+s(89) S CS||)\||H1/2+S(3Q) V)\ € H1/2+s(8Q). (43)

For polygonal domains €2, this shift theorem holds in a larger range. While this is closely
related to (1.19), a precise reference seems to be missing, and we therefore formulate this as an
assumption:

Assumption 4.1 There ezists &g > 1/2 such that for each § € [0,0y) there exists Cs > 0 with
||Tu||H_1/2+5(3Q) S C’5||u||H1/2+5(,9Q) Yu € H1/2+6(8Q). (44)

Remark 4.2 For the case of Laplace’s equation (and thus the case of constant coefficients),
Assumption 4.1 can be verified as follows. Let dy € (1/2,1] be defined by (1.19). For general
Lipschitz domains 2, the estimate (4.3) covers the case 0 € [0,1/2]. For § € (1/2,1), combining
[9, Lemma 2.11], [9, Lemma 2.7] gives

||Tu||H*1/2+5(BQ) < C||“||H1+5(Q) < C5||)‘||H1/2+5(3Q)a
where the second estimate follows from the regularity result (1.19). n

In the case of convex polygons, we have y = 1.

Remark 4.3 The case b = 0, ag = 0 does not fall directly in our framework because assumption
(1.6) is not satisfied. The modification of considering the energy space V = H'(Q)/R, as is
standard for Laplace’s equation, can be carried out in the case of non-constant matrix A as
well.

4.2 hp-FEM Approximation of Poincaré-Steklov operators 7' and S
We recall that the projector Qn of (2.6) can be extended to an operator on H~'/2(9Q) by
(2.14).

4.2.1 Approximation of the Steklov—Poincaré operator

Viewing the dual space Y} as a subspace of H'/2(9€), we define the approximation Sy to the
Steklov—Poincaré operator S as

SNIY]Q — YN
U — SN\I/ = YoUun,

where uy € Vy solves the following discrete Neumann problem:
B(un,v) = (¥, v)000 Vv € Vy.

The error analysis for Sy is rather straightforward.
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Theorem 4.4 Under the assumptions of Theorem 2.13 (with f = 0) there holds
ST — Sn¥|l1200 < C [h° + hP]. (4.5)
Proof. Applying the trace theorem, we obtain
1SW — Sy¥ll1/2,00 = ||70u — Youn||i/2,00 < Cllu — un|i,0-
Now (2.20) yields (4.5). n

4.2.2 Approximation of the Poincaré—Steklov operator

The approximation
Ty : Yy — Y](f

A= Ty (4.6)

to the Poincaré—Steklov operator 1" defines an element of the dual space Y}, via
(Tn A, v)000 = B(un,v) Yo € Yy,
where v € Vy is an arbitrary extension of v, 790 = v, and uy € V) satisfies
Youy =X and  B(uy,v) =0 Vv e VynH Q).

Theorem 4.5 Let oy be given by Assumption 4.1. Under the hypotheses of Theorem 2.13 (with
f =0) there holds for arbitrary § € [0,0] N[0, dp)

1T\ = TxQu |1 /200 < Cs [fﬁ + h”“] . (4.7)
Proof. Using QnTnvQy = TnQ N, we write
T—-TyQn=(Id —Qn)T+ QnNT(Id — Qn) + Qn(T — Tn)Qn- (4.8)
The first two terms in (4.8) lead to estimates of the form
[0d = Qu)TAl 1200 < CshITAI 1/2ss00 < Coh* AL assm: (49)
IQNT(Id — Qn)A||—1/200 < Cll(Id = Qn)A||1/2,00 < C'hg||)\||1/2+5,asza (4.10)

where we exploited the stability and approximation properties of the projector (Qn given in
Lemma 2.8 and used the shift theorem for 7" as detailed in Assumption 4.1. For the third term
in (4.8), we first introduce for the elliptic extension Ey : Yy — Vy. By a reasoning similar to
that in the proof of Corollary 2.12, we get for v € H'/2(9Q)

| EN(Qnv)|[n ) < CllQnv|g12p00) < Cllvllgizon), (4.11)

where we used the stability result (2.15) in the last step. For the treatment of the third term
in (4.8), we next let u € H'(Q) be the solution to (1.2) with f = 0 and Dirichlet boundary
conditions \; @ € H'(Q) solves (1.2) with f = 0 and boundary conditions Qx \; and uy € Vy is
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the hp-FEM approximation to u given by (2.3). Reasoning as in [23, Lemma 6.1] the definitions
of the operators T', Ty imply

<(T - TN)QN)H QNU>0,aQ

||QN(T - TN)QN)‘||—1/2,BQ = sup
veH/2(59) v]l1/2,00
_ sup B(t — uy, En(Qnv))
veH/2(8Q) ||U||H1/2(an)
< Clla—unllm@ < C [llu—unlla@) + lu— il mo0)]
< COllu = unllmo) + A = QuAllar2go0)] -

IA = QNAl|#1/2(90) can be bounded as required by (4.10) and Theorem 2.13 allows us to bound
|t — un|| (o) in the desired fashion. u

Remark 4.6 We employed the L?(9Q)-projection Qu in the definition of Ty. Other projec-
tions could, in principle, be used as well. Essential is that the projector Py has for § € [0, dy)
the following stability and approximation properties:

CHUHH*V?(BQ)a
05||u||H1/2+5(BQ)7

||PNU||H*1/2(BQ)
||PNU||H1/2+5(39)

VAN VAN VAN

| — Pyvull g2 (50) Coh |lull 717245 62

Due to the results of Section 3 (see also Table 1), the implementation of the finite-dimensional
operators Sy and Ty has the linear-logarithmic complexity O(N log? N) with respect to N,
except in the Case (R ii) with Neumann boundary conditions, where we arrive at the cost
O(N®3?1og? N).

