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Abstract

We study the multiple scale problem of a parametrized planar 180°
rotation of magnetization states in a thin ferromagnetic film. In an
appropriate scaling and when the film thickness is comparable to the
Bloch line width the underlying variational principle has the form

Q@ ”mHi{l + ”U”; + <U‘SQ‘U> — min
m = (u,v) :R—>S" with u(0) =1

where the reduced strayfield operator Sg approximates (—A)'Y/? as
the quality factor @ tends to zero. We show that the associated Néel
wall profile u exhibits a very long logarithmic tail. The proof relies
on limiting elliptic regularity methods on the basis of the associated
Euler-Lagrange equation and symmetrization arguments on the basis
of the variational principle. Finally we study the renormalized limit
behaviour as () tends to zero.
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Introduction

Ferromagnetic materials show a complex variety of magnetic patterns, which
involve many different length scales, see e.g. [6], [3]. Despite their multitude
these patterns can often be understood through minimization of a simple
energy functional, the micromagnetic energy. For a ferromagnetic body
occupying a domain  C R? and in the absence of external fields it is given
b

y
w2/ |Vm|2—|—Q/ Lp(m)—l—/ |H(m)> for m:Q — S%
Q Q R3

The Dirichlet part, the so called exchange part, comes from the quantum
mechanical spin interaction. The function ¢ : S — [0, 00) is an even poly-
nomial and models crystalline anisotropy. Finally H(m) : R? — R? is up
to the sign the induced magnetostatic field, sometimes called the strayfield.
In fact H(m) is the Helmholtz projection onto gradient fields of the mag-
netization field extended by 0 outside the ferromagnetic body. Formally it
is given by H(m) = VA~V - m. In particular this nonlocal term vanishes
if V-m = 0 in the distributional sense. There are two material parame-
ters involved. The first is the quality factor ¢) > 0 which characterizes the
strength of the anisotropy relative to the magnetostatic energy. The second
is the exchange length w > 0 which measures (for fixed spatial units) the
strength of the exchange energy relative the magnetostatic energy. The ratio
w/+/Q defines the characteristic length scale of the Bloch wall transition to
be introduced below.

A typical feature of minimizers of this energy is that they contain large



regions in which the magnetization changes slowly, the so called magnetic
domains, separated by thin transition layers, known as domain walls. The
simplest among them are 180° walls separating two domains of opposite di-
rection. If a domain wall is considered to be plane and one-dimensional,
there are two prototypical transition modes:

e The Bloch wall ' where the transition proceeds perpendicular to the
transition axis, is observed in bulk materials. The main feature is the
avoidance of magnetic volume charges, i.e. V-m = 0 . It was first
proposed and calculated by Landau and Lifshitz.

e The Néel wall 2 where the transition proceeds entirely in the plane
spanned by the transition axis and the endstates, is observed in a
suitable thin film regime due to the high penalty on out of plane mag-
netizations, see [4]. In contrast to the Bloch wall transition, volume
charges have to be taken into account.

The domain wall can be described in both cases by the nontrivial component
function which vanishes at the end states, the wall profile. In an infinitely

extended material the Bloch wall can be computed explicitly. After a change
Ve

of variable z — Y

zation becomes

z the reduced variational principle for the 1d magneti-

E(m) = [ml%, + lul72 — min

m = (u,v) : R — St with w(0) = 1.

and the resulting Euler-Lagrange equations can be solved, see [6]. The pro-
file exhibits exponential decay beyond a transition zone of order unity. The
situation for Néel walls is more complicated due to the contribution of the
magnetostatic strayfield to the transition energy. The presence of three en-
ergy components with different scaling behaviour does not allow for a family
of profiles which is generated by rescaling the transition parameter of a ref-
erence profile.

Instead of an infinite bulk material we consider an infinite ferromagnetic
layer of thickness ¢ which we assume to be smaller than or at most compa-
rable to the exchange length w. Rescaling z — %x we can eliminate one
parameter by introducing the dimensionless aspect ratio K = w/§ > 1. Then

'named after Felix Bloch (1905-1983) who first conceived a continuous wall transition.
“named after Louis Néel (1904-2000) who first proposed an in-plane transition for
domain walls in thin films.



the reduced variational principle becomes

E5(m) = 12 Q [ml[3 + [lu][7. + (u[Sq|u) — min (0.1)
m = (u,v) : R = S' with (0) =1

where the reduced strayfield operator Sg approximates (—A)l/ 2 as the qual-
ity factor @ tends to zero (see below for a more detailed description). Our
goal is to find a universal profile together with an outer scaling law which
approximates the Néel wall transition beyond a core region as () tends to
7€ero.

The main analytical feature of the variational problem (0.1) is that the en-
ergy gives only uniform control of the H/2-norm as Q tends to zero. Since
H'?(R) does not embed into C°(R), the pointwise constraint u(0) = 1
is delicate and one might expect a logarithmic singularity in a renormal-
ized setting. Logarithmic tails of Néel walls have indeed been predicted by
heuristic arguments and the resulting very long range interaction between
different Néel walls has important consequences, see [6] pp. 242-245 and [8].
Logarithmic scaling for the energy was recently established in [2]. Here we
prove for the first time that the full profile exhibits a logarithmic behaviour.
More precisely we show:

(i) A Néel wall profile is nonnegative and symmetrically decreasing.

(ii) A Néel wall profile has logarithmic decay on the scale 6/Q:

ug(z) <c i/r\l/(fﬁg log(1/z) for Q <z <1/e

(iii) After a suitable renormalization the rescaled profiles converge to a
multiple of the fundamental solution of the operator (—A)'/2 + 1 as
Q tends to zero.

We briefly discuss the main ideas and outline the proof. We consider the
variational principle (0.1) as a singular perturbation problem with @ as
the small parameter. We control the profile uniformly in H'/2(R) by the
energy and in L*°(R) by the saturation condition |m| = 1. The first step
is to establish monotonicity which provides the link between mean values
and the pointwise behaviour. In this context the nonlocal character of the
energy enforces global symmetry of the profile. The main part is to derive
LP-bounds in terms of the energy. Since H'/2(R) does not embed into L>°(RR)
such bounds necessarily diverge as p tends to infinity and it will be crucial
to keep track of the precise dependence on p. Optimizing the choice of p



for a given point = we formally obtain the logarithmic decay. The bounds
suggest to renormalize Néel wall profiles by the energy and to study their
limit behaviour as () tends to zero.

1 Mathematical framework for Néel walls

1.1 Mathematical notations and conventions

In these notes we consider mainly scalar functions v : R — R of a real
variable z. We denote by v’ = ‘j—g the first derivative. In analogy to higher
dimensions and in regard to our usage of Fourier multipliers we denote the
second derivative by the Laplace operator symbol A = d?/dx?. The integral
symbol [ with no specifications means integration over the whole real line.
We denote by G(R) the Schwartz class of rapidly decreasing smooth func-
tions and for an open subset 2 C R we indicate by ©(Q) the class of smooth
functions which are compactly supported in Q. &'(R) and ©'(Q2) are re-
spectively their topological duals, the tempered and Schwartz distributions.
Concerning the Fourier transform we make the convention that for f € G(R)

FFE) = f(€) = %2_” / e~ f(z) di € S(R)

with the usual extension to tempered distributions and in particular to a

unitary operation on L%(R). Note that Parseval’s formula ||f||;> = || f|l.2
holds without additional constants. We denote the inverse Fourier transform
by F*.

For a locally bounded function o € C*(R \ {0}) with at most polynomial
growth at infinity let the Fourier multiplication operator S associated to the
symbol (Fourier multiplier) S = o be given by

Sf=0D)f=F(E— o) f(€) eS'[R) for fe&(R).

