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Abstract In this paper we analyse the methodology of the theory of
differential inclusions. First we emphasize that any sequence of piece-wise
affine functions with successive elements obtained by perturbations of pre-
ceding ones in the sets of their affinity converges strongly. This gives a simple
algorithm to construct sequences of approximate solutions which converge
to exact ones (neither specific choice suggested by the method of convex
integration nor Baire category methodology is required). Then we suggest
a functional which is defined in the set of admissible functions and which
measures maximal oscillations produced by sequences of admissible func-
tions weakly convergent to given ones. This functional can be used to prove
that the set of stable solutions is dense (residual) in the closure of the set
of admissible functions both via the Baire category lemma or via specific
choice of strictly convergent sequences.
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1 Introduction

In this paper we address the issues of existence and stability of solutions of
the problem

Du€ K, u=gondQ, uec WhHe(Q;R™). (1.1)

Everywhere in this paper we assume that U, K are bounded and compact
subsets of the set of m x n matrices R™*™, respectively. The set 2 is an open
bounded subset of R™ with Lipschitz boundary. We reserve the notation [ 4
for affine functions with the gradient equal to A.

We say that a function ¢ € WH(Q;R™) is piece-wise affine if there
exists an at most countable family of disjoint open subsets €2; of 2 with
meas (0€2;) = 0 such that meas (2 \ U;Q;) = 0 and the restriction of g to
each of these sets is an affine function.

We call a function u € WhH admissible for the problem (1.1) if it is
piece-wise affine, v = g on 9Q, and Du € (U U K) a.e. in . In case the
value of v at the boundary is not specified the function u is called admissible.

To state the first result we need

Definition 1.1 We say that a sequence of piece-wise affine functions
u; » 2 — R™ is obtained by perturbation if for each element u; of the
sequence there exists an at most countable family of disjoint open subsets (X5
of Q, 7 € N, such that meas (Q\ Ujﬁé-) = 0 and for each j € N we have:
meas (89;) =0, u; is affine in Q;-, Ui = Ujyf ON 89; for all k € N.

Theorem 1.2 We assume that the sequence of piece-wise affine func-
tions u; : 2 — R™ is obtained by perturbation. We assume also that
{uj,i € N} is a weakly compact set in WH'(Q; R™). Then the sequence
u; converges strongly in WHLH(Q;R™), d.e. u; — Us in WHLH(Q;R™) as
71— 00.

Corollary 1.3 Assume that a piece-wise affine function uy : & — R™ is
admissible for the problem (1.1). Then each sequence w;, which is obtained
by perturbation and which has the property

dist(Du;, K) — 0 in L*(Q), i — oo, (1.2)

converges to a solution us, of the problem (1.1).

In particular, if for each A € U there erxists a sequence of admissible
functions u; with u; = ls on 0Q, i € N, and such that (1.2) holds, then
each problem (1.1) with admissible boundary data g has a solution.



The second part of the assertion is an existence result first established
in [S1]. Another form of the same result is due to B.Kirchheim [Ki].

Corollary 1.4 Assume that for each € > 0 there exists § > 0 such
that if A € (U \ Ugex B(z,€)) then we can find a piece-wise affine function
NS WOI’OO(Q;Rm) with the properties

D(¢+14) € (UUK), ||DP||1(mmxn) > é meas Q.
Then the problem (1.1) possesses a solution for each admissible function g.

Proof of Corollary 1.3 is straightforward. In the case of Corollary 1.4
one has to select a sequence u; by perturbation in such a way that each
perturbation is "almost maximal”. Then the sequence u; converge strongly
and dist(Du;, K) — 0 in L', otherwise the selection would not been ”almost
maximal”. The detailed explanations can be found in §3, where we prove the
result. This argument presents an implicit method to construct a sequence
of admissible functions u; with dist(Du;, K) — 0.