Remark 4.7 In the case of piecewise constant coefficients in a polygonal domain, an efficient
method for matrix-vector product with the discrete Poincaré-Steklov operators was developed
in [22-25]. It is based on a sparse h-FEM approximation to the Schur-complement matrix

Figure 2: Uniformly (left) and nested (right) refined interface.
on a rectangle combined with the reduction of the PDE to the refined interface. The idea of
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the refined interface is illustrated in Fig. 2, where the left and right pictures correspond to
the quasi-uniform and locally refined meshes, respectively. In this way the Schur-complement
matrix in each n x n rectangular subdomain is treated with O(nlog?n) arithmetic operations
using a truncated Fourier representation.

Another example of the refined interface is given in Figure 3, where non-conforming decompo-
sitions in Figure 3, (left) corresponds to the geometric meshes in Figure 1. Figure 3, (right)
corresponds to the case of composite meshes refined towards the corner points related to the
situation in Remark 1.2. In the case of symmetric and positive definite operators with piecewise
constant coefficients the spectrally equivalent multilevel interface preconditioners, see [24,25],
lead to the complexity O(N log® N) for solving the Schur-complement equation on the refined
interfaces depicted in Figures 2 and 3. The method of refined interface was shown to have the
memory requirements O(N log N) with respect to the number of boundary degrees of freedom
N. The approach was also applied to the biharmonic, Stokes and Lamé equations, see [23] and
references therein.

EEEEEEEEEE NN us us

[T T T I T I T I T I T ITIT1T H H

Figure 3: Refined interface corresponding to Fig. 1 (left) and to Remark 1.2 (right).

In this way, the boundary concentrated hp-FEM presented in this paper extends the above
mentioned methods to the case of variable (piecewise analytic) coefficients. n

5 Further Applications

5.1 Relation to boundary integral equations

Consider the case of constant coefficients. The results on the sparse approximation to the
Poincaré-Steklov operators directly apply to the construction of asymptotically optimal solvers
for the classical boundary integral equations involving weakly singular, hypersingular and dou-
ble layer harmonic potential operators V, D and K, respectively, defined by

Vu(x) Z/g(x,y)U(y)dy, Ku(z) Z/ai%g(fr,y)U(y)dy,
r r (5.1)
K'u(z) = / ainmg(x,y)u(y)dy, Du(z) = — 8ix ainyg(x,y)u(y)dy,

where ¢(z,y) denotes the fundamental solution for the corresponding elliptic operator £, and
[ = 09 a Lipschitz domain €2 € R?. The approach is based on the representation of the inverse
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to the above mentioned boundary integral operators in terms of interior 77, Sy, and exterior
Ty, Sy, Poincaré—Steklov mappings proposed in [22]. Given a Hilbert space H and an element
g € H', we denote H, := {v € H : (v,g) = 0}. The following theorem shows the relationship
between these Poincaré-Steklov operators and classical boundary integral operators.

Theorem 5.1 [22]. The operator V=" : Hglo/Z(F) — Hfl/Z(F) has the representation
VIi=T+Ty, (5.2)

where gy is the Robin potential on T satisfying K'gy = —%go. The following formulae hold

(%1 _K) = (I+ STz Vze H(T) (5.3)

1
(§I+K)’1z =+ -T2, VzeH)/*T). (5.4)
The operator D! : Hfl/Q(F) — HQIO/Q(F) has the representation
D=5, + 8, (5.5)

A remarkable consequence of the above statement is that whenever some linear complexity
scheme is constructed for the operators 7; and S;, i = 1,2, we immediately obtain a linear
complexity approximation to the inverse of the classical boundary integral operators in question.
We refer to [18,19] for an alternative approach to data-sparse approximations of 7" and S based
on H-matrix arithmetic.

5.2 Application to Exterior Boundary Value Problems

BEM are very often applied to exterior domain problems. In this subsection, we want to briefly
show how the boundary concentrated FEM can be adapted to this setting.
In the exterior domain Q. := R? \ Q, we consider the Dirichlet problem

Lou:=—V - (Ax)Vu) +b(z) - Vu+c(z)u = f in €., (5.6a)
You = A on 092, (5.6b)

with similar assumptions on the data as in Section 1.3. In addition, we assume that b, ay and
f have bounded support €, such that £, = —A in R? \ Qq, and that u satisfies the “radiation
condition” of the form

(@) =0z "), [Vul=0(z| %), o[ =00 (5.7)

(this implies a compatibility condition, which suppresses the logarithmic growth at infinity that
solutions to Laplace’s equation on exterior domains typically exhibit). We approximate (5.7) by
imposing homogeneous Neumann conditions on the auxiliary boundary ', with dist (['o,, Q) =
R = O(N'/?). As above, N denotes the number of degrees of freedom on 9. Following [25]
(see also the references therein), we use a mesh on Int (') \ €2 that is a geometric mesh in the
sense of Definition 2.3 (see Fig. 4). The number of levels is again estimated by log R = O(log N).
We stress that the approximation and solution schemes remain verbatim as for the interior
problem.