For 1 < p < 0o and s € R the fractional Sobolev spaces (or Bessel potential
spaces) are defined as follows, see e.g. [1] or [10]

H(R) = {ue &'(R)|(1 — A)/*u e L’(R)},

where for f € &(R) the function (1 — A)$/2f € G(R) is given in frequency
space by (1+[£]2)%/2f(£) and the action of (1 — A)*/? on a tempered distri-
bution v € &'(R) is defined by duality. For the Hilbert space case p = 2 we



omit the index p for convenience. In the regime s > 0 the dot signifys the
homogeneous Sobolev norm

ol e = [[(=2)*"ul] 1 = [[lE[* ()] .-

The notation carries over to vectorfields m : R — R? by means of the
Euclidian norm. In particular we denote the Dirichlet energy consistently
b
Y 2 2
Il = NI

The term saturated is common in mathematical micromagnetics to signify
vectorfields of constant modulus 1.

1.2 Dimensional reduction and scaling

We consider an infinite uniaxial ferromagnetic layer Q5 = R? x (—4,6) of
small thickness. Recall that the micromagnetic energy density in the absence
of external fields associated to some magnetization field m : Q5 — S?is given
by

w? [Vm[* +Q ¢(m) + |H(m)|*.

A parametrized in-plane rotation from m(—oo) to m(oo) is described by a
reduced magnetization field m : R — S! having in-plane components (u,v)
which only depend on the x variable. Then integration of the resulting
energy density over the whole space is clearly infinite. To find an appro-
priate renormalization we first consider the magnetostatic part. Here the
geometry of the thin film configuration has an impact in terms of the film
diameter due to the jump of the extended magnetization field at the bound-
ary. Note that after continuation of m by zero outside the strip we have
that H(m) = VA~'V - m. So if inside the strip m = (u,v,0) only depends
on the first variable then for fixed § > 0 the magnetostatic field #(m) is
completely determined by the first component function u. Furthermore its
second component vanishes, i.e. the vectorfield H(m) lives on the cutting
plane along the transition axis, and there is no dependence on the y variable.
We define the reduced strayfield operator

1 1)
S§ZU|—>S][H(m)'é1dZ
—0

for any saturated in-plane extension m = (u,v,0) of the profile u. The

appearance of the additional factor % in our definition will become clear



when we study the scaling properties of Ss. In fact the bilinear form <u‘85 ‘u>
is scaling invariant in the sense that for uy(z) = u(Ax) we have that

<u,\‘8(>\715) ‘u/\> = <u‘85‘u>

Then by careful integration by parts (see section 5.2 in the Appendix) it is
easy to see that a sensibly averaged description of the magnetostatic energy
contribution is given by

00 00 oo [0
2—15 / / |H(m)|? dz dz = / ][ m - H(m) dz dz = § (u|Ss|u)
—o0 J —o0 —o00J —§

The strayfield operator S; is a Fourier multiplication operator. One finds
that the operator Sy is given by the self-similarly rescaled symbol o5(¢) =
$0(8¢) where the function o : R — R reads like
1 —exp(—2[¢£ &l for small &
o) 1 Lo [l
2/¢| 1 for large &.

The derivation of the symbol is done in section 5.2 in the Appendix. For
the local components of the energy density, which only depend on the z
variable, averaging along the y and z axis inside the strip is redundant. An
appropriate description according to the one for the induced field energy is
achieved by integration along the transition axis. Summing up all energy
components, when we assume that for m = (u,v,0) the anisotropy term can
be expressed by ¢(m) = |u|?, yields the following variational principle

Fou(m) =w? |mll3, +Q llullfs + 6 (u|Ss|u) (1.1)
m = (u,v) : R —S' with w(0) =1

where we imposed the constraint that a 90° rotation is achieved at the
origin in order to get rid of the translation invariance of the profile and to
exclude trivial solutions. The functional has the dimension of length due to
integration.

In order to put this variational principle into a nondimensional framework
we rescale the transition parameter. We distinguish between the thin film
situation where the diameter § is comparable or smaller than the exchange
length w and the counterpart, i.e. the bulk situation. More specifically we

rescale
T — max <Q, Q) z
w9



We introduce the aspect ratio x = 7§ and distinguish between the regimes

k > 1and 0 < k < 1. In the thin film scaling the competition between
the anisotropy and the induced field is emphasized whereas the bulk scaling
is reminiscent of the Bloch wall scaling. Nevertheless there is always an
interplay between the exchange and the induced field part competing with
anisotropy. Then for large xk > 1 after a further renormalization by § the
variational principle turns into the following form for rescaled magnetization

fields m
EH(m) = K2 Q HmHZl + HuHi2 + <u‘SQ‘u> — min (1.2)
m = (u,v) : R = S' with u(0)=1.

Remember that the Fourier multiplication operator Sg is given by the
Fourier symbol o0g(£) which approaches the function { — [£| as @ tends
to zero. Therefore the family Sg interpolates between zero and first order
operators. Note that each appearing quantity is now dimensionless.

In the same manner we get in the regime 0 < x < 1 after renormalization
by w for rescaled magnetization fields m the following variational principle

E5m) = QI + a7, + (alss|a) — min (1.3)
m = (4,7) : R — St with @(0) = 1.

Here the aspect ratio 0 < x < 1 is attached to the strayfield operator 85
which is given by the symbol ¢ (£/k).

Note that we did the renormalizations the way that inf £/ inf 5’5 = Kk where
the infima are taken over the set M of (saturated) magnetization fields with
one point constraints at zero. We call the first component functions u and
@ of a solution of either of the above variational principles a (rescaled) Néel
wall profile.

1.3 A model problem related to Néel walls

To discuss some key ideas in our analysis we first consider a linear singular
perturbation problem which is closely related to the analysis of Néel profiles.
Note that the highest order term in the induced field energy corresponds
to the square of the homogeneous H'/2-norm. Furthermore we relax the
saturation constraint |m| = 1 which agrees with the assumption that the
second field component vanishes. Finally we get

T-(u) = ellullfy + lullF + llull?2 — min
u:R—R with u(0)=1



where £ > 0 corresponds to 2 Q. This variational problem is well posed
for each £ > 0 due to H'-coercivity and the resulting a priori continuity of
a minimizer. Note that there is no solution for ¢ = 0: due to the scaling
invariance of the homogeneous H'/2-norm each minimizing sequence tends
to zero in L?(R). The operator associated with the quadratic form Z, is the
singular perturbed elliptic operator

L.=¢e(=A)+(-A)2 41

with Fourier symbol given by P.(§) = ¢ |¢|? + |€| + 1. Note that the symbol
1/P-(€) of the inverse operator belongs to L!(R), but the norm explodes
as ¢ tends to zero. In fact [ %é) ~ log(1/e) which turns out to be the
inverse minimal energy. Now a minimizer u. solves the following linear

Euler-Lagrange equation
L.u. = A(e) & in D'(R) (1.4)
A(e) = inf (Z:(u) , uw(0) =1).

Using Fourier transform the minimizing profile u. can be calculated explic-
itly. Careful expansions suggest a division into three regions: the core region
e-close to the origin where u(z) ~ 1, the tail region up to |z| ~ 1 with log-
arithmic decay like u(z) ~ log(1/|z|)/log(1/¢), and the far tail for large |z|
with algebraic decay. Nevertheless in view of more complicated nonlinear
situations as the one we are going to study in these notes, we present a
technique of getting an idea of the actual shape and parameter dependence
of a minimizer by elliptic regularity theory. We have that

-1
belie =49 ([ 5g) ~m 0 09

so energetics imply that u. tends to zero in H'/?(R) as ¢ tends to zero with
a bound proportional to square root of the energy. But the computation of
the actual energy parts shows that there is no equipartition: the L?-norm
tends to zero twice as fast as the rest, i.e. with a bound proportional to the
energy. Actually by a simple elliptic regularity argument (compare Lemma
3.2) each LP-norm for p > 2 is bounded by the energy and the control fades

linearly in p. Moreover for each 1 < ¢ < 2 the H,}/ ?_norm has a bound
which is proportional to the energy. Nonnegativity of the solution can be
shown by means of symmetrization and implies an L'-bound of the solution
by integrating the equation (compare Proposition 1 in section 2.3 and the
arguments in section 3.3). Finally we arrive at an estimate of the form

luellrr < cA(e) p foreach p>1



for some universal constant ¢ > 0 independent of p and €. Now the link to
a pointwise estimate is given by the monotonicity of a minimizer for z > 0
which can be shown by some symmetrization procedure as in the proof of
Proposition 1 in section 2.3. Clearly u.(z) < + u. for 2 > 0. Then by
Holder’s inequality the LP-estimate provide, as in the proof of the decay
estimate in section 4.1, with an optimal choice of p = p(z) the desired
estimate

0 <us(z) <cA(e) log(l/z) for 0<z<1/e

for some universal constant ¢ > 0 independent of ¢ > 0.
To derive some reasonable limit problem we introduce the renormalized pro-
files

U.=Ae) lu, € H;/Q(R) foreach 1<qg<2.

