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Abstract

The hypothesis of invariant maximization of interaction (IMI) is for-
mulated within the setting of random fields. According to this hypothesis,
learning processes maximize the stochastic interaction of the neurons sub-
ject to constraints. We consider the extrinsic constraint in terms of a fixed
input distribution on the periphery of the network. Our main intrinsic
constraint is given by a directed acyclic network structure. First mathe-
matical results about the strong relation of the local information flow and
the global interaction are stated in order to investigate the possibility of
controlling IMI optimization in a completely local way. Furthermore, we
discuss some relations of this approach to the optimization according to

Linsker’s Infomax principle.

Key words and phrases. Infomax principle, stochastic interaction, directed acyclic networks,

information geometry, random fields.



1 Introduction

The present paper is based on the hypothesis that neural networks are realizations
of complex systems in the sense that their elementary units (neurons) are strongly
interacting with each other, subject to constraints. The following challenging
statement by Chaitin encourages to speculate on the fundamental subject of

complexity from a very general point of view (2001, p. 97):

“Many years ago I used mutual information in an attempt to formulate a gen-
eral mathematical definition of life, to distinguish organized living matter from
ordinary matter. The idea was that the parts of a living organism are highly
correlated, highly interdependent, and have high mutual information. After all,
primordial quality of living beings is their tremendous complexity and interdepen-

dentness. I never got very far with this theory. Can you do better?”

Within the field of neural networks several complexity measures related to the
one by Chaitin (1979) have been proposed. Tononi, Sporns, and Edelman (1994)
introduced a measure for brain complexity that is intended to describe segrega-
tion and integration in the brain in terms of mutual information with respect to
all bipartitions. Jost (2000/2001) generalized it to the case of arbitrary partitions,
where higher order interactions among more than two subsystems are included. In
the present approach we formalize the preceding hypothesis by using a notion of

complexity based on the stochastic interaction among the elementary subsystems,



namely the neurons. It quantifies the stochastic interaction in a neural system
with respect to a joint probability distribution p in terms of the Kullback-Leibler
“distance” (Kullback & Leibler, 1951) of p from the set of all factorizable dis-
ributions. Amari (2001) discussed this measure from the information-geometric
point of view. He used the “Pythagorean Theorem” (Amari & Nagaoka, 2000,
p. 62f) to present a hierarchical decomposition of global stochastic interaction in
lower-order interactions. In our previous work (Ay, 2001a), we studied probability
distributions that maximize the global interaction without any constraints. The

present paper continues this work and applies it to the field of neural networks.

Experimental evidence for the optimization of information flow in neural sys-
tems is mainly provided on the local level in terms of the mutual information
between a neuron and its neighbours. Early experimental results by Laughlin
(1981) concerning the response characteristics of large monopolar cells (LMC)
in the visual system of the fly suggest that the local information transmission is
maximized in a neural system. A detailed discussion on this topic is presented in
the book by Rieke, Warland, Ruytervan Steveninck, and Bialek (1998). Linsker
(1986, 1988) pointed out that local optimization can be achieved by Hebb-like
learning. Hye convincingly demonstrated by computer simulations that this kind
of local learning leads to the emergence of receptive fields in feed-forward net-
works which are surprisingly similar to those observed in the visual pathway of the

cat and the monkey (Hubel & Wiesel, 1962, 1968). Motivated by the simulation



results, he formulated the principle of mazimum information preservation (Info-
maz) for unsupervised or self-organized learning in the field of neural networks. In
the present paper, we investigate the possibility of describing the optimization of
local information transmission in directed acyclic networks in terms of the global
interaction complexity.! Such a local-global compatibility would provide an at-
tractive way to formulate an invariant first principle for information processing

in neural systems based on our main hypothesis of strong global interaction.

The paper is organized as follows. Section 2 contains a brief introduction
into the setting of random fields on directed acyclic graphs. Section 3.1 formal-
izes the hypothesis of strong interaction and applies it to the situation of our
previous work (Ay, 2001a). Section 3.2 discusses the relation of our hypothesis
to the Linsker Infomax. Section 3.3 presents some locality properties of global
interaction in directed acyclic networks. Section 4.1 continues the discussion of
Linsker’s work in view of the results of our paper. We conclude the paper with
some problems and comments in Section 4.2. The Appendix contains the proofs

of the mathematical statements of the paper.