Recently an interesting issue of stability was raised by B.Kirchheim, who
proved that the set of stable solutions is dense in the closure of admissible
functions [Ki]. Here we call u € Wh a stable solution of (1.1) if each
sequence of functions admissible for the problem (1.1) converges to « in
Wbl provided it converges to u weakly in W1,

Note that one can use the above algorithm of almost maximal oscillations
to construct stable solutions provided the oscillations produced by admis-
sible perturbations of linear functions [4, with A € (U U K), coincide with
those produced by the gradients of admissible functions converging weakly
to linear ones. The later requirement is difficult to verify in such a general
situation, which we consider in this paper, but one can do this in particular
cases, e.g. in the case of convex sets U. However one can easily address the
issues of existence and stability in the abstract setting, like in [Ki], measur-
ing maximal oscillations produced by the gradients of admissible functions
on given ones.

To state the results we will deal with the gradients of admissible func-
tions. We assume that S is a weakly compact subset of L'(Q;R!). Then
elements of S form an equiintegrable set, i.e. given € > 0 there exists § > 0
such that ||£||L1(Q;Rm) < e provided Q € Q and meas Q < §. Moreover there

exists a strictly convex function 6 : R! — R with the superlinear growth at
infinity and such that the family 6(¢), £ € S, is equi-integrable. In fact any



of these two properties is equivalent to the relative weak compactness of the
set S, cf. e.g. [McS].

Since weakly compact subsets are metrizable there is a metric p, which
generates the weak topology in S. We will reserve notations — and — for
the weak and strong convergences, respectively.

Definition 1.5 Let S be a weakly compact subset of L'(;R') and let
6 be a strictly convex nonnegative C'-reqular function such that the family

{6(&) : € € S} is equiintegrable. Given £ € S we define
ind(¢) = sup, - ¢ e lmsup | 6(6(2)) ~ 0(6(x))}do.
1—00 Q
Any sequence & € S, i € N, such that & — & in L' and

/9(£i(x))dx—> / 0(¢(x))dz + ind(€), i — oo,
Q Q

will be called a sequence generating maximal oscillations (associated with ).

We use this terminology since the sequence &;, i € N, generates maximal
oscillations in the sense that the action of the corresponding Young measure
(on 0) is maximal in the class of all Young measures produced by those
sequences of elements in S, which converge weakly to &. In fact it would be
appropriate to involve Young measures in analysis. However we avoid doing
that to make this paper accessible for those who are unfamiliar with Young
measure theory.

We will see in §2 that & — & in L' for all sequences & € S, i € N, with
& — & in L' if and only if ind(¢) = 0. The following results explain how to
make use of the functional £ — ind(§).

Theorem 1.6 Let S be a weakly compact subset of L'. The function
¢ € (S,p) — ind(&) is upper semicontinuous. If &, 1 € N, is a sequence,
which generates mazimal oscillations associated with &, then ind(&;) — 0,
1 — 00.

Given € > 0 the set S. of the elements & of S with ind(§) < € is open
and dense in (S, p). In particular the set

So:={¢£ € S:ind(§) =0}

is dense (and residual) in the space (S,p) and for each & € Sy we have
& — & in L' provided & € S, i € N, and & — & in L.



Theorem 1.7 Let S be a weakly compact subset of L'. Given € > 0
there exists § > 0 such that

limsup [|&; — €| < e

1—00

provided £,& € S, ind(€) < 6 and & — & in L',
Given & € S and ¢¢ > 0 we can find a sequence & € S such that
p(&0,&) < €, Vi EN, & — €oo in L' and ind(&;) — ind(€x0) = 0 as i — oco.

One can apply any of the theorems 1.6 or 1.7 to obtain

Corollary 1.8 Assume that U and K satisfy the assumptions of the
second part of Corollary 1.3, i.e. for each A € U there exists a sequence u;
of admissible functions with u; = 4 on 0Q and with dist(Du;, K) — 0 in
L' as i — oco.

Let also g be a piece-wise affine function with Dg € (U U K) a.e. and
let D be the closure of the set of admissible (for the problem) functions in
L™ topology. Then the set of stable solutions of the problem (1.1) is dense
(residual) in the space (D, L>).