We choose some weakly converging sequence as € tends to zero with weak
limit Uy € Hy \ ?(R). Combining equation (1.4) with the logarithmic energy
bound (1.5) it is easy to see that Uy agrees with the fundamental solution
G of the operator (—A)Y/2 + 1. Each sequence must furthermore converge
strongly in L} (R) for each 1 < p < co. Therefore we obtain that

ue () = A(e) {G(x) + Rg(m)}

where R, converges to zero in measure on each bounded zero neighbourhood.
The fundamental solution G for the operator (—A)'/2 + 1 is clearly given
by the even Fourier transform (Cosine transform) of the symbol 1/(|£| + 1)
of the inverse operator (see e.g. [11] p. 191) and reads as follows

G(g;):m”/ —COStd Si“/ Sl—ntdt for z>0.
€T T €T

™

Furthermore by the expansion for the sine and cosine integrals (see e.g. [11]
p.126) the following asymptotic holds true

Glz) = 1{log(| |> 7}4—7"(36) as |z] =0

where r(z) = O(z) is nonnegative and v ~ 0.577 denotes Euler’s constant.
In combination with the following refined energy asymptotics

A(e) = inf (Z.(u) , u(0) = 1) = (1+0(e))

(1/ £)
(compare section 4.2) we recover a logarithmic tail beyond a core region of
order ¢ close to the origin.

10



2 Associated Operators and Shape of a Néel wall

2.1 Euler-Lagrange equations of Néel wall type

The starting point of our considerations is the derivation of Euler-Lagrange
equations associated to variational principles for Néel walls (0.1). Paying at-
tention to the boundedness and coercivity properties of the Néel wall energy,
we will derive Euler-Lagrange equations for variational problems having a
saturation constraint and a one point constraint in combination.

We consider bounded vectorfields m = (u,v) : R — R? with m' € L?(R;R?)
and u € L?(R). These fields form a Banach space X equipped with the
norm

lmllx = llm/ll g1 + llull 2 + fJollze-

Clearly both component spaces H'(R) and H' N L*®°(R) are multiplication
algebras by means of the product rule and the Sobolev embedding. Let
€ : X — R be any continuously differentiable functional. We consider

E(m) = min for m = (u,v):R>R> € X (2.1)
with |m| =1 and wu(0)=1.
To encode the saturation condition |m| =1 we introduce the smooth map
G1: X = H'NL®(R) defined by G(m)= % (Im|* — 1)
and for the one point constraint we introduce the bounded affine functional

Go : X — R defined by Ga(m) = u(0) — 1.

We need to check the nondegeneracy of G; and Gy in the sense that for a
solution m = (u,v) € X of the variational problem (2.1) the linear maps

dGi(m): X3¢ —m-¢ € H N LP(R),

dGo(m) : X 5¢ — ¢(0)-é1 €R

are surjective. But for each function f € H' N L*®(R) the field ¢ = fm
belongs to X and solves f = m - ¢ by the fact that |m| = 1. The nondegen-
eracy of Gy is obvious. According to the Lagrange multiplier rule as given in
[12] a solution m € X of the variational problem (2.1) solves the following
Euler-Lagrange equation

dS(m) =AdG; (m) + A dgg(m) in X' (2.2)

11



. /
for some distribution A € (H 'n L°°(]R)> and some number A € R. It is

clear that the saturation condition |m| = 1 and the one point constraint
u(0) = 1 are related. The functional equation (2.2) admits the form

The next step is to compute A. We multiply equation (2.3) by m, where for
a vectorial distribution 7' € X' and a vectorfield m € X the product is well
defined by (T - m, ¢) = (T,m ¢) for each ¢ € G(R). Using the saturation
condition |m| =1 we find the relation A = d€(m) - m — A dy . Substituting
this back into equation (2.3) gives

dé’(m) :dﬁ(m)m@)m—)\égm—l—)\dgél

and talking into account that m(0) = é; the last two terms on the right
hand side cancel. Thus we proved:

Lemma 2.1 (Euler-Lagrange equations). Given a functional £ : X —
R which is supposed to be continuously differentiable. Furthermore suppose
that the vectorfield m = (u,v) : R — R? is a minimizer in X subject to the
constraints that |m| =1 and u(0) = 1. Then m solves the equation

dé(m) =dE(m)mem in X'

The lemma covers the the variational principle for Néel walls (0.1). A con-
sequence of the saturation condition |m| = 1 is the following distributional
identity

(—Am-m)m=|m/|’m for me X.

Hence we obtain the following quasilinear system

K2 Q (—A)m + (Sgu) + <g> ={*Qm'|* + |u> + uSqu} m.

The projection onto the first component equation yields the Euler-Lagrange
equation for a Néel wall profile

K2 Q(—A)u+ Squ+u={k*Q|m|* + |[u]® + uSqu} u (2.4)

which holds true in H~!(R). Since by the saturation condition there holds
|m'|? = |u'|?/(1 — u?), the right hand side is completely determined by w.

12



2.2 Fourier representation and ellipticity properties

The following easy observations are crucial for all the subsequent estimates,
which are achieved by solving linear equations (which are essentially ellip-
tic of first order) and by asymptotic Sobolev embeddings. Recall that the
Fourier symbol of the operator Sg reads like

1 — exp(—2Q¢])
2Q¢]

1

FSol€) =00(6) = 5 (1 -

) ie ool6) = 5o(@e)

- Q

The underlying scaling law, i.e. rescaling of the function followed be multi-
plication with the inverse scaling parameter, produces a family of self-similar
functions which blow up as the scaling parameter decreases. To understand
the operator Sg we collect some particular properties of the function o(¢),
which imply important properties of the symbol FSg. First of all there
holds

0<o(¢) = (1 - %W) <1, (2.5)
110" (©)] = |1 = exp(=2[¢]) - o(€)]. (2.6)

Expanding the exponential we see that o(¢) = |¢] + O (¢|?) which can be
sharpened for small ¢ by estimating higher order terms, namely

1
3 min {|¢],1} < o(£) <min{[¢[,1} for each ¢ € R, (2.7)
o(&) + €] > |¢| foreach ¢ €R (2.8)
By the expansion for the function o and scaling rule we see that the symbols
aq(€) = €] + Q- O(I¢)

converge pointwise to |£| as @ tends to zero and each function og could be
described as the function ¢ — |¢| truncated at the level 1/Q. We conclude
the following boundedness and convergence result for the operators Sg and
the corresponding quadratic form as the quality factor ) tends to zero.

Lemma 2.2. The following inequalities hold for each Q@ > 0
(ulSqlu) < llullfye and ||Squllre < llull

and following asymptotics hold true as Q) tends to zero:

13



(i) (u|Sqlu) converges to ||uH?t-Il/2 for each u € H'/?(R).

(ii) SqUq converges to (—A)Y/2Uy in the sense of distributions
for each sequence (Ug) which converges weakly in L*(R) to Uy.

