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Abstract

For periodic two-dimensional incompressible cellular flows we provide explicit upper and
lower estimates of the effective diffusivity which have the correct scaling behavior for large
Peclet numbers. We demonstrate that all allowed scaling laws can occur. The bounds prove
that there is no residual diffusion in the infinite Peclet number limit for Hélder continuous
flows, answering a problem posed by Kozlov.

1 Introduction

We consider the diffusion advection equation
Owu(z,t) = eAu(x,t) + b(x) - Vu(z,t) (1)

in IR? with a small diffusivity e > 0. The inverse 1/e is also called the Peclet number and is
very large in applications. The vector field b(z) is a given underlying incompressible flow field,
1-periodic in x; and zs, with mean value zero. Introducing the periodic stream function H(z) as
b(z) = V*H(z) we can rewrite (1) in divergence form

Opu(z,t) = V(A (x)Vu(z,t)). (2)

with the non symmetric matrix

We consider cellular flows where the boundary of the unit cube C = (—1/2,1/2)* consists of
streamlines, i.e. we assume H|sc = 0. The standard example is

H(x1,x2) = sin(27wx) sin(27x2). (4)

In the large time, large distance scaling ¢t — /6%, * — x/d equation (1) becomes

Byu(z, t) = eAu(z,t) + %b(%

The theory of homogenization shows, that the limit § — 0 is governed by an effective equation

) - Vu(z,t).

Owu(z,t) = V(AP Vu(z,t)).

In [10] it is shown that this is true even for stream functions H € L?(C).
The constant effective diffusion matrix is computed from the cell problems in direction k € IR>

€Ap(x) + b(x) - Vp(x) = 0, (5)
where p(z) — k - z is 1-periodic in each direction z;. For the uniqueness of p we assume

/p(m) dx = 0.

C

The effective diffusivity matrix is then

Al = /Ae(ar)Vp(a:) dx. (6)
c



Another representation is
by Alky = /Vm (2)Ac(2)Vp2(x) de. (7)
c

where p; is the solution corresponding to k;.

We are interested in the dependence of the effective diffusivity A” on e especially in the scaling
as € — 0.

Since we are also interested in non smooth stream functions the weak formulation of (6) will
be used for p(z) — k-z € H.,,.(C)

per

/ (eVp— HV p)Veé dx =0 (8)
C

for ¢ € H},,.(C). The weak formulation makes sense for H € L>°(C) and even for H € L*(C) if ¢
is smooth.

For the standard example above Childress [3] calculated the asymptotic scaling of the effective
diffusivity. By a formal asymptotic expansion he obtained

Al ~ const \feI

and calculated the constant.

In [8], [9] this is made rigorous using an inf/sup argument on a suitable indefinite functional.
The method in this paper gives only the asymptotic result without an estimate for nonzero e. It
seems difficult to use these variational principles for positive e.

It is well known, that the effective diffusivity satisfies the following estimate

1
e<\Ne) <e+ =~ [ H(z)? da. 9)
6 C/'

for a general stream function. Only for large € this is a good approximation. This estimate has
been improved in [2] through an asymptotic expansion for large e. In this limit (5) becomes a
regular perturbation problem. These estimates all diverge for small € and do not give the correct
scaling. We remark that for shear flows, i.e. H(z) depends only on one variable, the effective
diffusivity behaves as 1/e in the direction of the flow and as € in the orthogonal direction. Hence
these are the best possible estimates for an arbitrary flow. In cellular flows however the situation
is quite different due to the nonexistence of unbounded streamlines. One expects an intermediate
enhancement of the effective diffusivity. It is the purpose of this paper to give precise information
on the enhancement depending on properties of the flow field.

We will provide two proofs for an explicit upper bound under different assumptions on the
regularity and symmetry properties of the stream function.

For symmetric H(z) a lower estimate, which also has the same scaling as the upper bound, will
be given in the second part. All estimates have the correct scaling behavior for € — 0 which is the
most interesting case in applications, compare the review article [13].