In the last ten years interest to the problems (1.1) was partially moti-
vated by successful models proposed for studying behavior of crystal lattices
undergoing solid-solid phase transformations, see [BJ1], [BJ2]. The idea
was to study the behavior of crystal lattices in general assuming that their
elements have certain preferable affine deformations - so-called unstressed
microlocal deformations; K is the set of matrices corresponding to the gradi-
ents of these deformations. The paper [BJFK] is a survey of results in this
direction, for more recent progress see also [Ki|, [CKi], [KiP]. For other
applications see e.g. books [DM7], [DMS8].

There have been developed two competitive methods to construct so-
lutions of the problems (1.1). One goes back to ideas of Gromov, Nash
and Kuiper, see [N], [G] and [K], to construct sequences of approximate
solutions selecting successive elements as sufficiently small perturbations of
preceding ones that allows to control convergence of the gradients in L'-
norm. This approach was pushed in the papers by S.Miiller & V.Sverdk
[MuSv1-4] who suggested the first explicit proof of the result in [G, p.218]
and generalized it. The ultimate existence result in this direction is the
second part of Corollary 1.3, which has been first proved in [S1]; for the
nonhomogeneous version see [MuS]. However the authors were interested



in applications and the methodological analysis remained incomplete. The-
orem 1.2 and its corollaries say that a way to choose approximate solutions
converging to an exact one is, in fact, rather simple, one has to take any
sequence u; obtained by perturbation with dist(Du;, K) — 0 in L', i — oo.

Another approach was developed by Italian school. It is based on con-
struction of integral functionals, which are upper semicontinuous with re-
spect to the weak convergence and which have nonnegative integrands van-
ishing in the set K. The Baire category lemma allows to prove that the set
of solutions of the problem (1.1) is dense in the closure of the set of admis-
sible functions in the weak topology, provided the subsets of these functions
with values of the functional minorizing given sufficiently small € > 0 are
open and dense in the space.

In the scalar case this approach was developed in the papers [C], [Br],
[BrF1], [DeBP] with the optimal construction and results obtained in the
paper [BrFl], with some extraremarks related to regularity of g added in
[DeBP)]|. The vector-valued case was treated by Dacorogna & Marcellini in
the papers and books [DM1-9]|, [DMT], [DT]. In the first works [DM1-6]
the authors pushed the case when U is convex and K is the null set of a
nonnegative quasiconcave integrand defined in U (recall that quasiconcavity
of integrands characterizes upper semicontinuity of associated integral func-
tionals with respect to the weak convergence in the Sobolev space). Later,
see [DM7-9], [DMT], [DT], they suggested an abstract functional, which
allowed them to prove the existence result of the paper [S1], i.e. the result
of the second part of Corollary 1.3, under special extra assumptions on U
and K, see e.g. [S1, §3] or [MuS, §5] for details. The result was sufficient
to consider some applied problems of interest. However it was not clear
whether one can recover the existence result in full generality via the Baire
category lemma since it was difficult to guess which functional can do the
job. Theorem 1.6 says that a right choice is u — ind(Du).

In fact this functional gives a match between the convex integration
approach to select a strongly convergent sequence of approximate solutions
via control of L°°-norm of the perturbations and the attempts to use various
versons of Baire lemma, to select the set of solutions as the intersection of the
sets of approximate ones, i.e. those where the value of the functional does
not exceed a small given € > 0. Arguments of the proof of Theorem 1.6 show
how to use the functional u — ind(Dwu) to prove the existence and stability
results via Baire lemma. Another way to use this functional is to recover the
results constructing strongly converging sequences g;, ¢+ € N, such that the
difference ||Dg;+1 — Dg;l||r1 is controlled by maximal oscillations associated



with Dg;, cf. Theorem 1.7 and its proof, that is reminiscent of the idea of
the convex integration approach.