Proof. Note that by the upper bound in (2.7) there holds 0 < o¢(§) < [¢]
for all £ € R. Hence

(ulSqlu) = /UQ(&) [a(¢)|* dé < / €] (€)1 d€ = IlullF -

The pointwise convergence o (£)]a(€)]? — |¢]|a(£)]? for almost every & €

R implies in addition the convergence of the quadratic form by majorized
convergence. Similarly

ISqullz = /05(6) [a(€)[* dé < / €1 a(€)]” dg = llull.-

Clearly Sg¢ converges to (—A)'/2¢ in L?(R) for each ¢ € G(R) by majorized
convergence in frequency space and Planchrel’s theorem. Hence

($|So|Uqg) = (¢|(=A)Y?|Up) for each ¢ € G(R)
proving claim (ii). O

We introduce the second order Fourier multiplication operators which are
associated to the Euler-Lagrange equation for the Néel wall profile (2.4): in
the thin film regime for x > 1 we define

H=Qr (-A)+Sg+1

with Fourier symbol given by P§(£) = K2 Q&% 4+ 0g(€) + 1 and in the bulk
regime for 0 < k < 1 we define

CH=0Q (—A)+85+1

with Fourier symbol ]55(5) = Q& + 0o (¢/k) + 1. Now the important
observation is that both operators considered in their proper parameter
regimes share the same ellipticity properties. By the estimate (2.8) in both
cases the exchange part compensates as the induced field part saturates.
In the following we will restrict ourselves to the regime x > 1. The other
regime 0 < x < 1 can be treated analogously.

14



Lemma 2.3. The operators [6 are elliptic of first order and the ellipticity
is uniform in Q >0 and £ > 1, i.e. for the symbol Pj(§) we have

€] +1 < PG(E) for each Q@ >0 and k> 1.

Furthermore there is a universal constant ¢ > 0 such that

(P5)'(¢)
P5(©)

gi for each k>1 and @Q > 0.

Remark 2.1. In the bulk regime 0 < k <1 the analog assertion holds true
for the corresponding operator L for all @ > 0.

Proof. The first statement is a direct consequence of (2.8) writing
1
Q
For the second statement note that by (2.6) and (2.7) we have that

1 — exp(—2Q¥¢)
o(Q¢)

P56 = 5 {(Q9? +o(Qe)} +1> gl +1.

Q€ 10'(Q8)| < 0(QE) (1 T ) <ca(QE)

but then we see that

og(§) A d(Q¢) ‘ c q (Pg),(f) 2 og(§) <
70 (®) ‘ “Cle@o ST M @ | TE T ee©) ST
for a constant which is independent of the parameters. O

Lemma 2.4. The operators (ﬁa) “are uniformly regularizing of order one,
that is they are bounded as

(E?g)_l : Hj(R) — HSH(R) for each s €R and 1<qg< oo
where the bounds only depend on q.

Proof. We write the inverse operator in the following form

(c8) ' ={a—-a)2(ce) - a7

Since (1—-A)~1/2: Hi(R) — HH(R) is bounded we only need to check (pa-

rameter independent) L?-boundedness of the remainder (1 — A)1/2 (55)71.
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By Lemma 2.3 its Fourier multiplier (1+£2)'/2/ P§(€) is uniformly bounded
by 1 independently of the parameters. Furthermore it is smooth away from
the origin and its derivative is bounded by

(P5)'(¢)

Pg(ﬁ) + <] < £ for each E#0

14&2 ~ I

where the constant ¢ > 0 is independent of the parameters. We conclude by
the multiplier theorem (see e.g. [10] p. 96) that the corresponding operator
(1—A)/2 (E’Zg)*l is bounded on LI(R) for each 1 < g < oc. O

2.3 Kernel representation and rearrangement properties

Qualitative properties like symmetry, monotonicity and positivity are easier
seen in real space representations of operators and functions. Computation
of the inverse Fourier transform yields the convolution kernel representation
of the operator Sg

SQu:%(50—ICQ)*u:%(u—ICQ*u).

Explicitly we have the following kernel function which can be found e.g. in
[2] and [8]

1 4 1 T
K(z)=—1 1+ —= K ==K|=].
(z) ypm og( + x2> ; Q(z) 0 <Q>
It is positive and absolutely integrable with [ K dz = 1. The kernel repre-

sentation of the operator leads to the following kernel representation for the
reduced strayfield energy

<u ‘SQ‘ u> = % /uQ(w) — u(x)/ICQ(w —y) u(y) dydz  (2.9)
1 2
= 30 //ICQ(QU —y) (u(z) —uly))” dedy. (2.10)

From the last formula we can read off a density function for the magneto-
static energy in real space

1 2
olul(@) = 55 [ Kalw—v) (ule) ~u(w)’dy.  (211)
Using (2.10) it follows readily a multiplication inequality.
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Lemma 2.5. There holds for each pair of functions u,$ € L? N L= (R)

1
5 (ud|Salud) <llellz= (u|Sq|u) + lullz~ (¢|Sal$)-

In particular we have <u2‘SQ‘u2> < 4|ul?e <u‘SQ‘u>

Remark 2.2. Since ||a| — |b|| < |a —b| and the kernel function K is non-
negative we immediately see by (2.10) that

(1] 1) < u|ol )

Rearrangement. Let us recall a concept of symmetrization. Let v : R — R
be a measurable, nonnegative function vanishing at infinity, i.e. all super
level sets have finite measure. Then the symmetrically decreasing rearrange-
ment of u is defined as

w*(z) = / Xusty- () dt

where for a Borel set A C R the rearranged set A* is the centered interval
with measure |A|. An immediate property is equimeasurability, i.e. for all
t > 0 there holds [{u > t}| = |[{u* > t}| which implies that ||u*|r = ||u||L»
for each 1 < p < oo. Consult the monograph [7] section 3 for further
information. One can find the following rearrangement property as a special
case of Theorem 3.9 in [7].

Lemma 2.6 (Strict rearrangement inequality). Let v and K be non-
negative measurable functions both vanishing at infinity. Suppose that IC is
strictly symmetrically decreasing. Then

<u,IC * u> < <u*,IC * u*>
and equality holds true only if u is a translation of its rearrangement u*.

Now the kernel function K we just introduced is strictly decreasing. Thus
we conclude by the strict rearrangement inequality applied to (2.9) a strict
rearrangement inequality for the magnetostatic part of the energy:

Lemma 2.7. Suppose that the function u € L*(R) is nonnegative and let
u* be its symmetrically decreasing rearrangement. Then there holds

(v fSafu) < (ufsalx)

with equality only if u is a translation of a symmetrically decreasing function.
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Next we need a rearrangement inequality for the exchange part of the en-
ergy, a slight improvement of the rearrangement inequality for the Dirichlet
integral ||u*|| ;1 < |lul| 71 (see [7] Lemma 7.17) adapted to saturated vector-
fields:

Lemma 2.8. Let u € H'(R) be nonnegative and v € H'(R) be bounded
such that u> +v2 =1 in R. Then there holds for any function v, € H'(R)
with v =1 — (u*)? the inequality ||vy ||z < ||v]| g1 -

Proof. Note that each function v, € H'(R) which satisfies v2 = 1 — (u*)?
has the same Dirichlet energy. We consider one special representative and
define for z > 0 the nonnegative nondecreasing function

¢(z) =1— (1 — min(z, 1)2)1/2 and v, =1—¢(u").

Since u € L?(R) the function ¢(u) is vanishing at infinity we can conclude
using the composition property of the rearrangement operation

[oall g = Nl (W)l g1 = (P ow)*ll g <lldoullgr = llvll g
by the rearrangement inequality for the Dirichlet energy. O

Putting together the above considerations we arrive at the following mono-
tonicity result:

Proposition 1 (Monotonicity). The profile of a 1d Néel wall is nonneg-
ative and symmetrically decreasing.

Proof. Consider a minimizing profile u : R — R for our variational problem

k2 Q ([l + o) + ulSolu) + 2, — min
uw?+0v?2=1 and u(0) = 1.

