Max-Planck-Institut
 für Mathematik
 in den Naturwissenschaften
 Leipzig

Quasiconvex hulls in symmetric matrices
by

Georg Dolzmann

QUASICONVEX HULLS IN SYMMETRIC MATRICES

GEORG DOLZMANN

Abstract

We analyze the semiconvex hulls of the subset K in symmetric matrices given by $K=\left\{F \in \mathbf{M}^{2 \times 2}: F^{T}=F,\left|F_{11}\right|=a,\left|F_{12}\right|=b,\left|F_{22}\right|=c\right\}$ that was first considered by Dacorogna\&Tanteri [Commun. in PDEs 2001]. We obtain explicit formulae for the polyconvex, the quasiconvex, and the rank-one convex hull for $a c-b^{2} \geq 0$ and show in particular that the quasiconvex and the polyconvex hull are different if strict inequality holds. For $a c-b^{2}<0$ we obtain a closed form for the polyconvex and the rank-one convex hull.

1. Introduction

The central notion of convexity in the vector valued calculus of variations is quasiconvexity (in the sense of Morrey [14]). Recall that a real valued function f defined on the space $\mathbf{M}^{m \times n}$ of all real $m \times n$ matrices is quasiconvex if there exists an open domain Ω in \mathbf{R}^{n} such that

$$
\frac{1}{|\Omega|} \int_{\Omega} W(F) \mathrm{d} x \leq \frac{1}{|\Omega|} \int_{\Omega} W(F+D \phi) \mathrm{d} x
$$

for all $F \in \mathbf{M}^{m \times n}$ and $\phi \in C_{0}^{\infty}\left(\Omega ; \mathbf{R}^{m}\right)$.
In particular motivated by applications to problems in materials science (see, e.g, $[1,5,9,16]$), there has been an increasing interest in the mathematical analysis of variational integrals for which the energy density W is not quasiconvex. If we assume that $W \geq 0$ with $K=\{X: W(X)=0\} \neq \emptyset$, then a typical question is to characterize the set of all matrices F such that

$$
\inf _{\substack{u \in W^{1, \infty}\left(\Omega ; \mathbf{R}^{m}\right) \\ u(x)=F x \text { on } \partial \Omega}} \frac{1}{|\Omega|} \int_{\Omega} W(D u) \mathrm{d} x=0
$$

This set is called the quasiconvex hull of K and it describes in the context of nonlinear elasticity theory the set of all affine deformations of $\partial \Omega$ with arbitrarily small stored energy. In nice analogy to the definition of the convex hull K^{c} of a set, an equivalent characterization of $K^{\text {qc }}$ is given by [20]

$$
K^{\mathrm{qc}}=\left\{F \in \mathbf{M}^{m \times n}: f(F) \leq \sup _{X \in K} f(X) \forall f: \mathbf{M}^{m \times n} \rightarrow \mathbf{R} \text { quasiconvex }\right\} .
$$

Despite the fundamental importance of quasiconvex hulls, only very few explicit examples are available in the literature (see, e.g., $[2,3,4,19]$). In most of these examples, the quasiconvex hull coincides with two closely related hulls, the rank-one

[^0]convex hull $K^{\text {rc }}$ and the polyconvex hull K^{pc} of K. The definition of these hulls is analogous to the definition of the quasiconvex hull where one replaces quasiconvexity by rank-one convexity and polyconvexity, respectively. Here we say that a function $f: \mathbf{M}^{m \times n} \rightarrow \mathbf{R}$ is rank-one convex if it is convex on all rank-one lines, that is, the functions $\phi(t)=f(F+t R)$ are convex in t for all $F \in \mathbf{M}^{m \times n}$ and for all R with $\operatorname{rank}(R)=1$. It is polyconvex if there exists a convex function g of the vector $M(F)$ of all minors of F with $f(F)=g(M(F))$. For $m=n=2$, the case of interest in this note, g is a convex function from \mathbf{R}^{5} into \mathbf{R} with $f(F)=g(F$, $\operatorname{det} F)$. Since rank-one convexity is a necessary condition for quasiconvexity and polyconvexity a sufficient one, it follows that
$$
K^{\mathrm{rc}} \subseteq K^{\mathrm{qc}} \subseteq K^{\mathrm{pc}}
$$

As a consequence, one obtains a characterization of $K^{\text {qc }}$ for all sets K for which the rank-one convex and the polyconvex hull coincide. While this identity has been established in certain cases with high symmetry, it does not hold in general. Indeed, a nice example of a set in 3×2 matrices for which the rank-one convex hull is different from the quasiconvex hull can be found in [13]. It is an open question whether $K^{\mathrm{rc}}=K^{\mathrm{qc}}$ for 2×2 matrices. A positive answer was recently given in [15] for the case that K is a subset of the diagonal 2×2 matrices. In the proof one crucially uses the fact that the intersection of the rank-one cone with the diagonal matrices consists of two lines. The case of symmetric 2×2 matrices is already much more challenging. In this case, the rank-one cone still has a very simple geometric structure. If one uses the coordinates

$$
(\xi, \eta, \zeta)=\left(\begin{array}{cc}
\zeta+\xi & \eta \\
\eta & \zeta-\xi
\end{array}\right)
$$

then it is given by the standard cone $\zeta^{2}=\xi^{2}+\eta^{2}$. The methods in [15], however, do not apply since the set of rank-one directions is not linearly independent. The geometric insight into the structure of the rank-one cone in symmetric matrices is also at the heart of the surprising example of a set of five points without rank-one connections which is the range of the gradient of a Lipschitz function that is not affine [10].