LA generalization of this approach to recurrent networks is in progress.



2 Preliminaries:

Random Fields on Directed Acyclic Graphs

We use the framework of random fields on directed acyclic networks which is

recalled in what follows (see Lauritzen, 1996; Cowell et al, 1999).

(i) Random fields: The set of all probability distributions on a non-empty
finite set 2 is denoted by P(Q2) C R?. The support of a probability distribution
p € P(Q) is defined as suppp := {w € Q : p(w) > 0}. The strictly positive
distributions P(2) have the maximal support €.

Let V be a finite set of neurons. To each neuron v € V we assign a finite set
Q, of states. For a subset A C V, the set of all configurations on A is given by
the product Q4 1= X,caQ,. If A =0, then Q4 consists of exactly one element,
namely the empty configuration e. The elements of P(£24) are the random fields
on A. One has the natural restriction X4 : Qu — Qu, (Wy),ep — Wa = (Wy)yeas

which induces the projection P(Qy) — P(24), p — pa, where p4 denotes the

image measure of p under the variable X 4.

(ii) Graphical structure: In the present paper we investigate random fields
that are compatible with directed acyclic graphs. Such graphs are considered
to be a general model for feed-forward neural networks. The set E of edges
(synapses) is a subset of the set V' x V of ordered pairs of neurons. The graph
N = (V, E) is called directed and acyclic iff for all sequences vy, ...,v, € V with
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(vg_1,vk) € E, k =1,...,n, the first neuron vy is different from the last neuron

v,. With each v € V', we associate the set
pa(v) := {weV : (w,v) € E}
of parents of v. We define the periphery of the graph N as
per(N) := {v eV : pa(v) = 0}.

It is non-empty if N is directed and acyclic. The complement V' \ per(V) of the

periphery is denoted by int(V).

(111) Combination of (i) and (ii): Now we introduce random fields on V' that
are compatible with the structure of a given directed and acyclic graph. First
of all, we assume that there is a probability distribution p? € ﬁ(Qper( N)) on the
network’s periphery that is independent from intrinsic properties of the system.
Furthermore we assume that for each neuron v € int(N) there is a local kernel

function
Ky Qpaq) % Q, — [0,1], (w, ) = K, (W' w),
with

Y K (Ww) =1,  forallwe Q).

UJ,EQU

The distribution p? and the family (K,) of kernels define the composed

vEint(N)

distribution

pw) = P Wper(w) [ Eolwslwpaw), — w€Qy. (1)

vEint(N)



We denote it by p? ® (®Ueim(N)Kv) and say that it is (N, p?)-adapted. Let K,
be the set of local kernel functions for the neuron v, and let K, be its subset of

strictly positive kernel functions. Then we have the composition map

75(98) X H ’av — ﬁ(QV)a (pa;Kv,v S int(N)) = pa ® (®v€int(N)Kv) .

vEint(N)
The image of this map is denoted by C(NV,p?). The elements of C(N,p?) are

exactly the (N, p?)-adapted probability distributions.

REMARK 2.1. In the present paper we use the term local with two different
meanings, which can be clearly distinguished from the context. The first meaning
refers to the definition of a local maximizer of a function. The second way to
use this term describes what is usually meant by local information flow or local
learning in a neural network, and therefore depends on the underlying network

structure.



3 Invariant Maximization of Interaction

3.1 The Formalization of the Hypothesis

As stated in the introduction, the present paper is based on the hypothesis that
neural networks are realizations of systems with strongly interacting units. Now

we formalize this approach using well-known information-theoretic quantities.

For two disjoint subsystems A, B C V, and a probability distribution p €

P(Qy), we define the entropy on A by

H,(A) = — Z p(Xa=w) Inp(X4 =w)

wEN A

and the conditional entropy on B given A, by

Hy(B|A) = — Y pXi=w,Xp=0u)InpXp=uw|Xs=w).

LUEQA, LUIEQB
The mutual information or transinformation of A and B is defined as
I,(A;B) == H,(A)+ H,(B) — H,(A4 B).