The existence of a minimizing profile v € H'(R) is provided by the coer-
civity and convexity properties of the functional and the continuity of the
constraints along a minimizing sequence. Furthermore we can assume that
u is continuous. By the invariance of the L?-norm under rearrangement,
the strict rearrangement inequality in Lemma 2.7 and the rearrangement
inequality for the Dirichlet energy in combination with Lemma 2.8 each
nonnegative profile u is a translation of a symmetrically decreasing function.
Since u attains its maximum at zero it is actually symmetrically decreas-
ing. Thus we only need to show nonnegativity. Suppose that this is not
the case. Then (using Remark 2.2) |u| is also a minimizing profile and not
symmetrically decreasing. This is a contradiction. O
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3 Elliptic estimates and integrability

We begin with an a priori LP-estimate for profiles of finite Néel wall en-
ergy which can be obtained from the functional. It will be sharpened for a
minimizer, which solves the Fuler-Lagrange equations. We will make use of
regularity techniques for elliptic equations. The aim is to control higher LP-
norms by the energy and to show that the control fades linearly in p. Then
the argument is finished in section 4.1 by combining estimates for the mean
value with the monotonicity property of the profile established in the last
section to get the desired pointwise estimate. Our general assumptions from
now on are to be in the regime of thin films, i.e. £ > 1, and nonvanishing
anisotropy, i.e. @ > 0.

Lemma 3.1. Suppose that the magnetization field m = (u,v) : R — S! has
finite Néel wall energy. Then u € LP(R) for each 2 < p < oo and we have
for some universal constant ¢ > 0

lulle < cp*? E5(m)? for each 2 < p < oo

Proof. Let ¢ < 2 be given by 1/¢ = 1 — 1/p, then we have by Holder’s
inequality using the ellipticity property established in Lemma 2.3

lallzs = |[{P5(©) la©)1P} " {P5©)} |

for 1/¢ = 1/r 4+ 1/2. Now integration shows

LS 5(m)' 2 |1+ 1DV

1+ €D~/

1 1
p—2\i
= (T) for 1/r=1/2—-1/p,

and the result follows from the Hausdorfi-Young inequality ||u|/rr < ||%za-
U

3.1 Bounds for the nonlinearity

This section is devoted to the analysis of the Euler-Lagrange equation for
Néel wall profiles. We identify the fundamental analytical shape of the
nonlinearity arising from the saturation condition |m| = 1. This provides
the requisite structure that allows to combine a priori bounds, as stated in
Lemma 3.1, with linear elliptic regularity theory.

Suppose that the magnetization field m = (u,v) : R — S! minimize the
functional

£5(m) = w2 Q |lml7: + llulls + (u|Sqlu) (3.1)
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among all vectorfields which are saturated with a one point constraint at
the origin. As we already saw in the end of section 2.1 the associated profile
u solves the following Euler-Lagrange equation, which is defined for magne-
tization fields of finite Néel wall energy in the sense of distributions

K2 Q(—A)u+ Sgu+u={*Q|m|* + [u* + uSqu} u. (3.2)
For fixed w it can be written as the linear distributional equation
Liu=05[u] in &'(R) or more precisely in H™'(R) (3.3)
with the already studied singular perturbed elliptic operator operator
U = K2 Q (=A)u + Squ +u (3.4)

and the following distribution in dependence of a profile u of finite Néel wall
energy

oplul : ¢ <I€2 Q |m'|2 + |u|2, ¢u> + <u |Sol u? ¢> . (3.5)

Note that by the saturation condition |m| = 1 the integrable quantity
|m'|? = |u'|?/(1 —u?) is completely determined by the profile u. We consider
separately the local part arising from the exchange and anisotropy terms

eplu]u: ¢ <ﬁ2Q|m'|2+|u|2,u¢> e HY(R). (3.6)
which is clearly bounded in L'(R) by the energy and the nonlocal part
rolu] : ¢ = (u|Sglu® ¢) € H H(R), (3.7)

which needs to be decomposed once more. The goal is to extract an inte-
grable portion which is correlated with the energy density. We define the
distributions

falul s & = (Squ, (=)™ [(=2)"/,u?] ),
galul: ¢ = (Squ,(—A) VH{u2(=n)1g}).

Then it is easy to see that rglu] = folu]+gg[u] in the sense of distributions.
By Plancherel and Cauchy-Schwarz (using the fact that 0 < og(§)/[¢] <1
is uniformly bounded) we see that

(galul, )| < ||log > (©) a(€)]| 2 [|lu2(=A) 1),
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Note that HO‘UZ f)HL2 agrees with the square root of the strayfield

energy. Hence by Holder’s inequality there holds for 1/2=1/p + 1/r

(gqlul, $)| < E5(m)"? llullze lulles [|(~

Since (—A)'/4¢ differs from (1 — A)'/*¢ only by a convolution with a finite
measure (see [10] p.133) the estimate ||(—A)Y4¢|| . < clléll 12 holds true
with a constant which is independent of r. ’

As above we use Plancherel, Cauchy-Schwarz and the bounds on og(&) to
estimate

(folul, )] < [log ) a€) - |[(-2)Y",u?]9|l
while
=2 a?] gl < Jlu [(=A) 7 u] ¢l o + [ [(=2)7, u] (ug) || -

Hence using the commutator estimate for fractional derivatives (see [5]
Corollary 1.2) and Holder there is a constant ¢ > 0 such that

1[(=2)" ]| o < el (=) u]] 1o Nullze [l¢] (3.8)

Finally using Lemma 2.3 we can estimate

o}, < [a+ieP)y Pa©r ds < [ Pa© ) de < &(m).

Thus we proved the following decomposition result:

Proposition 2. Let the profile u correspond to a magnetization field m of
finite Néel wall energy. Then there is a decomposition of the nonlocal dis-
tribution rgu] defined in (3.7)

(rQlul, ) = (folul, #) + (9qlul, ) for all ¢ € &(R),

such that folu] is an absolutely continuous measure and gglu] is a singular
distribution. Furthermore we have the estimates

[(fQluls &) < ¢ EG(m) (|4l poo
(gqlul, ¢)] < e E5(m)" Nlullps 1] o

for each p > 2 with 1/2 =1/p + 1/r and some universal constant ¢ > 0.
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Remark 3.1. By the Sobolev embedding H'(R) — H,}/Z(R) for r > 2 the
bounds remain valid for testfunctions in H'(R).

Our result up to now is the following representation of the Euler-Lagrange
equation for a Néel wall profile

Hu = epulu+ fo[u] + golu] in H'(R) (3.9)

with estimates established in Proposition 2. The next section addresses the
inversion of the operator £5 and the resulting LP-estimates.

3.2 Inversion of the operator L

The inversion of a first order elliptic operator in one dimension where the
right hand side is only supposed to be integrable, just fails to provide control
on the continuity of the solution in terms of the integrability of the right
hand side. Nevertheless we can control the blow up of higher LP-norms as
p tends to infinity.

Lemma 3.2. Let f € L'(R) and suppose that u solves the equation Lu =
f- Then there holds

lullLe <cp||fllzr for each 2 <p < oo (3.10)
for each Q > 0 and xk > 1 and for some universal constant ¢ > 0.
Remark 3.2. The same estimate holds true for finite measures.

Proof. Let P§5(§) be the symbol of the operator Lf,. We have in frequency

space 4(£) = Pg(¢ )1 f(¢) and using the ellipticity property established in
Lemma 2.3 we infer that for 1 < ¢ < 2

HR&@lf%qédm%wA :

dé c
e < I

We conclude by the Hausdorff-Young inequality that
lulzr <cp—=1)'"P | fllpe for 1/p+1/g=1

which immediately implies the assertion. O

Remark 3.3. By the embedding L' (R) — Hq_l/Q(R) for each q € (1,2) the

reqularization property of the operator ([6)_1 stated in Lemma 2.4 implies
that in the context of Lemma 3.2

lull /2 < cl@) [1fllor for each 1< g <2
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for some constant which only depends on q and the same estimate holds true
for finite measures.