In this paper, we show how the geometry of the rank-one matrices in the space of all symmetric matrices can be used to characterize the semiconvex hulls in an interesting test case. Following Dacorogna\&Tanteri [7], we define the set K for constants $a, b, c>0$ by

$$
K=\left\{F \in \mathbf{M}^{2 \times 2}: F^{T}=F,\left|F_{11}\right|=a,\left|F_{12}\right|=b,\left|F_{22}\right|=c\right\} .
$$

Before we state our main result, we define the lamination convex hull $K^{\text {lc }}$ of a set K which is well-adopted to constructions and of importance in the proof of Theorem 1.1 below. Motivated by the observation that $F_{1}, F_{2} \in K$ with $\operatorname{rank}\left(F_{1}-\right.$ $\left.F_{2}\right)=1$ implies that the line segment $\lambda F_{1}+(1-\lambda) F_{2}, \lambda \in[0,1]$, belongs to $K^{\text {rc }}$, we set

$$
K^{\mathrm{lc}}=\bigcup_{i=0}^{\infty} K^{(\mathrm{i})}
$$

where $K^{(0)}=K$ and

$$
\begin{aligned}
K^{(\mathrm{i}+1)}=K^{(\mathrm{i})} \cup\left\{F=\lambda F_{1}+(1-\lambda) F_{2}:\right. & F_{1}, F_{2} \in K^{(\mathrm{i})} \\
& \left.\operatorname{rank}\left(F_{1}-F_{2}\right)=1, \lambda \in(0,1)\right\} .
\end{aligned}
$$

By definition, $K^{\text {lc }} \subseteq K^{\text {rc }}$. We are now in a position to state the main result of this paper.

Theorem 1.1. Let

$$
K=\left\{F=\left(\begin{array}{cc}
x & y \\
y & z
\end{array}\right):|x|=a,|y|=b,|z|=c\right\}
$$

with constants $a, b, c>0$. Then

$$
K^{\mathrm{pc}}=\left\{F \in K^{\mathrm{c}}:(x-a)(z+c) \leq y^{2}-b^{2},(x+a)(z-c) \leq y^{2}-b^{2}\right\} .
$$

Moreover, the following assertions hold:
i) If $a c-b^{2}<0$ then

$$
K^{(2)}=K^{\mathrm{lc}}=K^{\mathrm{rc}}=\left\{F \in K^{\mathrm{c}}:|y|=b\right\} .
$$

ii) If $a c-b^{2} \geq 0$ then $K^{(4)}=K^{\text {lc }}=K^{\mathrm{rc}}=K^{\text {qc }}$ and

$$
\begin{aligned}
& K^{\mathrm{qc}}=\left\{F \in K^{\mathrm{pc}}:(x-a)(z-c) \geq(|y|-b)^{2},\right. \\
& \left.(x+a)(z+c) \geq(|y|-b)^{2}\right\} .
\end{aligned}
$$

Remark 1.2. It is an open problem to find a formula for the quasiconvex hull of K in the case $a c-b^{2}<0$.

Remark 1.3. A short calculation shows that the additional inequalities in the definition of $K^{\text {lc }}$ are true for all $F \in K^{\mathrm{pc}}$ if $a c-b^{2}=0$ and that consequently $K^{\mathrm{lc}}=K^{\mathrm{pc}}$. This was already shown in Dacorogna\&iTanteri [7]. The authors also obtained the formula for $K^{\text {lc }}$ in the case ac- $b^{2}<0$ and observed that $K^{\text {lc }}$ is always contained in the intersection of the convex hull of K with the exterior of the two hyperboloids $(x-a)(z+c)=y^{2}-b^{2}$ and $(x+a)(z-c)=y^{2}-b^{2}$. However, they did not identify the latter set as K^{pc}.

The rest of the paper is organized as follows: We derive the formula for the polyconvex hull of K in Section 2. The formulae for the lamination convex hulls in statements i) and ii) in the theorem are obtained in Sections 3 and 4, respectively. Section 5 finally contains the proof for the representation of the quasiconvex hull for $a c-b^{2} \geq 0$.

2. The polyconvex hull of K.

Among the different notions of convexity, polyconvexity has the most similarities with classical convexity. One instance is the following representation for the polyconvex hull $K^{\text {pc }}$ (see [19]),

$$
\begin{equation*}
K^{\mathrm{pc}}=\left\{F \in \mathbf{M}^{2 \times 2}:(F, \operatorname{det} F) \in \widetilde{K}^{\mathrm{c}}\right\}, \tag{2.1}
\end{equation*}
$$

where

$$
\widetilde{K}=\{(F, \operatorname{det} F): F \in K\} \subset \mathbf{R}^{5} .
$$