Our methodological analysis was pushed by the work of B.Kirchheim
[Ki] who considered the mapping v — Du (L*® — L'), which is defined
in the set of admissible functions, and used the fact that such mappings
are continuous in a dense set since they are pointwise limits of continuous
ones, i.e. they are Baire-1 functions. To see this one can take the mappings
u — Due, where u, are e-mollifications, as approximating mappings.

As we see now the facts behind the results are that the admissible func-
tions with the gradients producing maximal oscillations are almost stable
in the sense of the functional v — indDwu and then one can construct the
functions with zero oscillations applying any of the theorems 1.6 or 1.7. Of
course theorems 1.6 and 1.7 give only an abstract way to find solutions. The-
orem 1.2, which is based on a new fact, presents a very simple algorithm to
construct sequences of approximate solutions with the gradients converging
strongly. The limit functions are always solutions of the problem (1.1).

We place some auxiliary propositions in §2. In §3 we prove propositions
1.2-1.4. Propositions 1.6-1.8 will be proved in §4.

2 Some auxiliary results

In the proofs of the results we will be using some standard facts on integral
functionals with strictly convex integrands. In this section we can assume
that Q is a bounded measurable subset of R".

Given a nonnegative strictly convexr C'-regular function 6 : R — R we
define the integral functional ¢ € L'(Q; R!) — J(€) as follows

7(©) = [ o(c@)da, if0() € L),
J(&) = oo, otherwise.

Theorem 2.1 For any ¢ € L'(;R') we have

1) liminfiood (&) > J(€) if & — & in L',

2) in case J(&) < oo the convergence J(&) — J(§) implies the conver-
gence ||& — €|l — 0.

We include a proof for convenience of the readers. See also [S2] and [S3]
for more general results in this direction.



Proof
We can find an increasing sequence of compact subsets  of Q with
meas (2 \ Q) — 0 as k& — oo and such that the restrictions of ¢ to these

sets are continuous. Let f(-) := DO(&(-)). Then f‘Q :Qp —» RL k€N,
k

are continuous functions. The convergence & — ¢ in L'(€; R!) implies the
convergence

|, () sz = [ (€(o), f)de, v eN.

Q

Therefore given k € N we have

liminf J {0(&i(x)) — 0(&(x)) bdz =

1—00

1—00

liminf | {0(&i(z)) = 0(¢(2)) = (f(2), &ilz) = &(z))}d 2 0 (2.1)

since the expression under the integral is nonnegative for a.e. x € ).

This proves the first part of the theorem. To prove the second one notice
that if & — ¢ in L' and || — €l ryy > € Vi € N, then for some k we
have [|§; — €|t (o, rY) > €/2, Vi € N. Moreover we can find d > 0 such that
for every + € N we have

meas {z € Qi : 1/5 > |&(x)], 1/0 > [€i(x) — &(z)| > 0} > 0.

Then the integrals in (2.1) are bounded from below by a positive constant.
Therefore

liminf; o0 {J(&;) — J(€)} > 0,

which is a contradiction with the assumption J(&;) — J(£). The contradic-
tion shows that |[§; — £|[11(q;ri) — 0 as i — oo,
QED

We will be using one more fact.

Lemma 2.2 Let S be a weakly compact subset of L'(Q;RY) and let 0 :
R! = R be a nonnegative strictly convexr C'-reqular function. Given € > 0
there exists § > 0 such that

limin fisood (€1) > J(€) +6

provided £,& € S, J(€) < 00, & — € in LY, and liminfi 00| |& — &||11 > €.



Proof will use a sharper version of the arguments involved in the proof
of Theorem 2.1.
Given M > 0 consider the function

Mr(n) = inf {0(0) = 0(4) = (DO(A), 0= A) s o= A] > 1, 4] < M}. (2.2

The function Ay is nondecreasing with Ay (0) = 0 and Ay (n) > 0 for n > 0.
Since the elements of S are equiintegrable there exists M > 0 such that
for each ¢ € S there exists a set 257 ¢ with S‘QM continuous, with |{| < M
in Qpr¢ and with *
sup || x| 1 @\Que) < €/4-
XES

Therefore if £, € S, 4 € N, and if § — ¢ in L' with
li inf |6 — &l oiri) > €
then
lim inf [|& = €[11 (0, cme) 2 €/2-

The equiintegrability also implies that we have even more: for some n > 0

meas {z € Qe : |&(2) — E(z)] > n} >,

if € N is sufficiently large. Then (2.1), (2.2) imply that

liminf{(&) ~ ()} > An)n
and the result of Lemma 2.2 follows with § = A(n)n.
QED

Recall also a standard version of the Vitaly covering theorem, cf. e.g.
[Sa, p.109].