As a direct consequence of Lemma 3.2 and the bounds in Proposition 2 of the
last section there holds for a profile v which corresponds to a magnetization
field m of finite Néel wall energy

| (o)™ feptu} |+ (£5) " folul]| |, <epesom) 31

for each p > 2 and for some universal constant ¢ > 0. Moreover by Remark
3.3 we have for each 1 < ¢ < 2 and for some constant ¢(q) > 0 which only
depends on ¢

| (ca)™ (ettt} ||y + [ (€)™ faluil], 0 < elo) Em). (312

The same type of estimate holds true for the singular part. Indeed by the
bound in Proposition 2 the distribution gg[u] extends for u € LP(R) to an

element in the dual space of Hﬁ/2(R) known as H{UZ(R) for1/g+1/r =1.
Moreover we have the bounds

loglul-or2 < cE50m) 2 lull o for 1/g=1/p+1/2  (313)

and we conclude utilizing the a priori LP-bounds in Lemma 3.1 and the
regularization property of the operator (E’ZQ)_1 stated in Lemma 2.4 that
foralll<g<?2

H (cg)fng[u]HH;/Q <olq)pV/? E5(m) for 1/g=1/p+1/2. (3.14)

Using interpolation we can substitute the constant ¢(q) in the regime p > 4
by the universal constant C' = max{c(4/3),¢(2)}. Finally by the Sobolev
inequality below to be proved in the appendix we see that there is a universal
constant ¢ > 0 such that

-1
H (£5) gQ[u]HLp <cp&l(m) foreach p>4. (3.15)
Lemma 3.3. There is universal constant ¢ > 0 such that for p > 4

Ifller < cp'? 1F g2 for 1/q=1/p+1/2.
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3.3 Integrability of Néel wall profiles

Formal integration of the Euler-Lagrange equation yields an L'-bound by
the nonnegativity of the profile shown in Proposition 1 in section 2.3. To
make this rigorous let 0 < ¢ < 1 be a smooth symmetrically decreasing
function with compact support and ¢(0) = 1. Then p.(z) = p(ez) con-
verges monotonically to 1 as ¢ tends to zero for each x € R. We multiply
the profile u by the rescaled bump function . and integrate

[ o = (s L) + (1 = £5) 02ru) = (i, L) + O()
To see this just note that we can estimate ‘((1 — [,5)%, u>‘ by

K2 QU(=0) s, (=A)2u)| + [(Sgwe, w)| < ¢ E5(m)? |lell i = O(1/?)

where we used Lemma 2.2. So we see that by monotone convergence the
L'-norm of a nonnegative profile v corresponding to a magnetization field
m of finite energy is given by

=1l dz = lim (L{ 3.16
fulls =t [ (ew) do =l (o) (3.10)

independently of the choice of the bump function ¢. Now let u = ug, be a
Néel wall profile. The quantity Ig to be introduced below can be identified
with the integral of the right hand side of the Euler-Lagrange equation (3.3).
We define

I% = lim { /eg[u] (ue:)dr + <u‘SQ‘u2 (p5>} (3.17)

el0

where as in section 2.1 eg[u] is the local portion of the energy density given
by
eplu] = &2 Q m/|* + |uf’.

According to the monotone convergence theorem there holds

lim [ eqlu] (upe) do = /eé[uwdw < w2 Q [ImllF: + [fullZ..

Likewise by the boundedness of v in L?(R) and L (R) the functions u?¢,
converge to u? in L?(R). Hence by the L?-boundedness of the operator Sg
for positive Q we infer that

i (u[Safs o) = (u[S]s)
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while by Cauchy-Schwarz and Lemma 2.5
{usafur)| < (ufsals) ™ (slsafur) " <2 (ufscl)
Thus I7; is well defined by (3.17), i.e. independently of the choice of ¢ and
15 < K2 Qm! |5 + lull2 + 2 (u|Sq|u) < 2 E5(m). (3.18)

According to the Euler-Lagrange equation (3.2) for a Néel wall profile there
holds

(L p.,u) = /eg[u] (u ) da + <u‘sQ‘u2 (p5> (3.19)

In the limit e | 0 we conclude by (3.16), (3.17) and (3.18) the following
integrability estimate:

Lemma 3.4. A Néel wall profile is integrable with the bound

lugllr <2 inf e

where M denotes the set of admissible magnetization fields.

We finish this section with an integral representation formula for <u‘SQ ‘u2>
using the kernel representation in section 2.3.

Lemma 3.5. Let Su = u — K * u where K € L'Y(R) is symmetric with
[ K =1. Then there holds for u € L?> N L*°(R) the formula

/ (uSu) udz = /u(m) / K(z — y) (u(z) — u(y))’ dy de.
Proof. Writing down the convolution we see elementarily that
(@) (u5u) (@) = u(o) [ {u(0) — ulw) K (o~ ) ule) } dy
= u(o) [ Kl =) (ule) ~ ulo)” dy
+ [ K = {2 @uty) - o)} dy

Carrying out the z integration, the last integral cancels by symmetry. [

25



Thus for a Néel wall profile ug, we have the additional formula for the integral
15 = [ uy(z) dz in terms of densities

I = / {ebu](z) + 2kolu)(z)} u(z) dv for u=ug (3.20)

where e¢[u] is the sum of the exchange and anisotropy density and kq[u] is
the magnetostatic density function introduced in section 2.3 given by

kolu)(x) = i / Kol — ) (u(z) — u(y))? dy.

4 Pointwise bounds and singular limits

4.1 [P-bounds and logarithmic decay

We summarize the results of the previous sections. Let ug be a Néel wall
profile for some pair of parameters Q > 0 and x > 1. In the context of the
results of section 3.1 the profile ug), solves the Euler-Lagrange equation

Loug = egluglud + folu] + gqlug] in H™Y(R)
which means that wug), = (E'Z?)*l {eud] ugy + folud] + golub)} -
Then (3.11) and (3.15) imply

HuaHLp <ecp i/r\l/lfé'g for p>4

where M denotes the set of admissible magnetizations. Now a complete LP-
estimate is easily proved by filling the gap between the L'-bound, proved in
Lemma 3.4, and the L*-bound by interpolation. In addition we have bounds
in (subcritical) Sobolev spaces using (3.12) and (3.14).

Proposition 3 (Regularity bounds). Let ug) be a rescaled Néel wall pro-
file. Then

w5, <epinfés  for cach p>1 (4.1)
for some universal constant ¢ > 0 and moreover

HU5HH;/2 < c(q) i}&fﬁg for each 1< q<2 (4.2)
where the constant c(q) > 0 only depends on q.
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Now the following statement is a combination of the monotonicity property
established in section 2.3 and the LP-bounds in Proposition 3:

Theorem 1 (Logarithmic decay). There holds the following decay esti-
mate

1

0 <up(r) <e i/r\lAfgg log <m> for 0<|z|<1/e (4.3)
for some universal constant ¢ > 0.

Proof. By the monotonicity result of Proposition 1 in section 2.3, Holder’s
inequality and the LP-bounds in Proposition 3 we conclude for u = ug and
z >0

z T 1/p 1 1/p
< < < p < — i s
0 < u(z) _]g udy < <]€ |u dy) <cp ($> 1/\r£lf5Q

for each p > 1. We optimize this estimate with respect to p that is we set
p = log(1/z) and note that |z|'/1°8(2) = 1/e . Thus we get the desired
logarithmic decay estimate. U

Remark 4.1. As mentioned in the beginning we obtain with the same anal-
ysis the analogous result in the bulk regime 0 < k < 1 keeping in mind the
different scaling.

4.2 Review of the energy bounds

In this section we recall some results concerning the energy. We denote by
M the set of admissible magnetizations, i.e. the set of saturated vectorfields
with one point constraint at the origin.