By definition, K consists of symmetric matrices, and therefore \widetilde{K} and $\widetilde{K}^{\text {c }}$ are contained in a four-dimensional subspace of \mathbf{R}^{5}. We restrict our calculations to this subspace by the identifications

$$
K=\left\{\left(\begin{array}{l}
a \\
c \\
b
\end{array}\right),\left(\begin{array}{c}
-a \\
c \\
b
\end{array}\right),\left(\begin{array}{c}
a \\
-c \\
b
\end{array}\right),\left(\begin{array}{c}
-a \\
-c \\
b
\end{array}\right),\left(\begin{array}{c}
a \\
c \\
-b
\end{array}\right),\left(\begin{array}{c}
-a \\
c \\
-b
\end{array}\right),\left(\begin{array}{c}
a \\
-c \\
-b
\end{array}\right),\left(\begin{array}{c}
-a \\
-c \\
-b
\end{array}\right)\right\}
$$

and

$$
\widetilde{K}=\left\{\left(x, z, y, x z-y^{2}\right):(x, z, y) \in K\right\}
$$

We denote the eight points in \widetilde{K} by $\tilde{f}_{1}, \ldots, \tilde{f}_{8}$.
Since K is a finite set, $\widetilde{K}^{\text {c }}$ is a polyhedron in \mathbf{R}^{4}, which is the intersection of a finite number of half spaces. Moreover, on each face of $\widetilde{K}^{\text {c }}$ we must have at least four points in \widetilde{K} that span a three-dimensional hyperplane in \mathbf{R}^{4}. A short calculation shows that the following list of six normals completely describes the convex hull of \widetilde{K} :

$$
\begin{array}{ll}
n_{1}=(c, a, 0,-1), & n_{2}=(-c, a, 0,1,) \\
n_{3}=(c,-a, 0,1), & n_{4}=(-c,-a, 0,-1), \\
n_{5}=(0,0,1,0), & n_{6}=(0,0,-1,0) .
\end{array}
$$

It turns out that the hyperplanes defined by n_{1}, \ldots, n_{4} contain six points in K,

$$
\begin{array}{ll}
\left\langle\tilde{f}_{4}, n_{1}\right\rangle=\left\langle\tilde{f}_{8}, n_{1}\right\rangle=-3 a c+b^{2}<a c+b^{2}=\left\langle\tilde{f}_{i}, n_{1}\right\rangle, & i \notin\{4,8\}, \\
\left\langle\tilde{f}_{3}, n_{2}\right\rangle=\left\langle\tilde{f}_{7}, n_{2}\right\rangle=-3 a c-b^{2}<a c-b^{2}=\left\langle\tilde{f}_{i}, n_{2}\right\rangle, & i \notin\{3,7\}, \\
\left\langle\tilde{f}_{2}, n_{3}\right\rangle=\left\langle\tilde{f}_{6}, n_{3}\right\rangle=-3 a c-b^{2}<a c-b^{2}=\left\langle\tilde{f}_{i}, n_{3}\right\rangle, & i \notin\{2,6\}, \\
\left\langle\tilde{f}_{1}, n_{4}\right\rangle=\left\langle\tilde{f}_{5}, n_{4}\right\rangle=-3 a c+b^{2}<a c+b^{2}=\left\langle\tilde{f}_{i}, n_{4}\right\rangle, & i \notin\{1,5\},
\end{array}
$$

and that the faces of the polyhedron defined by n_{5} and n_{6} contain four points,

$$
\begin{array}{ll}
\left\langle\tilde{f}_{j}, n_{5}\right\rangle=-b<b=\left\langle\tilde{f}_{i}, n_{5}\right\rangle, & i=1,2,3,4, j=5,6,7,8 \\
\left\langle\tilde{f}_{j}, n_{6}\right\rangle=-b<b=\left\langle\tilde{f}_{i}, n_{6}\right\rangle, & i=5,6,7,8, j=1,2,3,4
\end{array}
$$

In view of the representation (2.1) for the polyconvex hull and the formulae for the normals, this implies that all points in K^{pc} must satisfy the convex inequality

$$
\begin{equation*}
|y| \leq b \tag{2.2}
\end{equation*}
$$

as well as the additional inequalities

$$
\begin{array}{ll}
c x+a z-\left(x z-y^{2}\right) \leq a c+b^{2}, & -c x+a z+\left(x z-y^{2}\right) \leq a c-b^{2} \\
c x-a z+\left(x z-y^{2}\right) \leq a c-b^{2}, & -c x-a z-\left(x z-y^{2}\right) \leq a c+b^{2}
\end{array}
$$

which we can rewrite as

$$
\begin{align*}
-(x-a)(z-c) & \leq-y^{2}+b^{2}, & (x+a)(z-c) & \leq y^{2}-b^{2}, \\
(x-a)(z+c) & \leq y^{2}-b^{2}, & -(x+a)(z+c) & \leq-y^{2}+b^{2} . \tag{2.3}
\end{align*}
$$

We now assert that this system of inequalities is equivalent to the conditions

$$
\begin{equation*}
|x| \leq a, \quad|z| \leq c, \quad|y| \leq b \tag{2.4}
\end{equation*}
$$

describing the convex hull of K and two additional inequalities

$$
\begin{equation*}
(x+a)(z-c) \leq y^{2}-b^{2}, \quad(x-a)(z+c) \leq y^{2}-b^{2} . \tag{2.5}
\end{equation*}
$$

This proves the formula for the polyconvex hull of K. In fact, the sum of the two upper and the two lower inequalities in (2.3) implies

$$
a z \leq a c \quad \text { and } \quad-a z \leq a c
$$

and the sum of the two left and the two right inequalities, respectively, gives

$$
c x \leq a c \quad \text { and } \quad-c x \leq a c .
$$

Therefore $|z| \leq c$ and $|x| \leq a$ and this proves that (2.2) and (2.3) imply (2.4) and (2.5). Conversely, if the convex inequalities $|x| \leq a,|z| \leq c$, and $|y| \leq b$ in (2.4) hold, then $x-a \leq 0, z-c \leq 0$ and $-y^{2}+b^{2} \geq 0$. Consequently $-(x-a)(z-c) \leq-y^{2}+b^{2}$. Similarly, we have $x+a \geq 0, z+c \geq 0$ and thus $-(x+a)(z+c) \leq-y^{2}+b^{2}$, as asserted. This concludes the proof of the formula for K^{pc} for all parameters $a, b, c>0$.