Our arguments indicate that in the framework of boundary concentrated hp-FEM, there is
no essential difference between solving exterior and interior problems in the case of smooth
coefficients, and we expect again complexity O(N log? N) for the approximation of the exterior
Poincaré-Steklov operators.
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Figure 4: Geometric mesh on an exterior domain.

5.3 Application in Domain Decomposition

The efficient realization of the Poincaré-Steklov operators can also be employed in the context
of domain decomposition methods. Assume the domain €2 to be composed of M, > 1 non-
overlapping polygons Q;, Q = UM Q; with T' := U}0T; \ Q. Assume a bilinear form B(,-) is
written as a sum of subdomain contributions and consider the problem of finding u € Hj(Q)

Mo M
ZBi(UIQw vj,) = B(u,v) = F(v) = /Qf(x)vdx + Z(wi, V) L2(ry) Vv € Hy(Q).
i=1 i=1

where the local continuous forms B; : V; X V; — R are supposed to be Hj(€;)-elliptic with
Vi := H'(;) and given ¢); € H~'/2(T;). Letting uo; € Hy(€) be the particular solutions in €,

Bi(ug,v) = /Q f(x)vdr Vv € Hy () (5.8)

and introducing the trace space on I,

Voo fu=ze: 2 € B, b= il ellme,
z€Hy(Q):2)r=u

we transform the above problem to the interface equation

M M
’LL|F € YF . BF(’LL|F,U) = Z(ﬂui,vi>07r‘i = Z(gi,v>pi VU c YF, (59)
i=1 1=1

where g; = ¢; — y1u0; and w; = wyr,, v; = vr,. The local Poincaré-Steklov operators T; :
H'Y2(I';) — H~Y2(I;) are defined by the B;-harmonic extensions, see (4.6). Since the bilinear
form Br(-,-) : Yr xYr — Ris continuous and coercive, the equation (5.9) is uniquely solvable in
Yr for any g; € H='/?(T;) providing the trace ur. Thus, our boundary concentrated FEM can
be directly applied for solving the interface equation (5.9) by using the hp-FEM approximation
to each individual operator T;. In this way, we apply the geometric mesh refined towards the
interface I'.

29



6 Numerics

The main goal of this section is to confirm the principal features of our method (approximation
power and conditioning for both full and linear-subspace stiffness matrices) for a simple model
problem. Specifically, we consider

CAu=0 Q= (0.1)2 :{sinmz: ify=20 6.1
W=0 onO=(0,12  ulpe={ T Y (6.1)

with the exact solution u(z,y) = sinmz W Our calculations are performed with the

code CONCEPTS, [26]. For quadrilateral elements, this general hp-FEM code employs the
so-called “Babuska-Szab6” shape functions, which are the tensor products of the following
1D-shape functions defined on (—1,1) (we refer to [37,39] for the details):

P =50-1), @@ =30+, @@ ;)/ILi_g(wdt, i>3

Cisslle oy S

Here, the polynomials L; are the usual Legendre polynomials. First, we check the convergence
result of Theorem 2.13, which asserts that for suitable linear degree vector, the hp-FEM yields
|u —un| @) < Ch. We check this assertion for the meshes and linear degree vectors depicted
in Fig. 5. The mesh size on the portion y = 0 of 0€) takes the role of the boundary mesh size
h in the statement of Theorem 2.13. The convergence behavior (H!-error vs. boundary mesh

1 2 3 4
2 3 4
1
2 2 3 4 4 4
2 2 3 3 4 4
1 2 3 k 4 4 4
1 1
1 1 1 2 2 2 3 3 3
1 1 1 1 2 2 2 3 3 3
2 2712 272 2 3 373 313 3
1 1 h 1 1 2 2 2 3 3 3
1 1 1
1 1 1 pdrdrlrdrdrdididt

Figure 5: Geometric mesh for levels 1-4 and linear degree vector.

hp-FEM on geometric meshes and linear degree vector o hp-FEM on geometric meshes and linear degree vector
10 T T 10 T T T
10™ 10™
s s
G107} 51072}
T T
10 10°
_4 4
10 : : 10 ‘ ‘
10° 10 10”' 10° 10° 10 10° 10° 10!
h DOF

Figure 6: H'-error for hp-BEM vs. h and N
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condition number vs. DOF CG iterations to reach 10~ error of residual

condition number
o
number of iterations
o

DOF DOF

Figure 7: Condition number of stiffness matrix number of CG iterations required for a residual
of 10~* using p.w. linear elements.

level 6 7 8 9 10 11 12
N; 27 30 32 35 37 38 41

| Np [376] 760 | 1528 [ 3064 | 6136 | 12280 | 24568 |
| N | 665 ] 1417 | 2937 | 5993 | 12121 | 24300 | 48953 |

Table 2: Iteration count in the case p = 1 with the mesh in Fig. 1-left.

size h and the number of degrees of freedom DOF = dim SP(7,)) is given in Fig. 6.