The (stochastic) interaction of the neurons in A is defined in a similar way:

I} =Y Hy(v) — Hy(A).

vEA

We have

VP = M+ 1P+ 1,(4; B). (2)



Without specifying the probability distribution p, we use the same notation for
the corresponding functions P(Qy) — R,. For example, H(A) denotes the

function p — H,(A).

In these definitions, we assume that learning in neural systems is driven by
mechanisms that maximize the stochastic interaction IV subject to constraints.
The formulation of this hypothesis does not require any specification of the
underlying constraints. For this reason, we call it the hypothesis of Invariant

Mazimization of Interaction (IMI).

The completely unconstrained maximization of IV leads to a strong reduction
of the number of possible configurations in the system. Ay (2001a) studied this

reduction and proved the following proposition.

PROPOSITION 3.1.  Let p be a local mazimizer of IV. Then the following

bound on the support of p holds:

[suppp| < 1+ (I] —1). (3)

veV

Thus, for binary neurons (i.e., |[2,| = 2 for all v € V') the number of configu-
rations is reduced from 2!V to at most [V'|+1. This is illustrated by the following

examples obtained from computer simulations.



ExaMPLE 3.2. Each Venn diagram in the Figures 1 and 2 represents a
probability distribution on the set of all atoms that are generated by the corre-
sponding events. The grey value of an atom is proportional to the probability
of the atom. “White” corresponds to the maximal probability in a given Venn
diagram. The diagrams on the left-hand side are initial distributions which in-
duce those on the right-hand side by unconstrained natural gradient flow (Amari,

1998) that optimizes the stochatic interaction.

Fia. 1.






In this paper we investigate the maximization of interaction with respect to
extrinsic and intrinsic constraints. The extrinsic constraint is modelled by a fixed
input distribution on the periphery of the system. We get a restriction of the
optimization to a convex subset of the set of probability distributions which is
discussed in Section 3.2. The specification of the internal structure of the system
restricts the optimization to a more complicated manifold which describes the

intrinsic constraints. We have to consider two aspects:

1. Specification of the network structure in terms of a graph;

2. Specification of the system parametrization that is compatible with the

network structure.

Intrinsic constraints are investigated in Section 3.3.

3.2 The Extrinsic Constraint and Linsker’s Infomax

Let O be a subset of the set V of neurons, called periphery of V, and p? be a
probability distribution on 5. By C(p?) we denote the convex set of probability

distributions ¢ on 2y that satisfy

((Xg=w) = p?’(Xp =w) forallw e Q.
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Using equation (2), we can split the global stochastic interaction in the following

way':
IV =19 4+ 1(0;V\9) + I (4)

Note that the first term on the right-hand side of equation (4) depends only
on the peripheral distribution p?. Therefore, it is constant on the set C(p°) of

distributions with d-marginal p?.
I = L(0;V\0) + I;Y\B + const, p € C(p?). (5)

Thus, the C(p®)-constrained optimization of interaction can be thought of as a

combination of two optimizations. The first one corresponds to
L(0;V\0) = Hy(V\0)— Hy(V\0|0) (6)

and is closely related to Linsker’s Infomax principle (Linsker 1988), which states
that learning processes in layered networks maximize the transinformation be-
tween the input and the output (we discuss Linsker’s work in Section 4.1). In
many models, this principle leads to a strong decorrelation of the output neurons
(Bell & Sejnowski, 1995; Obradovic & Deco, 1998). Therefore, it is considered
to be consistent with the concept of redundancy reduction by Attneave (1954)
and Barlow (1989). On the other hand, the internal integration of information
is based on functional dependences and correlations, so that the optimization
according to the Infomax priciple should be controlled by the maximization of
the redundancy of the output neurons (this has also been proposed by Barlow,

12



2001). Combining the Infomax term I,(0; V'\ 0) with the redundancy term Y
we end up with the optimization of the right-hand side of (5), which is equivalent
on C(p?) to the maximization of interaction.

