Max-Planck-Institut
fur Mathematik
in den Naturwissenschaften

Leipzig

An efficient direct solver for the
boundary concentrated FEM in 2D

by

B. N. Khoromskij and J. M. Melenk

Preprint no.: 64 2001

An Efficient Direct Solver for the
Boundary Concentrated FEM in 2D

B.N. Khoromskij and J.M. Melenk, Leipzig

Abstract

The boundary concentrated FEM, a variant of the hp-version of the finite element
method, is proposed for the numerical treatment of elliptic boundary value problems.
It is particularly suited for equations with smooth coefficients and boundary conditions
that may have low Sobolev regularity. In the two-dimensional case, it is shown that the
Cholesky factorization of the resulting stiffness matrix requires O(N log* N) units of stor-
age and can be computed with O(N log® N) work. Numerical results confirm theoretical
estimates.

Keywords: hp-finite element methods, meshes refined towards boundary, direct solvers, Schur
complement
AMS Subject Classification: 65N35, 65F10, 35D10

1 Introduction

The recently introduced boundary concentrated finite element method of [8] is a numerical
method that is particularly suited for solving elliptic boundary value problems with the follow-
ing two properties: a) the coefficients of the equations are analytic so that, by elliptic regularity,
the solution is analytic; b) globally, the solution has low Sobolev regularity due to, for example,
boundary conditions with low regularity or non-smooth geometries. The boundary concentrated
FEM exploits interior regularity in the framework of the hp-version of the finite element method
(hp-FEM) by using special types of meshes and polynomial degree distributions: meshes that
are strongly refined toward the boundary (see Figs. 5, 6 for typical examples) are employed in
order to cope with the limited regularity near the boundary; away from the boundary where
the solution is smooth, high approximation order is used on large elements. In fact, judiciously
linking the approximation order to the element size leads to optimal approximation results (see
Theorem 2.4 and Remark 2.6 for the precise notion of optimality).

In the present paper, we focus on the boundary concentrated FEM in two space dimensions and
present a scheme for the Cholesky factorization of the resulting stiffness matrix that requires
O(Nlog* N) units of storage and O(Nlog® N) work; here, N is the problem size. The key to
this efficient Cholesky factorization scheme is an algorithm that numbers the unknowns such
that the profile of the stiffness matrix is very small (see Fig. 1 for a typical sparsity pattern of
the Cholesky factor). Numerical examples confirm our complexity estimates.

The boundary concentrated FEM can be used to realize a fast (i.e., with linear-logarithmic
complexity) application of discrete Poincaré-Steklov and Steklov-Poincaré operators as we will
discuss in Section 2.5. This use of the boundary concentrated FEM links it to the classical

boundary element method (BEM). Indeed, it may be regarded as a generalization of the BEM:
While the BEM is effectively restricted to equations with constant coefficients, the boundary
concentrated FEM is applicable to equations with variable coefficients yet retains the rate of
convergence of the BEM. Since the Cholesky factorization of the stiffness matrix allows for an
exact, explicit data-sparse representation of boundary operators such as the Poincaré-Steklov
operator with linear-logarithmic complexity, the boundary concentrated FEM provides a sparse
direct solver for the 2D BEM (because it directly computes the full set of Cauchy data on the
boundary corresponding to £-harmonic functions) that has almost linear complexity. It is also
a new alternative to modern matrix compression techniques now used in BEM.

We present a Cholesky factorization scheme for the boundary concentrated FEM in two dimen-
sions, that is, a direct method. We mention that iterative methods for solving the system of
linear equations arising in the boundary concentrated FEM are considered in [8]. Depending
on the boundary conditions considered, different preconditioners are required for an efficient
iterative solution method. For example, while for Dirichlet problems the condition number
of the stiffness matrix grows only polylogarithmically with the problem size, [8], Neumann
problems require more effective preconditioning. A suitable preconditioner, which has block-
diagonal structure, was proposed in [8]. We point out, however, that an application of this
preconditioner requires an inner iteration making our direct solver an attractive option.

We conclude this introduction by mentioning that, although we restrict our exposition to the
case of symmetric positive definite problems, our procedure can be extended to non-symmetric
problems by constructing the LU-decomposition rather than the Cholesky factorization.

2 Boundary Concentrated FEM

In this section, we present a brief survey of the boundary concentrated FEM. We refer to [8]
for a detailed description of this technique and complete proofs. For the sake of concreteness,
we discuss Dirichlet problems although other types of boundary conditions such as Neumann
or mixed boundary conditions can be treated analogously.

2.1 Problem class and abstract Galerkin FEM

For a polygonal Lipschitz domain Q C R2, we consider the Dirichlet problem

Lu = fe€L*Q), in €, (2.1a)
Yu = € HY*0Q) on 99, (2.1b)

where the differential operator L is given by
Lu ==V - (AVu) + ayu (2.2)

with uniformly (in 2 € Q) symmetric positive definite matrix A = (a;;)?,_,. Moreover, in the
boundary concentrated FEM, we assume that A and the scalar functions ag, f are analytic on
Q. The operator v, : H'(2) — H'/2(9Q) is the trace operator that restricts functions on € to

the boundary 992. We assume that the operator £ generates an H'({2)-elliptic bilinear form

2
B(u,v) = Z a;;0;udiv + aguv dz, (2.3)

o =1

ie.,
collullie < Blu,u) <allulllq Vu € Hy(Q). (2.4)

The boundary value problem (2.1) is understood in the usual, variational sense. That is, solving
(2.1) is equivalent to the problem:

Find u € H'(Q) with you = X and B(u,v) = / fodr Vv € Hy(9Q). (2.5)
0

The standard FEM is obtained from the weak formulation (2.5) by replacing the space H'(Q)
with a finite dimensional subspace Vy C H'(Q). For the Dirichlet problem (2.1), we introduce
the trace space

Vi = Viloa = {7ov |v € Vy} € HY2(8Q). (2.6)

For an approximation Ay € Yy to A we can then define the FEM for (2.5) as follows:
Find uy € Vy sit. uy = Ay and B(uy,v) = / fvoder Yo eVynNH;(Q). (2.7)
Q

The coercivity assumption (2.4) ensures existence of the finite element approximation wuy.
Furthermore, by Céa’s Lemma there is a C' > 0 independent of Vy such that uy satisfies

Ju—ullme < € inf {lu= ol + v = Moo} (2.8

YOV=AN

In practice, the approximations Ay are obtained with the aid of the L?-projection operator
Qn : H'?2(092) — Yy by setting Ay = Qn), i.e., for A € L?(09Q) the function Qx) is defined
by

<QN)\; U>0’39 = <)\, 'U>0’3Q Yv € YN. (29)

In the next section, we specify the approximation spaces Vy, the proper choice of which is
intimately linked to the regularity properties of the solution u of (2.1). The analyticity of
the data A, ag, and f implies by interior regularity that the solution w is analytic on €2; if
furthermore u € H'*°(Q) for some § € (0, 1], then the blow-up of higher order derivatives near
the boundary can be characterized precisely in terms of so-called countably normed spaces
(see [8] for the details). This regularity allows us to prove an optimal error estimate for the
boundary concentrated FEM in Theorem 2.4 below.