We now turn to our results in Proposition 3.4 concerning the conditioning of the stiffness matrix.
For the present Dirichlet problem and p = 1, Proposition 3.4 asserts that the condition number
is bounded uniformly in A for the meshes of Fig. 5. The numerical results can be found in
Fig. 7. A second numerical example for the condition number estimates for the stiffness matrix
is shown in Table 2. For meshes as depicted in Fig. 1 (left) and polynomial degree p = 1, we
present, in Table 2 the number of boundary nodes Nr, the number Ny of nodes in €2, as well as
the number CG iterations NV;; (with diagonal preconditioning) to reach a residual with [?>-norm
below 1075,

We finally consider the condition number of the full stiffness matrix on the meshes and poly-
nomial degree distributions as depicted in Fig. 5. From [27] and a reasoning as in the proof of
Proposition 3.4 (see also [29]), the condition number of the full stiffness matrix is bounded by

K(A) < Cp', (6.2)

where C' is independent of h. Fig. 8 presents the number of CG iterations (without precondi-
tioning) to reach a residual of 107%. The numerical results are slightly better than the growth
of O(p?) expected from (6.2).

A Appendix: Analytic Regularity Results

In the present section, we are interested in analytic regularity results for solutions to the
equation

Lu:=—=V - (A(x)Vu) +b(x) - Vu+ ag(x)u = f(z) on Q. (A1)
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number iterations for residual < 107
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Figure 8: Iterations count for the full system vs. the number of levels.

Here, the symmetric matrix A is uniformly positive definite and b is a vector. We furthermore
assume the coefficients A, b, ¢ to be analytic; i.e., we stipulate the existence of Cy, 74 > 0 such
that

VP Allzeo (@) + V70l o) + [[VP a0l () < Cavgp! Vb € No. (A.2)

In aim of the present section is the proof of the following analytic regularity result for the
solution u of (A.1):

Theorem A.1 Let Q C R? be a bounded Lipschitz domain with boundary 0. Let the distance
function r be given by (1.15). Let f be analytic on Q and satisfy for some § € (0, 1]

||Tp+1_6vpf||L2(Q) < C’fﬁp! Vp e Ny (A.3)

for some Cy, 5 > 0. Finally, let u € H(Q) solve (A.1) with data A, b, aq satisfying (A.2).
Then there exist C', v > 0 depending only on Cq, C¥, v4, 75 such that

||rp+1*5Vp+2u||Lz(Q) < O’ypp!||u||H1+6(Q) Vp € No.

Remark A.2 The restrictions on the data A, b, ¢ are not minimal: “blow-up” akin to that in
(A.3) would be possible.
The theorem can also extended to the case of piecewise analytic data A, b, c.

In order to prove Theorem A.1, we start with the following lemma.

Lemma A.3 Let By be a ball of radius R < 1. Assume that A, b, ¢ satisfy (A.2) with Q
replaced with Bgr. Assume that f satisfies on Br

IV? fllL2Br) < CpypptRP7 Wp e Ny
for some Cy, v; >0, § € (0,1]. Let u € H'™°(Bg) solve
-V - (AVu)+b-Vu+cu=f on Bg.

Then for every ¢ € (0,1) there exist constants C, v > 0 depending only on Cq, va, Cf, 7¢, 0,
and ¢ such that

197 20l 25,y < CR P 52! ([l () + [Vl s

where |Vulgs g,y stands for the Aronszajn-Slobodeckij norm.
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Proof. Using the techniques of [32], we have (see [28] for the details)
Rp||Vp+2u||Lz(BcR) S C’ypp’ [R_IHV’LL”LQ(BR) + R_2||u||L2(BR) + CfR_H_é] 5 (A4)

where C, v > 0 depend only on v, Cy4, and 4. Let [ be an arbitrary linear function. Then
u — [ satisfies .
Lu—-1)=f:=f-LL

From the assumptions on the data, we then conclude that for all p € Ny
||V”f||L2(BR) < Cffy?p!R*”*H‘s + CYpI|l|| (R < CAPRP~IH0 [C’f + R1*5||l||H1(BR)] ,

where the constants C', ¥ > 0 depend on Cy, 4, and vr. Applying (A.4) with u replaced with
u — [, we obtain

RV 2| pepoy < ORIV (u = Dllr(pgy + B2l = Ulz2sgy + BC) + ||l||H1(J(BR)] )
A5

The assumption v € H'*9(Bp) implies the existence of a linear function [ such that
lu = Ulr2sey + BRIV (u = Dllz2sry < CR™Vulys iy,
where | - |;5(p,) denotes the Aronszajn-Slobodeckij semi norm. We conclude using R < 1

RO\ 2 12y < CYPPL[|Vulgs gy + ullm s + Cr] -

[
Proof of Theorem A.1. Using the Besicovitch covering theorem (see, e.g., [42]), we can
construct a covering of ) by a countable collection B = {B; |i € N} of closed balls B; with the
following properties:

1. B; = B,,(x;) where r; = ¢ dist (z;,09) for some fixed ¢’ € (0, 1);
2. there exists N € N such that for all z € Q: |{i € N|z € B;}| < N;
3. there exists ¢ € (0, 1) such that Q C UjenBer, ().
> 2 1 pH1I—=6p £(]2
C = % WHT VP fll72(5,)-

The properties of the covering B and the assumption (A.3) imply

146 ¢\
ey < G(15s) @ e

1-¢
1 4
2 2 2p 2 __ 2
2O = NG Y e ) = 5N
1€ pENo

From Lemma A.3 we get

PPN | o, ) < PPV [C+ Nl s + IV ulmss;)] -
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Using the fact that Q C U; B, (x;) and the finite overlap property of the covering B, we get by
summation over all balls B;

p+1-0
||rp+lf5vp+2u||22 < 1+¢ Z p2(pH1-0) V7 2|2,
L2(Q) = o i L2(Ber, (%;))
ieN

< CO(yPpl)? ZCE + [lullf s,y + |VU|12H<S(Bi)
ieN

< C(Pph)° [C? + ||U||§{1+5(Q)]

for suitable constants C', v depending on v, and the covering B. |
The restriction § € [0,1] in Theorem A.1 can be removed:

Corollary A.4 Let Q C R? be a bounded Lipschitz domain and r be defined by (1.15). Let
k=r+6 with s € Ny, 6 € [0,1) be given. Assume that u € H*(Q) satisfies (A.1) with
coefficients A, b, ¢ satisfying (A.2) and f satisfying

1f i1y + 1P OV fll ) < Cpfp! Vp € Ny, (A.6)

Then there exist C', v > 0 such that

[P O | 20y < CYPpL [Cp + Nl ey -

Proof. The corollary is proved by induction on x € Ny. For x = 0, the result holds true by
Theorem A.1. Assuming that it holds for all 0 < ' < k for some k € N, we show that it holds
for k + 1. The induction hypothesis implies that

||7"p+176vp+2+nlu||L2(Q) <C|Cr+ ||U||H1+5+~’(Q) 77p! VpeNy, 0<rk <k

Differentiating (A.1) s times, it is easy to see that D®u with |a| = k satisfies a differential
equation of the form
LD = f, := Df + @,

where 1, = z\ﬁ|<n+1 AasDPu for some analytic functions A, 4. The induction hypothesis and
the assumptions on f imply that

[P0V foll2g@) < C [Of + lullgisssn] 7P Vp € No.
(See Lemma 2.3.3 of [28] for a rigorous proof that products A\, 3 D’u satisfy the desired bounds.)
Theorem A.1 therefore allows us to conclude the induction argument. |
B Appendix: Compact Embeddings

For § € (0,1) and a domain Q C R?* we define as usual

) [u(z) — u(y) P / [u(x)”
[ @) =), d B.1
||u||H5(Q) /Q/Q  — y|2+ ray + o |dist (z,00)[% x (B.1)

For completeness’ sake, we include the proof of a lemma that is due to von Petersdorff [40]:
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Lemma B.1 Let B = {B;|i € N} be a covering of a domain Q C R? that satisfies a finite
overlap property, i.e., there exists N € N such that

supcard {i € N|z € B;} < N. (B.2)

zeN

Then

3 / / |u|;1; ) |2+25|2 drdy < N (3 + ) Sl

1,jEN i€EN

Proof. We write the double integrals of the double sum as

L R N S A N AV S S
B; B]‘ Bi\Bj Bj\Bi Bi\Bj BjﬂBi BiﬂB]' B]‘\Bi BiﬂB]' B]‘ﬂBi

Using the finite overlap property (B.2), we bound

S o Lo e ety < NS [ [ O e
B;NB; J BjNB; |$_?J|+ |i17_y|Jr
S NZ ||u||ﬁ5(3)

1€EN

Completely analogously, we conclude

Ju() = u(y)I? 2
ZL\B /BﬂB |II,'_ |2+25 dx dy < NZHUJH&S(B)

ieN
Ju(z) — uly)l? 2
dedy < N > |lull3;
Z /B NB; /B \B; |x - y|2+2‘5 ]%; 12 (By)
For the first term in (B.3), we bound

Ju(z) — u(y)? / / )2+ |uly)?
dxdy<2 dxdy.
> /AB /B e > o Lo sl

We bound
i,j Bi\B]' 7 i y| + i Bi ] J
1
2
< NZ/ lu(z)| /Q\B- 7|x— B dy dx
Z/ |u(x)[2|dist (=, 0B;)| " dv < = Z” 1%

Combining these estimates completes the proof. [ ]
Let  C R? be a bounded Lipschitz domain and let r be defined by (1.15). For k¥ € N and
B € (0,1) introduce the norm

dy dx

Y |2+26

ellfg ey = el oy + 177 VEul o). (B.4)
The spaces Hf(Q) are then defined as the completion of C*(€2) under this norm. We have
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Lemma B.2 Let Q C R?® be a Lipschitz domain, 3 € (0,1). Then for each 0 < § <
min {1/2,1 — 8} there exists C > 0 such that

lull sy < Cllullmyy — Vu € Hp(9).

