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Abstract

Many di�erent physical systems� e�g� super�coiled DNA molecules� have been success�

fully modelled as elastic curves� ribbons or rods� We will describe all such systems as

framed curves� and will consider problems in which a three dimensional framed curve

has an associated energy that is to be minimized subject to the constraint of there

being no self�intersection� For closed curves the knot type may therefore be speci�ed a

priori� Depending on the precise form of the energy and imposed boundary conditions�

local minima of both open and closed framed curves often appear to involve regions of

self�contact� that is� regions in which points that are distant along the curve are close

in space� While this phenomenon of self�contact is familiar through every day expe�

rience with string� rope and wire� the idea is surprisingly di�cult to de�ne in a way

that is simultaneously physically reasonable� mathematically precise� and analytically

tractable� Here we use the notion of global radius of curvature of a space curve in a

new formulation of the self�contact constraint� and exploit our formulation to derive

existence results for minimizers� in the presence of self�contact� of a range of elastic

energies that de�ne various framed curve models� As a special case we establish the

existence of ideal shapes of knots�

Mathematics Subject Classi�cation ������� ��J��� �	A
�� ��M��� ��B�
� ��C�


� Introduction

The basic question we address is the existence of curves that minimize one of a variety of

prescribed elastic energies� all subject to the topological constraint that some tube sur�

rounding the curve does not intersect itself� Elastic curves subject to this type of constraint
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Figure �� Images of four di�erent physical systems exhibiting the phenomenon of self�

contact of a tube�like object� �a� an image of the bacteria B� subtilis �courtesy of M�J�

Tilby �	
��� �b� an electron�micrograph of a DNA fragment �courtesy of A� Stasiak �	����

�c� a photograph of a knotted metal wire loop �actually a 
Jumping Knot� of J� Langer�

with the apple included for scale and enhanced three�dimensionality�� �d� a numerically

computed ideal shape of a trefoil knot �image generated by smoothing data of ������

provide a model for physical objects that exhibit self�contact� such as those illustrated in

Figure �� Figure �a is an image of a bacterium which appears to exhibit extended regions

of self�contact between nearly helical segments and circular arcs� Figure �b is an electron�

micrograph of a DNA fragment which� after drying onto a planar substrate� exhibits a

small overhand knot and regions of both point and extended self�contact� Figure �c is a

photograph of a knotted metal wire loop which apparently exhibits three regions of line

contact� And Figure �d illustrates a numerically computed ideal shape of a knotted closed

loop which exhibits self�contact along its entire length �see Section � for further explana�

tion of this problem�� Perhaps the most familiar example of all is the tightly coiled� helical

cord used on many telephones� The objective of this article is to develop a mathemati�

cally precise model of the phenomenon of self�contact of such tubular objects� which we

describe as framed curves� and to use this characterization to demonstrate the existence

of minimizers� in appropriate function spaces� for various elastic energies� all subject to

our self�contact constraint�

For our purposes� the dominant feature in all four of the examples depicted in Figure �

is the phenomenon of self�contact of a physical object that has the geometrical properties

of a tube� When such a tube is described by its centreline curve� points of self�contact

on the tubular surface correspond to pairs of points along the centreline that are close in

	



space� but not necessarily close in arclength� The condition that the tube not pass through

itself� or self�intersect� is transferred to the centreline curve� in particular� the centreline

is kept suitably far from self�intersection�

There are various ways to prevent a curve from self�intersecting� One intuitive me�

chanical approach is to introduce explicit repulsive forces between pairs of points along

the curve� for example� a repulsive force which is inversely proportional to some power

of the pairwise Euclidean distance� Such forces certainly discourage self�intersection� and

can even be made to prevent it� but they typically need to be regularized in some way to

account for points immediately adjacent in arclength� The necessity for this regularization

can lead to non�trivial mathematical and computational di�culties �see for example �����

�		�� ������ Natural choices for repulsive forces may be available depending on the detailed

physics of the system� for example electrically charged polymers such as DNA� and the

study of discretized curves subject to these types of forces has been the subject of several

investigations �see for example �	��� ��	���

An alternative� purely geometrical� way to prohibit self�intersections of a curve can

also be considered� Supposing that the curve is the centreline of a solid tube of uniform

diameter� the physical volume occupied by the tube material keeps the curve from self�

intersecting at a global level� and also restricts how tightly the curve can bend at a local

level� Such a model certainly seems pertinent for the macroscopic wire example illustrated

in Figure �c� where the hard surface of the wire touches itself� For the bacterium shown in

Figure �a it is possible to imagine that both the local and global e�ects of self�avoidance

are active at di�erent places� In this viewpoint the obstruction to self�intersection is purely

geometrical� the �nite volume of the tube imposes a constraint on the con�guration of the

centreline curve� This condition is typically referred to as an excluded volume� hardcore

or steric constraint in the polymer physics literature� the estimation of its e�ects on the

statistical properties of polymer chains is a classic problem that has been studied within

the context of piece�wise linear chain models �
�� Various forms of a geometric excluded

volume constraint have also been used speci�cally in the mechanical modelling of DNA�

for example ���� ���� �	��� The geometrical notion of self�avoidance also lies at the heart of

the study of ideal shapes of knotted curves as discussed for example in �	�� ���� and �	���

In this article we present a new mathematical characterization of the geometric ex�

cluded volume constraint� and study the set of admissible curves that it de�nes� Moreover�

we prove the existence of minimizers within our admissible set for a range of curve ener�

gies pertinent to modelling physical systems such as those illustrated in Figure �� Such

existence results are of independent mathematical interest� but in addition they indicate

that a particular mathematical formulation of a physical model is well�posed� and they

also contribute to the e�cient design of associated numerical algorithms by providing a

priori information on the regularity of the solutions that are being sought�

While the geometric excluded volume constraint is physically appealing and intuitively

clear� it is surprisingly di�cult to formulate in an analytic way that is su�ciently tractable

for existence studies� We believe the concept from di�erential geometry of normal injec�
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tivity radius �see� for example� ��� p� 	���� to be the only prior� precise de�nition of the

self�avoidance condition for curves that have not been discretized in some way� Both the

global and local properties of the excluded volume constraint are captured in the idea of

the normal injectivity radius� which can be outlined as follows� At each point along a

su�ciently smooth curve � one constructs a circle in the normal plane to the curve� cen�

tred on the curve and of constant radius along the curve� For a su�ciently small radius�

the tubular envelope of these circles will be smooth� The normal injectivity radius� here

denoted Inj���� is then the smallest radius at which the envelope develops a singularity�

The �rst singularity may be local� when the radius of the circle equals the local radius

of curvature of the curve� or non�local� when two circles centred on non�adjacent points

touch�

For a physical tube of uniform radius � � �� the excluded volume constraint on its

centreline � can then be expressed as the lower bound Inj��� � �� That is� the normal

injectivity radius of the centreline must be at least as large as the radius of the tube�

and equality is achieved when the tube is in self�contact� or is locally bent as severely as

allowed� For example� in Figure �c� the geometrical self�avoidance condition for a tube

of uniform small radius seems to be an excellent physical approximation for modelling

self�contact of the wire� In the con�guration shown� the centreline satis�es Inj��� � �

because the tube actually achieves self�contact at a number of distinct points� If the wire

were to be mildly deformed so as to avoid self�contact� then the centreline would satisfy

Inj��� � �� but then the con�guration would presumably no longer minimize the elastic

energy of bending and twisting of the wire�

For our objective of deriving existence results� the di�culty with the classic de�nition

of normal injectivity radius is that it is implicit� i�e� only given through a geometrical

construction� and it has no apparent� simple analytic representation� We therefore extend

to a class of curves � su�ciently large to obtain existence results� the observation of ��	�

that for su�ciently smooth curves � the normal injectivity radius Inj��� can be given an

alternative characterization in terms of a quantity called global radius of curvature� Our

most general de�nition of global radius of curvature is deferred until Section 	� but the

central ideas can be explained within the context of curves � that are twice di�erentiable�

and which have only transversal crossings �i�e� wherever the curve intersects itself the two

tangent vectors are distinct�� For such curves we de�ne

���� �� inf
x�y�z��
x��y ��z ��x

r�x� y� z� ���

where r�x� y� z� denotes the radius of the unique circle through the three distinct points x�

y and z� Then it is straightforward to argue� as in ��	�� that the in�mum in ��� corresponds

to one of three cases� �i� In the limit� all three points in a minimizing sequence coalesce at

a point � at which the radius of curvature is minimal along the curve� the limiting circle

is the osculating circle at �� and ���� is the radius of curvature at �� �ii� In the limit�

two points coalesce to a point �� with the third converging to a di�erent point ��� and

the circle is tangent to the curve at both �� and ��� with both tangents orthogonal to the
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chord ��� ��� In other words� ���� is half of the distance between a pair of points ���� ���

of closest approach� This possibility of a pair of points of closest approach includes the

case in which the curve � has a transversal self�intersection� for then there is a sequence

of circles whose radius approaches zero� i�e� ���� � �� �iii� Or� for open curves� there are

various other possibilities involving an end�point� Given these remarks it is then apparent

that� neglecting any end�point e�ects� ���� � Inj���� In particular� cases �i� and �ii� are

just the two possible ways� local and global� in which the normal injectivity radius can be

achieved�

In fact for each point x � � we may de�ne the global radius of curvature function

�G�x� � inf
y�z��

x��y ��z ��x

r�x� y� z�� �	�

Then the contact set can be interpreted as points x at which the global radius of curvature

achieves its minimal value� i�e� the in�mum de�ned in ���� For example� in Figure �d� a

�numerical discretization� of a tube of uniform radius and prescribed knot type has been

made as short as possible� that is� the knot has been made very tight� Such a con�guration

is called an ideal shape of the knot ����� a mathematically precise� de�ning property is that

the arclength of the centreline � is minimal amongst curves of the prescribed knot type

when subject to the excluded volume constraint ���� � �� In Figure �d the tube is

�up to computational tolerance� everywhere in self�contact� so that the global radius of

curvature is constant� which satis�es a necessary condition for ideality derived in ��	��

�The numerics indicate that the usual local radius of curvature on this ideal shape is far

from being constant��

One of the main objectives of the present article is to extend appropriately the def�

initions ��� and �	� to curves � that are not a priori smooth� and thereby to obtain an

analytic characterization of normal injectivity radius in a manner that is largely indepen�

dent of curve regularity� This objective is achieved in Section 	� More precisely� working

in the space of closed curves � with a parameterization in W ��q �q � �� we �nd that the

constraint

���� � � � � ���

actually implies the existence of an arclength parameterization in W ��� �or equivalently

C���� for �� and that the set of curves satisfying ��� is closed under weak convergence in

W ��q �q � ��� Consequently� by standard direct methods we obtain existence of constrained

minimizers for a variety of physically pertinent energies� including those arising in the usual

elastic rod theories� and the integral of squared curvature on curves of prescribed arclength�

Moreover� for closed curves in the set ���� knot types �along with a prescribed link in the

case of framed curves� are also preserved under weak convergence� which implies existence

of constrained minimizers for each type�

The presentation is structured as follows� In Section 	 we de�ne global radius of

curvature precisely� and develop properties of the constraint set ��� as discussed above� In
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Section � we introduce the concept of a framed curve and establish an abstract existence

theorem for minimizers of a general class of energy functions de�ned on framed curves

lying in weakly closed sets� This result can be applied to many models involving elastic

strings and rods because we show that link classes and typical boundary conditions for

framed curves are weakly closed� In Sections � and � we specialize the general result to

some particular models and boundary conditions� In Section � we consider the closed

con�gurations of a wide class of elastic rods� that� for example� provide a model of the

system illustrated in Figure �c� Speci�cally� we establish the existence of constrained

minimizers of the elastic energy within each prescribed knot and link class� In Section