2.2 Geometric meshes and linear degree vectors

For ease of exposition, we will restrict our attention to regular triangulations (i.e., no hanging
nodes) consisting of affine triangles. (We refer, for example, to [?] for the precise definition
of regular triangulations.) We emphasize, however, that an extension to quadrilateral and
curvilinear elements is possible. The triangulation 7 = {K} of the domain consists of

A

elements K, each of which is the image F (K) of the equilateral reference triangle
K:{(x,yﬂ —1<x<1,0<y<\/§(1—|x|)}

under the affine map Fx. We furthermore assume that the triangulation 7 is y-shape-regular,
ie.,

hi 1 Ficllpoo iy + PN (FR) Mooy £ v VK €T, (2.10)
Here, hx denotes the diameter of the element K. Of particular importance to us will be
geometric meshes, which are strongly refined meshes near the boundary 0€:

3

Definition 2.1 (geometric mesh) A vy-shape-reqular (cf. (2.10)) mesh T is called a geomet-
ric mesh with boundary mesh size h if there exist ¢1, ¢3 > 0 such that for oll K € T:

1. if KNOQ # 0, then h < hi < coh;
2. if KNOQ =0, then ¢ inlf; dist (z,09) < hx < cp sup dist (x, 09).
fAS

reK

Typical examples of geometric meshes are depicted in Figs. 5, 6. Note that the restriction to
the boundary 0€) of a geometric mesh is a quasi-uniform mesh, which justifies speaking of a
“boundary mesh size h”.

In order to define hp-FEM spaces on a mesh 7, we associate a polynomial degree px € N with
each element K, collect these px in the polynomial degree vector p := (px)xe7 and set

SP(Q,T) == {ue H(Q)|uoFx € P, (K) VK eT}, (2.11)
SP(Q,T) = SP(Q,7T)N H; (), (2.12)

where for p € N we introduce the space of all polynomials of degree p as
P,(K) = span {z'y’ |0 < i+j < p}.

The linear degree vector is a particularly useful polynomial degree distribution in conjunction
with geometric meshes:

Definition 2.2 (linear degree vector) Let T be a geometric mesh with boundary mesh size
h in the sense of Definition 2.1. A polynomial degree vector p = (pi) ket s said to be a linear
degree vector with slope a > 0 if

h h
1+acllogTK <prg < 1+a0210g7K.

An important observation about geometric meshes and linear degree vectors is that the dimen-
sion dim SP(Q, T) of the space SP(Q, T) is proportional to the number of points Np = O(h™")
on the boundary:

Proposition 2.3 ([8]) Let T be a geometric mesh with boundary mesh size h. Let p be a
linear degree vector with slope o« > 0 on T. Then there exists C > 0 depending only on the
shape-regularity constant v and the constants ¢, ¢o, a of Definitions 2.1, 2.2 such that

dim SP(Q,T) ~ > pp <Ch™,
KeT

< Clogh™.
waxpx < Clog

2.3 Error and complexity estimates
We formulate an approximation result for the hp-FEM on geometric meshes applied to (2.1):

Theorem 2.4 ([8]) Let u be the solution to (2.1) with coefficients A, ay, and right-hand side f
analytic on Q. Assume additionally that u € H'*(Q) for some § € (0,1). Let T be a geometric
mesh with boundary mesh size h and let p be a linear degree vector on T with slope o > 0.
Then the FE solution uy given by (2.7) satisfies

lu—un|lm@y < C [R° +h*]. (2.13)

4

The constants C, b > 0 depend only on the shape-regularity constant -y, the constants ¢y, co
appearing in Definition 2.1, the data A, ¢, f, Q, and 0, ||u|gr+sq). For a sufficiently large the
boundary concentrated FEM achieves the optimal rate of convergence

|u— un|lmi@) < Ch® = O(NR?), Nr = number of boundary points.

Remark 2.5 Theorem 2.4 is formulated for the Dirichlet problem (2.1). Analogous approxi-
mation results hold for Neumann or mixed boundary conditions as well. .

Remark 2.6 Theorem 2.4 asserts a rate O(n) for the boundary concentrated FEM, where
n = dim SP(£, T) ~ Nr. This rate is optimal in the following sense: Setting for § € (0,1)

Us == {u € H(Q) |||ull gr+sqy < 1 and u solves Lu =0 on Q}
we can introduce the n-width

d, = 1}19152;2 UlenEfn | — v (), (2.14)

where the first infimum is taken over all subspaces E,, C H'(Q) of dimension n. It can then be
shown that Cn=% < d, for some C' > 0 independent of n. "

2.4 Shape functions and stiffness matrix

In order to convert the variational formulation (2.7) into a system of linear equations, a basis
of the finite element space SP(Q,T) or S§(2,7T) has to be chosen. Several choices of basis
functions (“shape functions”) are standard in hp-FEM, [2, 12, 7]. Their common feature is
that the shape functions can be associated with the topological entities “vertices,” “edges,”
and “elements” of the triangulation 7. This motivates us to introduce the following notion of
“standard” bases:

Definition 2.7 A basis B of S¥(Q,T) is said to be a standard hp-FEM basis if each shape
function @ € B falls into exactly one of the following three categories:

1. vertex shape functions: ¢ is a vertex shape function associated with vertex V if supp ¢
consists of all elements that have V' as a vertex;

2. edge shape functions: ¢ is an edge shape function associated with edge e of T if supp ¢
consists of the (at most two) elements whose edge includes e;

3. internal shape functions: ¢ s an internal shape function associated with element K if
supp p = K.

For a standard basis in this sense, we assign spatial points, called nodes, to degrees of freedom
as follows:

1. we assign to the shape function associated with vertex V' the point V';
2. we assign to the side shape functions associated with edge e the midpoint of e;

3. we assign to the internal shape functions associated with element K the barycenter of K.

One example of a standard basis in the sense of Definition 2.7 is obtained by assembling (see,
e.g., [2, 12, 7]) the so-called hierarchical shape functions:

Example 2.8 We construct a basis of the space SP(€2,T) in two steps: In the first step, we
define shape functions on the reference element K. In the second step, we define the basis of
SP(2,T) by an assembling process.