Let Q be an open bounded set with meas (9Q) = 0. Given an open set Q
and € > 0 there exists a decomposition of 2 into disjoint sets z; + ;{2 with
€; < €,1 € N, and a set of zero measure.

Let u € WUI’OO(Q;Rm). We define the function @ as follows: a(z) =
cu((z — x;)/e) for © € 2; + €, i € N, 4(z) = 0 otherwise. Then @ €
W, (; R™).

It is easy to see that



Proposition 2.3 For any continuous function 6 : R™*" — R we have

1 1
meas meas

/QH(Du(x))dxz /ﬁH(Dﬁ(m))dw.

In particular for each subset K of R™*"™ we have

1 1
meas meas {2

[ dist(Dii(z), K)dz — / dist(Du(z), K )dz.

Q Q

Note also that we can make L*°-norm of 4 arbitrary small by taking € :=
sup;en € sufficiently small.

3 Proof of propositions 1.2-1.4

We start with the proof of Corollary 1.4. Theorem 1.2 will be proved later.
Corollary 1.3 is a straightforward consequence of Theorem 1.2.

Proof of Corollary 1.4

Without loss of generality we can assume g = [4. We construct a se-
quence of admissible functions g; by induction. Let g1 =14. Given i € N we
define g;+1 as an admissible perturbation of g; in each of the open disjoint
sets Qg-, where g; is affine; here meas (893) = 0, Vj, meas (2 \ UjQ;~) = 0.

It means that g;11 = g; + ¢; is an admissible function and ¢; i = 0, Vj.
Moreover we assume that ’
||D¢i||L1(Q;Ran) Z sup¢||D¢||L1(Q;Ran) - 1/22, (31)

where ¢ stay in the set of all admissible perturbations.
Theorem 1.2 implies g; — goo in WHL(Q;R™) as i — co. The function
goo 1s a solution of (1.1) provided

dist(Dg;, K) — 0 in L'(Q), i — oo. (3.2)

The latter will be proved by contradiction.
Assume that (3.2) fails, i.e. there exists a subsequence g, & € N, (not
relabeled) and € > 0 such that

meas {z € Q : dist(Dgi(z), K) > €} > ¢, Vk.
The set
Q= {z € Q: dist(Dgg(z), K) > €}

10



can be represented as follows
O = UjE I Q?

with I C N. Note that g is affine in each set Qf, j € I, with the gradient
lying in U \ Uger B(z,€).

By Proposition 2.3 and by the assumptions of Corollary 1.4 given A €
(U\Uzer B(x,€)) and given an open bounded set Q) there exists a piece-wise
affine function ¢4 € Wy °(Q; R™) such that

A+ D¢y e (UUK) ae. inQ, ||D¢A||L1(§2;Rmm) > § meas Q.

The construction of g;, see (3.1), then implies

1

R VE € N,

1
1Dgk+1 = Dggllrr 2 d meas Qp, — 5 > de —

that gives a contradiction with the convergence ||gx — goo||y1.1 — 0.
QED

Proof of Theorem 1.2

Given ¢ € N we assume that Q;-, j € N, are disjoint and open subsets of
 with meas (Q\U]Q;) = 0; we also assume that for each 7 € N the function
u; is affine in Qé-, U; = Ujyp ON 8&2;, Vk € N, and meas (893) = 0. Since
{Du;,i € N} is a weakly compact subset in L' we can find a nonnegative
strictly convex C'-regular integrand 6 : R™*" — R. such that the sequence
0(Du;) is equiintegrable. Note that