� we consider the ideal knot problem underlying Figure �d� and establish the existence

of C��� curves minimizing arclength within each knot class subject to the constraint ����

Proofs of all of our results are deferred� without further comment� until Section ��

� Global curvature and weak closure

Here we introduce for a rather general space curve � the global radius of curvature func�

tions �G and �� and the tubular neighbourhood B� of radius � � �� We study various

implications of the constraint ���� � � and show that it provides a geometrically ex�

act model for the excluded volume constraint on � imposed by B� when considered as a

material tube� To avoid discussion of many special cases associated with end�points� we

consider only closed curves� However� many of the results carry over to the open case� As

some of the arguments justifying our claims are quite lengthy� we present here a detailed

development and explanation of our conclusions� but all proofs are deferred to Section ��

��� Preliminaries

Throughout our developments we consider the set G of continuous closed curves � � �I � R
�

that possess a Lipschitz continuous arclength parameterization �� � SL � R
� � Here

I � �a� b� is an interval� L � � denotes the length of � and SL is the circle with perimeter
L� in particular� SL �� R�L � Z� To simplify notation� we mostly omit the subscript � and
agree that �� �k� �� correspond to �� �k� �� and so on� In our analysis we will also consider

the Sobolev spaces W ��q�I�R�� with q � �� and we note that closed curves in these spaces
are also in G� In particular� every curve � � W ��q�I�R� � has bounded variation and one

can �nd a Lipschitz continuous arclength parameterization �see ���� vol�II� p� 	�����

A curve � � G will be called simple if it has no self�intersections� that is� if its arc�

length parameterization � � SL � R
� is injective� Otherwise� the curve � will be called

non�simple� In this case there exist pairs s� t � SL �s �� t� for which ��s� � ��t�� Any

such pair will be called a double point of ��

We use h�� �i to denote the standard Euclidean inner product in R� � and j � j to denote
the �intrinsic� distance between two points in R� or SL depending on the context� To

denote the angle between two non�zero vectors u and v in R� we use ���u� v� � ��� 	�� The
distance between a point x � R� and a subset � � R

� will be denoted by dist�x��� and the

�



diameter of � will be denoted by diam���� For any r � � we de�ne open neighbourhoods

of x and � by

Br�x� � fy � R� j jy � xj � rg and Br��� � fy � R� j dist�y��� � rg�

When � is the image of a curve � � G� or equivalently its corresponding arclength
parameterization � � SL � R

� � we call Br��� � Br���SL�� the tubular neighbourhood of �

with radius r � �� We say that Br���SL�� is non�self�intersecting or regular if the closest�

point projection map �� � Br���SL�� � ��SL� is single�valued and continuous� That is

to say� for any x � Br���SL�� there is exactly one s�x� � SL such that ���x� �� ��s�x��

satis�es

dist�x���SL�� � j��s�x�� � xj�
and ���x� is a continuous function of x � Br���SL��� For further justi�cation of this

notion of non�self�intersecting see the discussion following Lemmas � and ��

��� Global radius of curvature functions

Motivated by� but also modifying� the analysis presented in ��	�� we de�ne the global

radius of curvature functions �G and � for space curves � as follows�

De�nition � Consider a curve � � G with arclength parameterization ��s�� s � SL� Then

the global radius of curvature of � at the point ��s� is given by

�G����s� ��

���inffR���s����
������� j 
� � � SLnfsg� 
 �� � g� if L � ��

�� if L � ��
���

and we denote its in�mum by

���� �� inf
s�SL

�G����s�� ���

Here R�x� y� z� � � is the radius of the smallest circle containing x� y and z� When x� y

and z are non�collinear �and thus distinct� there is a unique circle passing through them

and

R�x� y� z� �
jx� yj

j	 sin����x� z� y � z��j � ���

When x� y and z are collinear and distinct there is no circle passing through all three points

and we de�ne R�x� y� z� to be in�nite� but if two points coincide� say x � z or y � z� then

there are many circles through the three points and we take R�x� y� z� to be the smallest

possible radius namely the distance jx � yj�	� With this choice the function R�x� y� z�

is not continuous at double points� Notice nevertheless that� by de�nition� R�x� y� z� is

symmetric in its arguments�

The di�erence between the global radius of curvature function �G��� introduced in ��	�

and the one presented above is as follows� In ��	�� the function R�x� y� z� is considered
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directly only for distinct points x� y and z in the image of �� and the various coalescent

cases are considered as limits as the points move along the image of �� Then in the

case of smooth curves that are either simple or have only transversal crossings� R�x� y� z�

is well�de�ned and continuous in any of the limits x � y etc�� because the direction of

approach along the curve singles out a unique limiting value of R�x� y� z�� However� the

case of parameterized curves with double�covered regions is problematic� For example�

in the de�nition of ��	�� a single�covered and a double�covered circle of radius one each

have a global radius of curvature one everywhere� In contrast� in De�nition � above� the

in�mum is over distinct arclength parameters s� 
 and � in SL and y�
� � z��� is an

allowed competitor provided 
 �� � � Then a double�covered circle of radius one has a

global radius of curvature zero everywhere �while a single�covered circle still has global

radius of curvature one everywhere�� In particular� with De�nition � we have the following

Lemma � If � has a double point at the pair s� t � SL �s �� t�� then �G����s� � �G����t� �

�� If ���� � �� then � is simple�

When a closed curve � is both smooth and simple� the functions �G��� and ���� are

known to be related to the standard local radius of curvature ����� and to the thickness

or normal injectivity radius Inj��� of � as de�ned� for example� in �	� and ��� p� 	���� In

particular� one has � � �G����s� � �����s� for all s � SL �L � �� and ���� � Inj���� ��	��

In this case ���� � � is the radius of the thickest smooth tube that can be centred on �

as discussed in Section �� In the following developments we generalize this result to the

case where � may be non�smooth�

��� Regularity results

Here we examine various implications of the condition ���� � � � � where � is a given

constant� Our �rst result is�

Lemma � � Let � � G and ���� � � � � for some constant �� Then the corresponding

arclength parameterization � has a Lipschitz continuous tangent �� with Lipschitz constant

���� i�e�� � � C����SL�R
�� and

j���s��� ���s��j � ���js� � s�j 	s�� s� � SL� ���

Thus a positive lower bound on ���� imposes a certain amount of regularity on the curve

�� In particular� while an arbitrary curve � � G may not even admit a continuous unit
tangent �eld� those curves satisfying ���� � � � � are guaranteed to admit a Lipschitz

continuous unit tangent �eld� The existence of this �eld will play a central role in many

of the following arguments�

Our second result establishes the fact that if a curve � � G satis�es ���� � � � ��

then � is restricted on how tightly it can bend locally� and on how close it can come to

self�intersection globally�

�We are grateful to T� Ilmanen who �rst suggested to us that a result of this nature should be available�






Lemma � Consider � � G such that ���� � � and let � � C����SL�R
� � denote its corre�

sponding arclength parameterization� For a given constant � � � let D��z� z
�� denote the

open planar disk of radius � centred at z � R
� perpendicular to z� � R

�nf�g and for any

s� � SL let

C�s�� �� � �D����s����
��s��� and M�s�� �� �

�
z�C�s����

B��z��

Then

�i� ��SL� 
M�s�� �� � � for all s� � SL i� ���� � ��

�ii� diam���SL�� � 	� if ���� � ��

�iii� B����SL�� is regular i� ���� � ��

�iv� �� has the property ���� ���s��� 
 B����SL�� � D����s����
��s��� if B����SL�� is

regular�

Item �i� of the above result implies that if ���� � �� then an open ball of radius

� placed tangent at any point ��s�� may be rotated around the tangent vector �
��s��

without intersecting the curve� On the other hand� if ���� � �� then there is a point on

the curve about which a similar rotation of such a ball could not be e�ected� Thus ����

is the radius of the largest ball that can be rotated tangentially about every point of a

curve � without intersecting it� The proof of item �i� actually shows that a stronger� local

version of this result holds� namely� ��SL� 
M�s�� ��� � � if �� �� �G����s�� � �� The

above interpretations also suggest that the inequality ���� � � imposes a lower bound on

the overall size of �� which is the essence of item �ii��

Items �iii� and �iv� imply that the regularity of the tubular neighbourhood B����SL��

is equivalent to the condition ���� � �� and that B����SL�� is the envelope of disjoint disks

D����s����
��s���� Since each point x � B����SL�� is in a unique disk D����s����

��s���

normal to the curve� we deduce that B����SL�� has the structure of a uniform tube of

radius � centred on �� Moreover� according to item �iii�� any tubular neighbourhood of

radius larger than ���� would fail to have this structure� Thus the condition ���� � �

provides a geometrically exact model for the excluded volume constraint on � imposed by

the tubular neighbourhood B����SL�� when considered as a material tube� This idea will

be developed further in Section ��

��� Weak closedness results

Here we study various implications of the condition ���� � � � � for closed curves � in the

Sobolev spaces W ��q�I�R� �� q � ������ Notice that� because such curves are also in G� a
positive lower bound on ���� retains its interpretation as an excluded volume constraint�

Our �rst result states that� as a subset ofW ��q�I�R� �� the set of closed curves satisfying

���� � � � � is weakly closed�
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Lemma � Let f�ng � W ��q�I�R� �� q � ������ be a sequence of closed curves such that

�n 
 � �W ��q�I�R�� and

���n� � �� 	n � N �
�

for some constant � � �� Then � is a closed curve and

���� � �� ���

This result will be particularly useful when studying energy functionals de�ned on closed

curves inW ��q�I�R��� In particular� it suggests that standard direct methods may be used

to establish the existence of constrained minimizers�

In our applications we will consider energy functionals de�ned on closed curves in a

�xed isotopy class or knot type in the following sense�

De�nition � Two continuous closed curves K��K� � R
� are isotopic� denoted as K� 


K�� if there are open neighbourhoods N� of K�� N� of K�� and a continuous mapping

� � N����� ��� R
� such that ��N�� �� is homeomorphic to N� for all � � ��� ��� ��x� �� � x

for all x � N�� ��N�� �� � N�� and ��K�� �� � K��

Roughly speaking� two curves are in the same isotopy class if one can be continuously

deformed onto the other� The next result states that� as a subset of W ��q�I�R��� the set

of closed curves in any �xed isotopy class satisfying ���� � � � � is weakly closed�

Lemma � Let the sequence f�ng �W ��q�I�R�� 
 G� q � ������ satisfy
�i� �n��I� 
 ����I�� 	n � N�
�ii� ���n� � � � �� 	n � N�
�iii� �n 
 � �W ��q�I�R� � as n���

Then ���I� 
 ����I��

Thus� the excluded volume constraint ���n� � � � � prevents a change in knot type along

weakly convergent sequences� The construction of the isotopy map � between � and �n
for n su�ciently large is based on the fact that the corresponding projection onto the

image of �n restricted to � is bijective� This result is important for the study of energy

functionals de�ned on closed� knotted curves in W ��q�I�R��� In particular� it may be used

to establish the existence of constrained minimizers among curves of a �xed knot type�

� Framed curves and general existence result

Here we introduce the notion of a framed curve ���D�� where D is a �eld of orthonormal

frames along a space curve �� as a geometric model for physical objects such as those

illustrated in Figure �� Then we discuss interpretations of the excluded volume constraint

���� � � � � and establish a general existence result concerning the minima of energy

functionals de�ned on framed curves subject to this constraint� In Sections � and � we

apply our result to models of elastic rods and strings� which can be interpreted as framed

curves with particular energy functionals� Again proofs are deferred to Section ��

��



��� Preliminaries

By a framed curve ���D� we mean a curve � � �I � R
� equipped with a frame �eld

D � �I � SO���� where D�s� � �d��s�jd��s�jd��s�� consists of three orthonormal column�
vectors di�s� �i � �� 	� �� for each s � �I � �a� b�� We view the function D as a frame �eld

de�ned along �� Thus� the right�handed orthonormal frame D�s� is attached to the point

��s�� By a closed framed curve we mean a framed curve ���D� such that � is closed and

d��a� � d��b�� For our analysis we �nd it convenient to work with the Sobolev spaces

W ��q�I�R� � and W ��p�I�R��� � with q� p � �� where � � W ��q and D � W ��p� As before�

closed curves in W ��q are also in G�
A framed curve ���D� � W ��q �W ��p may be uniquely determined from shape and

placement variables w � �u� v� ���D�� � Xp�q
� with u � �u�� u�� u�� and v � �v�� v�� v�� via

the equations

d�k�s� �
h �X
i��

ui�s�di�s�
i
� dk�s� for a�e� s � I� k � �� 	� ��

���s� �

�X
k��

vk�s�dk�s� for a�e� s � I�

��a� � ��� D�a� � D��

����

where Xp�q
� �� Lp�I�R��� Lq�I�R� �� R

� � SO���� which is a proper subset of the corre�

sponding Banach space Xp�q �� Lp�I�R� �� Lq�I�R��� R
� � R

��� � The functions ui and

vi may be identi�ed as the components� in the moving frame fdig� of the Darboux vector
for the frame �eld D�s� and the tangent vector for the curve ��s�� Notice that u and v

describe the shape of a framed curve whereas �� and D� describe its spatial placement�

The following result will be fundamental to our developments�

Lemma � To each framed curve ���D� �W ��q�W ��p� p� q � �� we can associate a unique

w � w���D� � Xp�q
� determined by ����� Conversely� to each w � Xp�q

� we can associate a

unique framed curve ���D� � ���w��D�w�� �W ��q �W ��p such that ���� holds�

��� Interpreting the excluded volume constraint

There are generally two distinct tubes that can be associated with a closed framed curve

���D� and a constant � � �� One tube is de�ned by the neighbourhood B����SL�� as

considered in Section 	� Another tube is de�ned by p� ��� where p �  � � R
� is the map

p�
� ��� ��� � ��
� ! ��d��
� ! ��d��
� ����

and  � is the straight cylinder given by

 � �� f �
� ��� ��� � R� j 
 � �a� b�� ��� ! ��� � ��g�
The excluded volume constraint ���� � � prevents the tube B����SL�� from self�

intersecting� However� as a model for a physical object� it is the points of p� �� that

��



are naturally identi�ed with material points� and the excluded volume constraint should

guarantee the global injectivity of the mapping p �  � � R
� � Along these lines we have

the following

Lemma � Consider a closed framed curve ���D� � W ��q �W ��p� p� q � �� and let w �

�u� v� ���D�� � Xp�q
� be its shape and placement variables determined by ����� Suppose

that ���� � � and v � ��� �� v�� with v� � �� Then p �  � � R
� is globally injective i�

���� � � � ��

The condition v � ��� �� v�� with v� � � implies that the frame �eld D is adapted to �

in the sense that d��s� is �positively� parallel to �
��s�� In this case� p� �� may be identi�ed

with B����SL�� and the result follows from the regularity of B����SL�� as discussed in

Section 	� Thus� when v � ��� �� v�� with v� � �� the condition ���� � � � � provides an

exact excluded volume constraint for the material tube p� ��� When v is not of this form�

the condition ���� � � � � is not an exact excluded volume constraint for p� ��� Notice

that p� �� itself is not a uniform tube of radius � if v� or v� is non�zero�

��� Energy functionals and existence of minimizers

For framed curves ���D� � ���w��D�w�� with w � Xp�q
� we consider energy functionals of

the form

E���w��D�w�� � E�w� ��

Z
I
W �u�s�� v�s�� s� ds ��	�

where W � R� � R
� � I � R is a speci�ed function� The basic question we shall address

is the existence of framed curves ���D� that minimize E�w� subject to the excluded

volume constraint ���� � � � � and other more typical side conditions� such as boundary

conditions etc� In particular� we consider the problem of �nding w� � C � Xp�q
� that

satisfy

E�w�� � inf
w�C

E�w� ����

where C is a speci�ed subset of Xp�q
� � Our main result is contained in the following

Theorem � Let � � p� q �� and suppose that

�W�� W ��� �� s� is continuous and convex for a�e� s � I�

�W	� W �u� v� �� is Lebesgue�measurable on I for all �u� v� � R� � R
� �

�W�� there are constants c�� c� � � and a function g � L��I�� such that

W �u� v� s� � c�jujp ! c�jvjq ! g�s�

for all �u� v� � R� � R
� and for a�e� s � I�

Furthermore� assume that the set C � Xp�q
� is nonempty and weakly closed in Xp�q and

that there is some constant c � � such that j��j � c for all �u� v� ���D�� � C� Then there

is a minimizer w� � C of ��	� if one of the following conditions holds


�	



�i� c�� c� � ��

�ii� c� � �� and there is some "v � R� such that v � "v for all w � �u� v� ���D�� � C�

�iii� c� � � and there is some "u � R� such that u � "u for all w � �u� v� ���D�� � C�

Assumptions �W����W�� are standard for direct methods in the calculus of variations�

and are met by a wide class of functions W that arise in applications� Thus� the above

result reduces the existence problem to proving the weak closedness in Xp�q of the subset

C � Xp�q
� � Xp�q� Here C represents those framed curves that satisfy the constraint

���� � � � � along with any other prescribed side conditions� We remark that this

general existence result remains valid when a potential energy with at most linear growth

is added to the energy functional E�w��

��� Typical side conditions and weak closedness

Here we examine the weak closedness of typical side conditions that enter into the subset

C of Theorem �� Our main result in this direction is�

Lemma � Let � � p� q �� and consider a sequence fwng � Xp�q
� that converges weakly

to w � Xp�q �i�e�� wn 
 w in Xp�q� Then w � Xp�q
� and

Dn � D in C���I�R����� �n � � in C���I�R��� ����

Dn 
 D in W ��p�I�R����� �n 
 � in W ��q�I�R� �� ����

where �n �� ��wn�� � �� ��w�� Dn �� D�wn�� D �� D�w��

Thus� if a sequence of shape and placement variables wn converges weakly in Xp�q� then

the corresponding sequence of framed curves ��n� Dn� converges uniformly in C� � C��

and also weakly in W ��q �W ��p�

We can now provide two prototypes of weakly closed sets that will be useful in our

applications�

Lemma 	 Let K�s� � R
��R� be a closed convex set for a�e� s � I and let F � C���I�R���

C���I�R����� R be a continuous mapping� Then the sets

�i� C� �� f �u� v� ���D�� � Xp�q j �u�s�� v�s�� � K�s� for a�e� s � I g
�ii� C� �� fw � Xp�q

� jF ���w�� D�w�� � � g
are weakly closed in Xp�q �p� q � ���

The sets C� and C� are typical in applications involving elastic rods and strings as

will be considered in Sections � and �� Sets of the type C� may be considered within the

context of rods to ensure that contiguous cross�sections do not locally intersect each other

and that orientation is locally preserved under deformation �see ��� Ch�VIII����� Sets of

type C� may be considered to prescribe pointwise conditions on both rods and strings�

e�g�� boundary conditions for � and D� For example� we will consider framed curves where

��



� is closed and the frames D�a� and D�b� di�er by a prescribed rotation� Notice that

the above result remains valid if the equality in the de�nition of C� is replaced by an

inequality� Sets of this type arise in problems with rigid obstacles� where the material

tube p� �� is constrained to lie in a closed region of R
� � and in problems with unilateral

boundary conditions� Such obstacle problems for Cosserat rods are studied in �	����	���

Fixing the endpoint conditions for the frame D� for example specifying D�a� � D�b� �

D�� does not entirely determine the total amount of twist or link� In fact� any framed

curve ���D� whose frame D turns an integer multiple of 		 about the curve � satis�es the

above boundary condition� In order to identify link classes of framed curves we make the

following

De�nition � Two continuous mappings D��D� � �a� b�� SO��� with D��a� � D��a� and

D��b� � D��b� are called homotopic� denoted D� � D�� if there is a continuous mapping

# � �a� b�� ��� ��� SO���� such that

#��� �� � D���� and #��� �� � D���� on �a� b��

#�a� �� � D��a� and #�b� �� � D��b� on ��� ���

Roughly speaking� two frame �elds D� and D� are homotopic if for a given curve �� the

framed curves ���D�� and ���D�� generate ribbons with the same link� The next result

states that the set of frame �elds in any �xed homotopy class de�ne weakly closed subsets�

Lemma �
 Let fwng � Xp�q
� with wn 
 w in Xp�q �p� q � �� and assume that

Dn �� D�wn� � D�w��� 	n � N� ����

Then w � Xp�q
� and D �� D�w� � D�w���

Thus� for rods and ribbons one can expect to �nd elastic energy minimizers in each link

class� The construction of the homotopy map between D and D� is based on the fact that

elements close to the identity in SO��� can be represented by rotation vectors�

� Applications to elastic rods

��� Rod theory

In this section we outline the special Cosserat theory which describes the behaviour of

elastic rods that can undergo large deformations in space by su�ering $exure� torsion�

extension and shear� For a more comprehensive presentation see� for example� Antman ���

Ch� VIII��

����� Kinematics

We suppose that each con�guration of an elastic rod can be modelled by a framed curve

���D� � W ��� � W ��� together with a map p �  � � R
� as de�ned in Section �� In

��



particular� we identify the material rod with the tube p� ��� Under this identi�cation the

curve ��
� describes the rod centreline and the frame �eld D�
� describes the orientation

of the rod cross�sections� The cross�section attached to a point ��
� on the centreline is

spanned by fd��
�� d��
�g and is parameterized by ���� ���� Thus� the particular form of

 � given in Section � models a rod with circular cross�sections of radius �� Notice that

cross�sections are not necessarily always orthogonal to the centreline � �which means that

the rod can be sheared�� and that 
 is not necessarily the arclength parameter for � �which

means that the rod can be stretched or compressed��

By Lemma �� a framed curve ���D� � W ��� �W ��� can be uniquely identi�ed with

a set of shape and placement variables �u� v� ���D�� � X���
� � Energy functionals for rods

can naturally be expressed in terms of the functions u � �u�� u�� u�� and v � �v�� v�� v���

which are typically referred to as strains within the context of rod theory� Recall that ui
and vi are the components� in the moving frame fdig� of the Darboux vector for the frame
�eld D�s� and the tangent vector for the curve ��s��

We denote a relaxed� or stress�free� reference con�guration by �"�� "D� or �"u� "v� ���D���

where the functions �"u� "v� are prescribed material parameters� There is little loss of gen�

erality in assuming� by convention� that 
 is actually the arclength parameter for this

reference centreline "�� and moreover that cross�sections in this reference con�guration are

orthogonal to "�� so that "v �� ��� �� ��� Nevertheless notice that "� need not be a straight

line� because "u need not be zero�

It is reasonable to demand that the map p �  � � R
� describing a material rod

be globally injective� Indeed� this is the essence of the self�contact or excluded volume

constraint studied in this article� Necessary and su�cient conditions for global injectivity

are given in Lemma � for a particular class of deformations� It is also reasonable to demand

that the map p preserve orientation in the sense that

det

�
�p�
� ��� ���

��
� ��� ���

�
� � for a�e� �
� ��� ��� �  �� ����

which actually guarantees that p is locally �but not globally� injective� Because of the

speci�c form of our domain  �� we deduce that ���� is equivalent to the following set of

conditions on the strains�

v� � � and v� � �
q
u�� ! u�� a�e� on I ��
�

�see Antman ��� Ch� VIII��� for related conditions pertaining to more general domains��

Below we discuss how these local conditions are related to the conditions in Lemma ��

Notice that ��
� is often replaced by the single necessary condition

v� � � a�e� on I� ����

����� Constitutive models

We consider elastic rods whose material response can be described by a stored energy

density function W � depending on �u� v� 
�� that is convex in �u� v� and which satis�es

��



certain growth conditions as discussed in Section �� The total elastic energy of the rod is

given by

E�u� v� ��

Z
I
W �u�
�� v�
�� 
� d
�

An explicit dependence on 
 in the energy density W occurs naturally in the case of

inhomogeneous elastic rods� where material properties may vary from one cross�section to

another�

The special case where W is a �shifted� quadratic in �u� v� plays an important role in

various applications�

W �u� v� 
� �
�
A�
�

�
u� "u

v � "v

�
�

�
u� "u

v � "v

�	
� �	��

where A � I � R
��� is a Lebesgue measurable function such that A�
� is symmetric�

positive de�nite for a�e� 
 � I� and �"u�
�� "v�
�� are the reference strains de�ned above�

The particular case of unshearable rods is de�ned by the material constraint v ��

�"v�� "v�� v�� �� ��� �� v��� i�e� the �rst two components of v are required to always take

their reference values� Thus the stored energy density W no longer depends upon v� and

v�� Notice that the constraint v �� ��� �� v�� together with ���� implies �
� � v�d�� and

that ��� generally does not exist even in the weak sense for v� � L�� However� when the

conditions in ��
� are satis�ed� we �nd that the corresponding arclength parameterization

� possesses the weak derivative ��� � �u�d� � u�d���v�� which implies that the curvature

� of � is given by

� � j���j �
p
u�� ! u��
v�

�	��

�see Section ��� for details�� Hence� for unshearable rods� the conditions in ��
� may be

written as

v� � � and � � � a�e� on I �		�

where � � ��� is the local radius of curvature of �� Moreover� we �nd that � � W ���

since the second inequality in �		� implies that � � ���� Notice the relation between the

conditions in �		�� which are equivalent to preservation of orientation and guarantee local

injectivity� and the conditions in Lemma �� which guarantee global injectivity� Preservation

of orientation requires that the local radius of curvature be bounded below by the cross�

sectional radius �� whereas global injectivity requires the stronger condition that the global

radius of curvature be bounded below by ��

Unshearable� inextensible rods are a further specialization� They are de�ned by the

material constraint v �� "v �� ��� �� ��� which by ���� yields

���d� and � � j���j �
q
u�� ! u���

Thus� both � and � are arclength parameterizations in this case� The �rst identity above

implies that � � W ����I�R��� Furthermore� when the conditions in ��
� are satis�ed� the

second identity above implies that � �W ����I�R� ��

��



��� Existence of minimizers

Here we establish the existence of rod con�gurations that minimize a prescribed elastic

energy subject to a self�contact or excluded volume constraint� We consider three distinct

classes of rod models� unshearable� inextensible models� general models in which shear

and extension are allowed� and unshearable� extensible models� Motivated by Lemmas

� and �� we employ a lower bound on the global radius of curvature as a model for the

excluded volume constraint� This approach is in contrast to those pursued in ����� �		��

����� where various integral energies are introduced as repulsive potentials� and in �����

�����

����� Unshearable� inextensible models

A con�guration ���w�� D�w�� of an unshearable� inextensible rod is uniquely described by

an element w � �u� v� ���D�� � Xp�q
� where the function v is constrained to take the value

��� �� ��� Thus� this class of rods is described by the set

Xp
� �� fw � �u� v� ���D�� � Xp�q

� j v � ��� �� ��� �� � �� D� � Idg

where� without loss of generality� we �x �� and D� to eliminate rigid translations and

rotations� Notice that the choice of q is immaterial since the function v � ��� �� �� is in Lq

for any q � ������
The stored energy density W for unshearable� inextensible rods reduces to the form

W �u� 
�� We assume that W ��� 
� is continuous and convex for a�e� 
 � I� that W �u� �� is
Lebesgue measurable on I for all u� and that

W �u� 
� � c�jujp ! g�
� for all u�R� � for a�e� 
�I� �	��

where p � ������ c� � �� and g � L��I��

The basic problem we consider is the existence of minimizers for the total elastic energy

functional

E�w� � E�u� �

Z
I
W �u�
�� 
� d
 � Min% � w � Xp

� �	��

subject to the following side conditions on ���w��D�w���

��w��b� � ��� D�w��b� � D�� �	��

����w�� � �� �	��

��w���I� 
 k� �	��

D�w� � Q� �	
�

Here D� � SO��� is a given frame which coincides with D� in its last column� � � � is

a constant that represents the cross�sectional radius of the rod� k is a continuous closed

curve in R
� that represents a given knot class� and Q � �I � SO��� with Q�a� � D��

��



Q�b� � D� is a continuous map that represents a given link class �cf� Def� 	 and ��� The

conditions in �	��� together with the assumption on D�� ensure that d��w��b� � d��w��a��

and that d��w��b� and d��w��a� di�er by a given angle� Moreover� these conditions ensure

that ��w� is closed in the C��sense since ���w��
� � d��w��
� by the constraint on v�

Thus� we seek energy minimizers for non�self�intersecting� unshearable and inextensible

rods of a prescribed knot and link type where the frames D�w��a� and D�w��b� di�er by a

prescribed rotation� Our main result in this direction is�

Theorem � Let � � p �� and assume that ��	� holds� Suppose that there is an element

�w � Xp
� satisfying �������
�� Then the minimization problem �������
� has a solution

w � Xp
� � whose corresponding framed curve ���w�� D�w�� � W ��p�I�R�� �W ��p�I�R����

has a centreline with an arclength parameterization � � C����

This result establishes the existence of energy minimizers subject to a geometrically exact

excluded volume constraint� The exactness of �	�� as a model for excluded volume follows

from Lemma � and the condition on v� An important assumption in the theorem is the

existence of a con�guration that satis�es all the imposed side conditions� in particular�

the conditions in �	�� and �	��� For given � and k� these conditions can be satis�ed

by rods of su�ciently large length� According to the remarks following Theorem �� the

above existence result remains valid when a potential energy with at most linear growth

is added to the total elastic energy� Thus� for example� body forces that do not depend on

the deformed shape of the rod� such as a uniform gravitational �eld� can also be included�

�See �	�� for related problems in which gravitational forces are considered��

The classic energy involving the integral of the squared curvature �see e�g� ������	���������

or in our notation

E �

Z
�
�� ds�

can also be considered� This energy can be viewed as a simple model of an unframed�

elastic� closed curve� �Note that for such unframed curves a prescribed link type has no

obvious meaning�� The weak closure results of Lemma � and Lemma � allow us to conclude

the existence of a minimizer of each prescribed knot type when our excluded volume

constraint is enforced and the length of the curve is �xed� More precisely� we can consider

curves � � W ����I�R�� subject to the constraints j���s�j � � on �I� ��b� � ��a� � ��

���a� � ���b� � e� ���� � � � �� and ���I� 
 k� where e is a given unit vector� and k

represents a given knot type� Since the constraints are closed under weak convergence�

and since �up to a constant factor� the integral of the squared curvature dominates the

W ��� norm k�k on the admissible set� standard direct methods can be applied�

����� General models

A con�guration ���w�� D�w�� of a general shearable and extensible rod is uniquely described

by an element w � �u� v� ���D�� � Xp�q
� � We �x �� and D� to eliminate rigid translations

�




and rotations as before and we consider the class of rods described by the set

�Xp�q
� �� fw � �u� v� ��� D�� � Xp�q

� j �� � �� D� � Idg� p� q � ������

We assume that the stored energy density W satis�es conditions �W����W�� of Section �

with c�� c� � ��

The basic problem is the existence of minimizers for the total elastic energy functional

E�w� ��

Z
I
W �u�
�� v�
�� 
� d
 �� Min%� w � �Xp�q

� �	��

subject to the following side conditions on ���w��D�w���

��w��b� � �� � D�w��b� � D�� ����

����w�� � �� ����

��w���I� 
 k� ��	�

D�w� � Q ����

where D�� �� k� and Q are as de�ned in the previous problem� In the case of a general rod

model the second equation in ���� ensures that d��w��a� � d��w��b�� but it does not imply

that the tangents of the curve ��w� are equal at the end points�

Our main result concerning the above problem is�

Theorem � Let � � p� q ��� let �W����W	� be satis�ed� and assume that there is some

admissible �w � �Xp�q
� respecting �	����		�� Then the minimization problem ������		� has

a solution w � �Xp�q
� � whose corresponding framed curve ���w�� D�w�� � W ��q�I�R�� �

W ��p�I�R���� has a centreline with an arclength parameterization � � C����

This result establishes the existence of energy minimizers for general rod models subject to

the constraint ����� However� in this general case� condition ���� is merely an approximate

model for excluded volume as discussed in Section �� As before� the existence result

remains valid when a potential energy with at most linear growth is added to the total

elastic energy�

����� Unshearable� extensible models

Theorem � also applies in the case of an unshearable� extensible rod de�ned by v � ��� �� v��

�see Section ���� provided that we appropriately modify the hypothesis �W��� Speci�cally�

the growth condition in �W�� should be satis�ed for all �u� v�� � R� �R instead of �u� v� �
R
� � R

� � This case can be interpreted as an intermediate one between the general case

considered immediately above� and the unshearable� inextensible one considered earlier�

For the unshearable� extensible case the condition in ���� is an exact model for excluded

volume provided that v� � � �by Lemma ��� However� v� � � is not a weakly closed

condition in the spirit of Lemma �� and con�gurations that satisfy ���� may not necessarily

��



satisfy v� � �� In fact� since the global radius of curvature cannot exceed the local radius

of curvature� we deduce from �	�� that ���� implies only the weaker inequality

v� � �
q
u�� ! u�� a�e� on I ����

in this case of unshearable rods� Thus v� � � is possible for some subset of I� but only

on straight parts of the rod in accordance with ����� Consequently� an unshearable rod

may fail to be globally injective on such parts� On the other hand� mechanically realistic

energy densities should blow up on regions of large compression� i�e��

W �u� v� s��� as v� � �
q
u�� ! u�� � � ����

�cf� Antman ��� Ch� VII��� VIII��� In the case that this condition holds� we �nd that

v� � � is possible only on a subset of I with measure zero� Thus ���� together with ����

would ensure the global injectivity of an unshearable� extensible rod since arcs connecting

two points on the centreline curve with di�erent parameters have positive length� Notice

that energy densities with property ���� satisfy conditions �W��&�W�� and are covered by

our existence theory�

� Application to ideal knots

Here we establish the existence of curves of a prescribed knot type that minimize the arc�

length functional subject to a lower bound on the global radius of curvature� By Lemma

�� this lower bound provides a geometrically exact model for the self�contact or excluded

volume constraint imposed on the curve by a tubular neighbourhood of �xed radius� The

basic problem we consider is that of minimizing the functional

L��� �

Z
I
j���
�j d
 � Min%� � �W ��q� q � ������ ����

subject to the conditions

��b� � ��a�� ���� � � and ���I� 
 ����I�� ����

Here � � � is a constant and �� � W ��q is a continuous closed curve that represents the

prescribed knot type and satis�es ����� � ��

A solution � of the above problem is called an ideal knot in the sense of �	�� ���� and

�	��� In other words� an ideal knot is a non�self�intersecting tube of �xed radius � � �

and prescribed knot type with a centreline curve � of minimal length� Here we establish

an existence result for ideal knots which shows that their centreline curves are always

continuously di�erentiable� In fact� these curves have arclength parameterizations of class