1. step: Define one-dimensional shape functions ¢; on the reference interval (—1,1) by

bula) =S (1+2), bala) =5 (1—2), Gia) = /ﬁ Lial@)de i=34
where the functions L; are the standard Legendre polynomials and the scaling factors ¢; are
given by ¢; = 1/[|Lia|[r2(—1,1)-

Denote by v;, i = 1,...,3, the three vertices of K and by T;, i = 1,..., 3, the three edges (we
assume 'y = {(2,0) € R?| — 1 <z < 1}). Let p; € N be polynomial degrees that we associate
with the edges I'; and let p € N be the polynomial degree of the internal shape functions. We
then define vertex shape functions V, side shape functions § = & U8, U S3, and internal shape
functions Z as follows:

VY = the usual linear nodal shape functions n; with n;(v;) = d;j,
y—V3(1+2)y—v31-2), .
81 = {Sl,j(l‘ay) :qu(l')]_—|—IL' 1_1_ |]:377p1+]-)

T = {Ijj(z,y) =yly— V31 +2))(y+ V31 —2)Lix)L;(y) |0<i+j<p-3}

The side shape functions Sy, S3 are obtained similarly with p; replaced with p, (resp. p3) and a
suitable coordinate transformation. Note that internal shape functions vanish on OK and that
edge shape functions vanish on two edges.

2. step: Shape functions as defined on the reference element K are now assembled to yield a
basis of SP(€, T). First, the standard piecewise linear hat functions are obtained by simply
assembling the shape functions V of each element. The internal shape functions are simply
taken as

IijoFlzl(may)a (l‘ay)EK

0<i+j<pxk—-3, KeT
0 else

(107;7]"1(("1;’ y) = {

where [;; € 7 is the internal shape function on the reference element K defined above. It
remains to assemble the side shape functions. To that end, we associate with each edge e a
polynomial degree p, := min {px | e is edge of K}. Let e be an edge shared by two elements K,
K'. For simplicity of notation assume that the element maps Fy, Fx are such that Fy(T'y) =
Fy/(T'1) = e and that additionally Fi(z,0) = Fk/(x,0) for z € (—1,1) (we refer to [2, 7] for
details on how to treat the general case). We then define p. — 1 edge shape functions ¢; .
associated with edge e by setting

siioFit(z,y) (zv,y) €K

Gie(T,y) =4 s150 Frt (v,y) (v,y) € K", 1<i<pe—1
0 else
An analogous formula holds for edges e with e C 012. .

6

Once a basis of Viy = S§ (€2, T) is chosen, the hp-FEM (2.7) can be formulated as seeking the
solution U € RY™ VY~ of a system of linear equations

AU = F, A e RimVaxdimVy = fr o Rdim Vv (2.15)

We mention in passing that computing the stiffness matrix A and the load vector F' to sufficient
accuracy can be accomplished with work O(dim Vy), [8].

2.5 Sparse Factorization of the Schur complement

We discuss how the Cholesky factorization of the stiffness matrix A leads to the explicit sparse
representation of discrete Poincaré-Steklov operators. Let T be the Poincaré—Steklov operator
(Dirichlet-Neumann map)

T:X— vnu

where y;u is the co-normal derivative of the solution u to the equation Du = 0 with boundary
condition you = A. Then, with Vy := SP(Q,T) and the trace space Yy := vV, the discrete
approximation T : Yy — Y} is defined as follows: For A € Yy, the approximation Ty € Y}
is given by

<TN)\, U>0739 = B(’LLN,’{)/) Yv € Y,

where v € Vy is an arbitrary extension of v satisfying vyv = v, and uy € Vy solves
Youy =X and B(uy,v) =0 Vv e VynH Q).

An analysis of the error 7' — Ty was presented in [8]:

Theorem 2.9 Let €2 be a polygon. Then the following two statements hold:

1. There exists 09 > 1/2 such that the Poincaré-Steklov operator T maps continuously from
HY?43(0Q) to H'/279(0Q) for all § € [0,0y), i.e.,

||T’LL||H_1/2+5(3Q) < C’5||u||H1/2+5(,9Q) Yu € H1/2+‘5(6Q). (2.16)

2. Under the hypotheses of Theorem 2.4 (with 6 € (0,1) as in the statement of Theorem 2.4)
there holds for arbitrary § € [0,0] N[0, dp)

1T\ = TxQu]| -1 /200 < Cs [fﬁ + hba] . (2.17)

If a standard basis in the sense of Definition 2.7 of the space SP(£2, 7)) is chosen, then the shape
functions can be split into “interior” and “boundary” shape functions. A shape functions is
said to be “interior” if its node (see Definition 2.7) lies in €2; it is a “boundary” shape function
if its node lies on 0€2. To this partitioning of basis functions corresponds a block partitioning of
the stiffness matrix Ay € RIMVvxdimVv for the unconstrained space Vi of the following form:

Ay = Arr Ary
. A A)7
The subscript I indicates the interior shape functions and I' marks the boundary shape func-

tions. If we choose Y}, = Yy, then the matrix representation of the operator Ty is given by the

Schur complement
TN = AFF — AF[AI_IIA]F.

7

Inserting the Cholesky factorization LLT = A;; leads to the desired direct FE method for the
Poincaré-Steklov map
TN = AIT - AF]L_TL_IA]F. (218)

Because the Cholesky factor L can be computed with linear-logarithmic complexity (see Sec-
tion 3), formula (2.18) provides an efficient representation of the Poincaré-Steklov operator. We
finally mention that our factorization scheme for the Schur complement carries over verbatim
to the case of the Neumann-Dirichlet map and also to the case of mixed boundary conditions.

3 Cholesky factorization of the stiffness matrix

This section is devoted to the main result of the paper, the development of an efficient Cholesky
factorization scheme for the stiffness matrix arising in the 2D-boundary concentrated FEM.
The key issue is the appropriate numbering of the degrees of freedom. First, we illustrate this
numbering scheme for the case of geometric meshes and constant polynomial degree p = 1
(Sections 3.2, 3.3). We start with this simpler case because our numbering scheme for the
degrees of freedom (Algorithm 3.10) is based on a binary space partitioning; in the case p = 1,
the degrees of freedom can immediately be associated with points in space, namely, the vertices
of the mesh. The general case of linear degree vectors is considered in Section 3.4.

For the case p = 1, we recall that by Definition 2.7, the vertices of the mesh are called nodes.
We denote by V the set of nodes and say that a node V' is a neighbor of a node V if there exists
an element K € 7 such that V and V' are vertices of K. It will prove useful to introduce the
set of neighbors of a node V € V as

N(V):={V"e€V|V'is a neighbor of V}, (3.1)

because the sparsity pattern of the stiffness matrix can be characterized with the aid of the

sets .