3. The lamination convex hull of K for $a c-b^{2}<0$.

We now turn towards proving the formula for $K^{\text {lc }}$ and we assume first that $a c-b^{2}<0$. We let

$$
\mathcal{A}=\left\{F \in K^{\mathrm{c}}:|y|=b\right\} .
$$

In this case, none of the matrices in \mathcal{A} with $y=b$ is rank-one connected to any of the matrices in \mathcal{A} with $y=-b$, and the assertion follows essentially from the following locality property of the rank-one convex hull.

Proposition 3.1 ($[10,11,12,17])$. Assume that K is compact and that K^{rc} consists of two compact components C_{1} and C_{2} with $C_{1} \cap C_{2}=\emptyset$. Then

$$
K^{\mathrm{rc}}=\left(K \cap C_{1}\right)^{r c} \cup\left(K \cap C_{2}\right)^{r c} .
$$

Clearly, all elements in \mathcal{A} can be constructed using the rank-one connections between the four matrices in K with $y=b$ and $y=-b$, respectively. The observation is now that the polyconvex hull is not connected, since $K^{\mathrm{pc}} \cap\{F:|y| \leq \epsilon\}=\emptyset$ for $\epsilon>0$ so small that $\epsilon^{2}<b^{2}-a c$. Indeed, summation of the two inequalities in the definition of K^{pc} implies $a c-x z \geq b^{2}-y^{2}$ or, equivalently, $0>a c-b^{2}+y^{2} \geq x z$. Thus necessarily either $x>0$ and $z<0$ or $x<0$ and $z>0$. In the former case the first inequality cannot hold since

$$
(z-a)(z+c) \leq y^{2}-b^{2} \quad \Leftrightarrow \quad 0 \leq x(z+c)-a z \leq a c-b^{2}+y^{2}<0 .
$$

In the latter case the second inequality is violated. We may now apply Proposition 3.1 and we conclude that $K^{\text {lc }}=K^{\mathrm{rc}}=\mathcal{A}$.

4. The lamination convex hull of K for $a c-b^{2} \geq 0$.

Assume now that $a c-b^{2} \geq 0$, and let \mathcal{A} be given by

$$
\mathcal{A}=\left\{F \in K^{\mathrm{pc}}:(x-a)(z-c) \geq(|y|-b)^{2},(x+a)(z+c) \geq(|y|-b)^{2}\right\} .
$$

By symmetry, we may suppose in the following arguments that $y \geq 0$. Then this set is described by three types of inequalities, namely the stripes

$$
\begin{equation*}
|x| \leq a, \quad|z| \leq c, \quad|y| \leq b \tag{4.1}
\end{equation*}
$$

defining the convex hull of K, the hyperboloids

$$
\begin{equation*}
(x-a)(z+c) \leq y^{2}-b^{2}, \quad(x+a)(z-c) \leq y^{2}-b^{2}, \tag{4.2}
\end{equation*}
$$

in the definition of K^{pc}, and the cones

$$
\begin{equation*}
(x-a)(z-c) \geq(y-b)^{2}, \quad(x+a)(z+c) \geq(y-b)^{2} . \tag{4.3}
\end{equation*}
$$

To simplify notation, we write

$$
X=\left(\begin{array}{ll}
\xi & \eta \\
\eta & \zeta
\end{array}\right)
$$

Since \mathcal{A} is compact, it suffices to prove that all points $X \in \mathcal{A}$ that satisfy equality in at least one of the inequalities in the definition of \mathcal{A} can be constructed as laminates. To see this, assume that X lies in the interior of \mathcal{A}. The idea is to split X along a rank-one line in two rank-one connected matrices $X^{ \pm}$that satisfy equality in at least one of the inequalities in the definition of \mathcal{A}. We set

$$
\begin{aligned}
& t^{-}=\sup \{t<0: X+t w \otimes w \text { satisfies one equality in } \mathcal{A}\} \\
& t^{+}=\inf \{t>0: X+t w \otimes w \text { satisfies one equality in } \mathcal{A}\}
\end{aligned}
$$

By assumption, $t^{-}<0<t^{+}$and we define $X^{ \pm}=X+t^{ \pm} w \otimes w$. Then $X=$ $\left(t^{-} X^{+}-t^{-} F^{+}\right) /\left(t^{+}-t^{-}\right)$and it suffices to show that $X^{ \pm}$are contained in $K^{\text {lc }}$.