C���� which means that their unit tangent vector �elds are Lipschitz continuous�

To employ the general existence result in Section �� we merely identify a curve � �W ��q

with a framed curve ���D� �W ��q�W ��p whereD�s� � �D� Here �D � SO��� is an arbitrary

	�



�xed frame which plays no role in our developments� Without loss of generality� we �x the

initial point ��a� � �� to eliminate rigid translations� Thus� for the ideal knot problem

we consider framed curves described by the set

Xq
� �� fw � �u� v� ���D�� � Xp�q

� j u � ��� �� ��� �� � �� D� � �Dg�

and we seek minimizers of the functional

E�w� ��

Z
I
jv�
�j d
 � Min%� w � �u� v� ���D�� � Xq

�

subject to the conditions

��w��b� � ��� ����w�� � � and ��w���I� 
 ����I�� ��
�

In the above form it seems that the ideal knot problem can be treated by Theorem �

and our investigations about weakly closed sets� However� the energy to be minimized here

has merely linear growth and does not satisfy �W�� for q � �� Nevertheless by showing

that the minimization of
R
I jvjqd
 �q � �� also provides a curve of minimal length� we are

able to circumvent this di�culty and obtain the following

Theorem � For q � ����� the minimization problem de�ned by �	�� and �	�� has a

solution ��� This curve has an arclength parameterization �� � C����

This result establishes the existence of ideal knots and shows that their centreline curves

have arclength parameterizations of class C���� Similar existence results have been ob�

tained by Kusner and co�workers ���� using ideas related to global radius of curvature�

In addition� Cantarella et�al� ��� have proved that an ideal or tight con�guration of an

unknotted ��component link is achieved by centrelines made up from arcs of circles joined

with straight line segments� i�e� a centreline that is C��� and also piecewise smooth� but not

C� overall� Similarly� numerical data presented in ��	� suggest that ideal con�gurations of

some true �but composite� knots are also not C�� Thus there is some evidence supporting

the conjecture that the regularity established in our existence result above may be quite

sharp�

� Proofs

In this section we provide proofs for the results described in Sections 	 to �� We use the

same notation as in the corresponding sections�

��� Proofs for Section �

Proof of Lemma � � For the �rst implication we assume L � � and that the pair s� t � SL
�s �� t� de�nes a double point of � �there can be no double points if L � ��� Then� by

	�



de�nition of �G��� and R�x� y� z�� we have

�G����s� � inff R���s����
������� j 
� � � SLnfsg� 
 �� � g
� inff R���s����t������� j � � SLnfs� tg g
� inff j��s�� ����j�	 j � � SLnfs� tg g
� �

and similarly for �G����t�� Thus� if � is non�simple� then necessarily ���� � �� and the

second implication follows� �

Proof of Lemma � �

�� Consider a connected subarc A� �� ���
�� 
��� with �xed endpoints P� �� ��
�� and

P� �� ��
��� and suppose that diamA� � 	� and jP� � P�j � ��	� which is possible

by choosing j
� � 
�j su�ciently small� Let l� be the lens�shaped intersection of all
open balls of radius � containing P� and P� on their boundaries� i�e��

l� ��



z�C�P��P��

B��z��

where C�P�� P�� �� fz � R� j jz � P�j � jz � P�j � �g� We claim that

A� � l�� ����

To see this� suppose for contradiction that A� �� l� and consider the set

' ��
�

z�C�P��P��

B��z�� ����

Then� using the facts that � is simple �by Lemma ��� diamA� � 	� and jP� �P�j �
��	� we deduce that there must be a point �P � �A� 
'�nl�� Moreover� we �nd that

R�P�� P�� �P � �
jP� � P�j
	 sin�

� �� where � �� ���P� � �P � P� � �P �� ����

Since this contradicts the lower bound ���� � � we must have A� � l� as claimed�

Notice that there is indeed a point �P � �A� 
 '�nl�� Otherwise� we would have
diamA� � 	�� because any curve in R�n' connecting P� and P� must have diameter

at least as large as the great circle on �B��z� connecting P� and P� outside of l� for

any of the balls B��z� that generate '� Moreover� since jP��P�j � ��	� the portion

of such a great circle has diameter 	��

The result in ���� may be seen by considering the intersection of ' with the

plane containing the three non�collinear points P�� P� and �P � This intersection

may be described by two overlapping planar disks D��z�� and D��z�� of radius ��

where �D��z�� 
 �D��z�� � fP�� P�g� and we may assume without loss of gener�
ality that �P � D��z��nD��z��� From elementary geometry we recall that� for any

		



� � �D��z��nfP�� P�g� we have � � jP� � P�j��	 sin �� where � �� ���P� � �� P� � ���

To establish ����� we �rst suppose that � � ��� 	�	�� In this case we may choose
� � �D��z��nD��z�� such that � � ��� ��� i�e�� sin� � sin�� which implies ����� If
we suppose that � � �	�	� 	�� then we may choose � � �D��z�� 
D��z�� such that

� � ��� 	�� i�e�� sin� � sin�� which also implies �����

	� Given 
�� 
� � SL as above� we next consider a sequence 
n � 
� �n � ��� We

introduce Pn �� ��
n�� An �� ���
�� 
n�� and the lens�shaped region ln de�ned by

P�� Pn and � � � as before� Moreover� for each n � �� we introduce the tangent

cone Tn of ln in P� as

Tn �� fx � R� j x � ��q � P��� � � �� q � ln g�

Since jPn � P�j � ��	 and diamAn � 	� we may use the same argument as in step

� to conclude

An � ln� 	n � N� ��	�

Furthermore� by straightforward geometrical arguments we also �nd

ln	� � ln and Tn	� � Tn� 	n � N� ����

�� Let �n be the opening angle of the cone Tn� Since � � jPn � P�j � ��	 and

sin��n�	� �
jPn � P�j

	�
����

we deduce �n � ��� 	�	�� Moreover� since jPn � P�j � � we deduce �n � � as

n���

�� For each n � � we introduce a unit vector

tn �� �Pn � P���jPn � P�j � S��

which is well�de�ned since 
n � 
� and jPn � P�j � �� By de�nition of the cone Tn
we have tn � Tn� and since Tm � Tn �m � n� and the opening angles satisfy �n � ��

we deduce that ftngn�N � S� is a Cauchy sequence� Therefore we �nd a vector

tR�
�� �� lim
n��

��
n�� ��
��
j��
n�� ��
��j � S��

Notice that tR�
�� does not depend on the choice of sequence 
n � 
�� In fact�

assuming that a di�erent sequence 
�n � 
� leads to a di�erent unit vector t�R�
�� ��
tR�
��� we arrive at a contradiction� In particular� the mixed sequence f
��ng ��
f
�� 
��� 
�� 
��� � � � g would lead to a Cauchy sequence of unit vectors with no unique
limit� Thus we must have t�R�
�� � tR�
���

	�



�� Given any point 
� � SL and two sequences 
n � 
� and �k � 
� we have two

well�de�ned unit tangent vectors at ��
��� namely� tR�
�� de�ned as above and

tL�
�� �� lim
k��

��
��� ���k�
j��
��� ���k�j � S��

We claim that tR�
�� � tL�
��� To see this� assume for contradiction that tR�
�� ��
tL�
��� Consider the lens�shaped regions

lRn ��



z�C�P�����n��

B��z� and lLk ��



z�C�P�����k��

B��z�

and the unit vectors

tk �� ����k�� ��
����j���k�� ��
��j
tn �� ���
n�� ��
����j��
n�� ��
��j�

By the same arguments as in step � we deduce that ����k� 
��� 
 lRn � � and
���
�� 
n�� 
 lLk � � for all su�ciently large n� k � N� Thus the angle � � ��� 	�

between tR�
�� and �tL�
�� satis�es � � � � 	� Moreover� since

lim
k�n��

���tk� tn� � �

and

lim
k��

���k� � lim
n��

��
n� � ��
��

we deduce that

lim
k�n��

R����k����
n����
��� � lim
k�n��

j���k�� ��
n�j
	 sin���tk� tn�

� ��

which contradicts the lower bound ���� � � � �� Thus we must have tR�
�� � tL�
��

as claimed�

�� If 
� is a parameter where � is di�erentiable� then �
��
�� � tR�
�� � tL�
��� This

follows from the fact that� if � is di�erentiable at 
�� then j���
��j � � and

��
n�� ��
�� � ���
���
n � 
�� ! o�j
n � 
�j�

for any sequence 
n � 
�� The result follows since
��
n�� ��
��
j��
n�� ��
��j �

���
���
n � 
�� ! o�j
n � 
�j�
j
n � 
�j �

h
�� o�j
n � 
�j�

j
n � 
�j
i

and o�j
n � 
�j��j
n � 
�j � � as j
n � 
�j � ��

�� If � is di�erentiable at 
�� 
� � SL� then

j���
��� ���
��j � j
� � 
�j���

	�



To establish this result� we consider �rst the case when j��
�� � ��
��j � ��	� In

this case we have ���
�� � T�� and by symmetry �
��
�� � T�� where T� is the tangent

cone of l� in ��
�� with opening angle �� � ��� 	�	�� Using the fact that

sin����	� � j��
��� ��
��j�	�

together with the law of cosines we �nd

j���
��� ���
��j �
p
	� 	 cos��

� j��
��� ��
��j�� � j
� � 
�j���
����

as claimed� In the case when j��
�����
��j � ��	 the result is still true� In partic�

ular� the arc �
�� 
�� � SL may be divided into subarcs ��i� �i	�� � SL �i � �� � � � m�

such that �i are points of di�erentiability �which is possible since � is Lipschitz

continuous and hence di�erentiable almost everywhere�� 
� � ��� 
� � �m	� and

j���i� � ���i	��j � ��	� Applying ���� to the subarcs ��i� �i	�� and summing yields

the required result�


� We can now show that � � C����SL�R
� � and that �� has Lipschitz constant ����

To begin� we consider �rst the subset eSL of SL where � is di�erentiable� SinceeSL is dense in SL and by ���� the map �
� � eSL � R

� is uniformly continuous� we

deduce that there is a unique uniformly continuous extension V � SL � R
� � In

particular� V � C����SL�R
� � with Lipschitz constant ���� To see that this implies

� � C����SL�R
��� let 
� � SL be given and note that since � � C����SL�R

� � is

absolutely continuous we have

��
n�� ��
�� �
Z �n

��

����� d� �

Z �n

��

V ��� d�

which implies
��
n�� ��
��


n � 
�
�

�


n � 
�

Z �n

��

V ��� d�

for any 
n �� 
�� Since V � C����SL�R
� � the limit 
n � 
� is well�de�ned� i�e��

���
�� exists and

���
�� � V �
��� 	
� � SL�

Thus �� � C����SL�R
� � with Lipschitz constant ���� �

Proof of Lemma 	 �

�� For any �xed s� � SL and � � � let sn � s�� Pn �� ��sn�� P� �� ��s�� and

Cn �� C�P�� Pn� �� f z�R� j jz � P�j � jz � Pnj � � g�

	�



Notice that Cn is the circle of radius �n ��
p
�� � jPn � P�j��� centred at yn ��

�Pn ! P���	 and perpendicular to the unit vector �Pn � P���jPn � P�j� We claim
that

distH�Cn� C�s�� ���� � as n��� ����

where C�s�� �� is the circle de�ned in the statement of the lemma and distH�A�B�

denotes the Hausdor� distance ��� p� �
�� between two subsets A�B of R� � To

establish this result� we note �rst that �n � � and yn � P�� Moreover� since

���� � �� we have by Lemma 	 that �Pn � P���jPn � P�j � ���s��� Thus Cn

converges to a circle of radius � with centre P� in the plane perpendicular to �
��s���

Since these properties completely characterize C�s�� �� the result follows�

	� The �rst claim in item �i� is that if ���� � � � �� then ��SL� 
M�s�� �� � � for all
s� � SL� To establish this� we consider the sets

'n ��
�
z�Cn

B��z�

as in the proof of Lemma 	� We assume for contradiction that there is a point
�P � ��SL� 
M�s�� ��� which implies dist� �P �C�s�� ��� � �� For n � N su�ciently

large� we deduce from ���� that dist� �P �Cn� � �� which implies �P � 'n� and moreover
we have j �P �P�j � jPn�P�j� These observations lead to the result �P � 'nnln� where

ln ��



z�Cn

B��z��

By exactly the same arguments as in the proof of Lemma 	� we arrive at a statement

of the form ���� with P� replaced by Pn� Since this contradicts the lower bound

���� � � the �rst claim in item �i� must be true�

�� The second claim in item �i� is that if ��SL� 
M�s�� �� � � for all s� � SL� then

���� � �� To establish this result� we assume for contradiction that � � ���� � �

and we consider minimizing sequences sn� 
n� �n � SL �sn� 
n� �n mutually distinct

for each n� that achieve ����� i�e��

���� � lim
n��

R���sn����
n�����n���

Here Rn �� R���sn����
n�����n�� is the radius of the unique circle Hn de�ned by

the three distinct points ��sn�� ��
n� and ���n�� �Recall that � is simple by Lemma

� and has a Lipschitz continuous tangent �eld by Lemma 	 since ���� � ��� Since

SL is compact we may assume that sn � �s� 
n � �
 and �n � �� � and without loss

of generality� we have only three kinds of minimizing sequences� �a� �s� �
� �� distinct�

�b� �s �� �
 � �� or �c� �s � �
 � �� � We claim that sequences of type �a� need not be

considered� and those of type �b� and �c� lead to the required contradiction�

	�



To see that sequences of type �a� may be excluded from consideration� we suppose

that ���� is achieved by distinct parameters �s� �
 and �� � which correspond to three

distinct points on �� Let �H denote the unique circle de�ned by these points and ��

the unique sphere that contains �H as a great circle� Unless the curve � is tangent

to �� at one of these points� we obtain an immediate contradiction� for otherwise

we may shrink �� and �nd three other distinct points that de�ne a circle of radius

smaller than ����� Assuming the tangency is at ���
�� the circle through ���s� and

tangent to � at ���
� is on ��� and hence has radius less than or equal to the great

circle radius� Since this circle may be obtained as the limit of a sequence of type

�b�� we conclude that ���� can never exclusively be achieved by a sequence of type

�a��

If ���� � � is achieved by a sequence of type �b�� then there is a circle of radius

� � ���� that is tangent to � at ���
� and contains ���s� �� ���
�� Thus ���s� �
M��
� ��nf���
�g �M��
� ��� which contradicts the hypothesis that ��SL�
M�s�� �� �

� for all s� � SL�

If ���� � � is achieved by a sequence of type �c�� we also arrive at a contradiction�

To see this� let pn denote the centre of the circle Hn and without loss of generality

assume sn � 
n � �n� Thus

j��sn�� pnj � j��
n�� pnj � j���n�� pnj � Rn

and Rn � � � � where � � ����� By applying the Mean Value Theorem to the

di�erentiable function f�s� � j��s� � pnj�� s � �sn� 
n�� we deduce that there exists
s��n � �sn� 
n� such that ��s��n�� pn is perpendicular to �

��s��n�� Similarly� there

exists s	�n � �
n� �n� such that ��s	�n�� pn is perpendicular to �
��s	�n�� Following

the same arguments as in the proof of Lemma 	 we must have ��s��n� � l��n and

��s	�n� � l	�n for n su�ciently large� Here l��n is the lens�shaped region de�ned

by ��sn�� ��
n� and � � �� and l	�n de�ned by ��
n�� ���n� and � � �� as in

Lemma 	� Since diam�l��n� � � and Rn � � � � it follows that ���n �� j��s��n� �
pnj � � for n su�ciently large� and we may assume that ���n � �	�n� This implies

��s��n� � M�s	�n� �	�n�nf��s	�n�g � M�s	�n� ��� which contradicts the hypothesis

that ��SL� 
M�s�� �� � � for all s� � SL� Thus we must have ���� � � as claimed�

�� To establish the claim in item �ii� we assume ���� � � and we consider any two

points P� � ��s�� and P����s�� �s�� s� � SL� that realize the diameter� i�e�� d ��

diam��SL� � jP��P�j� Then the function f���� �� jP������j has a local maximum
at s�� and f���� �� jP� � ����j at s�� Since � � C����SL�R

� � we deduce that the

tangent vectors ���s�� and �
��s�� must be perpendicular to the chord ��s�����s���

Assuming d � 	� we arrive at a contradiction to item �i�� since then ��s�� �M�s�� ���

Thus we must have d � 	� as claimed�
�� The �rst claim in item �iii� is that if ���� � � � �� then the tubular neighbour�

hood B����SL�� is regular as de�ned in Section 	��� To show that the closest�

	�



point projection map �� is well�de�ned for x � B����SL��� we note that if

dist�x���SL�� � �� then x � ���x� is well�de�ned since � is simple by Lemma

�� If � � dist�x���SL�� � �� then there is at least one point s � SL such that

jx � ��s�j � dist�x���SL�� since ��SL� is a compact set� For any such s the dif�

ferentiable function f�t� �� jx � ��t�j� has the property f�t� � f�s� �� �� for all

t � SL where � � �� Thus � � f ��s� � 	hx� ��s�����s�i� If there were another point

 � SL with f�
� � f�s� �s �� 
� then

��
� � �B��x�nf��s�g � B��y� �M�s� ��

where y �� ��s� ! ��x � ��s���jx � ��s�j� which contradicts item �i�� Hence �� �

B����SL�� � ��SL� given by ���x� �� ��s�x�� for x � B����SL�� is well�de�ned�

Assuming for contradiction that �� is not continuous� we could �nd a sequence

xn � x � B����SL�� and a constant c�� with j���xn� � ���x�j � c� Since ��SL�

is compact� we may assume that ���xn� � p � ��SL� with jp � ���x�j � c� Using

the continuity of the distance function dist�����SL�� and the uniqueness of s�x� we
obtain

dist�x���SL�� � jx����x�j � jx� pj � lim
n��

jxn ����xn�j
� lim

n��
dist�xn���SL�� � dist�x���SL���

which is a contradiction� Thus �� is also continuous and the regularity of B����SL��

is established�

�� The second claim in item �iii� is that if B����SL�� is regular� then ���� � � � �� To

establish this claim� we assume B����SL�� is regular which� by de�nition� implies

that � is simple� We assume for contradiction that ���� � �� which implies there

is a point s� � SL such that �G����s�� � �� Then� by De�nition �� there exist

distinct points s�� s� � SL di�erent from s� such that � � �G����s�� � � � � where

� � R���s�����s�����s���� Moreover� since � is simple� the points ��s��� ��s�� and

��s�� are distinct� These points de�ne a unique circle C of radius �� and we denote

the centre of C by p� Without loss of generality we assume � � s� � s� � s� � L and

we consider the disjoint� open subarcs of SL de�ned by D� � �s�� s��� E� � �s�� s��

and E� � �s�� s���

Since jp � ��si�j � � �i � �� �� 	� we have dist�p���SL�� � � � � which implies

p � B����SL��� Moreover� we must have the strict inequality dist�p���SL�� � � since

by hypothesis there is a unique s�p� � SL such that dist�p���SL�� � jp � ��s�p��j�
Thus s�p� �� si �i � �� �� 	� and we may assume s�p� � D��

We next consider the subarc D� � E� � fs�g �E� so that SL � D� �D� � fs�� s�g�
and we consider the line segment between p and ��s��� i�e��

x��� � ��� ��p! ���s��� � � ��� ���

	




This segment has the properties that x��� � p� x��� � ��s���

jx��� � ��s��j � jx��� � ��si�j� � � � � � �i � �� ��

and x��� � B����SL�� for � � � � �� To obtain the required contradiction� notice

that

dist�x������SL�� � jx��� � ��s��j
� jx��� � ��si�j � � � � � �i � �� ���

which implies ���x���� �� ��si� for � � � � � �i � �� ��� However� ���x���� �

��s�p�� � ��D�� and ���x���� � ��s�� � ��D��� Thus the image of the line segment

x��� under the map �� is disconnected� Since this contradicts the hypothesis that

B����SL�� is regular we must have ���� � � as claimed�

�� To establish the claim in item �iv� we assume that B����SL�� is regular� Then for

each x � B����SL�� there is a unique s � s�x� � SL such that jx � ��s�j � �

and hx� ��s�����s�i � �� Notice that for each point x in a given normal disk

D��s�� �� D����s����
��s��� the point s� has these properties� which implies s�x� � s�

for all x � D��s��� Thus ���D��s��� � ��s��� Assuming for contradiction that

there is a point y � B����SL��nD��s�� such that ���y� � ��s��� we must have

hy � ��s������s��i � �� which implies y � D��s��nD��s�� for some � � �� However�

for such a point we would have dist�y���SL�� � �� which is a contradiction� The

claim follows� �

Proof of Lemma � �

�� The Sobolev embedding W ��q�I�R� � �� C������q�I�R� � implies uniform convergence

�n � � in C��I�R��� ����

Thus the limit curve � is closed� Because of Lemma � and ���� we have

diam���SL�� � 	�� hence L � � and � is not a single point�

	� The limit curve � is simple� If this were not the case� we could �nd s�� s� � SL
�s� �� s�� such that ��s�� � ��s��� where we may assume without loss of generality

that � � s� � s� � L� Let D denote the open subarc of SL de�ned by �s�� s�� of

length js��s�j and letE denote the complementary open subarc of length L�js��s�j�
Since the curves de�ned by restricting � to D and E each have positive length and

hence positive diameter� we can �nd a point s� � D and a point s
 � E such that

��s�� �� ��s
�� with each of these points distinct from ��s��� These two points may

be found by considering the intersections of ��D� and ��E� with two spheres of

di�erent diameter centred at ��s���

Assume without loss of generality that � � s� � s� � s� � s
 � L� let � ��

minf j��s�� � ��s��j� j��s�� � ��s
�j� �g and let a � t� � t� � t� � t
 � b be

	�



parameters such that ��ti� � ��si� �i � �� � � � � ��� Moreover� let 
i � SLn be the arc�

length parameters for ti on �n� i�e�� �n�
i� � �n�ti� and � � 
� � 
� � 
� � 

 � Ln�

Since each curve �n satis�es the hypotheses of Lemma � we notice �rst that ��n is

continuous on B���n�SLn��� Moreover� from ���� we deduce that there exists an N

such that j�n�ti�� ��ti�j � ��
 for all n � N �i � �� � � � � ���

We next consider the line segment

x��� � ��n�
�� ! ��� ���n�
��� � � ��� ���

This segment has the property that dist�x�����n�SLn�� � ���� which implies x��� �
B���n�SLn��� for all � � ��� �� and all n � N � Thus we clearly have the strict

inequality

jx��� ���n�x����j � ���
� 	� � ��� ��� 	n � N�

Since for each n � N we have ��n�x���� � �n�
�� and ��n�x���� � �n�
��� but

j�n�
i�� x���j � ��	� 	� � ��� ��� �i � 	� ���

we conclude that the image of the line segment x��� under the continuous map ��n

cannot be connected� Since this contradicts the continuity of ��n the curve � must

be simple as claimed�

�� The limit curve � satis�es the lower bound ���� � �� To establish this claim� we

assume for contradiction that there is a point s� � SL such that �G����s�� � �� Then�

by De�nition � and the fact that � is simple� there exist distinct points s�� s� � SL
di�erent from s� such that