Proof. Let B = {B;|i € N} be the cover of Q2 by balls given in the proof of Theorem A.1. For
each 7, let 4; = u o F;, where the affine map F; : B — B; maps the unit ball B onto B;. By
Sobolev’s embedding theorem there exists, for each £ > 0, a constant C; > 0 such that

13ll5s 5y < Cell Vil ) + ellill7

Here, we used the assumption ¢ < 1/2. We will choose ¢ > 0 sufficiently small at the end of
the proof. Scaling back to the balls B;, we conclude

Pl ) < CollVulags, + Cerullags,
Thus, using the properties of the covering
lulls ) < Cellr' =V ulags + Cellr=ullZag,

Summing over all balls B; of the covering and using its overlap property together with Lemma B.1,
we arrive at

[ulfrs() < CZ s,y < Cellr' " Vulliag) + CellrullZ2q

As § < 1/2, we get from Theorem 1.4.4.3 of [13] ||r%ul|2¢0) < C|ul|gs(q). Thus, choosing &
sufficiently small, we arrive at the desired bound. [ ]
A consequence of Lemma B.2 is the following

Theorem B.3 Let Q C R? be a bounded Lipschitz domain, 8 € (0,1). Then for each 0 <0<
min {1/2,1 — B} the embedding H3(Q) C H'™(Q) is compact. In particular, H5(2) C C°(Q).

Proof. The embedding H3(2) € C°(Q) follows from H'*(Q) c C°(Q2), valid for all § > 0 by

Sobolev’s embedding theorem. Because H'*°(Q) ¢ H'*7(Q) is compactly embedded for 0 <
§ < &', it suffices to show that for each ¢ there exists C' > 0 such that |[u|gi+sq) < C’||u||H§(Q)
This estimate follows from Lemma B.2 applied to Vu. ]

Theorem B.4 Let K be the reference square or the reference triangle. Let r(z) = dist (z, K),
g€ (0,1). Forue HE(IA() let Tu be the linear (if K = T) or the bilinear (if K = S) interpolant.
Then

[ = Tull 2y < CllrV2ull iy

Proof. Let A;, As, A3 be three vertices of K. Exploiting the compactness result of Theorem B.3

in the same way as in the proof of Lemma 4.16 of [37], we obtain the existence of C' > 0 such
that

3
[l iy < € |95l + SO (D | Ve HY(E).

As u(A;) = Tu(A;) by construction, the result follows. [
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C Sobolev spaces on the boundary of polygons

Lemma C.1 Let I = [a,b], I' = [d/,V] be intervals. Let ¢ : I — I' be a piecewise smooth
bijection. Then for |s| < 3/2 the map u — wo ¢ is an isomorphism between H*(I) and H*(I").
The same result holds for the spaces H,,.(I), Hy, (I') of periodic functions, if the piecewise
smooth function ¢ satisfies additionally p(a) = ¢(b).

In particular, for a polygon Q, let ¢ : I — OS2 be the parametrization by arc length. Then the

map u — u o ¢ provides an isomorphism between the spaces H*(02) and H,,.(I) for [s| < 3/2.

Proof. This result is due to P. Grisvard; see, e.g., [9, Cor. 2.8]. [ |
For a mesh 7 = { K}, we define the piecewise polynomial spaces SP*(I,T), p, k € Ny as follows:

SPR(I,T) = {u € H*(I) | u|x is a polynomial of degree p}.

Lemma C.2 Let I C R be an interval and T a quasi-uniform mesh on I with mesh size h,

i.e., the nodes g < x; < -+-x5 of the mesh satisfy v"'h < x4y — 2 < yh, i =0,...,N —1,
for some v > 0. Then for every ¢ € [0,1/2) and every p € Ny there ezists C.,, > 0 such that

lullgey < Ceph™|ullieqy  Vu € SPLT), (C.1)

ullgivey < Coph™ N ull2y  Yu € SPHI,T). (C.2)

Proof. We first show (C.1). (C.1) is trivially valid for ¢ = 0. Let therefore ¢ € (0,1/2). We
characterize the norm || - || =(s) using the K-functional; that is, we have for all u € H*([):

[kl N/ 2 K2 (u, t) dt, K*(u,t) == inf |Jlu— o720y + [V'[720):
0

veH(I)

We choose the function v in the infimum appropriately. For t > h we take v = 0 and get

o0 o o0 o 1 B
/h 7 K (u, 1) dtg/h 5 gy dt = Soh ™l (C.3)

In the range t € (0,h) we proceed as follows. Let ¢ € C§°(R) be a smooth function with
0 < p(z) <1 that is supported by [—1,1] and that satisfies ¢ = 1 on [-1/2,1/2]. For § > 0
we set @g(x) := p(z/d). Fort € (0,h) we then set

w(e) =13 i (o — )

(v is the quasi-uniformity constant of the mesh 7) and choose the function v in the infimum
defining K (t,u) as
v(z) == Y(z)u(z).