Assume thus that $X \in \mathcal{A}$ satisfies equality in at least one inequality in the definition of \mathcal{A}. We have to prove that this implies $X \in K^{\text {lc }}$. This is immediate for the convex inequalities $|x| \leq a,|y| \leq b$, and $|z| \leq c$. For example, if $\xi=a$, then by (4.2) $|\eta|=b$ and by symmetry we may assume that $\eta=b$. Then (4.1) implies that $\zeta=\lambda c+(1-\lambda)(-c)$ for some $\lambda \in[0,1]$ and thus

$$
X=\lambda\left(\begin{array}{cc}
a & b \\
b & c
\end{array}\right)+(1-\lambda)\left(\begin{array}{rr}
a & b \\
b & -c
\end{array}\right), \quad\left(\begin{array}{rr}
a & b \\
b & c
\end{array}\right)-\left(\begin{array}{rr}
a & b \\
b & -c
\end{array}\right)=2 c e_{2} \otimes e_{2}
$$

The argument is similar for $|\zeta|=c$. Finally, if $|\eta|=b$ and $\eta \geq 0$, then

$$
(\xi, \eta) \in \operatorname{conv}\{(a, c),(-a, c),(a,-c),(-a,-c)\}
$$

and therefore $X \in K^{(2)}$.
Assume next that X lies on the surface of one of the cones

$$
(x-a)(z-c) \geq(y-b)^{2}, \quad(x+a)(z+c) \geq(y-b)^{2} .
$$

These cones are the rank-one cones centered at points in K, and we may suppose that X is contained in the rank-one cone C_{1} given by

$$
C_{1}=\left\{F: \operatorname{det}\left[F-\left(\begin{array}{cc}
a & b \\
b & c
\end{array}\right)\right]=(x-a)(z-c)-(y-b)^{2}=0\right\}
$$

the argument is similar in the other case. The cone C_{1} intersects the part of the boundary of the convex hull of K that is contained in the plane $\{y=-b\}$, which by the foregoing arguments is contained in $K^{(2)}$. We will show that X belongs to a rank-one segment between a point G in this intersection and the point $F_{1} \in K$, where F_{1} and G are given by

$$
F_{1}=\left(\begin{array}{cc}
a & b \\
b & c
\end{array}\right) \quad \text { and } \quad G=\left(\begin{array}{rr}
\bar{x} & -b \\
-b & \bar{z}
\end{array}\right), \quad|\bar{x}| \leq a,|\bar{z}| \leq c .
$$

This implies $X \in K^{(3)} \subset K^{\text {lc }}$. In order to prove this fact, let

$$
R=F_{1}-F=\left(\begin{array}{cc}
a-\xi & b-\eta \\
b-\eta & c-\zeta
\end{array}\right)
$$

By assumption, $\operatorname{det} R=0$, and we seek a $t \in \mathbf{R}$ such that

$$
F_{1}+t R=\left(\begin{array}{cc}
a+t(a-\xi) & b+t(b-\eta) \\
b+t(b-\eta) & c+t(c-\xi)
\end{array}\right)=G
$$

This implies

$$
t=-\frac{2 b}{b-\eta}
$$

and thus

$$
\bar{x}=a-\frac{2 b(a-\xi)}{b-\eta}, \quad \bar{z}=c-\frac{2 b(c-\xi)}{b-\eta} .
$$

Clearly $\bar{x} \leq a$ and we only have to check that $\bar{x} \geq-a$, or equivalently

$$
\frac{a}{b} \geq \frac{a-\xi}{b-\eta}
$$

To establish this inequality, we subtract the equality $(x-a)(z-c)=(y-b)^{2}$ in the definition of C_{1} from the inequality $(x+a)(z-c) \leq y^{2}-b^{2}$ in the definition of K^{pc}, and we obtain that X satisfies

$$
2 a(\zeta-c) \leq(-2 b)(b-\eta)
$$

Therefore, again in view of the definition of C_{1},

$$
\frac{a}{b} \geq \frac{b-\eta}{c-\zeta}=\frac{a-\xi}{b-\eta}
$$

and this proves the bounds for \bar{x}; the arguments for \bar{z} are similar. Since $G \in K^{(2)}$ we conclude

$$
X=\frac{1+t}{t} F_{1}-\frac{1}{t} G=\frac{b+\eta}{2 b} F_{1}+\frac{b-\eta}{2 b} G \in K^{(3)} .
$$

It remains to consider the case that $X \in \mathcal{A}$ satisfies equality in one of the inequalities defining the one-sheeted hyperboloids. Assume thus that

$$
(\xi+a)(\zeta-c)=\eta^{2}-b^{2}
$$

The idea is to use the geometric property of one-sheeted hyperboloids H already observed by Šverák [19], namely that for each point F on H there exist two straight lines intersecting at F that are contained in H, and that correspond to rank-one lines in the space of symmetric matrices. More precisely, we seek solutions $w=$ $(u, v) \in \mathbf{S}^{1}$ of

$$
X+t w \otimes w \in H \quad \text { or } \quad\left(\xi+t u^{2}+a\right)\left(\zeta+t v^{2}-c\right)=(\eta+t u v)^{2}-b^{2}
$$

This is equivalent to the quadratic equation

$$
u^{2}(\zeta-c)+v^{2}(\xi+a)=2 u v \eta
$$

Since $u=0$ and $v=0$ are only solutions for $\xi=-a$ and $\zeta=c$, respectively, we may assume that $u, v \neq 0$. In this case there are two solutions for the ratio $\tau=u / v$, given by

$$
\tau_{1,2}=\frac{\eta \pm b}{\zeta-c} .
$$

The strategy is now to split X into two points $X^{ \pm}$along one of these rank-one lines that satisfy equality in at least two of the inequalities in the definition of \mathcal{A}. Let

$$
\begin{aligned}
& t^{-}=\sup \{t<0: X+t w \otimes w \text { realizes two equalities in } \mathcal{A}\}, \\
& t^{+}=\inf \{t>0: X+t w \otimes w \text { realizes two equalities in } \mathcal{A}\} .
\end{aligned}
$$