So far we have compared the IMI hypothesis with Linsker’s Infomax principle
from the conceptual point of view. There is another way to compare these two

approaches. In order to do this, we use (5) to rewrite the global interaction on

C(p°):

o= (H(V\0) - H,(V\0[9)) + | 3 Hyw) = H(V\ )| + const

veEV\D

— Z H,(v) — H,(V\d|0) + const. (7)

veEV\D

Comparing (7) with (6), we observe that the main difference between the global
interaction and the transinformation on C(p?) is that the output entropy H,(V'\0)
in (6) is replaced by the sum }Z .\, Hp(v) of the individual “local” output
entropies. Under certain assumptions, the conditional entropy H,(V'\d|0) in (7)
also localizes and provides a way to define local learning rules for the optimization
of interaction. We study this nice locality property in Section 3.3. Furthermore,
we observe that both the Infomax and the IMI optimizations have the tendency
to produce input-output relations with low conditional entropy. The following
generalization of Proposition 3.1 gives us an estimate of the conditional entropy

with respect to a distribution that maximizes the interaction on C(p?).
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PrRoOPOSITION 3.3. Let O be a subset of V, and let p° be a probability
distribution on Qa. If p € P(Qy) is a local mazimizer of IV in the convex set

C(p°) of distributions with 0-marginal p°, then

0 < [suppp| —[suppp’| < Y (] - 1). 8)
veV\d

In particular, for binary neurons, inequality (8) implies
0 < [suppp|—[suppp’| < [V'\ 9.

Note that we recover the estimate (3) if we set @ := () in (8).

COROLLARY 3.4. In the situation of Proposition 3.3, for all w € supp p°?

[suppp(- | Xo =w)| < 14+ > (|]-1).
veEV\D

COROLLARY 3.5. In the situation of Proposition 3.3, the conditional entropy

of the internal state under the condition of the external state satisfies

Hy(V\0|0) < In|1+ > (1)

veEV\D

From Corollaries 3.4 and 3.5 we observe that the optimization of interaction
with a fixed input distribution leads to a nearly functional dependency between

14



the input and the output. Consider for example the binary case. Given an input
configuration on the periphery 0, there are in general 2!V\9 possible outputs.
According to Corollary 3.4, this maximal number is reduced to at most 1+|V'\ 9
configurations if we have a distribution that maximizes the interaction of the
neurons in the set C(p?). Thus, we have an exponential reduction of the possible
outputs. As stated in Corollary 3.5, the corresponding conditional entropy that
quantifies the uncertainty about the output, given the input, is bounded from

above by In (1 + |V '\ 9]).

3.3 The Intrinsic Constraints and the Locality of Learning

To motivate the main idea of this section, we consider the example where all
neurons except one, vy € V, are elements of the periphery: 0 = V' \ vy. In this

case, formula (4) becomes
IV = 17 + I(vy; V \ ). 9)

Furthermore, consider a peripheral distribution p? and the directed graph N =
(V, E), where E denotes the set of edges that go from the periphery to the neuron
vo, that is E = 0 x {vg}. Then (9) implies that all (N, p®)-adapted probability

distributions p (see Section 2 (iii)) satisfy

Iy = If + I,(vo; pa(vy)). (10)

15



This formula states that the optimization of the global interaction I" in the set of
(N, p?)-adapted distributions is equivalent to the optimization of the transinfor-
mation between the neuron vy and its parents pa(vy), and therefore also equivalent
to the optimization according to Linsker’s Infomax principle. In the field of neu-
ral networks the hypothesis that neurons optimize information about their local
environment is the subject of many theoretical and experimental investigations
(Laughlin, 1981; Rieke, Warland, Ruytervan Steveninck, and Bialek, 1998). On
the other hand, it is important to translate this hypothesis of local information
maximization into an optimization principle that corresponds to a globally de-
fined complexity measure (Tononi, Sporns, and Edelman, 1994). In the present
paper, we prove some locality properties of the IMI-optimization for directed
acyclic networks. The general theory, which also describes recurrent networks
and establishes the equivalence of the maximization of local interactions to the

maximization of global complexity, will be presented in another paper.
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Now we extend the representation (10) to more than one inernal neuron.