3.1 Nested dissection in Direct Solvers

Let A € RM*N be a symmetric positive definite matrix. We denote by L its Cholesky factor,
i.e., the lower triangular matrix L with LLT = A. For sparse, symmetric positive matrices
A e RV*N it is customary, [5], to introduce the i-th bandwidth 3; and the j-th frontwidth w; of
A as

B = max{i—j|j<iand A; £0}, i=1,...,N, (3.2)
w;j = [{k|k>jand Ay # 0 for some | < j}|, j=1,...,N -1 (3.3)

It can be shown (see Proposition 3.1(i)) that in each row 4, only the entries L;; with i—f; < j <1
are non-zero. The j-th frontwidth w; measures the number of non-zero subdiagonal entries in
column j of L, i.e., w; = [{i < j | L;j # 0}

The frontwidth w is given by

W= max w. (3.4)
i=1,. N

The cost of computing the Cholesky factor L can then be quantified in terms of the numbers
Wi

Proposition 3.1 Let A € RV*N be symmetric, positive definite. Then
(i) the storage requirement for L isnnz = N + 3N "3, = N+ SN 1wy,
(ii) the number of floating point operations to compute L is

o N square roots for the diagonal entries Ly,
o SOV wi(w; 4 3) multiplications.
In particular, the storage requirement nnz and the number of floating point operations W can

be bounded by
nnz = O(Nw), W = O(Nw?). (3.5)

Proof. See, for example, [5, Chapters 2, 4]. |
In view of the estimate (3.5), various algorithms have been devised to number the unknowns so
as to minimize the frontwidth w; the best-known examples include the Reverse Cuthill-McKee
algorithm, [4], the algorithm of Gibbs-Poole-Stockmeyer, [6], and nested dissection. For stiffness
matrices arising in the 2D-boundary concentrated FEM, we will present an algorithm based
on nested dissection in Section 3.3 that numbers the nodes such that w = O(In? N) for some
qc No.

The basic nested dissection algorithm in FEM reads as follows:

Algorithm 3.2 (nested dissection)
nested_dissection(V, Ny)

% input: Set of nodes V, starting number Ny

% output: numbering of the nodes V starting with Ny

if |V| =1 then label the element of V with the number Ny
else {

1. partition the nodes V into three mutually disjoint sets Viesr, Vright, Vedy Such that

(@) Wiestl = [Vrignl
(0) | Voay| is “small”
(C) N(V) C VleftUVbdy f07’ allV € Vleft and N(V) C VrightUVbdy f07’ allV € v”'ght

2. if Viept # 0 call nested_dissection(Vies, No)
3. if Veight # 0 call nested_dissection(Vyigne, No + [Viest|)

4. enumerate the elements of Ve, starting with the number No + |Viesi| + [Vvight|

}

return
The key property is (1¢). It ensures that the stiffness matrix A has the following block structure:
Aestieft 0 Apay teft

— . . T
A= 0 Arzght,rzght Abdy,right (36)
Abdy,left Abdy,right Abdy,bdy

sparsity pattern of L

200f
4001
600
800
10001
12001
14001
16001

18001

2000t
0 500 1000 1500 2000
nz = 99971

Figure 1: Left: mesh and initial geometric partitioning (thick line). Right: sparsity pattern of
Cholesky factor L for mesh with 2028 nodes; w = 98.

Condition (1b) is imposed in view of the fact that the frontwidth w(A) of A can be bounded
by
u)(14) < max {W(Aleft,left); W(Aright,right)} + |Vbdy|a (37)

where w(Ajefiieft), W(Apightright) are the frontwidths of the submatrices Ajepi, Arigne. Thus, if
the recursion guarantees that |Vyg,| is small and the frontwidths of these submatrices are small,
then the numbering scheme is efficient. Since nested dissection operates recursively on the
sets Vieft, Vrignt, its effectiveness hinges on the availability of partitioning strategies for Step 1
of Algorithm 3.2 that yield small |V,4,|. The particular node distributions appearing in the
boundary concentrated FEM will allow us to devise such a scheme in Section 3.3.

3.2 Nested dissection: an Example

We show that for meshes that arise in the boundary concentrated FEM, it is possible to perform
the partitioning of Step 1 in Algorithm 3.2 such that the set V4, is very small compared to V.
We illustrate this in the following example.

Example 3.3 Consider meshes that are refined toward a single edge as shown in Fig. 1. The
thick line partitions R? into two half-spaces H., H~, and the nodes are partitioned as follows:

Vioay ={V € VN H_. |V has a neighbor in H.} U{V € VN H. |V has a neighbor in H_.},
vleft = {V evyn H<} \ vbdy
Vright = {V €erYn H>} \ V(,dy.

Note that due to choosing the partitioning line as the center line, we have
Viert = V12, Wrignel = VI/2, [Veay| = O(log [V]). (3.8)

(Estimates of this type are rigorously established in Lemma 3.4 below.) We then proceed as
in Algorithm 3.2 by partitioning along a “center line” of the subsets of nodes (a more rigorous
realization of this procedure is Algorithm 3.9 below that is based on binary space partitioning).
We note that the subsets Viesi, Vyign: have a similar structure as the original set V; thus, they
are partitioned satisfying an estimate analogous to (3.8). Using this partitioning scheme in
Algorithm 3.2 leads to very small frontwidths: For a mesh with N = 2028 nodes, a frontwidth

10

w = 98 is obtained (see Fig. 1 for the actual sparsity pattern). We analyze this example in
more detail in Examples 4.1, 4.2 below. "

The bounds in (3.8) are “geometrically clear.” A more rigorous proof is established in the
following lemma.

Lemma 3.4 Let T be a geometric mesh with boundary mesh size h on a domain 2. Fiz b € 0S)
and choose a partitioning vector t # 0 such that the following cone condition is satisfied (cf.
Fig. 2):

36,p > 0,7 € R? with (t,71) =0 s.t. (3.9)
Cy = {x € R’ | {x — b,71) > 6| — b| |i1|} N B,(b) C .

Define the half-spaces
H. :={x|{x —b,t) <0}, H. :={x|{x —b,t) > 0},
and set

V, ={V |V is a node of T and V' € B,(b)}
Voay :={V € V,NH |V has a neighbor in H.} U{V € V, N H~ |V has a neighbor in H.},
vleft = {V € Vp N H<} \ Vbdy; Vright = {V € Vp N H>} \ vbdy-

Then

Vhay| < vlog|V,l,
771|vleft| S |vright| S ’7|vleft|

where v > 0 depends only on &, p, and the constants describing the geometric mesh T. In
particular, v is independent of the point b.

Proof. Let [be the line passing through the point b with direction 7, i.e., | = {z € R?* | (z —
b,ty = 0}. Next, define the function

d(z) := max {h,r(z)}, r(z) = dist (z, R? \ Q).
The key property of d is that
VK e TVreK hg~dx). (3.10)

Denoting by K4, the set of all elements that intersect the line [, Kpqy := {K € T | Knl# 0},
we can bound

1 1 1
K K

K€Kpay KKy, K KeKpay K

In order to proceed, we need two assertions:
Assertion 1: For § € (0,1) given by the cone condition (3.9) there holds

dist (z, 002) < dist (z,b) < dist (z, 092) Ve e Qnl. (3.12)

1
V1—462
11

Figure 2: Notation for partitioning at a boundary point b.