Since (u|Sg|u) approaches ||u]|ft-p/2 as @) tends to zero as shown in Lemma
2.2, we can approximate the Néel wall energy £¢(m) in (0.1) by the func-
tional

Io(m) = e lmlfy, + lullfs + lul7. with €= Qr. (4.4)
2
/2
u € H'?(R). Hence we have for each admissible magnetization field m the
relation

But as we already saw in Lemma 2.2 (u|Sglu) < ||ul| for each function

EG(m) < Ze(m) and therefore i/l\rl/lfgg < i/\rithE with ¢ =£x%Q
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for each @ > 0 and k > 1. A comparison argument in [2] shows that

infT. < —C
M log(1/e)
as ¢ tends to zero. This can be improved (see [3]) to a bound
. v (loglog(1/€))?
fle=——"+0 | —7—"—FF5— 4.5
i oA i o

as € tends to zero. In fact one can prove asymptotics to the relaxed problem
from section 1.3 from an energetic point of view. For our subsequent analysis
we need a much weaker lower bound on the energy.

Lemma 4.1 (Lower bound). There is a universal constant ¢ > 0 such
that

-1
<i/r\1/lf55> < Clog(l/Q) as Q — 0.

Proof. Tt is enough to derive a bound for the inverse energy of the relaxed
problem where the saturation constraint is omitted. The associated FEuler-
Lagrange equation becomes linear. Note that the second component of a
minimizer necessarily vanishes. Like in section 1.3 the inverse energy is
given by

R . dn dn dn
(u<15§f1“7@> - Pg(&)‘/ arremras | miat | ¥

[nl<1 In/>1

with at most logarithmic divergence as @) tends to zero. O

4.3 Convergence and the limit shape

In the following we will always suppose that the aspect ratio x > 1 is fixed.
We already know that each sequence of (rescaled) Néel wall profiles ug
converges to zero in LP(R) for each p < 0o and uniformly away from the
origin as () tends to zero. In order to derive a nontrivial limit equation we
consider renormalized Néel wall profiles

Ug = (inf€s)

By Proposition 3 the functions Ug are bounded in each H,}/ 2(]R) with 1 <
q < 2 by some constant which only depends on ¢. By the decay estimate in

1
ug :R—R (4.6)
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section 4.1 they are furthermore uniformly bounded on each closed subset
excluding the origin. In particular Ug has a weak cluster point Uy for each
sequence () — 0. Therefore we conclude by the uniqueness of a distributional
limit, that if for some sequence () — 0 the corresponding renormalized
profiles Ug converge to Up in the sense of distributions they necessarily

converge weakly in H,} / 2(R) for 1 < g < 2 and weakly in LP(R) for 1 < p <
00. We even have strong LP-compactness on bounded subsets.

Remark 4.2. For small Q > 0 the set {UQ} is precompact in LT (R) for
each 1 < p < oo.

Proof. Note that (1 — A)"Y4f = kx f with k € L"(R) for all r € [1,2),
see e.g. [10], 5.3.1. Now the operator T'f = k * f is compact from L4(R)
to L (R) for 1 + 1/p = 1/q 4+ 1/r. To see this it suffices to note that
the convolution with a mollified function k. defines by Rellich’s theorem a
compact operator Ty : LY(R) — L (R) and

||T — TE“C(LQ;LP) S CHk — kE“LT as ¢ — 0.

This proves the remark for p € (1,00) since Ug is uniformly bounded in
H;/2(R), which means that (1 — A)/4Ug is bounded in LI(R) for each
q € (1,2). The case p = 1 follows from Hélder’s inequality. O

We identify such a limit by the following sequence of arguments. A renor-
malized profile Ug solves the renormalized Euler-Lagrange equation

%UQZQ{%‘?S) {65[UQ]UQ+fQ[UQ]+9Q[UQ]} in H™'(R). (4.7)

The energy bound in Lemma 4.1 shows that the left hand side converges to
(=A)2Uy + Uy. We show that the limit distribution on the right hand side
is supported at the origin. Then we conclude by the estimates in section
3.1, which are essentially improved by the regularity results from section 4.1
that it is indeed a finite measure. This shows that Uy agrees with a multiple
of the fundamental solution of the operator (—A)Y2 + 1 (compare section
1.3). Finally we show that the renormalized integrals [ Ug converge to [ Up
which turns out to agree with the (nonnegative) multiplicity. By the results
from section 3.3 it is bounded by 2.

It is convenient to consider the energy functional in the following equivalent
form

EH(m) = k2 Q /l(t_t—,); dz + ||ull2: + <u‘SQ‘u>
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for m = (u,v) : R — S'. Then it is easy to see that for a Néel wall profile
ug and ¢ € C§°(R) with compact support in the set {ug # 1} the variation
ug + €¢ is admissible for small . Carrying out the differentiation of the
exchange part we arrive at the nonlinear singularly perturbed operator R¢,

defined by
d u' ' \?
K 2
Ro(u) = K7 Q {_E <1—u2> + (1—u2> u}

Then a Néel wall profile ug solves the following Euler-Lagrange equation

RO (uq) + Squg +ug =0 in D' ({u#1}). (4.8)
Lemma 4.2. For each € > 0 there is a Q(¢) > 0 such that the distribution
RE(ug) € D' (R\ [—e,€])  for each Q < Q(e)
, o . ~1
is well defined. As Q) tends to zero the renormalization (1nfM 55) R’Z?(UQ)

convergences to zero in ' (R \ [—¢,¢]).

Proof. Let for given ¢ > 0 the function ¢ be in C§° (R )\ [—¢,¢]). Take
Q(g) > 0 so small that 1 — 2 in uniformly bigger then zero on the support
of ¢ for Q@ < Q(e). Note that this is possible by the pointwise decay estimate.
Then Holder’s inequality yields for Q < Q(¢)

K 1/
(Rolwal (@ [P 00) s |29 g
infpq £ inf g £ 1-qu 1—u‘é2 ' )

The first term tends to zero by the lower energy bound in Lemma 4.1.
For the second term note that as a direct consequence of the pointwise
decay estimate in section 4.1 and the upper energy bounds in section 4.2
the profiles ug converge uniformly to zero on each compact subset excluding
the origin. U

Proposition 4. Let for some sequence () — 0 the corresponding sequence
of the renormalized Néel wall profiles Ug converge to Uy in the sense of
distributions. Then the following assertions hold true.

(i) Uy solves the equation (—A)Y2Uy +Uy =0 in D' (R\ {0}).

(ii) Uy is integrable and [ Uy is the limit of the integrals [Ug.
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Proof. Let ¢ be any testfunction in ®(R \ {0}). Then by Lemma 4.2 there
is a number Q)9 > 0 such that ¢ is an admissible testfunction for (4.8) for
all @ < Qo. We may assume that Ug converges weakly in L?(R). Then
assertion (i) follows from the convergence properties of the operator Sg
stated in Lemma 2.2 and the second claim in Lemma 4.2.

Note that the integrability of Uy follows from the uniform bound of Uy in
L' N L2(R) and the lower semicontinuity of the total mass.

Let ¢ be a smooth cutoff function such that ¢(z) = 0 for |z| < 1/2 and
¢(z) =1 for |z| > 1. Using the cutoff function ¢.(z) = ¢(ex) we decompose

/Ude:/UQu—(/)E) dm-l—/Ungde

As an immediate consequence of the weak LP-convergence and the integra-
bility of Uy we infer that as the sequence @ — 0

/UQ(1_¢5) dx—)/Uodx—i—o(l)

where o(1) goes to zero as e tends to zero. It is easy to see that ¢. is an
admissible test function for (4.8) and there holds

-1
/ Uq ¢- d < (i;;ffé) [(R&(uq): ¢e)| + [(Ua, S|

But by (4.9) and the subsequent arguments we see that the first term con-
verges to zero as () tends to zero and the convergence is uniform in ¢ > 0.
For the second term we use Cauchy-Schwarz and the bounds for the opera-
tor Sg to see that [(Ug, Sgé:)| < |Ugllz2 o=l 1 = O(e'/?). Now the claim
follows as @ and ¢ tend to zero. O

Lemma 4.3. Let for some sequence () — 0 the sequence renormalized Néel
wall profiles Ug converge to Uy in the sense of distributions. Then L{Uq

converges to (—A)Y2Uy + Uy in the sense of distributions.