By assumption, $t^{-}<0<t^{+}$and we define $X^{ \pm}=X+t^{ \pm} w \otimes w$. In view of the foregoing arguments, the matrices $X^{ \pm}$belong either to $K^{(3)}$ or to the intersection \widetilde{H} of the two hyperboloids,

$$
\widetilde{H}=\left\{F:(x+a)(z-c)=y^{2}-b^{2},(x-a)(z+c)=y^{2}-b^{2}\right\} .
$$

The formula for the lamination convex hull is therefore established if we show that $\widetilde{H} \subset K^{\text {lc }}$. By symmetry it suffices again to prove this for all $F \in \widetilde{H}$ with $y \geq 0$. Now, if $F \in \widetilde{H}$, then

$$
a z=c x, \quad \text { and } \quad x z-a c=y^{2}-b^{2} .
$$

Thus the intersection of the two hyperboloids can be parameterized for $y \geq 0$ by

$$
t \mapsto\left(\sigma \sqrt{\frac{a}{c}} \sqrt{t^{2}+a c-b^{2}}, t, \sigma \sqrt{\frac{c}{a}} \sqrt{t^{2}+a c-b^{2}}\right), \quad \sigma \in\{ \pm 1\}, \quad t \geq 0
$$

We may assume that $\sigma=1$. In this case the inequality $(x-a)(z-c) \geq(y-b)^{2}$ in the definition of \mathcal{A} is equivalent to $\left(a c-b^{2}\right)(b-t)^{2} \leq 0$ and this implies $t=b$, and thus $F \in K$, if $a c-b^{2}>0$. If $a c-b^{2}=0$, then the intersection of the hyperboloids coincides with the rank-one line between

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rr}
-a & -b \\
-b & -c
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{rr}
-a & b \\
b & -c
\end{array}\right) \quad \text { and }\left(\begin{array}{rr}
a & -b \\
-b & c
\end{array}\right),
$$

and consequently $F \in K^{(1)}$. This proves the formula for the lamination convex hull.
5. The quasiconvex hull of K for $a c-b^{2} \geq 0$.

It remains to prove that for $a c-b^{2} \geq 0$ all points in $K^{\mathrm{pc}} \backslash K^{\text {lc }}$ can be separated from K (or equivalently from $K^{\text {lc }}$) with quasiconvex functions. Recall that by Remark 1.3 the quasiconvex and the polyconvex hull coincide for $a c-b^{2}=0$. We may therefore assume in the following that $a c-b^{2}>0$. We divide the proof of this assertion into three steps. First we show that the additional inequalities in the definition of $K^{\text {lc }}$ are only active for $x, z \geq 0$ or $x, z \leq 0$. Then we construct a sufficiently rich family of quasiconvex functions that separates points from K, and finally we prove the theorem.
5.1. Reduction to the case $x, y, z \geq 0$. By symmetry we may always assume that $y \geq 0$. In this case the formula for $K^{\text {lc }}$ contains the additional inequalities

$$
\begin{equation*}
(x+a)(z+c) \geq(y-b)^{2}, \quad(x-a)(z-c) \geq(y-b)^{2} \tag{5.1}
\end{equation*}
$$

Assume for example that $F \in K^{\mathrm{pc}}$ with $x \leq 0$ and $z \geq 0$. The inequalities in (5.1) can be rewritten as

$$
(x \pm a)(z \pm c) \geq b^{2}-y^{2}+2 y^{2}-2 b y
$$

It follows from $F \in K^{\mathrm{pc}}$ that $-(x+a)(z-c) \geq b^{2}-y^{2}$. The foregoing inequalities are thus true if

$$
(x \pm a)(z \pm c) \geq-(x+a)(z-c)+2 y^{2}-2 b y
$$

is satisfied. The equation with the minus and the plus sign are equivalent to

$$
\begin{equation*}
2 x(z-c)+2 y(b-y) \geq 0 \quad \text { and } \quad 2 z(x+a)+2 y(b-y) \geq 0 \tag{5.2}
\end{equation*}
$$

respectively. Since by assumption $x \leq 0, z \leq c$, and $y \in[0, b]$, the first inequality in (5.2) holds and this implies the first inequality (5.1). Similarly, the second inequality in (5.2) is true in view of $z \geq 0$ and $x \geq-a$, and consequently the second inequality in (5.1) follows.
5.2. Construction of quasiconvex functions. From now on we assume that $x, y, z \geq 0$ and that $x \neq a, z \neq c$ and $y \neq b$ (see Section 4). We need to show that all points in K^{pc} with $(x-a)(z-c)<(y-b)^{2}$ can be separated from K by quasiconvex functions. This will be done using the Siverák's remarkable result that the functions

$$
g_{\ell}(F)=\left\{\begin{array}{cl}
|\operatorname{det} F| & \text { if the index of } F \text { is } \ell \\
0 & \text { otherwise }
\end{array}\right.
$$

are quasiconvex on symmetric matrices, see [18]. Here the index of the symmetric matrix F is the number of its negative eigenvalues.

