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A CENTER MANIFOLD TECHNIQUE FOR TRACING VISCOUS WAVES

STEFANO BIANCHINI AND ALBERTO BRESSAN

Abstract� In this paper we introduce a new technique for tracing viscous travelling pro�les� To illus�
trate the method� we consider a special �� � hyperbolic system of conservation laws with viscosity� and
show that any solution can be locally decomposed as the sum of � viscous travelling pro�les� This yields
the global existence� stability and uniform BV bounds for every solution with suitably small BV data�

�� Introduction

This paper is concerned with uniform BV bounds and stability estimates for solutions of a � � �
hyperbolic system conservation laws in triangular form

�����

�
u��t � f�u��x � u��xx

u��t � g�u�� u��x � u��xx

Let A�u� � Df�u� be the Jacobian matrix of f and call �� � �f��u�� �� � �g��u� its eigenvalues� We
make the assumption of strict hyperbolicity� so that

���u�� ���u� � c � �

for u in a neighborhood of the origin� The right and left eigenvectors of A�u� will be written as r��u��
r��u� and l��u�� l��u�� respectively�
In order to obtain uniform bounds on Tot�Var�

�
u�t� ��� for all t � �� a natural strategy is as follows�

We decompose the gradient ux along a suitable basis of vectors 	r�� � � � � 	rn� say

����� ux �

nX
i��

vi	ri �

Di
erentiating ������ we �nd that each component vi satis�es a scalar viscous conservation law with
source�

���
� vi�t � �	�ivi�x � vi�xx � �i i � �� � � � � n �

This implies

�����
��vi�t� ����L�

� ��vi��� ����L�
�

Z t

�

Z
R

���i�t� x��� dxdt �
Since the vectors 	ri have uniform length� the total variation of u at any time t � � can be estimated by

����� Tot�Var�
�
u�t� ��� � ��ux�t� ����L�

� O��� �
X
i

��vi�t� ����L�
�

In order to obtain a uniform bound on the total variation� the key step is thus to construct a basis of
unit vectors f	r�� � � � � 	rng in ����� in a clever way� so that the functions �i on the right hand side of �����
become integrable on the half plane ft � �� x � Rg�
As a preliminary we observe that the choice 	ri

�
� ri�u�� the i�eigenvector of the matrix A�u�� seems

quite natural� This was indeed the choice adopted in ���� valid for n � n hyperbolic systems under the
assumption that all shock curves in the state space are straight lines� In this special case� the source
functions �i have the form

�i�t� x� � O��� �
X
j ��k

vjvk �O��� �
X
j ��k

vj�xvk �
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involving only products of distinct components� This re�ects the fact that� due to the straight line
assumption� new oscillations can be generated only by interactions among waves of di
erent families� A
transversality lemma then shows that the double integral of the terms vjvk� vj�xvk� with j �� k� is of the
same order of magnitude as the product of the L� norms of vj � vk at the initial time t � ��
In the general case� the choice 	ri � ri�u� leads to a system of the form

����� vi�t � �	�ivi�x� vi�xx � �i
�
� li �

�X
j ��k

�j �rj � rk�vjvk ��
X
j�k

�rk � rj�vj�xvk �
X
j�k��

�r�� rk � rj �vjvkv�
�
�

where rk � rj is the directional derivative of rj in the direction of rk and �rj � rk� �� rj � rk� rk � rj denotes
a Lie bracket� Assume that the i�th characteristic �eld is genuinely nonlinear� with shock and rarefaction
curves not coinciding� and consider a travelling wave solution

����� u�t� x� � U�x� �t��

representing a viscous i�shock� Here U � U��� is a smooth function satisfying

�����
�
A�U�� �I

�
U � � U ���

lim
����

U��� � u� �

It is then easy to show that the right hand side of ����� is not identically zero� Being a travelling wave�
the integral Z

R

���i�t� x��� dx �� �

is constant in time� Hence �i is certainly not integrable over the half plane ft � �� x � Rg�
This lack of integrability can be seen� in particular� for the triangular system ������ Here the �rst

equation is autonomous� but the integrals curves of r� are not necessarily straight lines� A simple
computation shows that is one performs for this system a decomposition of the form

����� ux �

nX
i��

viri�u� �

then the source function �� contains the term v�v��x� and is not integrable� Indeed� the gradient com�
ponent v� � l��u� � ux is �� �� in general� In turn� the quantity v�v��x does not vanish� Being constant
in time �apart from the shift with constant speed ��� it is not integrable in the t�x plane� On the other
hand� it is obvious that the total variation of the solution u�t� �� remains bounded� Indeed� it is constant
in time�
In this example� it is clear that the decomposition ����� is not the best one� in order to study the

evolution of the gradient ux� Instead of the basis of eigenvectors fr��u�� r��u�g� if we took the projection
along another basis� say f	r��u�� 	r��u�g� choosing the �rst vector so that

������ 	r�
�
U���

�
�

U ������U ������ � � R�

then the computations would be much simpler� Indeed� we would have the decomposition

ux �
X
j����

	vj	rj � 	v�	r��

	v� � �juxj� 	v� � ��

The above example motivates our basic approach� Given a solution u � u�t� x� of the viscous hyper�
bolic system ������ we will derive a�priori bounds on the L� norm of the gradient ux by estimating its
components along a suitable basis f	r�� 	r�g� choosing the vectors 	rj not as eigenvectors of the matrix A�u��
but as gradients of viscous travelling waves through the state u�
In the special case where the solution u itself is a viscous travelling wave� there is an easy way to choose

the basis f	r�� 	r�g� Namely� it su�ces to satisfy ������� However� given a general solution u � u�t� x�� it is
far from obvious how such a basis �depending on u and possibly on its �rst and second derivatives� can
be constructed�
An appropriate method� based on the center manifold theorem� will be described in the Section 
� We

show that there exists smooth functions 	ri� i � �� �� which we call �generalized eigenvectors�� depending
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on the state u and on two additional scalar parameters vi� �i� which are the tangent vectors to a travelling
pro�le passing trough u� Here vi is related to the strength of the wave pro�le� while �i is the speed�
Due to the geometry of the system ������ the �generalized eigenvector� 	r� is constant and coincides with
the second eigenvector of A�u�� i�e� 	r� � r� � ��� ��� Moreover� we can normalize 	r� so that its �rst
component is identically equal to �� i�e� 	r��u� v�� ��� �

�
�� s�u� v�� ���

�
�

Having constructed this basis of vectors 	r�� 	r�� we seek a decomposition of ux in the form

������ ux � v�	r��u� v�� ��� � v�r��

The two parameters v�� �� will depend in turn on the �rst and second derivatives of u� A geometric
interpretation of this decomposition is given in Section ��
In Section � we write the evolution equations satis�ed by v�� v�� Due to the particular geometry of

the system� they take the form

������

�
v��t �

�
���u�v�

�
x
� v��xx � �

v��t �
�
���u�v�

�
x
� v��xx � ���t� x��

where ��� �� are the eigenvectors of A�u� and �� is the source term for v�� In particular� by our special
choice of the decomposition ������� if u coincides with the pro�le of a travelling ��wave and if �� coincides
with the wave speed� then �� 	 �� The speed �� of the pro�le can be recovered by the relation �� �
�u��t�u��x� To handle the general case� since 	r��u� v�� ��� is de�ned only when v� is close to zero and ��
is close to the characteristic speed ���u�� we need to insert a cuto
 function and modify the de�nition of
�� whenever the ratio �u��t�u��x is far from ��� By carefully choosing the parameters v�� �� as functions
of u� u��x� u��xx and performing the decomposition ������ we will show that the corresponding source ��
in ������ has a particular structure� Namely� it contains only terms of three di
erent types�

��� source terms due to the cuto
 function� e
ective when �u��t�u��x is not close to ���u��
��� source terms due to interactions among two waves both of the �rst family�
�
� source terms due to interactions between a wave of the �rst family and one of the second�

The proof of uniform BV bounds for v� is worked out in Section �� Relying on the �length� and �area�
functionals introduced in ���� �
� and the viscous interaction potential used in ���� we show that� for small
BV initial data� the total variation of the solution remains small for all t � ��
A similar estimate can be obtained for the L� norm of a �rst order perturbation h� Indeed� calling

u� � u� � 	h�O�	��
a perturbation of a reference solution u�� one easily checks that h satis�es the linearized evolution equation

ht �
�
A�u�h

�
x
� hxx � ��

Clearly� both h � ut and h � ux are particular solutions� The analysis in Section � will establish thatZ
R

��h�t� x���dx � L

Z
R

��h��� x���dx�
for some constant L independent of h and uniformly valid for all t � �� By a standard homotopy
argument� this shows that the �ow generated by ����� is uniformly Lipschitz continuous w�r�t� the initial
data� in the L� norm� The above results can be summarized as follows�

Theorem ���� Let the triangular system ����� have smooth coe�cients and satisfy the strict hyperbolicity

assumption �f��u� �� �g��u�� Then there exist 
�� 
� � �� and Lipschitz constants L�L� such that the

following holds� For every initial data �u � L� with Tot�Var�f�ug � 
�� the Cauchy problem has a unique�

global solution u � u�t� x�� which satis�es

����
� Tot�Var�
�
u�t� ��� � 
� 
t � ��

������
��u�t�� u�s�

��
L�
� L�

�jt� sj��� � jt� sj� 
t� s � ��
Moreover� given a couple of initial data �u� �w� the corresponding solutions satisfy

������
��u�t�� w�t�

��
L�
� L

���u� �w
��
L�
� 
t � ��
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If the initial data �u is smooth� then the solution is uniformly Lipschitz continuous w�r�t� time� as a
map from ����� �
 L�� On the other hand� if �u � BV is discontinuous� the solution will be smoothed
out during an initial time interval� by parabolic regularization� This accounts for the H�older continuous
time dependence stated in ������
We conclude this section with some remarks� For the corresponding hyperbolic system without viscosity

������

�
u��t � f�u��x � �

u��t � g�u�� u��x � �

uniform BV bounds for weak solutions have been known for a long time ����� ���� Moreover� in this
particular case� the stability of solutions can be proved by deriving a priori estimates on the size of shift
di
erentials and using a homotopy argument to connect pairs of solutions ���� However� extending these
stability results from ������ to the general n � n case is technically very di�cult ��� due to the lack of
regularity� At present� the stability of small BV solutions is known only under the assumption of genuine
nonlinearity or linear degeneracy of each characteristic �eld ���� or for some �� � systems ���� ����
On the other hand� the presence of viscosity has a regularizing e
ect on solutions� In this case� by

the same techniques used to derive BV estimates� one can obtain bounds on the L� norm of �rst order
perturbations� By the smoothness of the solutions� these immediately yield the Lipschitz continuous
dependence of solutions on the initial data� via a homotopy argument�

�� Parabolic estimates

In this section we prove some estimates for solutions of the general parabolic system

����� ut �A�u�ux � uxx � ��

We take here the classical point of view� writing ����� in the form of a linear parabolic system with constant
coe�cients� with a small �rst order nonlinear perturbation� This approach� based on the representation
of solutions via Duhamel�s formula� yields two main pieces of information�

��� For small times t � ��� �t�� it determines the rate at which the �possibly discontinuous� initial data
is smoothed out� by parabolic regularization�

��� For large times t � ��t��� � it shows that the L� and L� norms of all higher order derivatives of
the solution are uniformly bounded� as long as the total variation remains small�

For a BV solution u of ����� we de�ne

u�
�
� lim

x���
u�t� x��

It is clear that this value is constant is time� By a translation of coordinates� we can assume u� � �� In
the following� we assume that A�u� is strictly hyperbolic� i�e� it admits n real distinct eigenvalues �i�u�
with

���u� � ���u� � � � � � �n�u��

For the matrix A�u�� we denote with ri� li its right and left eigenvectors respectively� normalized such
that

�����
��ri�� � �� �

lj � ri
	
�



� i � j

� i �� j

We write �i�� and li��� ri�� for the corresponding eigenvalues and eigenvectors computed at u� � �� The
brackets

��� �	 denote the usual scalar product in Rn � The directional derivative of a function � along a

vector 
 � �
�� � � � � 
n
� � Rn as


 � ��u� �
� lim

���

�
�
u� �


�� ��u�

�
�
X
i


i
��

�ui
�

The Landau notation O��� will also be used� to denote a uniformly bounded quantity�
We start by proving some regularity estimates for a solution to the linear parabolic system

���
� zt �A�u�zx �
�
z �A�u��ux � zxx � ��
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under the assumption that ux�t�� z�t� have uniformly bounded L� norm� say

�����

Z
R

��ux�t� x���dx � �
��
Z
R

��z�t� x���dx � �
��
for all t � �� with 
� � � a small constant� Here and in the sequel it is convenient to measure the norm
of a vector 
 � Rn in terms of the basis of the eigenvectors of the matrix A�

�
� A�u��� In other words�

j
j ��
X
i

���li��� 
	���
Notice that ���
� is the linearized evolution equation satis�ed by a �rst order variation to the solution u
of the parabolic system ������ In particular� both ux and ut satisfy ���
��
Consider �rst the linear parabolic system with constant coe�cients

ut �A�ux � uxx � ��

with A� � A�u�� � A���� The corresponding Green kernel GA� can be written explicitly� Its components
Gi�� �

�
li��� G

A�

	
are given by

Gi���t� x� �
�

�
p
�t
exp

�
�
�
x� �i��t

��
�t

�
�

In particular� we have the estimatesZ
R

��Gi��
x �t� x�

��dx � �p
�t
�

Z
R

��Gi��
xx�t� x�

�� �
r
�

�e

�

t
�

Proposition ���� Let z be a solution of ���
� satisfying the bounds ������ De�ne the constant �C and

the time �t as

�C
�
� max

n
��� �


��DA
��
L�

� �
��D�A

��
L�


�

�o
������ p

�t
�
�

�

�� �C
�
� �

��

��DA

��
L�

� �
��D�A

��
L�


�

�
�
�

�

Then for � � t � �t the following regularity estimates hold�

�����

Z
R

��zx�t� x��� � �C
�
�p
�t
�

Z
R

��zxx�t� x���dx � �C� �
�
�t

�

Proof� We can represent the function zx as

zx�t� x� �

Z
R

GA�

x �t� x� y�z��� y�dy

�
Z t

�

Z
R

GA�

x �t� s� x� y�

�
z �A�u��ux�s� y� � �A�u��A�

�
zx�s� y�

�
dyds�

Note that in particular ux is a solution to ���
�� so that in the following we will use indi
erently the
estimates ����� for z and ux� in fact a �rst step is to prove ����� for ux and then to apply them to zx�
Using ����� and ������ we obtain����

Z t

�

Z
R

GA�

x �t� s� x� y�

�

z �A�u��ux�s� y� � �A�u��A�

�
zx�s� y�

�
dyds

����
L�

�
Z t

�

�p
��t� s�

���ux��L�

��DA
��
L�

��z�s���
L�

�
��DA

��
L�

��ux��L�

��zx�s���L�

�
ds

� ��DA
��
L�

�
�
�

� �C
�

Z t

�

�
�p
s�t� s�

ds�
��DA

��
L�

�C
�
�
�

� �C
�

Z t

�

�
�p
s�t� s�

ds

� � �C��DA
��
L�

�
�
�

��
�



� STEFANO BIANCHINI AND ALBERTO BRESSAN

where we used the elementary estimate Z �

�

�p
s��� s�

ds � ��

Assume now that the kz�t�kL� is strictly less than � �C
��
p
�t in ��� � �� and kzx���kL� � � �C
��

p
�� � with

� � t� Using the above integral estimate we obtain��zx�����L�
� �
�p

��



� � �

p
��t
��DA

��
L�

�C
�
�
�

��

� �
�p
��

�
� �

p
� �C�
�

�
� �C

�
�p
��

�

yielding a contradiction� Thus � � �t� This argument holds for smooth solutions� because they satisfy
����� for small t� Since our estimate depends only on the initial total variation� we can extend it to all
BV functions satisfying ������
We now apply the same technique to estimate zxx� Indeed� we can write

zxx�t� x� �

Z
R

GA�

x �t��� x� y�zx�t��� y�dy�����

�
Z t

t��

Z
R

GA�

x �t� s� x� y�

�

z �A�u�

�
ux�s� y� �

�
A�u��A�

�
zx�s� y�

�
x

dyds�

Hence� using again ����� and ����� we obtain

��zxx�t���L�
� �p

�t��
� �C �
�p

�t��
�

Z t

t��

�p
��t� s�

�
���zx �A�u�ux�s���L�

�
��z � �ux �A�u��ux�s���L�

�
��z �A�u�uxx�s���L�

�
��ux �A�u�zx�s���L�

�
���A�u��A�

�
zxx�s�

��
L�

�
ds

� � �C
�
�
�t

�

Z t

t��

�p
��t� s�

�
�
�
�

��DA
��
L�

��zxx�s���L�
� �
�

��D�A
��
L�

��uxx�s����L�

� �
�
��DA

��
L�

��uxxx�s���L�
� �
�

��DA
��
L�

��zxx�s���L�
� �
�

��DA
��
L�

��zxx�s���L�

�
ds

� � �C
�
�
�t

�
�

�
p
�t



�
��DA

��
L�

�
��D�A

��
L�

�
�
�

��
�C�
�
�
�

��
� �C

�
�
�t

�
� �

�p
�

p
�t


�
��DA

��
L�

�
��D�A

��
L�

�
�
�

��
�C
�
�
�

��
� �C� �
�

�t
�

An argument by contradiction as the one above concludes the proof� �

Next we observe that� for all t � �t� one can repeat the argument on the interval �t��t� t� thus obtaining
the following corollary�

Corollary ���� For all t � �t one has

�����
��zx�t���L�

� ��p
�
�C�
�
�
�

��
�

��zxx��L�
� ���

�
�C�
�
�
�

��
�

By integration� this also yields an estimate on the L� norms of z and zx� The same techniques used
in the proof of Proposition ��� also yield

Corollary ���� For all t � �t we have the further estimate

�����
��zxx��L� � ���

�
p
�
�C�
�
�
�

��
�

Proof� We �rst show that� for t � �t� ��zxx��L� � �C� �
�

�t
p
�t
�
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Indeed� if the estimate is valid for all � � t� from ����� we obtain

��zxx��L�
� �p

�t��
� �C� �
�

�t��
�

Z t

t��

�p
��t� s�

�
���zx �A�u�ux�s���L� � ��z � �ux �A�u��ux�s���L�

�
��z �A�u�uxx�s���L� � ��ux �A�u�zx�s���L� � ���A�u��A�

�
zxx�s�

��
L�

�
ds

� �
p
� �C� �
�

�t
p
�t
�

�p
�

p
t �


�
��DA

��
L�

�
��D�A

��
�

�
�
�

���
�
�

� � �C� � � �
�
�t
p
�t��

� �C� �
�

�
p
�t
p
t

�
�
p
� �

�
p
�p
�

p
�t


�
��DA

��
L�

�
��D�A

��
�

�
�
�

��
�C
�
�
�

��
� �C� �
�

�
p
�t
p
t
�

Hence the estimate holds for all t � �t� Using now ����� and repeating the above argument on the interval
�t� �t� t� the we obtain ������ �

The last proposition gives an estimate of the growth of the L� norm of z on the initial interval ��� �t��

Proposition ���� If the initial data satisfyZ
R

��ux��� x���dx�
Z
R

��z��� x���dx � 
�
�
�

then at time �t the following inequality holds�

������

Z
R

��z��t� x���dx � 
�
�
�

Proof� Writing the solution as

z�t� x� �

Z
R

GA��t� x� y�z��� y� �

Z t

�

Z
R

GA�

x �t� s� x� y�A�u��A�

�
zx�s� y�dsdy�

and assuming that kz�t���
L�

� 
��� for � � t � � � �t and kz�����
L�
� 
���� we have��z�����

L�
� 
�
�
�

�p
�

p
�t
��DA

��
L�

�
�
�

�
�
�
�


�
�
�

�

�
p
�


�
�
�


�
�
�

leading to a contradiction� �

Remark ���� The numerical value of the constant �C is irrelevant� What matters is that the higher
derivatives of z have norm bounded by powers of 
�� We recall that 
� is the order of magnitude of the
total variation of u� which we assume suitably small� This fact will be of help in deriving our future
estimates� because terms multiplied by norms of these derivatives will contain powers of 
� and hence be
very small�

In the following� to simplify the notation� we shall shift the time coordinate and consider a solution
de�ned for t � ���t� �� � At time t � � we can thus assume that our solution u��� �� is smooth satis�es

������
��ux�����L�

� 
�
�
�

��ux�����L� � O���
�� �
��ut���� �i��ux���

��
L�
� O���
�� �

We recall that� without loss of generality� we are always assuming u�t� ��� � ��


� A decomposition using travelling profiles

In this section we construct a smooth manifold of local travelling wave pro�les� in connection with the
triangular system

�
���

�
u��t � f�u��x � u�xx � �

u��t � g�u�� u��x � u�xx � �

We assume that there exists an open set  � R
� such that the matrix

Df�u� � A�u�
�
�

�
��
�
u�
�

�
gu�

�
u�� u�

�
��
�
u�� u�

� � �
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is uniformly hyperbolic� i�e�

�
��� ���u�� ���u
�� � c�

for some constant c � � and all u� u� �  � In the following we will denote with ri� li� i � �� �� the right
and left eigenvectors of A�u�� respectively� normalized as in ������
A travelling wave pro�le with speed � is obtained by solving the second order ODE

�
�
� ��ux �A�u�ux � uxx � ��

which can be written as a �rst order system of the form��
�

ux � p
px �

�
A�u�� �I

�
p

�x � �

Linearizing at the point ��� �� ������ we obtain a linear system of � equations described by the matrix�
� � I �
� A���� �����I �
� � �

�
�

The dimension of the null space is �� Hence� by the center manifold theorem� there exists a ��dimensional
locally invariant manifold M � R

� which contains all the �slow� dynamics in a neighborhood of �� In
particular this manifold contains all the small bounded travelling pro�les with speed close to ������
This center manifold M can be parametrized in terms of the variables u� v�

�
� u��x and ��

�
� �� In

other words� it is described by the equation v� � ��u� v�� ���� When v� � � we obtain the equilibrium
points �u� �� ���� so that ��u� �� ��� � �� As a consequence we can �factor out� the term v� and write

v� � s
�
u� v�� ��

�
v��

where s is a smooth function of its arguments�
We now de�ne the generalized eigenvector 	r� as

�
��� 	r��u� v�� ���
�
�

�
�

s�u� v�� ���

�
�

Using u� as independent variable� we can rewrite the system as����
���

us � 	r��u� v�� ���
v��s � ���u��� ��
v�	r��s �

�
A�u�� ��I

�
	r�

���s � �

and obtain the fundamental relation

�
��� v�	r� � 	r� � v�
�
�� � ��

�
�
�
A�u�� ��I

�
	r��

Here and throughout the following� the derivatives of 	r��u� v�� ��� w�r�t� its arguments are written as

v � 	r� �
� lim

���

	r��u� 	v� v�� ���� 	r��u� v�� ���
	

�

	r��v
�
�

�

�v�
	ri�u� v�� ���� 	r���

�
�

�

���
	r��u� v�� ����

Note that when v� � �� form the above equation it follows that 	r� � r�� This implies the further estimates

�
��� 	r��� � O���v�� 	r���� � O���v�� 	ri � 	r��� � O���v� i � �� ��

Example 
��� Consider the following equations

�
���

�
u��t � u��xx � �

u��t �
���u����� � u�

�
x
� u�xx � ��

The di
erential equations for a travelling pro�le of the �rst family� using y � u� as independent variable
is � ��� � v��y � �

���u��y � u��y � y � �v�u��y�y � �
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where we denote with u��y the function

u��y �
�u�
�u�

�
v�
v�
�

The solution to the previous ODE is

v��y� � C� � �y

v��y� � y �
C� � �y

� � �
� C�

�
C� � �y

�����
Since we want the solution to be smooth near v� � �� we choose C� � �� so that the tangent vector to a
pro�le on the center manifold is now given by

�
��� 	r��u� v�� ��� �

�
�

u� � v��
�
� � ��

� � �
One can check that �
��� and all the estimates �
��� are satis�ed� The fact that 	r� does not depend on
u� follows from the linearity of the second equation� if u��t� x� is a solution to �
���� then u��t� x� � � is
also a solutions for all � � R�
The function 	r� is de�ned in a neighborhood of the point ��� �� ������ of the form

�
���

�
u� v�� �� �

��u�� � �
�� ��v��� � �
�� ���� � ���u�
�� � �
�

�
� R

� �

By the regularity estimates ������ at the end of Section �� if 
� is su�ciently small� u and v� satisfy the
�rst two inequality� Thus� given any speed function �� su�ciently close to ������ the vector 	r� is de�ned
for t � ��� T �� x � R�
One can now decompose the vector ux along 	r� and r�

�
� ��� ���

�
���� ux �

�
u��x
u��x

�
� v�	r� � v�r� � v�

�
�

s�u� v�� ���

�
� v�

�
�
�

�
�

Due to the particular form of the system �
���� the generalized eigenvector corresponding to the second
eigenvalue always coincides with the constant eigenvector r� � ��� �� of the matrix A�u��
Using the estimates of Section �� see that the components vi� i � �� � satisfy the bounds

�
����
��vi�t���L� � ��vi�x�t���L�

� O���
�� �
��vi�x�t���L� � O���
�� �

In the following we shall assume� without loss of generality� that ����� � ��

�� Geometric remarks

Before we proceed toward applications� let us pause and describe what has been accomplished by the
above construction� Our eventual goal is to decompose the gradient ux of a smooth function u � R �
 R