The first estimate of (3.12) is obvious. For the second one, geometric considerations show for
zeQnl

dist (z,b) < dist (z,C") < dist (z, 09),

1 1
V1 — 62 V1—4?
where C' is the lateral part of OC;. This proves (3.12).

Assertion 2: There exists C' > 0 depending only on the parameters describing the geometric
mesh and the parameters of the cone condition such that

d(r) < max {h,dist (z,b)} < Cd(x) Ve e K VK € Ky (3.13)

Again, the first bound is obvious. For the second bound, let x € K for some K € K4, and
choose rx € K NI. Then

dist (x,0) < hg +dist (vx,b) < hg + dist (zg, 09),

1
V1—42
where we used (3.12). Next, we use the properties of geometric meshes and (3.10) to get

d(zk)
V1—462

max {h,dist (z,0)} < max{h, hg} + \/% max {h, dist (zx,0Q)} = hx +
< Cd(zg) < Cd(x).

Inserting this bound in (3.11) gives

1 p 1
< C de < C ———rdr < C|logh|.
Voay| - < /:veB,,(b) max {h?, |z — b|?} = /,:0 max{hZ,TZ}r r < Cllogh

Since |V,| ~ h™! (cf. [8, Prop. 2.7]), we have proved the first estimate of the lemma.

For the second estimate of the lemma, we note that the boundary parts I'. := 0QN H. N B, (b)
and I's0QN H- N B,(b) have positive lengths. Thus we have [V,NT'<| ~ A~ ' and |V,NTs| ~ h™!
and a fortiori |Viepi| ~ [V,| ~ [Vrigni|; the proof of the lemma is now complete.]
The reason for the effectiveness of the partitioning strategy in Example 3.3 is that at each stage
of the recursion, Algorithm 3.2 splits the set of nodes into two sets of (roughly) equal size, and
a set of boundary nodes V4, that is very small. The property (3.8), proved in Lemma 3.4,
motivates the following definition:

12

Definition 3.5 ((v, ¢)-balanced partitioning) The nested dissection Algorithm 3.2 is said
to be (v, q)-balanced for a set V(O =V #£ () if at each stage i of the recursion there holds

1 i i i
§|Vl(e}t| < |V7(=i2;ht| < ’Y|Vz(e3*t|a (3.14)
VO <y 1+ V). (3.15)

Here, the superscripts i indicate the level of the recursion.

For a (v, ¢)-balanced nested dissection algorithm, we can then show that the frontwidth grows
only moderately with the problem size:

Proposition 3.6 If the nested dissection Algorithm 3.2 is (v, q)-balanced for V, then the num-
bering generated by Algorithm 3.2 leads to a frontwidth w(A) of the stiffness matriz A with

1
W(A) SO A+mV)T, =y (1 T) |

Y

Proof. The assumption that the algorithm is (v, ¢)-balanced implies easily

(i) (i) i (i)
|Vleft|§?|v)], Vri |§—7|V B

Thus, |V®| < () |V|, and the depth of the recursion is at most

Nmazr = In 1_;7 In |V|

since the recursion stops if |[V®| = 1. The bound (3.7) then implies

w(A) < Y Y[+ V] < Y1+ npg) (1 +In? [V))

i

IN

1
(14) (e

Y

where we used the definition of C, of the statement of the proposition.]
In Example 3.3, we studied the model situation of meshes refined toward a straight edge.
In view of Lemma 3.4, we expect the partitioning strategy of be (v, 1)-balanced. Hence, we
expect the frontwidth to be of the order O(log® |V|). In Examples 4.1, 4.2, we will confirm this
numerically.

3.3 Node Numbering for geometric meshes: the case p =1

We now present a partitioning strategy that allows Algorithm 3.2 to be (v, 1)-balanced for node
sets that arise in the boundary concentrated FEM. The partitioning rests on the binary space
partitioning (BSP), [3], which is reproduced here for convenience’s sake:

13

Algorithm 3.7 (BSP)
BSP(X, 1)
% input: Set of points X, partitioning vector t
% output: partitioning of X into X., Xs, X_ with |X.| =~ |Xs| and |X=| small
1. determine the median m of the set {(z,t) |z € X'}
2. Xo:={x e X|(x,t) <m}, Xs :={x € X|(x,t) >m}, X_:={x e X|{(x,t) =m}

return

Remark 3.8 Since the median of a set can be determined in optimal (i.e., linear in the number
of elements) complexity (see, e.g., [1, 9]), Algorithm 3.7 can be realized in optimal complexity.

The next algorithm formalizes our procedure of the example in Section 3.2.

Algorithm 3.9 (subdomain numbering)
numbering(V, ¢, No)

% input: nodes V, vector t, starting number Ny
%output: numbering of nodes V

if |V| =1 then label the element of V with the number Ny
else {

1. (X, X.,X_) :=BSP(V, 1) % Algorithm 3.7

2. Vleft = {V € X< |N(V) - X< U X:},
vright = {V € X> |N(V) C X> U X:},
Vidy .=V \ Viest U Vyight)

3. if Viept # 0 call numbering(Vie s, t, No)
4. if Vyighe # 0 call numbering(Vyigne, t, No + [Viest)

5. enumerate the elements of Vyay starting with the number No + |Vies| + [Vyight|

}

return

Algorithm 3.9 allows us to number efficiently nodes of a mesh that is refined toward a line as
in Fig. 1. Our final algorithm splits the domain into subdomains, each of which can be treated
efficiently by Algorithm 3.9.

Algorithm 3.10 (node numbering)

1. split the domain €2 into subdomains €2;, i+ =1,..., M, and choose vectors t; # 0
2.V _{vanQ IN(V)CQi}, i=1,....M

3. vbdy —V\U

=1

~¢L\

14

5. for i=1,...,M do {
call numbering (V;,t;, N)
N :=N + |VZ|
}

6. number the nodes of Vya, starting at N

The subdomains €2; and the partitioning vectors ¢; should be chosen such that
(@) [Viay| = O(log [VI);

(b) the partitioning in the subsequent calls of numbering(V;,t;, N) is (v, 1)-balanced in the
sense of Definition 3.5.

To obtain guidelines for the selection of subdomains €2; and partitioning vectors ¢;, it is valuable
to study examples where Condition (a) or Condition (b) are not satisfied. This is the purpose
of the next example.