We begin by calculating the intersection of the boundary of the cone $(x-a)(z-$ $c) \geq(y-b)^{2}$ with $K^{\text {pc }}$ for fixed $y \in[0, b)$. This intersection can be parameterized by

$$
t \mapsto\left(\begin{array}{cc}
t & y \\
y & c+(y-b)^{2} /(t-a)
\end{array}\right), \quad t \in I_{y}=\left[\frac{a y}{b}, a+\frac{b(y-b)}{c}\right]
$$

and we write $t \mapsto F(y, t)$ or $t \mapsto F_{y, t}$ for simplicity. A short calculation shows that $\left|I_{y}\right|=\left(a c-b^{2}\right)(b-y) /(b c)>0$. We define quasiconvex functions $f_{y, t}$ on the space of all symmetric matrices by

$$
f_{y, t}(F)=g_{0}\left(F-F_{y, t}\right), \quad y \in[0, b), t \in I_{y},
$$

and show first that $f_{y, t}=0$ on K. In order to do this, it suffices to prove that all the matrices of the form $F-F(y, t)$ with $F \in K$ are not positive definite. In fact,

$$
\operatorname{det}\left[\left(\begin{array}{cc}
a & \pm b \\
\pm b & \pm c
\end{array}\right)-F_{y, t}\right]=(a-t)(\pm c-c)+(y-b)^{2}-(\pm b-y)^{2} \leq 0
$$

and thus all matrices of the form $F-F_{y, t}$, with $F \in K$ and $F_{11}=a$ are not positive definite. Moreover,

$$
\left[\left(\begin{array}{cc}
-a & \pm b \\
\pm b & \pm c
\end{array}\right)-F_{y, t}\right]=\left(\begin{array}{cc}
-a-t & \pm b-y \\
\pm b-y & \pm c-c-\frac{(y-b)^{2}}{t-a}
\end{array}\right)
$$

and consequently all the matrices $X=F-F_{y, t}$ with $F \in K$ and $F_{11}=-a$ satisfy $X_{11} \leq 0$ and are therefore not positive definite.
5.3. Separation of points from $K^{\text {lc }}$ with quasiconvex functions. Recall that we assume that

$$
X=\left(\begin{array}{cc}
\xi & \eta \\
\eta & \zeta
\end{array}\right) \quad \text { with } \xi, \eta, \zeta \geq 0 \text { and } \xi \neq a, \zeta \neq c, \eta \neq b
$$

We have to show that all matrices $X \in K^{\mathrm{pc}}$ with

$$
\begin{equation*}
(\xi-a)(\zeta-c)<(\eta-b)^{2} \tag{5.3}
\end{equation*}
$$

can be separated from K by a quasiconvex function. We will achieve this by analyzing different regions for ξ which are related to the intersection of K^{qc} with

Figure 1. The polyconvex hull (bounded by the thick solid lines) and the quasiconvex hull (the intersection of the four hyperbolic arcs) of K in the plane $\{y=\eta>0\}$.
the plane $y=\eta$. In this plane, the intersection of $K^{\text {qc }}$ with the quadrant $x \geq 0$ and $z \geq 0$ is bounded by the three hyperbolic $\operatorname{arcs}(x-a)(z-c)=(\eta-b)^{2}$ and $(x \pm a)(z \mp c)=\eta^{2}-b^{2}$. In the following we consider four different regions for $\xi \geq 0$ which are defined by the points where two of these hyperbolic arcs intersect (see Figure 1). More precisely, the hyperbola $(x-a)(z-c)=(\eta-b)^{2}$ intersects the hyperbola $(x+a)(z-c)=\eta^{2}-b^{2}$ for $x_{1}=a \eta / b$ and the hyperbola $(x-a)(z+c)=\eta^{2}-b^{2}$ for $x_{2}=a+b(\eta-b) / c$. The four cases now correspond to $\xi \in\left[0, x_{1}\right], \xi \in\left(x_{1}, x_{2}\right), \xi=x_{2}$, and $\xi \in\left(x_{2}, a\right)$, respectively. We begin with the last case first.

Case a) Assume that $\xi>a+b(\eta-b) / c$. If $(\xi-a)(\zeta+c) \leq \eta^{2}-b^{2}$, then

$$
\zeta \geq-c+\frac{b^{2}-\eta^{2}}{a-\xi}>-c-\frac{c\left(b^{2}-\eta^{2}\right)}{b(\eta-b)}=\frac{c \eta}{b} .
$$

We define

$$
G_{\eta}=F\left(\eta, a+\frac{b(\eta-b)}{c}\right), Z=X-G_{\eta}=\left(\begin{array}{cc}
\xi-a-b(\eta-b) / c & 0 \\
0 & \zeta-c \eta / b
\end{array}\right),
$$

then Z is positive definite and in view of Section 5.2 the function $g_{0}\left(F-G_{\eta}\right)$ separates X from $K^{\text {lc }}$. On the other hand, if $(\xi-a)(\zeta+c)>\eta^{2}-b^{2}$, then X does not belong to K^{pc}.