�

as a sum �not a linear combination!� of gradients of � viscous travelling waves� At each point x� we expect
this decomposition to depend on the vectors ux and uxx� Our �data� thus consist of ��� parameters� On
the other hand� let us look at how many viscous travelling i�waves pass through a given state u � R� � If
we restrict ourselves to bounded viscous shock pro�les� assuming that the i�st �eld is genuinely nonlinear�
we can clearly �nd a ��parameter family of such shocks� Namely� we can parametrize such family in terms
of the �rst coordinates of the limit points u�� u�� More precisely� given any two numbers ��� �� with

�� �
�
ri�u�� u

	
� ���

we can �nd unique states u�� u� in a neighborhood of u such that ��g� 
��
ri�u�� u

�
	
� ���

�
ri�u

��� u�
	
� ���

and such that the viscous shock pro�le connecting u� with u� passes through the state u� In turn� this
��parameter family of shock pro�les yields a ��parameter family of gradient vectors vi� i�e� the gradients
of these viscous i�shocks at the point u� Observe that these gradient vectors are nearly parallel to ri�u��
but have opposite direction� We can repeat the construction for all characteristic families i � �� �� This
gives us � distinct ��parameter families of gradient vectors� In all� we have just the right number of
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parameters � � � � � to �t the data of the problem� Unfortunately� the set of gradient vectors vi thus
constructed is not large enough to express an arbitrary gradient in the form

����� ux �

nX
i��

vi�

Indeed� in the genuinely nonlinear case� each shock gradient vi will have negative inner product with ri�u��
Hence if� say� the function u consists of an i�rarefaction wave� a decomposition like ����� is not possible�
We thus need to extend the ��parameter family of vectors vi to include also gradients of travelling viscous
rarefaction i�waves� The problem is that now there are no �globally bounded� viscous rarefaction i�waves�
On the other hand� if we look at all viscous travelling waves through a given point �u� then we have to
consider all solutions of the system �
�
�� with initial data u��� � �u but v��� and � arbitrary� These
form a 
�parameter family of solutions� Too many! We have to trim it down� choosing a ��parameter
subfamily� This is precisely what our center manifold construction has achieved�
Summing up� for each state u and each i � �� �� we have constructed a ��parameter family of unit

vectors 	ri � 	ri�u� vi� �i�� depending on the scalar parameters vi� �i� For each value of these parameters�
there exists a viscous travelling i�wave passing through u� with gradient vi	ri and speed �i� In other
words� there exists a solution U � U��� of

U �� �
�
A�U�� �i

�
U �

with

U��� � u� U ���� � vi	ri �

Moreover� the way these vectors 	ri change as functions of the parameters is restricted by the fundamental
identity �
����
The above construction of the tangent vectors 	ri allows a new approach to the analysis of viscous

waves� Consider �rst the strictly hyperbolic system

����� ut �A�u�ux � ��

Given a function u � u�x�� at a given point x � R we can look at the �rst order jet �u� ux� � Rn�n � It
is natural to regard ux as the linear superposition of n waves

���
� ux �

nX
i��

viri�u��

travelling with speeds ���u�� � � � � �n�u� given by the eigenvalues of the matrix A�u�� In connection with
a smooth solution of ���
�� the lines in the t�x plane de�ned by

����� "xi�t� � �i
�
u�t� x�

�
are called i�characteristics� In all classical textbooks� the basic analysis of hyperbolic systems relies on
the study of how i�waves propagate along characteristics�
Next� consider a hyperbolic system with viscosity�

����� ut �A�u�ux � uxx�

Given a function u � u�x�� at a given point x � R we now look at the second order jet �u� ux� uxx� �
R
n�n�n � In an ideal situation� we would like to regard �ux� uxx� as the superposition of n viscous
travelling waves� travelling with speeds ��� � � � � �n� We thus seek solutions Ui of

����� U ��i �
�
A�Ui�� �i

�
U �i

such that

����� ux �
X
i

U �i�x�� uxx �
X
i

U ��i �x��

In connection with a smooth solution of ������ assume for a moment that a decomposition of the form
����� can be achieved at all points in the t�x plane� Moreover� assume that the wave speeds �i � �i�t� x�
remain within the same range of the corresponding characteristic speeds �i� In this case� the curves
de�ned by

����� "xi�t� � �i�t� x�
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can be called second order i�characteristics� They trace the positions of the viscous travelling waves that
�pointwise� best approximate our solution u�
At this stage� however� two remarks are in order�

Remark ���� l As we saw earlier� the family of all viscous travelling waves� i�e�� of all solutions of ������ is
too large� The problem is that we are considering as admissible solutions to ����� functions which have
nothing to do with the travelling waves of small amplitude of the parabolic system ������
In order that the above decomposition be uniquely determined� we need to restrict ourselves to trav�

elling waves which lie on the center manifoldsMi� by construction it contains all the travelling waves of
small amplitude� and for each i � f�� � � � � ng� this yields a ��parameter family of viscous waves� In this
case� the decomposition of ux in ����� can be written in the form

ux �

nX
i��

vi	ri�

Remark ���� The requirement that the wave speeds �i remain inside the range of the characteristic speeds
�i cannot be ful�lled� in general� For example� consider any viscous scalar conservation law�

ut � f�u�x � uxx�

In this case� the center manifold is the whole space� M � R
� � Consider a smooth function u � R �
 �a� b��

To �x the ideas� assume that f ��u� � ���� ��� for all u � �a� b�� At any given point x� if ux �� � there
exists a unique viscous travelling wave U whose second order jet at x coincides with that of u� Indeed�
we �nd U by solving the Cauchy problem

U �� �
�
f ��u�� �

�
U ��

�
U�x� � u�x��
U ��x� � ux�x��

where

� � f �
�
u�x�

�� uxx�x�

ux�x�
�

Clearly� if juxx�uxj is large� the speed � will fall far outside the interval ���� ���� i�e�� outside the range
of the characteristic speeds f ��u��
For the validity of future estimates� it is imperative that the speeds �i remain within small intervals�

close to the characteristic speeds� Say�

�i � Ji
�
� ���i � �

�
i ��

distinct intervals being strictly disjoint�
Therefore� we shall need to insert a cut�o
 function� forcing the speeds �i to remain within Ji� The

price to pay is that now only the �rst identity in ����� will be achieved� The local representation of the
pro�le of u as superposition of viscous travelling waves will be always correct up to �rst order� However�
it will hold up to second order only in those cases where the cut�o
 function is not e
ective�

�� Decomposition of the derivative

In this section we derive the evolution equations for the components v�� v�� To obtain these equations�
we start with the identity

ux � v�	r� � v�r��

Di
erentiating w�r�t t and x one obtains

uxx � v��x	r� � v��xr� � v�
�
v�	r� � 	r� � v��x	r��v � ���x	r���

�
� v�v�r� � 	r��

ut � uxx �A�u�ux

�
�
v��x � ��v�

�
	r� �

�
v��x � ��v�

�
r� � v�

�
v��x � ��v� � ��v�

�
	r��v � v����x	r��� � v�v�r� � 	r��
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utx �


v��xx �

�
��v�

�
x

�
	r� �



v��xx �

�
��v�

�
x

�
r�

�
�
v��x � ��v�

�

v�	r� � 	r� � v�r� � 	r� � v��x	r��v � ���x	r���

�
�


v�
�
v��x � ��v� � ��v�

��
x
	r��v

� v�
�
v��x � ��v� � ��v�

�

v�	r� � 	r��v � v�r� � 	r��v � v��x	r��vv � ���x	r��v�

�
�
�
v����x

�
x
	r��� � v����x



v�	r� � 	r��� � v�r� � 	r��� � v��x	r��v� � ���x	r����

�
�
�
v�v�r� � 	r�

�
x
�

uxt � v��t	r� � v��tr� � v�
�
ut � 	r� � v��t	r��v � ���t	r���

�
� v��t	r� � v��tr� � v�


�
v��x � ��v�

�
	r� � 	r� �

�
v��x � ��v�

�
r� � 	r� � v�

�
v��x � ��v� � ��v�

�
	r��v � 	r�

� v����x	r��� � 	r� � v�v�
�
r� � 	r�

� � 	r��� v�v��t	r��v � v����t	r���
�
�

Since uxt � utx� we �nally obtain the equations for the components�

����� v� �
�
��v�

�
x
� v��xx � ��

v� �
�
��v�

�
x
� v��xx �

h
�v��x

�
v��x � ��v� � ��v�

�
� v�����x

i�
	l�� 	r��v

	
�����

�
h�
v��x � ��v�

�
���x �

�
v����x

�
x
� v����t

i�
	l�� 	r���

	
�
h
v��
�
v��x � ��v� � ��v�

�i�
	l��
�
	r� � 	r��v

�	
�
h
v�v��x

�
v��x � ��v� � ��v�

�i�
	l�� 	r��vv

	
�
h
v����x

�
�v��x � ��v� � ��v�

�i�
	l�� 	r��v�

	
�
h
v�����x

i�
	l��
�
	r�� 	r���

�	
�
h
v��

�
��x

i�
	l�� 	r����

	
�
h�
�� � ��

�
v�v� � �v�v��x

i�
	l�� r� � 	r�

	
�
h
v��v�

i�
	l��
�
	r�� r� � 	r�

�	
�
h
v�v

�
�

i�
	l�� r� �

�
r� � 	r�

�	
�
h
v�v�

�
�v��x � ��v� � ��v�

�i�
	l�� r� � 	r��v

	
�
h
�v�v����x

i�
	l�� r� � 	r���

	
� ���t� x��

The above equations hold for any speed ��� A particular choice of �� will now be speci�ed� We �rst
de�ne w� as the e�ective �ux of ������ given by