Example 3.11 The left and center pictures in Fig. 3 illustrate situations in which Condi-
tions (a), (b) are violated: In the left picture of Fig. 3, the common boundary 0€; N 0%; is
tangential to 02 at b, and thus we cannot expect [Vyq,| = O(log|V|) (cf. the cone condition
(3.9)). In the center picture of Fig. 3, the partitioning vector ¢; is parallel to the outer nor-
mal vector n(z) at the boundary point x € 0€). This prevents the partitioning from being
(v, 1)-balanced, since at some stage of the recursion, Condition (3.15) will be violated (note
again the cone condition (3.9)). We refer to Example 4.5 below, where this kind of failure is
demonstrated numerically. Finally, we point out that in the center picture of Fig. 3 the vector
t; for the subdomain §; satisfies |(¢;, n(y))| < 0|t;] < |¢;] for all y € 92; N ON. n

JFrom the two cases of failure in Example 3.11, we draw the following guidelines:
1. The subdomains should be such that 9€2; N 0€2; is non-tangential to OS2

2. For each subdomain €2;, the partitioning vector ¢; should be chosen such that the cone
condition (3.9) holds uniformly in b € 99; N JQ; i.e., d, p > 0 are independent of b.

A partition chosen according to these rules is depicted in the right part of Fig. 3.

Remark 3.12 The guideline for choice ¢; such that the cone condition (3.9) is satisfied at each
point b € 0Q; NN guarantees that in the partitioning, |V,§fl)y| = O(log |V|) at each stage i of the
recursion (see Lemma 3.4). Thus, the partitioning is (v, 1)-balanced if we can ensure (3.14),
that is, that V., and Vg, are comparable in size. Note that this could be monitored during
run time. -

Remark 3.13 In all steps of the recursion in Algorithm 3.9, we use a fixed partitioning vector
t;. This is done for simplicity of exposition. In principle, it could be chosen differently in each
step of the recursion depending on the actual set to be partitioned. Since the partitioning
strategy should be (7, 1)-balanced, one could monitor this property during run time and adjust
the vector t as necessary. "

We conclude this section with a work estimate for the case p = 1:

15

Figure 3: Choosing subdomains and partitioning vectors. Left and center: cases of failure.
Right: possible partitioning with arrows indicating a good choice of vector t;; in the three
subdomains without an arrow, ¢; may be chosen arbitrary.

Proposition 3.14 Let V be the set of nodes corresponding to a geometric mesh on a domain
Q. Assume that the subdomains ; and vectors t;, i =1,..., M, in Algorithm 3.10 are chosen
such that a) Veay| = O(log|V|) and b) the partitioning in each call numbering(V;,t;, N) is
(7v,1)-balanced. Then the frontwidth w(A) of the stiffness matriz on geometric meshes with
p =1 is bounded by

w(A) < Clog? V),

where the constant C' is independent of |V|. The storage requirements nnz and work W for the
Cholesky factorization are bounded by

nnz < C|V| log® |V, W < |V| log*|V].

Proof. The hypothesis that Algorithm 3.10 is based on a (v, 1)-balanced partitioning together
with Proposition 3.6 implies w(A4) = O(log” |V|). The estimates concerning storage requirement
and work then follow from Proposition 3.1.]

Remark 3.15 On each level the nodes of Vb(,?y are numbered arbitrarily. Suitable numbering
strategies of these sets could further improve the frontwidth w(A). n

3.4 Node Numbering: geometric meshes and linear degree vectors

We now consider the case of geometric meshes and linear degree vectors. We proceed as in
Section 3.3 for the case p = 1 by identifying degrees of freedom with points in space. We use
the notion of nodes introduced in Definition 2.7 and denote by V the set of all nodes. We count
nodes according to their multiplicity, that is, the number of shape functions corresponding to
that node. This procedure is justified by the fact that shape functions associated with the same
node have the same support and therefore the same neighbors. As in the case p = 1, we say
that node V' is the neighbor of a node V, if the intersection of the supports of the associated
shape functions has positive measure. The set of neighbors of a node is defined as in (3.1).

Remark 3.16 Nodes are counted according to their multiplicity. If a one-to-one correspon-
dence between points in space and degrees of freedom is desired, one could choose distinct
nodes on an edge (e.g., uniformly distributed) to be assigned to the shape functions associated
with that edge; likewise distinct nodes in an element could be selected to be assigned to shape
functions associated with that element. The performance of the algorithms below will be very
similar. u

16

To this set of nodes and this notion of neighbors, we can apply Algorithm 3.10. In order to
estimate the resulting frontwidth, we need the analog of Lemma 3.4.

Lemma 3.17 Let T be a geometric mesh on a domain €2, p be a linear degree vector, and
assume the cone condition (3.9). Define the half-spaces

H. :={z|{x —b,t) <0}, H. = {xz|{x —b,t) >0},
and set
V, = {V |V is a node and V" € B,(v)},

Viay =4V € V,NH_ |V has a neighbor in H.} U{V € V, N H> |V has a neighbor in H.},
Vleft = {V € Vp N H<} \ Vbdy, Vright = {V € Vp N H>} \ Vbdy-

Then
|Vbdy| < 710g3 |Vp|v
771|vleft| S |vright| S ’7|vleft|

where v > 0 depends only on 0, p, and the constants describing the geometric mesh T and the
linear degree vector p.

Proof. The proof of this lemma is very similar to that of Lemma 3.4. For the bound on |V, |
we have to estimate (using the notation of the proof of Lemma 3.4)

> Vi
KeKpqy
The desired bound then follows as in the proof of Lemma 3.4 if we observe that

pr ~ 14log(d(z)/h) Vz e K.

[|
In view of the appearance of the exponent 3 in Lemma 3.17, we expect Algorithm 3.10 to be
(7, 3)-balanced. In this case, we can obtain the following result for the performance of the
numbering obtained by Algorithm 3.10:

Theorem 3.18 Let T be a geometric mesh and p be a linear degree vector. Set N = dim SP(T,).
Assume that subdomains €); and partitioning vectors t;, i = 1,..., M, in Algorithm 3.10 are
chosen such that a) [Vsa,| = O(log® N) and b) the partitioning in each call numbering(V;,t;, N)

is (7, 3)-balanced. Then the frontwidth w(A) of the stiffness matriz is bounded by

w(A) < Clog" N,
The storage requirements nnz and work W for the Cholesky factorization are bounded by
nnz < CN log* N, W < N log® N.

Remark 3.19 In view of Remark 3.8, Algorithm 3.10 requires O (N log N) work (i.e., optimal
complexity) to compute the numbering. "

Remark 3.20 We assumed that the mesh consists of triangles only. However, Algorithm 3.10
can be applied to meshes containing quadrilaterals and curved elements. Theorem 3.18 holds
verbatim in these cases as well. "

17

frontwidth for refinement towards a single edge

1
0 _+ frontwidth, t=(1,0)
, frontwidth, t=(1,1)
_ Iogz(N)
10° :
ey
T
2
c
o
10" :
0
10 :
10° 10'
log(N)

Figure 4: Examples 4.1, 4.2: influence of partitioning vector in BSP on frontwidth.