Our method relies on the use of appropriate test functions which gives automatically the correct
size of the boundary layer near the level set H(z) = 0 and the scaling of the effective diffusivity.
Since our bounds involve explicit constants we have an estimate for the range of validity of the
scaling behavior for large Peclet numbers.

The upper estimates also answer a problem posed by Kozlov in [12], i.e. if it is possible to
have a nonzero limit for the effective diffusivity as € tends to zero for cellular flows. This is called
residual or turbulent diffusion. It is known, that for a discontinuous stream function H(x) nonzero
residual diffusion is possible [11] page 23 & 36 and [14]. The flow field v has to be interpreted as
a distribution in this case. Our bounds exclude this possibility for general C'!' and for symmetric
Hoélder continuous vector fields b(z).

We also mention a series of related papers [4]-[7], where effective properties of a Rayleigh-
Bernard convection problem are derived using also suitable test functions.



2 Upper Bounds
2.1 General Case

We consider the cell problem for an arbitrary direction k with |k| = 1. We assume b € C*(C) with
v-b=0on dC. In the estimate below the following constant appears

1 1/2
M = sup sup o Dab(e)n = sup (300 H ~0uH) + @Y ) @ (0)
zeC |n|=1 zeC
Theorem 1 The effective diffusivity is estimated by
L M
kA'k <V Me coth = (11)
€
for all e > 0.
Proof: Let v —k -z € H},.(C) and use ¢ = p — v as a test function in (1). This gives

1
e/|Vp|2dmze/(Vva—b-va+§b-Vp2)d:n
c c

1
SE/|V/’|2 d5”+€/|Vv|2 d:ﬂ++g/v2 d:n+—/|b.vp|2 dr,
4 2 2c
C C o &

where V -b =0 and b- v = 0 has been used. As a second test function we take b- Vp:

/|b -Vp|? dx = —e/(b -Vp)Ap dx
c c

= %/b-vaﬁ da:+e/Vpopr d
C C

< eM/|Vp|2 dz
c

where M is defined in (10). Again V - b = 0 has been used. Boundary terms do not occur, since
the derivatives of p are periodic. Combining the two estimates we get with o = 2M

§/|Vp|2 dz §6/|Vv|2 da:+M/v2 dz. (12)
c c c

The minimum is achieved for v satisfying:
eAv = M,

s.t. v — k- x is periodic. This can be solved explicitly

ky sinh(a?“/%) ks sinh(a?m/%)

SAak Sy gk e

for x € C. A calculation implies for the right hand side in (12)

kA" < VMe coth,/%
€

This completes the proof.

This estimate behaves as v Me for small € and is linear in € for large ¢, i.e. it is qualitatively
correct for all € > 0.



2.2 The Symmetric Case

We will derive an upper bound also for nonsmooth flow fields b(z). In this way we will produce a
€“ scaling of the effective diffusivity for any a between 0 and 1 depending on the behavior of the
flow field near the boundary of the unit cell. That is why we consider the weak formulation (8).
We require for the stream function H € W' (D) N L°°(D). Furthermore we make the following
symmetry assumption:

H(z) is odd in z; and =s. (13)

Both assumptions are satisfied e.g. for

H(z) = h(z)|h(z)]"~"

with p > 0, where h(z) is the standard example (4). Also in [8], [9] symmetry assumptions on H
are used crucially, but only the case p = 1 is considered there.

Let p1, p2 be the solutions of the cell problems corresponding to k = (1,0) and k = (0,1). The
oddness of H implies that p; is odd in z; and even in z» and vice versa for ps. From the definition
of A" it follows now easily that A" is a diagonal matrix.

Now let p be the solution of (5) corresponding to k£ = (1,0). Using the symmetry we can restrict
the cell problem to the quarter cell D = (0,1/2)?

/qu(eVp —HVYp)de =0 (14)
D

for all ¢ € HY(D), ¢(1/2,23) = ¢(0,72) = 0 with boundary conditions
p(1/2,22) =1/2, p(0,2z2) = 0.
The weak maximum principle implies for all z € D
0<p(z) <1/2.