���
� w�
�
� v��x � ���u�v��

Next� we set

����� �� � ��
�
�
�
� �

��
���u�� ��

�
�
�� v��x

v�

�
� �

�
�w�
v�

�
�

Here the cut�o
 function � � R �
 R is an odd function such that

����� ��x� �

���
��
x jxj � 
�

smooth connection 
� � jxj � 

�
� jxj � 

� �

Taking for example a cubic interpolation followed by smoothing� we can assume that����x��� � �
�� �����x��� � ��� ������x��� � ���
� 
x � R�
An easy computation shows that the function w� satis�es the same equation of v�� namely

w��t �
�
��w�

�
x
� w��xx � ��

Moreover� by the regularity estimates of Section �� we obtain that

�����
��w��t���L�

� O���
�� �
��w��t���L� � ��w��x�t���L�

� O���
�� �
��w��x�t���L� � O���
�� �
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By assuming that the total variation of the initial data �u is su�ciently small� we can assume that

����� 
� � ��
�������L�
� � �maxt�x

n�����u��t� x����o�
where we recall that kv��t�kL� � �
�� As a consequence of ������� at t � � one has

�����

Z
R

��v���� x���dx�
Z
R

��v���� x���dx � 
��

Note that with the choice of speed ������ when

v��x � ��v� � ��v� �� ��
then one must have ���v��x � ���u�v�

��� � 
�
��v����

which implies

�����

����v��xv�
���� � �

�

� � �

�������L�
� � �������L� �
Thus in the regions when w��v� is large� we can always bound jv�j with jv��xj� Conversely� when the
speed is near the eigenvalue ����� � �� jv��xj is bounded by jv�j� in fact� in the regions where ��� ��� �� ��
we have

������

����v��xv�
���� � ��

�

� � �
��

Note moreover that by our choice of 
� we have

������
������u�� ��

��� � ��

�

� � 

��

These estimates will be useful in the sequel�
We consider the left hand side of ������ ���t� x�� as the source term of total variation� The aim of this

and the next chapter is to prove that this is uniformly bounded�

Remark ���� Note that with the speed ������ the �generalized eigenvector� 	r�� considered as

	r�
�
u� v�� w�

�
� 	r�

�
u� v�� �

�
�w�
v�

��
�

is a Lipschitz function of its arguments� Recalling that w� � v��x � ���u�v�� the relation ��w��v�� �� �
implies ��v��x � ���u�v�

�� � 

�v��
so that v� is bounded above and below two exponential functions� thus v� never reaches �� As a con�
sequence� if v��x� � � at some point �x� then jw��v�j 
 � as x 
 �x� Hence ��w��v�� � � in a whole
neighborhood� It follows that 	r� is actually smooth in the x variable and the source term �� is well
de�ned for all t� x�
However there are no uniform bounds on the derivatives of ��� consider for example the function

v�t� x� � t� x��� and� using the eigenvector 	r� of example 
��� the term

v��x���x	r��v� � ��� v�v��x
�� � �

�
v��x
v�

�
x

� � ��

�� � �

�
x� �x�

�x� � �t��

�
�

Note that its �rst derivative is still bounded and continuous for any �xed time t� but the terms like

��

�� � �

switch very rapidly as t
 � from ������
� � �� to ����
� � �� in a time interval O�t��
Using ������ we now reduce the source terms to � general categories� Using the de�nitions of ���� these

classes of terms are�

wrong speed� this term arises only when �� �� �w��v�� It has the form
v��x

�
w� � ��v�

�
�
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change in strength� as in ���� this term has the form

w��xv� � v��xw��

change in speed� this was also studied in ����

v�

�
v�

�
w�
v�

��
x

�
�
n
x �

��w��v�j � 

�o�
transversal interactions� these are of the form ���

v�v� v��xv��

By ��I� we denoted the indicator function of a set I � Observe that the �change in speed� term does
not vanish only if jw��v�j � 

��
Using the above de�nitions and recalling the bounds �
���� we classify the source terms in ����� ac�

cording to their leading factors��
	l�� 	r��v

	
� this is the wrong speed term and the change of mass�

�v��x
�
v��x � ��v� � ��v�

�
� v�����x � �

h
v��x

�
w� � ��v�

�i
� ��

h
v��xw� � v�w��x

i
��

	l�� 	r����v�
	
� this term becomes the change of speed�

v�


�
v��x � ��v�

�
���x �

�
v����x

�
x
� v����t

�
� ���v�

h
v�
�
w��v�

��
x

i
��

	l�� 	r� � 	r��v � 	r��v � 	r�
	
� recalling ������ this is a higher order term w�r�t� the wrong speed�

v��
�
v��x � ��v� � ��v�

�
� v�

v�
v��x

h
v��x

�
w� � ��v�

�i
�

�
	l�� 	r��vv

	
� this is a higher order term w�r�t� the change of strength�

v�v��x
�
v��x � ��v� � ��v�

�
� v�

h
v��x

�
w� � ��v�

�i
��

	l�� 	r��v�
	
� this term can be rewritten as

v����x
�
�v��x � ��v� � ��v�

�
� ��

�
�w��v� � �� � ��

�h
v��xw� � v�w��x

i
��

	l�� �	r� � 	r��� � 	r��� � 	r���v�
	
� this is a higher order term w�r�t� the change of strength�

v�

h
v�����x

i
� v��

�
h
v��xw� � v�w��x

i
��

	l�� 	r�����v�
	
� this is precisely the change of speed�

v���
�
��x �

�
��
��
v�

h
v�
�
w��v�

��
x

i
�

Thus� collecting the source terms� we can rewrite ����� as

v��t �
�
��v�

�
x
� v��xx �

h
v��x

�
w� � ��v�

�in
�
�
	l�� 	r��v

	
�
�
v�
��
�v��x �

�
	l��
�
	r�� 	r��v

�	
� v�

�
	l�� 	r��vv

	o������

�
h
v��xw� � w��xw�

in
��
�
	l�� 	r��v

	
� ��

�
�v��x�v� � �� � ��

��
	l�� 	r��v�

	
� v��

�
�
	l��
�
	r�� 	r���

�
�v�

	o
� v�

h
v�
�
w��v�

��
x

in
���
�
	l�� 	r����v�

	
�
�
��
���	l�� 	r�����v�	o

�
h
v�v�

in�
�� � ��

��
	l�� r� � 	r�

	
� v�

�
	l��
�
	r�� r� � 	r�

�	
� v�

�
	l�� r� �

�
r� � 	r�

�	
� v�

�
�� � ��

��
	l�� r� � 	r��v

	
� ���w��x

�
	l�� r� � 	r����v�

	o
�
h
v��xv�

in
�
�
	l�� r� � 	r�

	
� v�

�
	l�� r� � 	r��v

	� ���
w��v���	l�� r� � 	r���	o
� ���t� x��
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The idea of the proof is the following� Let T be the �rst time such thatZ T

�

Z
R

�����t� x���dxdt � �C
�
�
�

��
�

where �C is a big constant� Then one can show that kv��t�kL� � �
� for t � ��� T � and kv��T �kL� � �
� if


� � ���� �C�� This implies kux�t�kL� � �
�� hence the estimates ������ hold for t � ��� T �� We prove that
if kvi�t�kL� � �
� in ��� T �� then we have the estimateZ T

�

Z
R

�����t� x���dxdt � �C
�
�
�

��
�

yielding a contradiction�
From the estimates in Section 
 it follows

����
�
�����t� x��� � O���

����v��x�w� � ��v�
����� ���w��xv� � v��xw�

���� ���v���w��v���x
���� ���v�v����� ���v��xv����

�
�

where we used the relations �
����� ������

�� BV estimates

In this section we will prove uniform BV bounds for the solution to �
���� Toward this result� we
introduce three di
erent functionals� which bound some of the terms on the right hand side of �������
Let u� be a solution to the scalar conservation law

u��t � f�u��x � u��xx � ��

Call ��
�
� f �� At any �xed time t� consider the curve in the plane x �
 �

�
�
�
u�� u��x� f ��u��u��x

�
whose

components are the conserved quantity and the �ux� respectively� One checks that � evolves according
to the parabolic equation