4 Numerical Examples

In this section, we confirm that the numbering obtained by Algorithm 3.10 allows for computing
the Cholesky factorization with O(N log? N), ¢ € {4, 8}, work. We restrict ourselves to the case
p = 1 for simplicity; that is, we illustrate Proposition 3.14. In all examples, the nodes on the
boundary correspond to unknowns, i.e., we consider Neumann problems. In all examples, we
use Algorithms 3.10, 3.9 to obtain the numbering of the nodes.

In our computational experiments, the meshes are generated with the code TRIANGLE of
J.R. Shewchuck, [11]. TRIANGLE is a realization of Ruppert’s Algorithm, [10], which cre-
ates triangulations with a guaranteed minimum angle of 20°. Our reason for working with
this particular triangulation algorithm is that it automatically produces meshes 7 = { K'} with
the desired property diam K ~ dist (K, 09Q) if its input consists of quasi-uniformly distributed
boundary nodes only (the meshes in Figs. 5, 6, for example, are obtained with TRIANGLE from
200 uniformly distributed points on the boundary).

In all tables and figures, NV stands for the number of nodes of the mesh generated by TRIANGLE,
w is the frontwidth of the stiffness matrix, and nnz the storage requirement for the Cholesky
factor; flops is the number of multiplications, and t.,, the CPU-time required to perform the
Cholesky factorization. We implemented the Cholesky factorization in “inner product form,”
where L is computed columnwise and the sparsity pattern of L is exploited.

The basic building block of our procedure is Algorithm 3.9. Our first example, therefore,
analyzes in detail the situation already discussed in Example 3.3.

Example 4.1 Let S = (0,1)? be the unit square. For n € N the initial input for TRIANGLE
are the points {(i/n,0)|i = 0,...,n} U {(1,0.3),(1,1),(0.7,1),(0,1), (0,0.7)} (see Fig. 4 for
TRIANGLE’s output for n = 50). The node numbering is then obtained by applying Algo-
rithm 3.9 with the partitioning vector ¢+ = (1,0)". The results are collected in Table 1 and
Fig. 4. In view of Proposition 3.6 we expect the frontwidth w to be O(log” N). The results of
Table 1 are plotted in Fig. 4, and the observed growth is indeed very close to O(log® N). In

18

t=1(1,0)" t=1(1,1)"
n N w nnz flops tenor [s€C] w nnz
4 10 4 35 | 8.500e + 01 | 0.000e + 00 5 41
8 17 8 95 | 3.500e 4+ 02 | 0.000e + 00 7 89
16 35 15 283 | 1.533e + 03 | 0.000e + 00 14 293
32 68 20 759 | 5.413e + 03 | 0.000e + 00 21 805
64 131 30 2038 | 1.993e + 04 | 0.000e + 00 31 2207
128 262 41 5676 | 7.363e + 04 | 0.000e + 00 48 6240
256 519 57 15122 | 2.600e + 05 | 2.000e — 02 63 15710
512 1040 71 36792 | 7.582¢e + 05 | 4.000e — 02 82 42758
1024 2077 91 91511 | 2.330e 4+ 06 | 1.300e — 01 || 102 107072
2048 4159 || 110 222924 | 6.820e + 06 | 4.000e — 01 || 128 255588
4096 8288 || 128 528065 | 1.891e + 07 | 1.130e + 00 | 149 598720
8192 | 16575 || 159 | 1259700 | 5.414e + 07 | 3.280e + 00 || 185 | 1471378
16384 | 33097 || 179 | 2843300 | 1.359e + 08 | 8.340e + 00 || 224 | 3486706
32768 | 66192 || 201 | 6624210 | 3.677e + 08 | 2.337¢ + 01 || 260 | 8030336
65536 | 132361 || 236 | 15264659 | 9.693¢ + 08 | 6.356¢e + 01 || 285 | 18334365
131072 | 264705 || 274 | 34604241 | 2.484e + 09 | 1.702e + 02 || 334 | 42163755

Table 1: Examples 4.1, 4.2: n = # points on edge, N = # mesh points, w = frontwidth.

view of Proposition 3.1, nnz = O(Nw) and flops ~ tge ~ W = O(Nw?); Table 1 confirms
these estimates. .

Example 4.2 The choice in Example 4.1 of the partitioning vector ¢ = (1,0)" is particularly
well-suited to the case of refinement toward a straight edge. In view of Lemma 3.4, we expect
Algorithm 3.9 to be still (v, 1)-balanced for partitioning vectors ¢ that are not parallel to the
normal vector. In order to illustrate that “non-optimal” choices of partitioning vectors ¢ still
lead to (7, 1)-balanced nested dissection, we consider the same meshes as in Example 4.1 but
employ Algorithm 3.9 with the vector ¢ = (1,1)". The results are presented in the right part of
Table 1 and in Fig. 4. We observe that this choice of partitioning strategy leads to very similar
results as in Example 4.1, showing robustness of our algorithm with respect to the choice of
partitioning vector t. "

Example 4.3 In this example, the domain is the unit square Q = (—0.5,0.5)%2. TRIANGLE’S
input are n uniformly distributed nodes on the boundary 02 (see Fig. 5 for TRIANGLE’s output
for n = 200). The node numbering is achieved with Algorithm 3.10 for subdomains €2; and
corresponding vectors t; given by:

Q= {(z,y) € Qly < —|z]}, t1=(1,0)T,

%= {(zy) € Qs >}, 2= (0.1)
Qs :={(z,y) € Q|y > |z]}, t3=(1,0)T, '
Qy = {($,y) € Q|x < _|y|}a ly = (Oa 1)T'

The numerical results are collected in Table 2. We expect the frontwidth to be O(log” N),
which is visible in Fig. 5. "

19

frontwidth: refinement towards bdy of square and clover leaf

10°
—,_ square
. clover leaf
— log’(N)
e 2
5101
2
c
o
10'F
10° 10’
log(N)

Figure 5: Examples 4.3, 4.4: meshes with 200 points on boundary (left) and frontwidth vs.
log N (right).