R���s�����s�����s��� �
j��s��� ��s��j

	 sin�
� � ��
�

where � �� �����s�� � ��s�����s�� � ��s��� � ��� 	�� By ����� we can �nd three

distinct points �n�
i� that converge to ��si� �i � �� �� 	�� For su�ciently large n we

thus have

R��n�
����n�
����n�
��� �
j�n�
��� �n�
��j

	 sin�n
� �

where �n �� ����n�
����n�
����n�
����n�
��� � ��� 	�� Since this contradicts the
hypothesis ���n� � � we must have ���� � � as claimed� �

Proof of Lemma � � By Lemma 
 we may consider n � N so large that k�n � �kC� �

��	� in particular ��I� � B���n�SLn��� It su�ces to show that the projection �
�nj� �

� � �n is a bijective mapping for n su�ciently large� In fact� then we can argue as

follows� For z �� �n�
� and z� �� ��n�
� there is exactly one point p�z� � ��SL� such

that z � ��n�p�z��� i�e�� p�z� � ��
�nj�����z�� Hence we can look at the planar open

��



disks D����z� z
�� and D����p�z�� z

�� of radius ��	 centred at z � �n�SLn� and p�z� � ��SL�
respectively� perpendicular to z� and de�ne the open neighbourhoods

Nn ��
�

z��n�SLn �

D����z� z
�� and

�Nn ��
�

z��n�SLn �

D����p�z�� z
���

By Lemma � we readily see that Nn is just the open ��	�neighbourhood of �n�SLn� and

by ���� below �Nn is an open neighbourhood of ��SL� at least for large n�N� In fact� we
can use the same argument as the one at the end of the proof showing that the set Jn
considered there is open for n su�ciently large�

The desired isotopy ��I� 
 �n�I� 
 ���I� for n su�ciently large is furnished by the

following mapping � � �Nn � ��� ��� R
� de�ned as

��x� �� �� x! �
�
��n�x�� ���nj��

�����n�x��
�
for x� �Nn� ����� ���

In fact� � is continuous with ��x� �� � x for all x � �Nn��� �Nn� �� � Nn� since ���� �� is

just the translation of the planar disk D����p�z�� z
�� onto D����z� z

�� for each z��n�SLn��
Moreover� for all p���SL�

��p� �� � p!��n�p�� ���nj��
�����n�p�� � p!��n�p�� p � ��n�p��

hence ����SL�� �� � �n�SLn� We even get equality� since ��nj� is surjective� The contin�
uous inverse ������ �� of ���� �� is given by

������ �� �� � � �
�
��n���� ���nj��

�����n����
�
for ��Nn� ����� ���

since for ��D����z� z
�� one has by Lemma �

��n��� � ��n�� � �
�
��n���� ���nj��

�����n����
�
� � z�

which implies �������� ��� �� � �� This way we obtain ��I� 
 �n�I� for n su�ciently large

and by assumption �i� also ��I� 
 ���I��

It remains to show that �
�nj� is bijective for n su�ciently large� We �rst claim that

for s�SL
lim
n��

jh���s����n�
n�ij � �� ����

where 
n�SLn is the unique parameter such that ��n���s����n�
n�� Assuming ���� is

not true we can �nd some ��� such that for all n��N there is n�n� such that

jh���s����n�
n�s��ij � �� �� ����

Taking subsequences if necessary we can assume that

j�n�
n�s��� ��s�j � dist���s���n� � k� � �nkC��I�R�� � ��n� ����

��



Let Cn �� C�
n�s�� �� be the planar circle of radius � � � centred at �n�
n�s�� per�

pendicular to ��n�
n�s�� as introduced in Lemma � �i�� For some � � ��� �� to be speci�ed
later we look at the set

Mn ��M�
n�s�� � � �� ��
�
z�Cn

B����z��

and observe that

Mn 
B���n� � �� ��	�

since M�
n�s�� �� 
 �n�SLn� � � by Lemma � �i� applied to �n � G� Furthermore the
corresponding set M ��M�s� �� for � at ��s� satis�es

M 
 ��SL� � �� ����

But ���� implies that ��n�
n�s��� v�S� for n�� with

jh���s�� vij � �� � ����

for some further subsequence� Together with ���� this implies

distH�Cn� Cv� �� � for n��� ����

where Cv is the planar circle of radius � centred at ��s� perpendicular to v and where

distH��� �� is the Hausdor� distance as in the previous proof�

Mv

Γ(s)

ε rθ

α/2

Γ

Mv

θ−ε Cv

α

θ

ε

����
����
����
����
����
����

M

����
����
����
����
����
����
����

M
�����
�����
�����
�����
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�����
�����
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����
����
����
����

Figure 	� Two�dimensional illustration of the set �Br���s���M �Mv�

An elementary geometric argument shows that for � �� arccos�� � ��� ��� 	�	�� r ��
� sin���	�� � �� ���� cos���	�� and the set

Mv ��
�
z�Cv

B����z�

�	



the relation ��Br���s���M� �Mv� holds� i�e�� dist�y� Cv� � ��� for all y � �Br���s���M�

Now from ���� we infer

dist�y�Cn� � � � � for all y � �Br���s���M for n su�ciently large� ����

Since � has no double points �see Lemma � and �� and is a closed continuous curve with

diam����I���	� �Lemma � �ii��� it must intersect �Br�M by ����� say in ���s� for some

�s � SL� This leads to a contradiction� since ���� implies ���s� �B���n� for n su�ciently

large� but on the other hand by ���� ���s��Mn� i�e� ���s� �� B���n� by ��	�� Hence ���� is

proved�

Now we can show that �
�nj� is injective for su�ciently large n� Otherwise there

existed in�nitely many distinct integers m�N and pairs of distinct parameters s�m �� s�m
in SL such that

��m���s�m�� � �m�
m�s�m�� � �m�
m�s�m�� � ��m���s�m���

Consequently� if m is chosen large enough�

j��s�m�� ��s�m�j � j��s�m����m���s�m��j! j��m���s�m��� ��s�m�j
� 	k� � �mk � 	�m� ����

In addition� we have by the proof of Lemma � �iii�

��s�m�� ��s�m� � ��m�
m�s�m��� ��
�

A simple geometric observation using ���������� ��
� now shows that ��s�m� �
M�s�m� �� for m su�ciently large� contradicting Lemma � �i�� which is applicable to �

by Lemma ��

Finally we are going to prove that �
�nj� is surjective� We consider the set Jn ��

f
 �SLn j�n�
����n���SL��g and claim that Jn�SLn for n large enough� Since both

��SL� and �n�SLn� are compact� there is at least one pair of points �x� xn� � ��SL� �
�n�SLn� such that xn���n�x�� hence Jn �� ��

Jn is also closed� because for a convergent sequence 
i � 
� 
i�Jn we have a sequence
si � SL with �n�
i� � ��n���si��� For a subsequence one has si � s � SL� hence by

continuity we arrive at �n�
����n���s��� i�e� 
�Jn� In order to show that Jn is open�

we observe by Lemma � �iv� that we can rewrite Jn as

Jn � f
�SLn j�n�
����n�� 
D���n�
���
�
n�
��� g�

where D���n�
���
�
n�
�� denotes the planar disk of radius � perpendicular to �

�
n�
� centred

at �n�
�� Now ���� implies that� for n su�ciently large� � intersects D���n�
���
�
n�
��

transversely� Consequently� we have D���n�
���
�
n�
�� 
 ��SL� �� � for all 
 � SLn

with j
 � 
j su�ciently small and n su�ciently large� since ��n is Lipschitz continuous�

Hence Jn is open� which �nishes the proof that Jn�SLn � i�e� ��nj� is surjective for n
su�ciently large� �

��



��� Proofs for Section �

Proof of Lemma � � To each framed curved ���D� � W ��q �W ��p we can associate a

unique w � w���D� � Xp�q
� given by ���� as follows� The �rst equation in ���� is obtained

by di�erentiating the map s �� D�s�D�s��
�� at s � s� and observing that the tangent

space to the manifold SO��� � R
��� at the identity is the set of skew matrices ���� II�

Ch����� The second equation in ���� is just the representation of ���s� in the frame D�s��

Solving these two equations for u and v leads to the result

ui �
�

	

�X
j�k��

�ijk
�
d�j � dk

	
and vi �

�
��� di

	
�i � �� 	� ���

Here �ijk � hei� ej � eki is the permutation symbol where ei is the standard basis for R� �

Conversely� given w � �u� v� ���D�� � Xp�q
� � the initial value problem ���� for the frame

�eld has a unique absolutely continuous solution D � �d�jd�jd�� �W ��p�I�R����� see e�g��

���� p� ���� or ���� vol�II� p� ������ In addition� since D�s� is continuous and

d

ds
hdk� dli � h� �X

i��

uidi
� � dk� dli! hdk�

� �X
i��

uidi
� � dli � � a�e� in I�

we deduce that D�s� � SO��� for each s � I � Notice that standard existence results guar�

antee only a local solution for D�s�� However� since orthonormality implies boundedness�

local solutions can be continued to all of �a� b�� Once D�s� is known� the initial value

problem for � may be solved by quadrature� namely

��s� � �� !

�X
k��

Z s

a
vk���dk��� d�� �

Proof of Lemma � �

�� Notice �rst that � � G and ���� � �� hence � possesses an arclength parameterization

� � C����SL�R
�� by Lemma 	� Moreover� since j��j � jv�j � �� there is a bijection

between t � �a� b� and s � ��� L�� Notice also that� for each �xed t � �a� b�� the map
p�t� �� �� is injective and that the image of p�t� �� �� is the open diskD����s�t����

��s�t���

as considered in Lemma ��

	� Our �rst claim is that if ���� � �� then p �  � � R
� is globally injective� To

see this� assume for contradiction that p does not have this property� Then there

exists t�� t� � �a� b� �t� �� t��� with corresponding arclength parameters s� �� s��

such that D����s����
��s��� 
 D����s����

��s��� �� �� We denote by x any point in

this intersection� Since ���� � � we may apply Lemma � �iii� to conclude that the

projection �� � B����SL�� � ��SL� is single�valued� and apply Lemma � �iv� to

conclude that ���x� � ��s�� and ���x� � ��s��� which is a contradiction� Thus

p �  � � R
� must be globally injective�

��



�� Our second claim is that if p �  � � R
� is globally injective� then ���� � �� To

see this� assume for contradiction that � � ���� � � and consider any � such

that ���� � � � �� Then by Lemma � �i� there is a parameter s� � SL such that

��SL�
M�s�� �� �� �� This implies there is a point z� � C�s�� �� � �D	���s����
��s���

such that dist�z����SL�� � �� By compactness� there is a point ���s� such that

dist�z����SL�� � jz� � ���s�j� and �s �� s� since jz� � ���s�j � �� Moreover�

hz� � ���s������s�i � �� Since � � � we have z� � D�����s���
���s�� and also

z� � D����s����
��s���� which contradicts the global injectivity of p �  � � R

� �

Thus ���� � � as claimed� �

Proof of Theorem � � Since C �� � we may assume there is some �w � C with E� �w� ���
otherwise� any w � C will satisfy ���� with in�nite energy� Thus� any minimizing sequence

fwngn�N � f�un� vn� ���n� D��n�gn�N � C stays bounded in Xp�q since

lim
n��

E�wn� � inf
w�C

E�w� � E� �w� ���

To see this� notice that condition �W�� guarantees in all three cases �i���iii� that kunkLp
and kvnkLq are uniformly bounded for all n � N� Moreover� SO��� is compact in R���

and� by assumption� j���nj � c for all n � N�
Since fwng is bounded and the space Xp�q �p� q � �� is re$exive� there is a weakly

convergent subsequence wnk 
 w� � Xp�q� In particular� we have �unk � vnk� 
 �u�� v�� �
Lp�I�R� � � Lq�I�R�� and ����nk �D��nk� � ������D���� � R