Case b) Assume that $\xi=a+b(\eta-b) / c$. We assert that in view of (5.3) we may find an $\widetilde{x} \in I_{\eta}=(a \eta / b, \xi)$ such that

$$
Z=X-F(\eta, \widetilde{x})=\left(\begin{array}{cc}
\xi-\widetilde{x} & 0 \\
0 & \zeta-c-(\eta-b)^{2} /(\widetilde{x}-a)
\end{array}\right)
$$

is positive definite. This follows easily since X is positive definite if and only if $\xi>\widetilde{x}$ and

$$
\zeta-c-\frac{(\eta-b)^{2}}{\widetilde{x}-a}>0 \quad \text { or } \quad(\widetilde{x}-a)(\zeta-c)-(\eta-b)^{2}<0
$$

In view of (5.3) we can choose $\widetilde{x}<\xi$ close enough to x such that the latter inequality holds. Therefore we can separate X from K^{lc} with the function $g_{0}(F-F(\eta, \widetilde{x}))$.

Case c) Assume that $\xi \in(a \eta / b, a+b(\eta-b) / c)$. The conclusion follows as in case b), since we can choose by continuity $\widetilde{x} \in(a \eta / b, \xi)$ such that $X-F(\eta, \widetilde{x})$ is positive definite.

Case d) Assume that $\xi \in[0, a \eta / b]$. We assert that no point in K^{pc} satisfies (5.3). If (5.3) holds, then

$$
\zeta>c+\frac{(\eta-b)^{2}}{\xi-a}
$$

However, for

$$
x=\widetilde{x}=\frac{a \eta}{b} \quad \text { and } \quad z=\widetilde{z}=c+\frac{(\eta-b)^{2}}{\widetilde{x}-a}
$$

the inequality $(x+a)(z-c) \leq \eta^{2}-b^{2}$ is satisfied with equality. If

$$
\xi \leq \frac{a \eta}{b} \quad \text { and } \quad \zeta>c+\frac{(\eta-b)^{2}}{\widetilde{x}-a}
$$

then $(\xi+a)(\zeta-c)>\eta^{2}-b^{2}$, a contradiction. This concludes the proof of the theorem.

References

[1] J. M. Ball, R D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100 (1987), 13-52
[2] J. M. Ball, R.D.James, Proposed experimental tests of a theory of fine microstructure and the two-well problem, Phil. Trans. Roy. Soc. London A 338 (1992), 389-450
[3] K. Bhattacharya, G Dolzmann, Relaxation of some multi-well problems, Proc. R. Soc. Edinburgh: Section A 131 (2001), 279-320
[4] P.Cardaliaguet, R. Tahraoui, Sur l'équivalence de la 1-rang convexité et de la polyconvexité des ensembles isotropiques de $R^{2 \times 2}$. (French) [Equivalence of rank-one convexity and polyconvexity for isotropic sets in $\mathbf{R}^{2 \times 2}$], C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), 11, 851-856
[5] M. Chipot, D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Rational Mech. Anal. 103 (1988), 237-277
[6] B. Dacorogna, C. Tanteri, On the different convex hulls of sets involving singular values, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1261-1280
[7] B. Dacorogna, C. Tanteri, Implicit partial differential equations and the constraints of nonlinear elasticity, Commun. PDE (to appear)
[8] G. Dolzmann, Variational methods for crystalline microstructure - theory and computation, Habilitation Thesis, Leipzig, 2001
[9] R.D.James, K.F.Hane, Martensitic transformations and shape-memory materials, Acta Mater. 48 (2000), 197-222
[10] B. Kirchheim, Geometry and rigidity of microstructures, Habilitation Thesis, Leipzig, 2001
[11] J. Matoušek, On directional convexity, Discrete Comput. Geom. 25 (2001), 389-403
[12] J. Matoušek, P. Plecháč, On functional separately convex hulls, Discrete Comput. Geom. 19 (1998), 105-130
[13] G. Milton, The theory of composites, Cambridge University Press (to appear)
[14] C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 25-53
[15] S. Müller, Rank-one convexity implies quasiconvexity on diagonal matrices. Internat. Math. Res. Notices 20 (1999), 1087-1095
[16] S. Müller, Variational methods for microstructure and phase transitions, in: Proc. C.I.M.E. summer school 'Calculus of variations and geometric evolution problems', Cetraro, 1996, (F.Bethuel, G.Huisken, S. Müller, K. Steffen, S. Hildebrandt, M. Struwe, eds.), Springer LNM 1713, 1999
[17] P. Pedregal, Laminates and microstructure, Europ. J. Appl. Math. 4 (1993), 121-149
[18] V.Šverák, New examples of quasiconvex functions, Arch. Rational Mech. Anal. 119 (1992), 293-300
[19] V.Šverák, On the problem of two wells, in: Microstructure and phase transitions, IMA Vol. Appl Math. 54, (D. Kinderlehrer, R. D. James, M. Luskin and J. Ericksen, eds.), Springer, 1993, 183-189
[20] K. Zhang, On various semiconvex hulls in the calculus of variations, Calc. Var. Partial Differential Equations 6 (1998), 143-16

Department of Mathematics, University of Maryland, College Park, MD 20742-4015, U.S.A.

E-mail address: dolzmann@math.umd.edu

[^0]: Date: August 1, 2001.
 1991 Mathematics Subject Classification. 74N15, 49M20.
 Key words and phrases. Polyconvexity, quasiconvexity, rank-one convexity, semiconvex hulls.
 Most of this research was done while the author held a postdoctoral fellowship at the Max Planck Institute for Mathematics in the Sciences, Leipzig. Partial support by the NSF through grant DMS0104118 is also gratefully acknowledged