PROPOSITION 3.6. Let N = (V, E) be a directed and acyclic graph with pe-
riphery 0 = per(N), and let p° be a probability distribution on Qy. If a probability

distribution p is (N, p?)-adapted in the sense of Section 2 (iii), then

I = Ifa + I, (v; pa(v)).
(V)

vEint

Thus, the global stochastic interaction in a directed acyclic network N can be
expressed, up to a constant, as the sum of local interactions of the neurons with
their neighbours. In particular, this is the case in a multi-layer network without
any lateral connections within the individual layers. Therefore the optimization of
the local interactions in a directed acyclic graph is sufficient for the optimization
of the global interaction. This indicates the possibility of controlling learning
processes in terms of local interactions. This local-global connection can be easily
investigated in networks without any hidden part, which is the subject in what
follows. Networks of this type are called simple. More precisely, a directed acyclic
network N = (V, E) is simple if pa(v) C per(N) holds for all v € V. A simple
network consists of the two layers per(N) and int(N) = V' \ per(N) where all
connections go from per(NN) to int(N): E C per(N) xint(N). In particular, there
are no lateral connections inside each layer. In simple networks, the following
holds:

17



PROPOSITION 3.7. Let N = (V, E) be a simple network, and let p° be a
probability distribution on per(N), and let p be an (N, p®)-adapted distribution,
that is p € C(N,p°). Then p is a local mazimizer of IV in C(N,p?) if and only if p
is a local mazimizer of I(v; pa(v)) in C(N,p?) for allv € int(N). This statement

remains true if “local mazimizer” is replaced by “isolated local maximizer”.

Now we describe intrinsic constraints that are not only given by the network
structure but also by the specification of a model that is compatible with this
structure (see the comment on the specifications of intrinsic constraints at the
end of Section 3.1). Therefore, we consider a simple network N = (V, E) and
choose an arbitrary numbering int(N) = {vy,...,v,}. Furthermore, we assume
that there is a probability distribution p® on the periphery d = per(N) of N and
a family of parametrizations (embeddings) k, : ©, — K, , where O, is an open
subset of R% . The local parameters 679 i =1, ..., d,, determine the local kernel
of the neuron v,. For each " € ©,, the kernel function k,(A(")) is written as
(w,w') — k, (w’ | w, 9(”)). Using p° and this family of local parametrizations, we
define the global parametrization ¢ that assigns to each § = (8, ..., 00™) ¢
O :=[[~, ©, the composed probability distribution with

pw]0) = p”(wo) [] #r (wo, | wpan), 07)) . w € Q. (11)
r=1

Variational learning in neural networks corresponds to an optimizing stochas-

tic process in the parameter space that is usually derived from the gradient of

18



the corresponding utility function by adaptation to available information (non-
anticipation, locality). In the present paper, we do not derive such learning pro-
cesses. We investigate the local-global relation of stochastic interaction entirely
in terms of the natural gradient (Amari, 1998) and in this context also talk about
learning. The natural gradient of a function f on the image A of the parametriza-
tion ¢ is determined by the first fundamental form G := (g(r’i)(s7j))(r,i)(s,j) of the

Fisher metric with

Olngp,  Jlngp
g(r,i)(S,j)(G) = ]Elp(g) (39(”) (9) 50G7) (9)) , 0 € 0O.

The local coordinates of the natural gradient of f are given by
(G71V(fog0))(9), f €0,
where V denotes the canonical gradient in @), R" ¥R, d =" d,.
Note that in simple networks the functions
I (vispa(vy)) : 0= Ly (ve;pa(vy)) and  Hy(pa(v,) |v,) 1 0 — Hye (pa(v,) | v,)

do not depend on the non-local parameters 8(), s # 1. The corresponding local

functions ©, — R are denoted by I'*(v,; pa(v,)) and H'*(pa(v,) | v,).

19



THEOREM 3.8. Let N be a simple network, and let @ be a parametrization
of the form (11) with image N'. Then the coordinates of the natural gradient of
IV on N with respect to ¢ are split in a completely local way. More precisely,
the following holds: For all r, the matriz G, := (g(r,i)(r,j))i,j, depends only on the
local parameter vector 0, and

(Gy" VI (vy;pa(vy))) (01)
(GT'V(IVop))(0) =

(G;L1 vV [lee (vm; pa(vm))) (6(m))

(GT' VH™ (pa(vy) |v1)) (0D)

(G;ll V H'ee (pa(vm) |vm)) (6(m))

Informally, Theorem 3.8 can be stated as follows:
In simple networks, global learning according to the IMI hypothesis is equivalent to
the local learning according to a family of local potential functions: Each neuron

mazximizes the flow of information from its parents.