i /Q 0(Duy(x))dx

is an increasing sequence. In fact, for each set Q; we have Du; = Aé- in Q;
and
/Qi Dujyk(z)dr = Aj meas Q% k> 15
J

therefore

O(Dujy(z))dr > O(Aé-) meas Q; = [ 0(Dui(x))dz, k>1. (3.3)
Qi Qi
J J

Assume that the sequence u; does not converge in WH!1(£; R™). Then
we can find € > 0 and a subsequence u; (not relabeled) such that

||DUZ — Dui—l—l”Ll(Q;RmX") Z €, Vi € N.

11



Note that each subsequence of a sequence obtained by perturbation (see
Definition 1.1) is also a sequence obtained by perturbation.
For each M > 0 we define

Qi = Ugjijaii<any e
Equiintegrability of Du; implies that for sufficiently large M we have
| Dui — Duii||pr @y ;;mmxny > €/2.
Moreover there exists § > 0 such that
meas {z € Qar; 1 [Dui(z) — Dujyi(z)| > 6} > 4.
Let
Aar(n) = inf{6(v) — 0(A) — (DO(A), 0 — A) : [A] < M, |v — A| > n}.

Then \j; is a nondecreasing function. Strict convexity of 6 implies Ay (0) =
0, Aa(n) > 0 if n > 0. The inequalities (3.3) imply

[ 16(Duisa(@) = 6(Dus()) s > [ {8(Dussa(a)) ~ B(Dui() o =
Q Q

M,i

Z o {0(Duiy1(z)) — 0(A%) — (DO(A}), Dugyy (z) — A)}dw >
(il Ai|<py 7

> A(|Dujg1(z) — Ab|)dz > A(6)6 > 0.
(At <ary 7

This gives a contradiction with the fact that the sequence

i /Q 0(Duy(x))dx

is bounded.
QED

12



4 Proofs of the propositions 1.5-1.8

Proof of Theorem 1.6
First we prove upper semicontinuity of the functional

¢ € (S,p) = ind(§),
iLe. given &, & € (S, p), i € N, with p(&;,&) — 0 we have to prove

lim supind(§;) < ind(&).

— 00

By definition

ind(¢) ;== sup  limsup{J(&) — J(€)}. (4.1)
ELES,p(€,6)—0 k—o0

Recall also that the functional
E€(S.0) = I = [ 0¢(a))do

is lower semicontinuous, see Theorem 2.1.
There exists a sequence &; € S such that

p&i &) < 1/i, [(J(&) = J(&)) — ind(&)] < 1/i.
Since p(£;,€) — 0 and liminf;_,oo{J(&) — J(€)} > 0 we have

ind(¢) > limsup{.J (&) — J (&)} >

— 00

lim sup{.7(&) — J(€)} + lim inf{.7(&) = J(€)} > limsupind(&;).

1—00 — 00

This proves upper semicontinuity of the functional

&€ € (S,p) — ind(¢).

Assume now that p(&;,£) — 0 and &; generates maximal oscillations,
Le. lim;oo{J (&) — J(&)} = ind(¢). We want to show that ind(&;) — 0.
Otherwise there exist a subsequence &; (not relabeled) and a sequence &Ges
with p(&,&) — 0, i — oo, such that

hz.fgglf{z](éi) —J(&)} =€e>0.

13



Then p(gi,f) — 0 as i — oo and

limsup{J(é‘) - J()} =

litisup{J(fi) = J(&)} + lim {J(&) — J(€)} = € +ind(€),
that is a contradiction.

To prove the second part of the theorem notice that upper semicontinuity
of the function £ € S — ind(§) implies openness of the sets

Se:={¢ € S:ind(¢) < €}.

The set S, is dense in the space (S, p) since for each £ € S we can find a
sequence &; € S such that p(&;,&) — 0, i — oo, and ind(&;) — 0, i — oo.
By the Baire category lemma the set

So = N1y

is dense (residual) in the space (S, p). For each &, € Sy we have ind(&y) = 0.
Therefore if & € S, i € N, and & — & in L' then J(&) — J(&) and, by
Theorem 2.1, & — & in L'.