Proof. We may assume that Ug converges weakly in L?(R). By Lemma 2.2
we only need to check the convergence of the second order term, but Lemma,
4.1 shows that

-1/2
Q [(Ug|(=A)|#)| < Q2 <%f55> ¢l 71 — 0 for each ¢ € C§O(R),

hence Q(—A)Ug converges to zero in the sense of distributions. O
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Theorem 2. For any sequence () — 0 such that the corresponding sequence
of renormalized Néel wall profiles Ug converges in the sense of distributions,
the weak limit Uy is a multiple of the fundamental solution of the operator
(=A)Y2 4 1. The multiplicity is given by the limit of the of the integrals
/' Uq-

Proof. Let Ug converges to Uy in the sense of distributions. At first Ug
solves the renormalized Euler-Lagrange equation (4.7). By Lemma 4.3 the
distribution L§Ugq converges weakly to (=A)'/2Uy + Uy. By claim (i) in
Proposition 4 the right hand side divided by the minimal energy converges
to a distribution which is supported at the origin. Using the bound (3.13)
from section 3.1 and the (improved) LP-bounds in Proposition 3 from section
4.1, it is a measure. Indeed

. 3/2 . —1/2
golug) ~ (1/r\1/(f€5) in Hj 2(R) for 4/3 < q<2.

We conclude that Uy is a multiple of the fundamental solution for the opera-
tor (—A)l/ 2+ 1. The multiplicity uuo agrees with the integral of the function
Up. Indeed (—A)1/2U0 + Uy = o 99 and by Proposition 4 Uy is integrable.
For the scaled bump function ¢, which we already used in section 3.3 we
have that

/UO e dx = po — <(_A)1/2905a U0>
with [Upp.| < |Uo| € L'(R) and [((=A)"%p.,Uo)| < [[Uollr2lleell i =

(’)(61/ 2). Letting € tend to zero we conclude by majorized convergence that
po = | Up. But claim (ii) in Proposition 4 implies that

multiplicity = /Uo(x) dr = lim/ Ug(z) de = lim {Ig (ij\rzfgg)*l} <2

where I is the integral of the profile ug, given by (3.20). O

5 Appendix

5.1 A Sobolev inequality and the proof of Lemma 3.3

The following result is a special case of the well known Hardy-Littlewood-
Sobolev inequality. We follow the proof given in [9] keeping track of the
growth of constants. Optimal constants for fractional integration have been
found by E. H. Lieb, see [7] and the literature cited therein.
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Lemma 5.1. Suppose that p > 4. Then there is a universal constant ¢ > 0
such that for each function f € S(R)

1(=2)"1f|[,, < (p—2)2 5 ||f||,, for 1Jg=1/p+1/2 (5.1)

Proof. The operator (—A)~'/* is associated to the locally integrable kernel
function k(z) = |x| /2 which just fails to be square integrable. We split
k=k-xr+k-(1—xgr) where xr denotes the characteristic function of the
interval (—R, R). Then we have for the first term the pointwise estimate

|f * (k- xR)|(x) < 4 RY? (M f)(x), (5:2)
where M f denotes the Hardy-Littlewood maximal function ® of f. We
estimate the second term by Holder’s inequality for ¢ = 1%

FEX 1—XR))\($) < [ fllzallk - (1 = xr)l -

= 7’%2. Hence there holds

Now by definition ¢’ = 2 +p 2

2
-2

1/q
Hk‘ . (1 — XR)HLG' = 21/‘1’ ( - > Rl/'I'fl/Z — (p _ 2)1/(1’ Rl/q’fl/Z’
q

that is we have the pointwise estimate

[+ (k- (L= xr) [(2) < (0 =2 | fllza BT/ (5-3)

Now we choose R = R(z) such that the terms on the right hand side in (5.2)
and (5.3) agree. An easy computation shows that this is the case for

B ATAG
R(g”)‘{ 4(Mf)(x)L}

which we substitute into (5.2) to get the final pointwise estimate

£kl <205 % (k-xn)l < (p—2)3 55 [IF727 (M) e
The Hardy-Littlewood maximal theorem (see [10]) completes the proof. [

Now the proof of Lemma 3.3 easily follows by the well known fact that the
action of the operator (—A)Y4(1 — A)~1/4 is given by the convolution with
a finite measure, which implies uniform boundedness on all LP(R) spaces
including the endpoint p = oo. See e.g. [10], p. 133.

3The Hardy-Littlewood maximal function of a locally integrable function f is defined
by Mf(z) =sup,s,f, f(z —y)dy, see [10] at the very beginning.
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5.2 Derivation of the reduced strayfield operator

The derivation of the kernel representation of the reduced magnetostatic
energy can be found e.g. in [2] by means of magnetostatic potentials. Here
we present for the convenience of the reader the derivation of the Fourier
representation by computing Fourier integrals. We recall the definition of
the reduced strayfield operator acting on profiles 4 : R — R which are
coming from a planar magnetization fields

m: R 3 (z,y,2) = (u(z),v(z),0) x5(2) € S?

where x5 denotes the characteristic function of the interval (—4,d). It is
defined by the following renormalized average of the first component of the
(negative) magnetic field H(m) : R® — R3 induced by m : R® — R

1 0
Ssiurr 5 ][ H(m) - é; dz. (5.4)
-5

In fact H(m) = VA~V - m is the Helmholtz projection and has values in
R x {0} x R. Now the first goal is to clarify the link to the magnetostatic
energy. Intergration of |#(m)|? over the relevant space directions z and
z and averaging by the film thickness leads to the averaged magnetostatic
energy

Enaglm) = 35 [ [ () dods

Since the volume charge V-m only depends on z and z we can apply Green’s
formula in two dimensions to write the energy as

1
Emag(m) = %//V -m (—=A)7'V - m dz dz (5.5)
1
= %//V-m(—ARz)IV-mdxdz.
The first step is to show that the magnetostatic energy can be expressed
in terms of the reduced strayfield operator as defined in (5.4). A direct

consequence of the definition (5.4) and the cancellation of the second and
third component functions is the identity

oo o
o <u‘85‘u> = /_oo][_ﬁm - H(m) dz dx. (5.6)
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By (5.5) and integration by parts we see that the projection property of the
Helmholtz transform is carried over to our reduced ansatz

/Z][im-ﬂ(m) dz dx = %//|H(m)|2 dx dz. (5.7)

Equation (5.7) shows by (5.6) that with our definition of the reduced stray-
field operator the averaged magnetostatic energy is given by

LI [t o ds = s sl 59

The next step is to compute the Fourier representation of S;. For this
purpose we first compute the Fourier representation of the magnetostatic
energy. Starting from (5.5) with V- m = u/(z)xs(z), Parseval’s formula
yields

1
Emag(m) = % //V -m (—ARQ)_IV -m dx dz

2
B 2 sin(dn)
- 5 [ES (FR) s
1 sin?(6n)  sin?(dn) 1D
[

We have to compute the inner integrals. The first is given by Parseval’s
formula

sin?(§ T
/7ngn)dn=—/|fxfs /|X§ dz=0m

whereas the second splits once more into two standard integrals,

sin?(0n) dn — 1/1—608(257])

212 T3 f2+772

1 dr cos(26|&|T)
g { T [ S ar| = g (= ex-2006)

(see e.g. [11] p. 191). Putting everything together yields the following
Fourier representation for the averaged magnetostatic energy

5 | [P asa: = [{1- =202 e )

35

dn




From this we can read off by (5.4) and (5.6) our final result, the Fourier
representation for the magnetostatic energy:

Lm0
stulsitn) = [ {1- IR Yo ag

and thus the Fourier representation FSs(€) for the reduced strayfield oper-
ator

1 e(-20g)
23]

FS5(€) = % o(0€) = % ( > for each ¢ > 0.
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