According to Theorem 3.8, in a simple network it is sufficient to compute
separately the gradients of the local information flows. The following example
discusses a specific parametrization of a simple network with a single output

neuron:

20



EXAMPLE 3.9. (SIMPLE PERCEPTRON) Consider the simple network N =
(V, E) with V' := {wvg, v1,v9,...,v,} and E := {vy,v9,...,v,} X {vg}. Obviously,
we have 0 := per(N) = pa(vg) and int(N) = {vy}. We assume that all neurons

are binary: Q, := {1}, v € V. The input distribution on {£1}? is denoted

by pa.

For each input w = (wy,...,w,) (we identify w; with w,, ), the neuron
vo computes the weighted sum of the input activities according to a vector # =

(6%, ...,0™) € R" of synaptic weights:

ho(w) = Zﬁi Wi, w € {+1}°.
i=1

Then it makes a transition to the state +1 with probability f(hs(w)), where
f: R —]0,1[ is the logistic function

1

r = f(x):= fpe—_

Thus, for § € R” we have the transition kernel k(- | -, #) defined by

k(+1|w,0) = (1+exp <—i0iwi>> :

This model implies the following parametrization
0: 0 — plwl|h) = p°(wy)k(w|wa,b).

After elementary calculations we get the first fundamental form
o A -
we{£1}?
and
oItoc (vo; 8) ) =
06 B
21



0 df Zae{ﬂ}a pa(O')f(hg(O'))
(W) w; — (hg(w)) | ho(w) —In
{Z} g (el S eany P0) (1= £ (hal@)))

(12)
Consider the functional that assigns to each random variable X : {£1}? —]0,1]

the modulated variable

X = X(1-X) (mli(X - m%)_ (13)

This modulation is illustrated in the following picture by the shape of the function

z—a(l—2) (In{s — o:

Fic. 4.

Applying the modulation (13) to the variable Xy := f o hy, (12) simplifies to

A1 (vo; 0)

a0 = Y Pw)wi Xp(w). (14)

we{£1}9

Thus, one can interprete this part of the gradient to be Hebb-like, where the

contribution of the output is not linear but appropriately modulated.
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4 Discussion

4.1 More on Linsker’s Work

In 1986 Linsker implemented a Hebb-like learning rule in a parametrized feed-
forward network which led to the emergence of receptive fields similar to those in
the early visual pathway of mammals (Hubel & Wiesel, 1962, 1968). In his de-
scription, Linsker considered separately the building blocks of the layered network

consisting of two neighbouring layers L and M:

©06000000

pa(v)

FiG. 5.

Linsker observed that the underlying Hebb-like learning is compatible with the

optimization of local information flow (Linsker, 1988, p. 112):

“For more general Hebb-type rules, we found that variance of the output ac-

tivity was mazrimized subject to various constraints. This result led us to suggest
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that, at least in an intuitive sense, a Hebb rule may act to generate an M cell
whose output activity preserves mazimum information about the input activities,

subject to constraints.”

This statement describes in an intuitive sense the optimization of the local
interaction of each M-neuron with its parents. According to Theorem 3.8, this
optimization can be thought to be driven by the IMI principle. Linsker postulated
the principle of mazimum information preservation (Infomaxz) which is different
from the IMI. According to Linsker’s Infomax, the mutual information I(L; M)
between the input layer L and the output layer M should be maximized. The
Infomax is obtained by induction from the observation that the local information

flow is maximized (Linsker, 1988, p. 113):

“The formulation of this principle arose from studying Hebb-type rules and
recognizing certain optimization properties to which they lead for single M cells.
Once formulated, however, the principle is independent of any particular local
algorithm, whether Hebb-related or otherwise, that may be found to implement

Zt ”

Linsker’s Infomax has been applied to several models, but one important
question remains open: Is this principle consistent? The phenomenologically
convincing optimization principle that Linsker started with is the [ocal one which

was implemented by Hebb-like learning rules. Is it possible to recover the local
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principle by applying the induced one to the original model? As stated above,
the IMI principle has this consistency for the presently considered building block

of two layers.