QED

Proof of Theorem 1.7

The first assertion of the theorem is an immediate consequence of Lemma
2.2. To prove the second one we fix & € S and ¢y > 0. We will construct
the sequence &; by induction.

The definition of the functional S : x — ind(x) implies ind(x;) — 0 for
each sequence y; € S generating maximal oscillations associated with y € S,
see the proof of Theorem 1.6 for details.

By the first part of the theorem given ¢; €]0,¢;,_1/2''], i € N, there
exists d; €]0, ¢;[ such that

limsup |[xx — x|zt < €i/2

k—o0

provided ind(x) < d;, x, xx € S and p(xk,x) — 0 as k — oo.
We will also use some additional assumptions on ¢; to construct a se-
quence &; with the desired properties.

14



We take & € S such that p(&p,&1) < €1/2 (€1 < €/2) and ind(&;) < d;.
Then we can find ey such that

1€ =&l < e1/2 if p(€,&1) < e, €€ S.

We can choose then & € S such that ind(€2) < d2 and p(&1,&2) < €2/2. We
can also find €3 such that

1€ — &2l < €2/2 if p(&,&2) < €3, £ € S.

We can continue this process by induction defining &;+1 and €;49 in such
a way that p(&;, &iv1) < €i41/2, ind(&41) < ;41 and

1€ = &ivallpr < €iq1/2 if p(&,6i41) < €iyo, §ES.

Then p(&;,&41) < €i41/2 < €0/2'T! and, consequently, there exists ¢4
such that p(&;,£x) — 0, 7 — 00, and p(&p, £x) < €. The choice of €; implies
that p(&;,600) < €41 and then ||& — &l < €/2, ie. & — €x in L.
Moreover the inequality || — £xol|r1 < € holds for all £ enough close to
¢ In p-metric provided p(&,&;) < €4+1. This way we prove that for any
sequence &, € S, k € N, the convergence & — & in L' holds provided
p(&ky€oo) = 0 as k — oo. In particular we established that ind(£,,) = 0.

QED

Proof of Corollary 1.8

We will show how to prove the assertion via Theorem 1.6. One can also
use Theorem 1.7 instead.

Let S be the set of the gradients of admissible (for the problem) functions
and let S be its closure in the weak topology of L'. Then S = {Du : u € D}.
There exists a dense (residual) subset Sy C S such that for each Du € S
we have ind(Du) = 0. The corresponding set Dy = {u € D : Du € Sy} is
dense in the metric space (D, L*°).

The result will be established if we show that each function u € Dy
is a solution of the problem (1.1). Let u; be a sequence of admissible
(for the problem) functions such that u; —* u in WH®°(Q;R™). In case
dist(Du;, K) /4 0 in L' we can find a subsequence u; (not relabeled) such
that

meas {z € Q : dist(Du;(z), K) > 6} > 0.

Given A € (U \ Uger B(z,0)) we can find a piecewise affine function uy €
la +W01’°°(Q;Rm) such that Dug € (UUK) a.e. in Q and ||[Dua — A||;1 >
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dmeas Q. Applying Proposition 2.3 in the sets of affinity of u; with e = 1/7,
J € N, we can construct a sequence of admissible (for the problem) functions
us € u+ WOI’OO(Q;R’”) such that uj —* u; in W as j — oo and

lim inf||Du§- — Dujl|p1(oirm) > 5%,
j—o0 ’

Lemma 2.2 then implies that ind(Du;) > 62 > 0, ¢ € N. This contradicts
upper semicontinuity of the functional ¢ — ind(§) since ind(Dwu) = 0 and
Du; — Du in L' (i.e. p(Du;, Du) — 0 as i — oo). Then we have both
dist(Du;, K) — 0 in L' and ind(Du;) — 0. Therefore ||Du; — Dul|;1 — 0
and, consequently, u solves the problem (1.1).

QED
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