This is the main difference to the case without symmetry where a L estimate, which is indepen-
dent of €, is not available. We will prove an estimate of

Ae) := kAl = e/ |Vp|? dz.
c

For § < 1/2 take ¢(z) = p(z) — v(z1) with

v(z1) = 0, 0<z <1/2-94
Y %(1‘1—1/2-{-6), 1/2_(5<£L'1<]./2

as a test function in (14).

1/2 1/2

1
? = e/ |Vp|? de = /VU(GV/J — HV'p) dx = % / /(681/) — 0yHp) dxy d,
D D 1/2-6 0
1/2 1/2
€ 1
<%t / / max(0, =02 H) dxs dx;.
1/2-5 0

If 0o H has some decay rate near ; = 1/2 then the right hand side can be minimized with respect
to §. We state the result for an algebraic decay. Assume that for some p > 0 and some function
~v(z2) > 0 we have the following estimate

—0yH (w1, 22) < y(22)(1/2 = 21)"



for all (z1,x2) € C. This gives
€ P

Ae) < — 1
@< g5+ 71 (15)
1/2
with ¥ = [ y(22) dzs. Minimizing over 0 < § < 1/2 implies the following theorem.
0
Theorem 2 The effective diffusivity is estimated by
s (PN Py
Ae) < eptT | —— L ore < ————. 16
)< (219) ! 4 T 2(p+1) (1

Remarks:

Instead of the estimate near zy = 1/2 the same bound can be obtained near z; = 0 but with a
possibly different scaling exponent p. For small € the larger p determines the upper bound for the
effective diffusivity. This scaling behavior has been conjectured by Avellaneda [1].

For the standard example (4) we have p = 1, v = 47® max(— cos(273),0), ¥ = 2m. This gives

A(€)<{ (2me)'/?, €< 0.08

€e2+1/2, €>0.08 (17)

The second inequality is proved in [11], page 45. The two estimates are equal for e approximately
0.08. This value limits the validity of the /€ behavior of the effective diffusivity.

Choosing another decay rate for > H in (15), e.g. exponential, one can produce arbitrary small
scaling laws for the enhancement of the effective diffusivity. We state the extreme case where
H(z) =0for 1/2 —a <z <1/2. Choosing d = a and y(z2) = 0 in (15) implies

/2 1/2
e/ |Vp|* de = e / / O01p dzy dxs < QL
a

C —1/21/2—a

Hence there is no significant enhancement in this case.
On the other hand the result shows that for an odd C'? stream function H the effective
diffusivity always satisfies
lim A(e) = 0.

e—0

Hence there is no residual diffusion for symmetric Holder continuous flow fields b(x). This answers
a problem posed by Kozlov in [12].

3 Lower Bound

The assumptions on the stream function H are the same as in the previous section. We will use
the general duality formula for the homogenization of a 2 x 2 matrix A(x) (see [11]):

Ah Ao \"
det AP - <detA€> '

Since A" is diagonal we have for \(¢) = e; Ale;

1 6214?62 < Ae >h
— = = €3 €9

Ae)  det Ah det A,
with e; = (1,0),e2 = (0,1). Therefor we consider the weak formulation of the cell problem
associated to ﬁ in direction es

dz =0 (18)

Vo(eVy — HVLy)
/ 62 + H2
c



(C). The solution ¢ satisfies ¢(z) — xo € H}

per

L [V
m—€/€2+H2d.’E (19)

c
Again 1) is symmetric and (18) can be restricted to D := (0,1/2)?

for all p € H per
diffusivity is given by

(C). The inverse of the effective

Vo(eVy — HV y)
62 + H2

dz =0 (20)

for ¢ € H'(D), ¢(1/2,72) = ¢(0,22) = 0 with boundary conditions
’(/1(371,1/2) = 1/25 ¢(w170) =0.
The maximum principle implies 0 < ¢ < 1/2 on D.