4.2 Some Problems and Comments

(i) Application to general layered networks: In order to apply the IMI optimiza-
tion to Linsker’s model systematically, instead of considering the two-layer build-
ing blocks separately, the feed-forward network should be analyzed as a whole.
This has only partially been done in the present paper (Proposition 3.6). In
particular, the derivation of learning rules in terms of locally adapted stochastic
processes that optimize the global stochastic interaction is necessary for estab-
lishing the strong local-global connection of interaction in general directed acyclic

networks.

(ii) Translation to a dynamical setting: An important property of the TMI
principle is its independence from any model specification. In particular, IMI
can be applied to arbitrary graphical structures within the setting of random
fields (directed, non-directed, or mixed in terms of chain graphs in the sense of
Lauritzen, 1996, and Cowell et al, 1999). Nevertheless, in order to develop a
dynamical theory of strongly interacting units we considered the temporal as-

pects of interaction (Ay, 2001b; Ay & Wennekers, 2001). The application of this
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dynamical approach to recurrent neural networks is in progress.

(iii) Preference for neural models: Starting with the hypothesis that neu-
ral networks are realizations of complex systems in the sense that the elementary
units are strongly interacting with each other, it should not only be assumed that
learning produces high complexity but also that evolution generates structural
and neurophysiological properties so that the production of high complexity be-
comes possible. Thus, there should be a preference for intrinsic constraints with
sufficient variability, such that learning according to the IMI hypothesis leads to
the strong interaction between neurons. On the other hand, too large variabil-
ity has a negative effect on the generalization ability of learning systems. This
leads to the question on the existence of low-dimensional neuro-manifolds that
are compatible with the IMI optimization. In connection with the unconstrained
optimization, we proved the following theorem (Theorem 3.5 of Ay, 2001a):
Consider n binary neurons, n > 8. Then there exists an exponential family &
of dimension less than or equal to n? such that all distributions with maximal
interaction of the neurons can be captured by E.

It is not known how to relate such exponential families to specific neural network
models. For instance, one can investigate the manifold of Boltzmann machines

with regard to its variability for the IMI optimization.
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5 Appendix: Proofs

PrOOF OF PROPOSITION 3.3. The lower bound is trivial. We prove the upper

bound. Define
R = {qeP() : go=p° q=p,forallveV\a} c c®’).

The set R can be considered as the intersection of () with an affine subspace

V of aff P(y) C R? that is given by

ro= |suppp’| =1+ > (|| —1)
veEV\D

linear equations. Of course, dimV < (|QV| — 1) — r. Consider the open face of

the simplex 75(QV)
P = {¢€P(Qy) : suppg=suppp}.
Then the set
S =VNP=RNP

is relatively open (i.e., S is open in aff §), and p € S. Furthermore, p locally
maximizes the strictly convex restriction I'V|g of the interaction IV to S. Thus,
p must be an extreme point of S, which is only possible if S = VNP = {p} .

This implies
YV naaff P = {p}. (15)
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Now we apply the dimension formula

> dimaff (V U aﬂ’P)

= dimV + (|suppp|—1) — dim (V N aff P)

1),

> (|| —1) =7+ [suppp| — 1.

This gives us the estimate (8). O

PROOF OF COROLLARY 3.4. Assume that there is an w € supp p? with

[suppp(- | Xo = w)| > 14+ > (|| 1).

veEV\D
Then
supppl = Y [suppp(-| Xy =w)]
wEsupppa
> (|suppp8| — 1) + |1+ Z (12 — 1)
veEV\D
This is a contradiction to the estimate (8). O

PrROOF OF COROLLARY 3.5. This follows directly from Corollary 3.4. O

PROOF OF PROPOSITION 3.6. We choose a numbering {vy, ..., v, } of int(N),
such that pa(vy) C per(N) W {vy,...,vp_1} for all k = 1,...,m. This is always
possible for directed acyclic graphs. Then, with the chain rule for the entropy
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(Cover & Thomas, 1991, p. 21) and the Markov property of p with respect to N

(Cowell et al, 1999, p. 74: Theorem 5.14) we get

H,(V) = Hyp(0)+ Hy(vy |0) + -+ Hy(vm | 0, v1,. .., Um—1)

= Hyp(0)+ Hy(vi | pa(vi)) + -+ + Hy(vm | palvm)).