�t � ���u���x � �xx

Since � moves in the direction of the curvature� there are two Lyapunov functionals that decrease in time�
One is the length of the curve� the other is what we call the �area functional�� i�e�

Q���
�
�
�

�

Z
x�x�

���x�x� � �x�x
��
�� dxdx�

It is convenient to write these functionals using the variables

v�
�
� u��x� w�

�
� u��xx � f ��u��u��x �

Area functional� we de�ne

����� Q��t�
�
�
�

�

Z Z
x�y

���v��t� x�w��t� y�� v��t� y�w��t� x�
��� dxdy � O���
�� �

With the same computations as in �
� one has

dQ��t�

dt
� �

Z
R

���w��xv� � v��xw�

���dx�
In particular we have

�����

Z T

�

Z
R

���w��xv� � v��xw�

���dxdt � O���
�� �
Length functional�

���
� L��t�
�
�

Z
R

q
v�� � w�

�dx �
��v���L�

�
��w���L�

� �
��

so that as in it shown in ��� one has

dL�
dt

� �
Z
R

��
� � ���

����
���v�����x���dx � ��

� � 

��
����

Z
j��j���

���v�����x���dx
� �

�

Z
j��j����

�����v�
�
w�
v�

��
x

����� dx�
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because we can assume 
� � �
� � Then we have

�����

Z T

�

Z
j��j����

�����v��
�
w�
v�

��
x

����� dxdt � ���v��x��L�
� dL�
dt

� O��� � 
�� �

Transversal Interaction functional� let z�� z� be the solutions of the PDE�
z��t �

�
���t� x�z�

�
x
� z��xx � �

z��t �
�
���t� x�z�

�
x
� z��xx � �

with

����� inf
t�x

���t� x� � sup
t�x

���t� x� � c � ��

Consider the functional

����� Q���t� �

Z Z
R�

P �x� y�
��z��t� x�����z��t� y���dxdy�

where P is the weight function de�ned by

P �x�
�
�



��c x � �
��c � exp�c�� � x� x � ��

Then� as shown in ���� we have

dQ���t�

dt
� �

Z
R

��v��t� x�����v��t� x��� dx�
This implies the estimate

�����

Z T

�

Z
R

��z��t� x�z��t� x���dxdt � �

c

��z������L�

��z������L�
�

As a corollary of ������ we have the following result ����

Corollary ���� Assume that z��t� x�� z��t� x� are solutions to�
z��t �

�
���t� x�z�

�
x
� z��xx � ���t� x�

z��t �
�
���t� x�z�

�
x
� z��xx � ���t� x�

and that ����� holds� Assume moreover that

��zi�����L�
� 
��

Z t

�

Z
R

���i�t� x���dxdt � �

c
�C
�
�
�

��
i � �� ��

Then Z T

�

Z
R

��z��t� x�����z��t� x���dxdt � �

c

�
�
�

��
�

Proof� Let #i�t� x�� i � �� � the Green kernel of the equation satis�ed by zi� We can write the solution as

zi�t� x� �

Z
R

#i�t� x� �� y�z��� y�dy �

Z t

�

Z
R

#i�t� x� s� y��i�s� y�dyds�

From the estimateZ t

�

Z
R

#��t� x� s� y�#��t� x� s
�� y��dxdt � �

c

� � s� s� � t� y� y� � R�

it now follows Z t

�

Z
R

���z��t� x�z��t� x���� � �

c




� � � �C

�
�
�

���� � �

c

�
�
�

��
�

�

Concerning the last term in ������� as in ���� we will prove that this is of higher order w�r�t� the previous
one�
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Proposition ���� Assume that kvikL� � �
�� for � �� �� Moreover� let the bounds in �
���� and �����
hold� Then� for all � � t � �t� we have

�����

Z T

�

Z
R

��v��xv���dx � O���
�� �

Proof� De�ne the quantity

I��� �
� sup

�	�z
����
�	R

Z 
�	

�

Z
R

��v��x�t� x�����v��t� �� x� z�
��dxdt�

Assume �rst that �� � � �t� where �t is a small time satisfyingp
�t � �

�C
�
�

where �C is a su�ciently big constant� We write v��x as

v��x�t� x� �

Z
R

G�t� x � y�v��x��� y�dy �
Z t

�

Z
R

Gx�s� y���
�
u�
�
v��x�t� s� x� y�dy

�
Z t

�

Z
R

Gx�t� x� y����
�
u�
��
v��t� s� x� y�

��
dx�

We now compute the following integrals �see �����Z 
�	

�

Z Z
R�

���v��t� �� x� z�G�t� x� y�v��x��� y�
���dxdydt � O���
�� �

Z 
�	

�

Z t

�

Z Z
R�

���Gx�s� y���
�
u�
�
v��x�t� s� x� y�v��t� �� x� z�

���dxdydsdt � �

�
I����

Z 
�	

�

Z t

�

Z Z
R�

���Gx�s� y��
�
�

�
v��t� s� x� y�

��
v��t� �� x� z�

���dxdydsdt � O���
�� �

If now �� � � �t� we split the integral asZ 
�	

�

Z
R

���v��t� x�v��t� �� x� z�
���dxdt �


Z �t

�

�

Z 
�	

�t

�Z
R

���v��t� x�v��t� �� x� z�
���dxdt�

and we write v��x as

v��x�t� x� �

Z
R

Gx��t� x� y�v��x�t� �t� y�dy �
Z �t

�

Z
R

Gx�s� y���
�
u�
�
v��x�t� s� x� y�dy

�
Z �t

�

Z
R

Gx�t� x� y����
�
u�
��
v��t� s� x� y�

��
dx�

We now compute the following integrals �see �����Z 
�	

�t

Z Z
R�

���v��t� �� x� z�Gx��t� y�v��t� �t� x� y�
���dxdydt � O���
�� �

Z 
�	

�t

Z �t

�

Z Z
R�

���Gx�s� y���
�
u�
�
v��x�t� s� x� y�v��t� �� x� z�

���dxdydsdt � �

�
I����

Z 
�	

�t

Z �t

�

Z Z
R�

���Gx�s� y��
�
�

�
v��t� s� x� y�

��
v��t� �� x� z�

���dxdydsdt � O���
�� �
Using the above estimates we have

I��� � O���
�� �
�

�
I����

from which ����� follows� �
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The �nal estimate is an energy estimate� In general� the energy

E�t�
�
�
�

�

Z
R

v���x�t� x� dx�

does not decay in time� consider for example a travelling wave� However we will show that� on the
region where the cuto
 function is active� the energy does decay� Indeed� in this region the evolution is
dominated by the dissipative e
ect due to viscosity� We thus expect the same decay estimates valid for
the heat equation to hold here�
Consider a scalar viscous conservation law

u��t � f�u��x � u��xx � ��

and let v�
�
� u��x� If v��x � �k��kL� jv�j� for example near a local maximum� then the equation for u� is

u��t � v��x � ���u��v� � �

�
u��xx�

which is a heat equation�
We consider then the following equation

����� v��t �
�
���u��v�

�
x
� v��xx � ��

where u� is the integral of v�� We assume v���� �� � L� and smooth� We recall that also the e
ective �ux
w��

������ w�
�
� v��x � ���u�v�

satis�es the same equation of v��

w��t �
�
���u�w�

�
x
� w��xx � ��

De�ne now a cut�o
 function ���

������ ���x�
�
�

���
��
� jxj � 

���
smooth connection 

��� � jxj � �
���
� jxj � �
���

We can always assume that 
�j���j� 
�� j����j � ��� If we multiply ����� by v���w��v�� and we integrate by
parts� we obtainZ

R

��
v��
�
��

�
t

� v��
�

�
��t � ����x � ��xx

�
� �v�v��x��x � ��v��x

�
v��x � ��v�

��
dx � ��

We now compute

��t � ���x � ��xx � �����
�
w�
v�

��
x

� �v��x
v�
��x�

Using ������ in the regions where �� � � we have��v��x�� � 


�

�
��v���� ������L���v��� � �������L���v����

Therefore� we �nally obtain the following energy estimate�Z
R

�

�
v���x

��dx � � d

dt

Z
R

�
v��
�
��

�
dx�

Z
R

������

����� w��v�

�������w��xv� � v��xw�

���dx������

�

Z
R

��������� v
�
�

�

�
w�
v�

��
x

����� dx
� � d

dt

Z
R

�
v��
�
��

�
dx�O���

Z
R

���w��xv� � v��xw�

���dx
�O���

Z
jw��v�j���

�����v��
�
w�
v�

��
x

����� dx�
Note that the two last source terms in the left hand side are already present in the the source of �������
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Now we are ready to prove uniform BV bounds� Using energy estimates we obtainZ T