Theorem 3 Assume, that there exists a set J C (0,1/2) and constants B,q > 0, s.t. the stream
function satisfies H(x)
|H (21, 22)| > B{|1|?,(1/2 — |21])*} (21)

for all (z1,z2) € (0,1/2) x J. Furthermore assume that 01 H (z1,22) has for fized x4 exactly one
zero ¢y = I'(x2) in (0,1/2). Then the effective diffusivity is estimated by

AO 2 €7 M( (q+1>+4;$|2>‘ 22)

@ q

1
e < fmin [ ———,(¢|J))? | .
4q+1q|J|

Proof: Let ¢(z) = ¢(z) — v(z2) in (20), where v(z3) grows linearly on J from 0 to 1/2 and is
constant otherwise. We get

|VLZJ|2 edop — Hovyp
2€ |J|/ + H2 // 62 T H? d.’L‘l dl‘2 (23)

_1
with a = (QQTJ‘) o for

For 6 < 1/4 let
As={reD|d<z1 <1/2—-0d,22 € J}

Bs = ((0,1/2) x J) \ 4
Decompose the right hand side in (23) into integrals I; and I over A5 and Bjs.

1/2
[Vy? 1/2 / VY[ J
< —
|1|_(B/ S| B <] [ e o
Bs

On As we get

1/2

1/2
Ic')zzbl2 1 q
|Il| S € —|—H2 dx m dx + +H261’(/) dx
8

As

[V 1 / H
< N
6|J|/ +H2d +4|J| oT I dx + 2+H281¢dw

As As



Combinig the estimates for I; and I we obtain

Vg 8 e / 1 H
SR R S d
|J|/ v Ty tay) evm T armivd
As As
€ H
+4,32524+ 62+H2611/Jd1‘
As

where we used the assumption (21) on H. This implies for all 5 € J

H(z) > Bxi > pd, d<x <1/4
H(CU) > ﬁ(l/?—aﬁ)q > 364, 1/4 <7 < 1/2—6

Now we use partial integration in the last integral in (24)

(24)

H Hi Hi
62+H28“/’ dr == /‘/’61 (W) d“/(eum“/*m*m“’“)) dr
J

(26)
We examine the monotonicity intervals of Py s H2 in the x; direction:
H e — H?
Oh|—=——— ) =00H———
1<e2+H2> 1 (2 + H2)?
We restrict § to
807 > € (27)
which implies
e —H(x)><0
for all z € As. Let T'(x2) be the unique point, s.t.
alH(F(l'Q), 1'2) =0.
For fixed x5 it is a maximum point for H and therefor a local minimum for ﬂ%’ since H —

H/(€? + H?) is decreasing for H > e. Furthermore this is the only extremum in As. This implies
g

H
o <m> (z1,22) <0, ford <z <T(x2)

H
o1 <m> (1‘1,1‘2) >0, for F(l‘2) <7 < 1/2 — 4.

Using 0 < 9 < 1/2 we can now estimate (26) by

H 1 H 1 H
2+H2611/Jd1‘ 2/624_7[{2((5,1'2) dl’2+5/62+H2(1/2—(5,l‘2) dl‘2
Aj J J
e 1
T

We have estimated all terms in (24):

|W’|2 PRI U
|J|/ <2 T god T ape

Since the last term will be of lower order we minimize only the first two terms with respect to 6.

4 1
We obtain for § = (%quJl) ' with a = (—2qu|) q+1



1
VP o (@ry
dzs < +1 —
g e v
D

' -1
7] [2(g+1) N e+t
a q AP )

The restrictions for § are (¢/3)'/9 < § < 1/4 which implies for €

1
€ < Bmin | —/———, (¢|J])? ] -
4w gl J|

or

This completes the proof.

Remarks: The upper and lower bounds have the same asymptotic growth for small e. Under
appropriate assumptions on H(z) a similar lower bound is expected to hold also in the general
case.

For the standard example we choose J = (1/4,3/4) which gives 3 = /8. For A(e) we get
approximately

1++/e’

Ae) > 0.6 ¢<0.38
= e €>0.38

For e approximately 0.38 the two bounds agree. This is within the allowed range of the theorem
above, which is € < LQ
Refining the arguments in the proof above this estimate can be further improved.
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