This implies

I = ZH — H,(V)
- (Z Hpa(v)—Hpa(a)> + Z(Hp(vi)—Hp(vz-lpa(vi)))
= 3 Z »(v; pa(v
veint(N)

PROOF OF PROPOSITION 3.7. We prove this statement by using Proposition
3.6. If p is a local maximizer of I (v;pa(v)) for all v € int(NN) then it also locally
maximizes the global interaction I' in the set of (N, p?)-adapted distributions.
Thus, we have only to prove the opposite implication. Let p = p°® (®w€im(N)Kw)
be a local maximizer of I' in the set of (N, p?)-adapted distributions and assume
that there exists a neuron v € int(N) such that p is not a local maximizer of
I(v; pa(v)). Then there exist neighbourhoods U, of K,, in K,, with the following
properties (i) and (ii):

(i) For all K/, € U,,, w € int(N), with p? ® (@uein(v)K},) 7 p one has

\%4 \%4
[pa®(®weint(N)K1’u) < . (16)
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(ii) There exists a kernel K| € U,, K, # K,, such that
Iq(v;pa(v)) > Ip(v; pa(v)), (17)
with
¢ =p°® (®w€uljt;ng)K ® K’)

Note that for ¢ and w € int(N), w # v, the following holds:
I (w;pa(w)) = I,(w;pa(w)). (18)

We choose a kernel K that satisfies (17). Applying Proposition 3.6, we get the

following contradiction to (16):

I;/ I‘9 + Z w ; pa(w ) + Iq(v;pa(v))

w€1nt(N)

(17)’(18) Ia _|_ Z w pa ) + IP(U;pa(U))

wEint(N)
w#v

.
.

The second statement of Proposition 3.7 concerning the “isolated local maximiz-
ers” can be proven in the same way. Here, one has to replace in (16) “<” by “<”

and in (17) “>” by “>". O
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In order to prove Theorem 3.8 we need the following lemma:

LEMMA 5.1. Let N be a simple network, and let ¢ be a parametrization of

the form (11). Then for each r, the matiz G, = (g(r,i)(,ﬂ,j)) _only depends on the

(]

local parameter vector 8, and the first fundamental form of the Fisher metric

15 given by

Proor. With the score function

D) = Tl e
one has
9(r)(s.0)(0)
_ %;V o] 6y 210 E (?g (T;)pa(w), ) (g 2 1nk (cgg(sljpa(us), ) (6¢)).
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We consider the case r # s:

= Z p°(wo) H ke(wo, |wpager), 0')
weNy t';zls

oy 0 Inky(wo, | Wpagw,)s ©) e
.<kr(wu,|wpa(vr>,9“) L) >)>.

o 0 Inkg (W, | Woas),©) s
'<k5(%s [par 0) ae(mp( (0 ))>

= ZP Wa Hktwvt|wpavt )

wey t;ér s
0 kr(wo, | Wpago,), *) (r) 0 ks (wy, | wpa(v,): *) ()
D) g Dl i

9 0
o 00 | 90(s:9)
(ve)>» ® )" u)pa‘(vs);')} }
weNy t=1 9(s) ) p(r)

Z p Wa H (wvt |wpa V) 0 ! )kr(wvr u)pa,(vr) )ks(wvs

t#r,s
N o
Vs

=1

= 0.

It remains to prove that g ;. ;) is a function of the local parameter vector o)

Iy (0) = Z P’ (wo Hkt Wo, | Wpa(ur) ) '

weNy
0 1n kr(ww | Wpa(vy)» *) (00 0 In ky (wy, | Wpa(ur): )
’ 09(r) 00(r3)

= z pa z k |wpa (vr) 0(7")) .

wENy W' EQy,,
8 ln kr(wl | wpa(vr); ) (9(7.)) a ln kr(u), | wpa(w), )
o 008 00(:3)

= G (07).
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PRrROOF OF THEOREM 3.8. According to Proposition 3.6 we have

IVop = I§a+21loc(vr;pa(v,))

r=1

= I;?a + i (Hpa (pa(vr)) — Hl"c(pa(vr) |vr)).

Therefore,
oIV o ) oI (vr; pa(vy)) oy 0 H"(pa(v,) | v,) ")
00(rsi) (9) - 90(rsi) (9 ) - 90(rsi) (9 )

With Lemma 5.1, this completes the proof.
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