�

Z
R

���v��x�w� � ��v�
����dxdt � Z t

�

Z
R

h
v���x �

������L�

��v�v��x��idxdt����
�

�
�
� �

�
������L�
�
�

�Z t

�

Z
R

�
v��x

��
dxdt

� O���
�Z

R

v����� x�

�
��dx� 
��

�
� O���
�� �

Using the above estimates� we concludeZ T

�

Z
R

�����t� x���dxdt � O�����
���n� � 
� � 
�� � 
��

o
� �C

�
�
�

��
�

provided that 
� is su�ciently small and �C large enough� Here Ci� i � �� �� 
 denote suitable constants�
depending only on 
�� C� and �C� In particular� at time �t� we haveZ

R

��v��t� x���dx � 
� � � �C
�
�
�

�� � �
��
contradicting the assumption kv���t�kL� � �
�� Therefore the total variation of the solution remains � �
�
for all t � R� and all the estimates proved in the previous sections are valid�
This concludes the proof of the uniform BV bounds�

�� Stability estimates

We now consider the linearized evolution equation for a �rst order variation h�

����� ht �
�
A�u�h

�
x
� hxx � ��

where we recall that

A�u� �

�
��
�
u�
�

�
gu�

�
u�� u�

�
��
�
u�� u�

� � �
We consider the same decomposition as in �
����� i�e�

����� h � h�	r� � h�r��

Since ����� is linear� using the rescaling h �
 h
��khkL� we can always assume that the L� norm of h is
of the order of the L� norm of v� We will prove that in this case its L� norm can at most be twice the
initial value�
The proof relies on the same techniques used for the BV estimate� We write the equations for the

components� which will be of the form�
h��t �

�
���u�h�

�
x
� h��xx � �

h��t �
�
���u�h�

�
x
� h��xx � ���t� x�

Assume that there exists a �rst time T such thatZ T

�

Z
R

�����t� x���dxdt � �C
�
�
�

��
�

As a consequence we have khi�t�kL� � �
�� i � �� � for t � ��� T � and moreover kh��T �k � �
�� where we
assumed 
� � ���� �C�� We will prove that kh��t�k � �
� for all t � ��� T � impliesZ T

�

Z
R

�����t� x���dxdt � �C
�
�
�

��
�

reaching a contradiction�
Using the regularity estimates of Section �� if khi�t�kL� � �
�� i � �� �� we obtain the following

estimates for t � ��� T ��
���
�

��hi�t���L� � ��hi�x�t���L�
� O���
�� �

��hi�x�t���L� � O���
�� �
With similar computations as the ones in Section �� we derive the equations

hx � h��x	r� � h�
�
v�	r� � 	r� ��v�r� � 	r� � v��x	r��v � ���x	r���

�
� h��xr��
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hx �Df�u�h �
�
h��x � ��h�

�
	r� �

�
h��x � ��h�

�
r�

� h�
�
v��x � ��v� � ��v�

�
	r��v � h����x	r��� � h�v�r� � 	r��

hxx �
�
Df�u�h

�
x
�


h��xx �

�
��h�

�
x

�
	r� �



h��xx �

�
��h�

�
x

�
r�

�
�
h��x � ��h�

��
v�	r� � 	r� � v�r� � 	r� � v��x	r��v � ���x	r���

�
�


h�
�
v��x � ��v� � ��v�

��
x
	r��v �



h����x

�
x
	r���

� h�
�
v��x � ��v� � ��v�

��
v�	r� � 	r��v � v�r� � 	r��v � v��x	r��vv � ���x	r��v�

�
� h����x

�
v�	r� � 	r��� � v�r� � 	r��� � v��x	r��v� � ���x	r����

�
�
�
h�v�r� � 	r�

�
x
�

ht � h��t	r� � h�
�
ut � 	r� � v��t	r��v � ���t	r���

�
� h��tr�

� h��t	r� � h��tr� � h�
�
v��x � ��v�

�
	r� � 	r� � h�

�
v��x � ��v�

�
r� � 	r�

� h�v�
�
v��x � ��v� � v���

�
	r��v � 	r� � h�v����x	r��� � 	r�

� h�v�v�
�
r� � 	r�

� � 	r� � h�v��t	r��v � h����t	r��� �

ux �A�u�h� h �A�u�ux �
�
r� �A�u�	r� � 	r� �A�u�r�

��
h�v� � v�h�

�
�

�
�

�g��u� � �����u�

� �
h�v� � v�h�

�
�

so that �nally

����� h��t �
�
��h�

�
x
� h��xx � ��

while for the second component we have

h��t �
�
��h�

�
x
� h��xx �

h
h��xv� � h�v��x

i�
	l�� 	r� � 	r�

	�����

�
h
h��x

�
v��x � ��v� � v���

�
� v��x

�
h��x � ��h� � h���

�
� h�v����x

i�
	l�� 	r��v

	
�
h�
h��x � ��h�

�
���x �

�
h����x

�
x
� h����t

i�
	l�� 	r���

	
�
h
h�v�

�
v��x � ��v� � v���

�i�
	l��
�
	r�� 	r��v

�	
�
h
h�v��x

�
v��x � ��v� � v���

�i�
	l�� 	r��vv

	
�
h
h����x

�
�v��x � ��v� � v���

�i�
	l�� 	r��v�

	
�
h
v�h����x

i�
	l��
�
	r�� 	r���

�	
�
h
h�
�
���x

��i�	l�� 	r����	�
�
h�
�� � ��

�
h�v� � �h��xv�

i�
	l�� r� � 	r�

	
�
h
v�h�v�

��
	l��
�
	r�� r� � 	r�

�	
�
h
h�
�
v�
��i�	l�� r� � �r� � 	r��	

�
h
h�v�

�
�v��x � ��v� � ��v�

�i�
	l�� r� � 	r��v

	
�
h
�h�v����x

i�
	l�� r� � 	r���

	
�
h
h�v� � v�h�

i�
	l�� r� �A�u�	r� � 	r� �A�u�r�

	
�
����t� x������

As speed ��� we again adopt the choice ������

Remark ���� Recalling Remark ���� in this case the source is still smooth� but not uniformly bounded in
L�� In any case the source �� is still well de�ned�

As in Section �� the source terms can be classi�ed as follows�

wrong speed�

h��x
�
w� � ��v�

�
�
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change in mass� in this case we have � areas� namely

h��xv� � v��xh� and h��xw� � w��xh��

change in speed� this has the form

h�

�
v�

�
w�
v�

��
x

�
�

transversal terms� as in ���� they are of the form

h�v� h��xv��

We now collect these terms in the source ���t� x���
	l�� 	r� � 	r�

	
� terms due to the fact that h� is not distributed as v��h

h��xv� � h�v��x

i
�

�
	l�� 	r��v

	
� wrong speed and change in strength terms�

�
h
h��x

�
w� � ��v�

�i
�
�
�� � �� � ��w��v�

�h
h��xv� � h�v��x

i
� ��

h
h��xw� � h�w��x

i
�

�
	l�� 	r����v�

	
� we have the shortening here and a mixed term� which can be reduced easily to the

change in speed and change in strength� using the inequality ab � �a� � b���� with a � ��

�
h�
h��xv� � v��xh�

�
���x

i
� ���h�

h
v�
�
w��v�

��
x

i
�h�

h��xv� � v��xh�
�i
�


���� � ��h��x � ��h�

�� h�w��v�
�
� ���h�

�h
v�
�
w��v�

��
x

i
�

�
	l�� 	r� � 	r��v � 	r��v � 	r�

	
� with our choice of speed� this is a higher order term w�r�t� the wrong speed�

h
h�v�

�
v��x � ��v� � ��v�

�i
�

h�

�

h
v��x

�
w� � ��v�

�i
�

�
	l�� 	r��vv

	
� this is a higher order term w�r�t� the wrong speedh

h�v��x
�
v��x � ��v� � ��v�

�i
� h�

h
v��x

�
w� � ��v�

�i
�

�
	l�� 	r��v�

	
� this term can be rewritten ash

h����x
�
�v��x � ��v� � ��v�

�i
�
h
��

�
h��xw� � h�w��x

�� w��v�
�
h��xv� � h�v��x

���
�v��x�v� � �� � ��

�i
� ��

�
�v��x�v� � �� � ��

�h
h��xw� � h�w��x

i
� ��w��v� �

�
�v��x�v� � �� � ��

�h
h��xv� � h�v��x

i
�

�
	l�� �	r� � 	r��� � 	r��� � 	r���v�

	
� this is a higher order term w�r�t� the change in mass�

v�

h
h�v����x

i
� h��

�
h
v��xw� � v�w��x

i
�

�
	l�� 	r�����v�

	
� this is the change in speed�

h�

h
v�
�
���x

��i
� h�

�
��
��h

v�
�
w��v�

��
x

i
�
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Finally we can collect all the terms and write the equation for the second component ����� as

h��t �
�
��h�

�
x
� h��xx �

h
h��x

�
w� � ��v�

�in
�
�
	l�� 	r��v

	o
�����

� h�

h
v��x

�
w� � ��v�

�in�
	l��
�
	r�� 	r��v

�	
�
� �

�
	l�� 	r��vv

	o
�
h
h��xv� � h��xv�

in�
	l�� 	r� � 	r�

	
�
�
�� � �� � ��w��v�

��
	l�� 	r��v

	
� ��w�

�
�v��x�v� � �� � ��

��
	l�� 	r��v�

	
�v�

o
�
h
h��xw� � h�w��x

in
��
�
	l�� 	r��v

	
� ��

�
�v��x�v� � �� � ��

��
	l�� 	r��v�

	o
� h�

h
w��xv� � v��xw�

in
��
�
	l��
�
	r�� 	r���

�o
�
�
h��x � ��h�

�h
v�
�
w��v�

��
x

in
��
�
	l�� 	r����v�

	o
� h�

h
v�
�
w��v�

��
x

in�
��� � ��w���v�

��
	l�� 	r����v�

	
�
�
��
��o

�
h
h�v�

in�
�� � ��

��
	l�� r� � 	r�

	
� v�

�
	l��
�
	r�� r� � 	r�

i
� v�

�
	l�� r� �

�
r� � 	r�

�	
�
�
�w� � �� � ��

��
	l�� r� � 	r��v

	
�
�
w��x � w�v��x�v�

��
	l�� r� � 	r����v�

	
�
�
	l�� r� �A�u�	r� � 	r� �A�u�r�

	o
�
h
�h��xv�

in
�
�
	l�� r� � 	r�

	o
�
h
h�v�

in�
	l�� 	r� �A�u�r� � r� �A�u�	r�

	o
� ���t� x��

Using the regularity estimates ���
� and after some computations� we obtain the following bound for
���t� x��

�����t� x��� � O���
����h��x�w� � ��v�

����� ���h��xv� � h��xv�

���� ���h��xw� � h�w��x

���� ���h��w��xv� � v��xw�
����

�����

�
����h��x � ��h�

��
v�
�
w��v�

��
x

����� ���h��v��w��v���x�
���� ���h�v����� ���h��xv���� ���h�v����

�
�

In the following section we prove that the L� norm of h�t� is bounded by a constant times its initial L�

norm� First of all� we prove an energy estimate similar to ������ for the solution to the parabolic PDE

h��t �
�
���u�h�

�
x
� h��xx � ��

De�ne the function � as

����� ���t� x�
�
� h��x�t� x�� ���u��h��t� x��

Arguing as in the case of w�� one proves that

������
�����t���L�

� O���
�� �
�����t���L� � �����t�x��L�

� O���
�� �
With easy computations one �nds that �� satis�es the equation

���t �
�
���u����

�
x
� ���xx � ���

�
v�h��x � v��xh�

�
�

Multiplying by h�������h��� where �� is de�ned n ������� and integrating by parts we obtainZ
R

��
h��
�
��

�
x

� h��
�

�
��t � �����x � ��xx

�
� v�v��x��x � ��h��x

�
h��x � ��h�

��
dx � ��

After some computations we obtain

��t � ����x � ��xx � ���
���

h�

�
v�h��x � h��xv�

�� ����
�
��
h�

��
x

� �
h��x
h�

��x�
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Since in the regions where �� �� � we have jh��xj � �k�kL�jhj� we conclude thatZ
R

�

�
h���x

��dx � � d

dt

Z
R

�
h��
�
��

�
x

dx�

Z
R

����������
����� ���h�

������h����x � h��x��

���dx������

�

Z
R

���������h���������v�h��x � v��xh�

���dx� Z
R

������� h���

 ��
�

��
x

���� dx
� � d

dt

Z
R

�
h��
�
��

�
x

dx�O���
Z
R

���h����x � h��x��

���dx
�O���
��

Z
R

���v�h��x � v��xh�

���dx�O��� Z
j���h�j���

������h���
�
��
h�

��
x

����� dx�
We now introduce some functionals to control the source term ���
First� we consider the following three Area functionals�

������ Qh
��t�

�
�
�

�

Z Z
x�y

���h��t� x�v��t� y�� h��t� y�v��t� x�
���dxdy � ��h���L�

�
��v���L�

� �
�
�

��
�

����
� Qh
��t�

�
�
�

�

Z Z
x�y

���h��t� x�w��t� y�� h��t� y�w��t� x�
���dxdy � ��h���L�

� ��w���L�
� O���
�� �

������ Qh���t�
�
�
�

�

Z Z
x�y

���h��t� x����t� y�� h��t� y����t� x�
���dxdy � ������L�

��h���L�
� O���
�� �

where in the last one we have used ������� With the same computations as in �
� one �nds

dQh
�

dt
� �

Z
R

���h��xv� � h�v��x

���dx�
dQh

�

dt
� �

Z
R

���h��xw� � h�w��x

���dx�
dQh��

dt
� �

Z
R

���h��x�� � h����x

���dx� Z
R

�����h��h��xv� � v��xh�
����dx�

so that for all t � �t we have the estimates

������

Z t

�

Z
R

���h�v��x � h��xv�

���dx � �
�
�

��
�

������

Z t

�

Z
R

���h�w��x � h��xw�

���dx � O���
�� �

������

Z t

�

Z
R

���h����x � h��x��

���dx � O���
�� �O���
�� � O���
�� �

if 
� is su�ciently small�
Next� we introduce the length functional

������ Lh
��t�

�
�

Z
R

q
h�� � ���dx �

��h���L�
�
������L�

� �
��
As in Section �� we have

dLh
�

dt
� �

Z
R

�

� �
�
h��v�

��
�����h�

�
��
h�

��
x

����� dx �
Z
R

�������h��xv� � v��xh�
����dx

� �

�

Z
j���h�j���

�����h�
�
��
h�

��
x

����� dx� �C

Z
R

���h��xv� � v��xh�

���dx�
This yields the estimate

������

Z t

�

Z
j���h�j���

�����h��
�
��
h�

��
x

����� dx � O���
�� �
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if 
� is su�ciently small�
Using Corollary ��� and Proposition ���� the transversal terms can be bounded as follows�

������

Z t

�

Z
R

���h�v����dxdt�
Z t

�

Z
R

���h�v����dxdt � �

c

�
�
�

��
�

Z t

�

Z
R

���h��xv����dxdt � O���
�� �
We now evaluate the other terms in the source ��� First we observe thatZ t

�

Z
R

���h��x�w� � ��v�
���� � Z t

�


Z
j���h�j
�����

�

Z
j���h�j������

����h��x�w� � ��v�
����dx � I� � I��

In the region I�� both h� and v� have a speed much larger than ��� Thus� using the inequality �ab � a��b�

and ������� we can write

I� � �

�

Z t

�

Z
j���h�j
�����

��h��x���dx� �

�

Z t

�

Z
R

���v��x � ��� � ��
�
v�

����dx � O���
�� �

In the region I�� we note that they have a di
erent speed����� ��h�
���� � �

�

� � �

�

����w�v�
���� �

so that we can write the sequence of inequalities����h��xv� � v��xh�

��� � �����v� � w�h�

��� � ��h�v���
���� ��h� �

w�
v�

���� � �

�

��h�w��� � �

�
�

��h��xw��� � �

�

��h��xv����
Note that we have used the fact that jh��x�h�j � 
�� jw��v�j � 
�� We have thus the estimateZ t

�

Z
I�

���h��x�w� � ��v�
����dxdt � ��
�

Z t

�

Z
R

���h��xv� � v��xh�

���dxdt � ���
����
Adding all terms� one can prove that� if khi���kL� � 
�� i � �� �� thenZ t

�

Z
R

�����t� x���dxdt � O�����
���
� � 
� � 
�� � 
��

�
� �C

�
�
�

��
�

if 
� is su�ciently small� so that we have

������
��h�t���

L�
� �
��

Using now the rescaling we obtain that for a general perturbation we have��h�t���
L�
� ���h�����

L�
�

By a homotopy argument� this establishes the uniform stability of solutions� completing the proof of the
theorem�
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