Noting the support properties of ¢; and standard polynomial inverse estimates, we arrive at

|lu — U||%2(I) = [J(1- T/)t)U||%2(1) <y Hllulffery < CpthA“U“%?(f)a
N—-1 N-1
1172y < D @) 1emnn < 2D N6l ey + 16l om0 191 T2 0
i=0 1=0

IN

N—-1
_ L _ h
O Yl 7 il < €07 (145 Nl

1=0
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A straightforward calculation then shows
h
/0 IR u) dt < Ch™ ||ull 22y

where the constant C' depends on p, ¢, I, and v, but is independent of u and h. This proves
(C.1). For (C.2), we note again that the case ¢ = 0 is a standard polynomial inverse estimate.
For ¢ € (0,1/2), we bound

lullzrresry < C [lull ey + 1 llz2ey + 1]

wen] < Ch 7 lull ey + Ol

HE
Since u' € SP~19(I,T), we may apply (C.2) to the second term to get
lull sy < ChHlullpay + Ceph*lullzay < Ceph™ FlullLy
n

Proposition C.3 Let I C R be an interval, T be a quasi-uniform mesh on I with quasi-
uniformity constant . Let P : L*>(I) — SP'(I,T) be a linear operator with

i. |Pullrz2ry < Coaviel|tl| 2y for all uw € L*(I);
. Pu=wu for allu e S“(I,T).

Then for every e € [0,3/2) there exists a constant C. > 0 depending only on p, Csapie, ¥, and
€ such that
| Pul

nery < Cellul

He(I)

Proof. Let uw € H®(I) be arbitrary. For simultaneous approximation in Sobolev spaces (see,
e.g., [7]) there holds for some C. > 0 independent of u and h: Let ¢, € S"'(I,T) be a piecewise
linear function that attains the infimum (S™!(I,T) is finite-dimensional), i.e

He (I (C.4)

ey + v — qull 2y < Cohf||ul

h|lu — qu
Next, exploiting the reproduction assumption (ii) and the stability assumption (i), we obtain
lu — Pul|z2(ry < lu— qullzey + 1P (w — )| 2ry < (14 Citaie) |4 — qullz2(1)- (C.5)

We can therefore estimate with Lemma C.2

NPullgery < ullzery + v — Pullg=y < |ullz=y + | — qullz=r) + [lgu — Pulla=()
< me(ry + C:h%||qu — Pul|2(r)
< me(ny + Ceh™* {{lu = qull 2 + llu — Pullraay }
< C ||u||HE (1) + C=(2+ Citapie) ™ ||U_Qu||L2 < Cllullarsr)
where we used (C.5) and (C.4). This concludes the proof of the proposition. [

Remark C.4 1. It can be checked that Proposition C.3 also holds if the linear operator P is
replaced with an operator P : H'(I) — SP!(I,T) that is stable in H'(I), i.e., ||Pu|| g5 <
Citabiel|u]|mi(ry for all w € H'(I) and that satisfies assumption ii of Proposition C.3.

2. It can also be checked that Proposition C.3 remains valid for periodic functions, i.e., if
P:L*I)— SPY I, T)n HL, . (I) satisfies Pu = u for all u € H?, ().

per per
|

Acknowledgments: The authors would like to thank Prof. Dr. W. Hackbusch for valuable
comments on the topic.

38



References

1]

[4]

(6]

9]

[10]

[11]

[12]

[13]
[14]

M. Ainsworth and B. Guo. An additive Schwarz preconditioner for p-version boundary
element approximation of the hypersingular operator in three dimensions. Numer. Math.,
85:343-366, 2000.

I. Babuska, A. Craig, J. Mandel, and J. Pitkdranta. Efficient preconditioning for the p
version finite element method in two dimensions. SIAM J. Numer. Anal., 28(3):624-661,
1991.

I. Babuska and B. Guo. Regularity of the solution of elliptic problems with piecewise
analytic data Part I. Boundary value problems for linear elliptic equations of second order.
SIAM J. Math. Anal, 19(1):172-203, 1988.

I. Babuska and B. Guo. Regularity of the solution of elliptic problems with piecewise
analytic data Part II. the trace spaces and application to the boundary value problems
with nonhomogeneous boundary conditions. SIAM J. Math. Anal, 20(4):763-781, 1989.

C. Bacuta. Interpolation between subspaces of Hilbert spaces and application to shift the-
orems for elliptic boundary value problems and finite element methods. PhD thesis, Texas
A & M University, 2000.

R. Bank and R. Scott. On the conditioning of finite element equations with highly refined
meshes. STAM J. Numer. Anal., 26:1383—-1394, 1989.

J. Bramble and R. Scott. Simultaneous approximation in scales of Banach spaces. Math.
Comput., 32:947-954, 1978.

M. Costabel. Boundary integral operators on Lipschitz domains: elementary results. STAM
J. Math. Anal, 19(3):613-625, 1988.

M. Costabel and E. Stephan. Boundary integral equations for mixed boundary value
problems in polygonal domains and Galerkin approximation. Mathematical Models and
Methods in Mechanics, 15:175-251, 1985.