� � SO��� as k � �� More�
over� w� � C because C is weakly closed� Since conditions �W����W�� imply that

E is weakly lower�semicontinuous on Xp�q �see� e�g�� ��� Thm����� p� ����� we deduce

E�w�� � infw�C E�w�� Thus E attains a global minimum at the point w� � C� �

Proof of Lemma 
 �

�� Given � � p� q � � and fwng � Xp�q
� we are assuming wn 
 w in Xp�q where

wn � �un� vn� ���n� D��n� and w � �u� v� ��� D��� Notice �rst that� since D��n �
SO��� � R

��� and D��n � D� we have D � SO���� This implies that w � Xp�q
� as

claimed�

	� In ���� we claim that weak convergence of the shape and placement variables wn

implies convergence in C� of the framed curves ��n�Dn�� To establish this result�

we note �rst that un 
 u in Lp�I�R� � implies there is a constant c � � such that

jjunjjLp � c � � for all n � N� Let d��n denote the �rst column of Dn� d� the

�rst column of D� and consider any t� � �a� b� such that jt� � aj � ��c��p
�
where

��p� ! ��p � �� Then� by continuity� there is a 
n � �a� t�� such that

jd��n�
n�� d��
n�j � max
���a�t��

jd��n���� d����j� ����

��



and by compactness we can �nd a subsequence �keeping the index n for convenience�


n � 
 � �a� t��� From ���� and an integrated version of ���� we obtain

jjd��n � d�jjC���a�t���R�� � jd��n�
n�� d��
n�j

�






d���n !
Z �n

a

�
�X

i��

ui�n���di�n���

�
� d��n��� d�

�d�� �
Z �n

a

�
�X

i��

ui���di���

�
� d���� d�







where d���n denotes the �rst column of D��n and so on� Expanding the vector prod�

ucts� rearranging terms and applying the triangle inequality leads to

jjd��n � d�jjC���a�t���R�� � jd���n � d��j

!





Z �n

a
f�u��n���� u�����d���� ! �u����� u��n����d����g d�






!





Z �n

a
fu��n����d��n���� d����� ! u��n����d����� d��n����g d�





 �
Since un is bounded in L

p this implies

jjd��n � d�jjC���a�t���R�� � jd���n � d��j

!





Z b

a
f�u��n���� u�����d���� ! �u����� u��n����d����g ��a��n���� d�






! j
n � aj��p� jjunjjLp

�X
i��

jjdi�n � dijjC���a�t���R���

and by choice of t� and 
n we obtain

jjd��n � d�jjC���a�t���R�� � jd���n � d��j

!





Z b

a
f�u��n���� u�����d���� ! �u����� u��n����d����g ��a��n���� d�






!
�

�

�X
i��

jjdi�n � dijjC���a�t���R��

����

where ��a��n� is the characteristic function for the interval �a� 
n�� By Lebesgue�s

theorem of dominated convergence we have

d���a��n� � d���a��� and d���a��n� � d���a��� in Lp��I�R���

Using this result� together with the facts that un 
 u in Lp and d���n � d��� we

deduce from ���� that for any � � � there is an N such that

jjd��n � d�jjC���a�t���R�� �
�

�

�X
i��

jjdi�n � dijjC���a�t���R�� ! ���� 	n � N�

��



Taking further subsequences� we can deduce analogous inequalities for jjdi�n �
dijjC���a�t���R�� �i � 	� ��� which after summation gives

�X
i��

jjdi�n � dijjC���a�t���R�� �
	

�

�X
i��

jjdi�n � dijjC���a�t���R�� ! ���

and consequently

�X
i��

jjdi�n � dijjC���a�t���R�� � �� 	n � N� ����

This implies convergence on the subinterval �a� t��� However� we can then consider

any t� � t� such that jt�� t�j � ��c��p� � and using di�n�t�� instead of d�i�n and so on�
we can obtain an estimate analogous to ���� on �t�� t��� Hence� after �nitely many

steps� we cover the interval I � �a� b� and obtain Dn � D in C��I�R��� � for some

subsequence�

Continuing with the subsequence of ��n�Dn� found above� we can �nd for each n a

parameter sn � �a� b� such that

j�n�sn�� ��sn�j � max
���a�b�

j�n���� ����j� ��	�

By compactness� we can extract a further subsequence �again indicated by n� such

that sn � s � �a� b�� From ��	� and an integrated version of ���� we obtain

jj�n � �jjC��I�R�� � j�n�sn�� ��sn�j

�






���n !
Z sn

a

�X
k��

vk�n���dk�n��� d� � �� �
Z sn

a

�X
k��

vk���dk��� d�






 �
Rearranging terms� applying the triangle inequality and employing the characteristic

function for �a� sn� leads to

jj�n � �jjC��I�R�� � j���n � ��j

!

�X
k��





Z b

a
vk�n����dk�n���� dk������a�sn� d�






!

�X
k��





Z b

a
�vk�n���� vk����dk�����a�sn� d�





 �
and since the subsequence Dn converges in C

� we obtain

jj�n � �jjC��I�R�� � j���n � ��j! jjDn �DjjC��I�R���� jjvnjjL��I�R��

!

�X
k��





Z b

a
�vk�n���� vk����dk�����a�sn� d�





 � ����

��



For each k � �� 	� � we have as before that

dk��a�sn� � dk��a�s� in Lq��I�R��

where ��q� !��q � �� Thus� we conclude that the right�hand side of ���� converges

to zero as n � �� Hence �n � � in C��I�R� � for some subsequence� Since the

previous arguments apply to any subsequence of fwngn�N � Xp�q
� � and the same

limits D and � are obtained� the whole sequence must satisfy ���� as claimed�

�� In ���� we claim that weak convergence of the shape and placement variables wn

implies weak convergence in W ��q � W ��p of the framed curves ��n� Dn�� To see

this� we multiply ���� by an arbitrary element g � Lq��I�R� � ���q� ! ��q � �� and

integrate to obtainZ
I

�
��n���� g���

	
d� �

Z
I

�X
k��

vk�n���hdk�n���� g���i d�� ����

Since by ���� we have hdk�n� gi � hdk� gi in Lq��I�R�� and by assumption we have

vk�n 
 vk in L
q�I�R� for k � �� 	� �� we obtainZ
I

�
��n���� g���

	
d� �

Z
I

�
������ g���

	
d�� 	g � Lq��I�R���

This implies ��n 
 �� in Lq�I�R� �� Moreover� by ����� we also have �n � � in

Lq�I�R��� This readily implies that �n 
 � in W ��q as claimed� By applying the

same reasoning to Dn the result ���� is established� �

Proof of Lemma � � To establish the result for C�� we note �rst that a sequence

fwngn�N � C� that converges strongly wn � w in Xp�q contains a subsequence

fwnkgk�N � C� such that wnk�s� � w�s� for a�e� s � I� Since K�s� is closed for a�e�

s � I� we have w�s� � K�s� for a�e� s � I� which implies w � C�� Thus C� is strongly

closed� Furthermore� C� is convex since K�s� is convex for a�e� s � I� Thus C� is also

weakly closed �	�� Thm ���	� as claimed� The result for C� follows directly from Lemma


� �

Proof of Lemma �� � The elements Q � SO��� can be represented by a vector ��Q� � R�

where the direction of ��Q� describes the rotation axis and the length of ��Q� gives the

rotation angle in ��	� 	�� In a neighbourhood of the identity in SO���� the mapping Q ��
��Q� � R� is uniquely de�ned and continuous as well as the inversion � �� Q��� � SO����

In particular� we have Q���Q�� � Q� ��Id� � � � R� and Q��� � Id � SO���� By Lemma


� we have w � Xp�q
� and Dn � D in C�� which implies D�a� � Dn�a� and D�b� � Dn�b�

for all n � N since Dn � D�� Furthermore� the continuity of A �� A�� in GL��� �Cramer�s

Rule� implies that D�s�Dn�s�
�� is continuous in s and uniformly close to the identity for

all n � N su�ciently large� With this in mind� we consider the homotopy map
#�s� �� �� Q����D�s�Dn�s�

����Dn�s�� s � �a� b�� � � ��� ���

�




Notice that #�s� �� � Dn�s� and #�s� �� � D�s� for all s��a� b�� and that # � �a� b����� �� �
SO��� is continuous� Moreover� it is straightforward to show that #�a� �� � Dn�a� and

#�b� �� � Dn�b� for all � � ��� ��� Hence� D � Dn for all n su�ciently large� Since

Dn � D� for all n � N we conclude that D � D� as claimed� �

��� Proofs for Section �

Proof of Equation ���� � Since ���v�d� for the unshearable extensible case� the arclength

of � is given by

�a� b� � t �� s�t� ��

Z t

a
v���� d� � ��� L��

This map is strictly monotone by ��
�� hence invertible� Denoting the inverse function

by � � ��� L� � �a� b�� we form the composition � �� � � � � ��� L� � R
� and compute the

derivatives

���s� � �����s��
d

ds
��s� � v����s��d����s��

�

v����s��
� d����s��

����s� � d�����s��
d

ds
��s� � d�����s��

�

v����s��
�

From ���� we deduce d�� � �u�d� ! u�d�� which proves the formulas for �
�� and the

curvature � given in �	��� �

Proof of Theorem � � Let C be the subset of elements w � Xp
� � Xp�q� q � ������

that satisfy conditions �	����	
�� which by assumption is non�empty� We claim that C is

weakly closed� To see this� notice that Lemma � �ii� applies to condition �	��� Lemma 


and Lemma � apply to condition �	��� Lemma � applies to condition �	�� and Lemma ��

applies to condition �	
�� which establishes the claim� The existence result now follows

from Theorem � �ii�� which is applicable since conditions �W����W�� are satis�ed with

c� � � and �� � �� The regularity statement follows from Lemma 	 by �	�� and from

���w� � d��w� �W ��p�I�R� �� �

Proof of Theorem 	 � The result follows from Theorem � �i� and arguments similar to

those used in the proof of Theorem 	� �

��� Proof of Theorem �

Let C be the subset of elements w � Xq
� � Xp�q that satisfy the conditions in ��
�� Notice

that C is non�empty by assumption � �w � w���� is in this set�� and by Lemmas � �ii�� � and

�� it is also weakly closed� Moreover� for any � � q ��� notice that the modi�ed energy

Eq�w� ��

Z b

a
jv�
�jq d


has a minimizer w� � C� This follows from Theorem � �iii��

��



We claim that w� also minimizes the desired energy E�w�� To see this� consider any

w� � C� let �� � ��w�� be the corresponding curve with arclength parameterization ��
and de�ne an auxiliary curve

����� �� ���L��� � a���b� a��� � � �a� b��

where L� ��
R b
a j����
�j d
 � E�w��� Notice that L� �� since ��� � Lq�



 d
d�

�����


 � L�

b� a
�
E�w��

b� a

and that w� � w���� is also in C� Using the de�nitions of E and Eq� together with H(older�s

inequality� we have

�E�w���
q ��

�Z b

a
j������j d�

�q
� �b� a�q��

Z b

a
j������jq d� �� �b� a�q��Eq�w���

Moreover� since w� is a minimizer of Eq and j���j � E�w����b � a� is constant� we obtain

�E�w���
q � �b� a�q��Eq�w�� � �b� a�q��Eq�w�� � �E�w���

q �

Since this inequality holds for arbitrary w� � C we conclude that w� � C is a minimizer

of E as claimed� The regularity statement that �� � C����SL� �R
�� follows from Lemma

	� �
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