W. Dahmen, S. Pr6fidorf, and R. Schneider. Wavelet approximation methods for pseudod-
ifferential equations II: Matrix compression and fast solution. Advances in Comp. Math.,
1:259-335, 1993.

L. Demkowicz, K. Gerdes, C. Schwab, A. Bajer, and T. Walsh. A general and flexible
fortran 90 hp-FE code. Computing and Visualization in Science, 1:145-163, 1998.

L. Greengard and V. Rokhlin. A new version of the fast multipole method for the Laplace
in three dimensions. In Acta Numerica 1997, pages 229-269. Cambridge University Press,
1997.

P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, 1985.

B. Guo and W. Cao. A preconditioner for the hp-version of the finite element method in
two dimensions. Numer. Math., 75:59-77, 1996.

39



[15] B. Guo and W. Cao. An additive Schwarz method for the hp-version of the finite element
method in three dimensions. STAM J. Numer. Anal., 35(2):632-654, 1998.

[16] G. Haase and S. V. Nepomnyaschikh. Explicit extension operators on hierarchical grids.
East-West J. Numer. Anal., 5(4):231-248, 1997.

[17] W. Hackbusch. Integral Equations. Theory and Numerical Treatment. Birkhduser, 1995.

[18] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to
H-matrices. Computing, 62:89-108, 1999.

[19] W. Hackbusch and B.N. Khoromskij. A sparse H-matrix arithmetic. Part II: Application
to multidimensional problems. Computing, 64:21-47, 2000.

[20] W. Hackbusch and Z.P. Nowak. On the fast matrix multiplication in the boundary element
method by panel clustering. Numer. Math., 54:463-491, 1989.

[21] T.J.R. Hughes. The Finite Element Method. Prentice Hall, Englewood Cliffs, N.Y., 1987.

[22] B.N. Khoromskij. On fast computation with the inverse ot harmonic potential operators.
J. Numer. Lin. Alg. Appl., 3(2):91-111, 1996.

[23] B.N. Khoromskij. Lectures on multilevel Schur-complement methods for elliptic differential
equations. Technical Report 98/3, ICA, Universitit Stuttgart, 1998.

[24] B.N. Khoromskij and S. Préfdorf. Multilevel preconditioning on the refined interface and
optimal boundary solvers for the Laplace equation. Advances in Comp. Math., 4:331-355,
1995.

[25] B.N. Khoromskij and S. Profidorf. Fast computation with harmonic Poincaré-Steklov
operators on nested refined meshes. Advances in Comp. Math., 8:1-25, 1998.

[26] C. Lage. Concept oriented design of numerical software. Technical Report 98-07, Seminar
fiir Angewandte Mathematik, ETH Ziirich, 1998.

[27] J.F. Maitre and O. Pourquier. Condition number and diagonal preconditioning: compari-
son of the p version and the spectral element method. Numer. Math., 74:69-84, 1996.

[28] J.M. Melenk.  hp-finite element methods for singular perturbations.  Habilita-
tion thesis, Dept. of Mathematics, ETH Ziirich, 2000. available online at:
http://personal-homepages.mis.mpg.de/melenk.

[29] J.M. Melenk. On condition numbers in hp-FEM with Gauss-Lobatto based shape functions.
J. Comput. Appl. Math., (in press).

[30] J.M. Melenk and C. Schwab. Fully discrete hp-finite elements: approximate element maps.
(in prep.).

[31] J.M. Melenk and B.I. Wohlmuth. On residual-based a posteriori error estimation in hp-
FEM. Technical Report 436, Math.-Nat. Fakultit, Universitat Augsburg, Universititsstr.
14, D-86159 Augsburg, Germany, 2001.

40



[32] C.B. Morrey. Multiple Integrals in the Calculus of Variations. Springer Verlag, 1966.

[33] J. Necas. Sur la coercivité des formes sesquilinéaires elliptiques. Rev. Roumaine de Math.
Pures et App., 9(1):47-69, 1964.

[34] T.J. Oden, L. Demkowicz, W. Rachowicz, and O. Hardy. Towards a universal hp finite
element strategy. part 1. constrained approximation and data structure. Comput. Meth.
Appl. Mech. Engrg., 77:79-112, 1989.

[35] L. Pavarino and O. Widlund. A polylogarithmic bound for an iterative substructuring
method for spectral elements in three dimensions. SIAM J. Numer. Anal., 33(4):1303—
1355, 1996.

[36] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation.
J. Algorithms, 18:548-585, 1995.

[37] C. Schwab. p- and hp-Finite Element Methods. Oxford University Press, 1998.

[38] L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying
boundary conditions. Math. Comput., 54:483-493, 1990.

[39] B. Szabé and I. Babuska. Finite Element Analysis. Wiley, 1991.

[40] T. von Petersdorff. Randwertprobleme der Elastizititstheorie fir Polyeder—Singularititen
und Approximation mit Randelementmethoden. PhD thesis, Technische Hochschule Darm-
stadt, 1989.

[41] H. Yserentant. Coarse grids spaces for domains with a complicated boundary. Numerical
Algorithms, 21:387-392, 19909.

[42] W.P. Ziemer. Weakly Differentiable Functions. Springer Verlag, 1989.

41