Example 4.4 In this example, we replace the square of Example 4.3 with
Q={(rcosp,rsinp) |0 <r <1+0.8sin’(2p), 0<¢p <2}

(See Fig. 5 for TRIANGLE’s output for n = 200 boundary points.) The partitioning into four
subdomains and the choice of the partitioning vectors ¢; is given by (4.1). The numerical results
are collected in Table 3. The expected relation w = O(log® N) is again visible in Fig. 5. "

Example 4.5 The key feature of the choice of the partitioning vectors ¢; in Examples 4.3, 4.4
is that, for each 1,

ti . :
SUP{W ‘ r € 00N GQZ-} <1 (n(x) is the normal at a boundary point x). (4.2)

This condition was identified in Example 3.11 as necessary for the binary space partitioning
strategy with (fixed) vector t; to be (v, 1)-balanced. In this last example, we illustrate that
(4.2) is indeed necessary. To that end, we replace the square of Example 4.3 with

Q.= {(rcosg,rsing) |0 <r <1—esin®p, 0<p<2n}, c € (0,1) fixed.

The subdomains €2; and the partitioning vectors ¢; are chosen as in Example 4.3 and given by
(4.1). A calculation shows that condition (4.2) is satisfied for ¢ € (0,2/3) and is violated for
¢ = 2/3 (see subdomains €, Q4 in Fig. 6). For ¢ close to 2/3 we therefore expect our binary
space partitioning to perform poorly in the sense that the sets Vb(;)y become large, thus resulting
in large frontwidths. This is illustrated in Table 4, where the frontwidths for different values
of ¢ are shown in dependence on n, the number of points on the boundary. Fig. 6 shows that
in the limit ¢ = 2/3, the frontwidth w does not grow polylogarithmically in N. In Table 4,
we reported the number N of nodes for the case ¢ = 0.3 only; we mention, however, that the
meshes produced by TRIANGLE for the three cases ¢ = 0.3, ¢ = 0.6, ¢ = 2/3 are very similar. m

Acknowledgments: The authors would like to thank Profs. W. Hackbusch and L.N. Tre-
fethen for valuable comments on the paper.

20

n N w nnz flops tenot [S€€]

16 18 8 104 | 3.960¢e + 02 | 0.000e + 00

32 42 | 18 476 | 3.505e + 03 | 0.000e + 00

64 99 | 32 1803 | 2.039¢ + 04 | 0.000e + 00

128 220 | 46 5784 | 9.254e + 04 | 0.000e + 00
256 472 | 61 15660 | 3.069¢ + 05 | 2.000e — 02
512 979 | 76 40698 | 9.815¢ 4+ 05 | 6.000e — 02
1024 1996 | 103 108179 | 3.385e + 06 | 2.000e — 01
2048 4056 | 125 271201 | 1.028e 4+ 07 | 6.100e — 01
4096 8180 | 140 635551 | 2.767e 4+ 07 | 1.650e + 00
8192 | 16476 | 174 | 1544587 | 8.062¢ + 07 | 4.960¢e + 00
16384 | 33033 | 199 | 3501495 | 2.053e + 08 | 1.283e + 01
32768 | 66085 | 234 | 8151781 | 5.532e + 08 | 3.683e + 01
65536 | 132333 | 253 | 18376760 | 1.392e + 09 | 9.566¢e + 01
131072 | 264580 | 301 | 41984408 | 3.634e + 09 | 2.582¢e + 02
262144 | 529456 | 330 | 92677554 | 8.794e + 09 | 6.414e + 02

Table 2: Example 4.3: n = # boundary points, N = # mesh points, w = frontwidth.

n N w nnz flops tenor [s€C]

32 44 | 17 480 | 3.314e + 03 | 0.000e + 00

64 100 | 35 2003 | 2.513e + 04 | 0.000e + 00

128 224 | 53 6625 | 1.214e+ 05 | 1.000e — 02
256 481 | 76 18944 | 4.613e + 05 | 4.000e — 02
512 994 | 98 49911 | 1.523e+ 06 | 1.500e — 01
1024 2021 | 120 123724 | 4.517e 4+ 06 | 4.700e — 01
2048 4072 | 141 299448 | 1.278e + 07 | 1.420e + 00
4096 8165 | 164 691256 | 3.372e 4+ 07 | 3.590e + 00
8192 16417 | 187 1596084 | 8.791e + 07 | 9.380e + 00
16384 32985 | 232 3835565 | 2.516e + 08 | 2.763e + 01
32768 66062 | 258 8771312 | 6.501e 4+ 08 | 7.367e 4+ 01
65536 | 132347 | 293 | 19773070 | 1.632e + 09 | 1.892¢ + 02
131072 | 264614 | 329 | 44146284 | 4.055e + 09 | 4.804e + 02
262144 | 529465 | 370 | 99521860 | 1.025e¢ 4+ 10 | 1.227e + 03
524288 | 1059329 | 407 | 221418671 | 2.512e¢ + 10 | 3.325¢e + 03

Table 3: Example 4.4: n = # boundary poinns[DkKWu ts, N = # mesh points, w = frontwidth.

21

effect of subdomain choice on frontwidth; domain: dumbbell

4+ €c=03
_._c=0.6
10° _ c=2/3
—— log?(N)

-0.61 e

-0.81

-1

[¢]

%

w
frontwidth

-1 -0.5

Figure 6: Example 4.5: mesh with 200 points on boundary (top left), the four subdomains for

0.5

log(N)

¢ = 0.3 and ¢ = 2/3 (bottom left) and frontwidth vs. log N (right).

Table 4: Example 4.5: n = # boundary points, N = # mesh points, w = frontwidth.

n N w w w
c=03]¢=03]|¢c=06|c=2/3

32 46 19 19 16

64 105 32 33 32

128 231 47 51 49
256 484 63 64 70
512 991 84 92 96
1024 2022 107 118 118
2048 4079 128 159 155
4096 8190 162 186 187
8192 16467 196 236 269
16384 32994 242 301 340
32768 66084 275 379 452
65536 | 132235 317 475 579
131072 | 264600 370 577 768
262144 | 529340 423 723 1043
524288 | 1058794 482 859 1444

22

References

[1] M. Blum, R.W. Floyd, V.R. Rivest, and R.E. Tarjan. Time bounds for selection. Journal
of Computer and System Sciences, 7:448—461, 1972.

2] L. Demkowicz, K. Gerdes, C. Schwab, A. Bajer, and T. Walsh. A general and flexible
fortran 90 hp-FE code. Computing and Visualization in Science, 1:145-163, 1998.

[3] H. Fuchs, Z.M. Kedem, and B.F. Naylor. On visible surface generation by a priori tree
structures. Computer Graphics, 14:124-133, 1980.

[4] A. George. Computer implementation of the finite-element method. PhD thesis, Stanford
University, 1971.

5] A. George and J.W.H. Liu. Computer solution of large sparse positive definite systems.
Prentice-Hall, 1981.

(6] N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer. An algorithm for reducing the bandwidth
and profile of a sparse matrix. SIAM J. Numer. Anal., 13:236-250, 1976.

[7] G.E. Karniadakis and S.J. Sherwin. Spectral/hp Element Methods for CFD. Oxford Uni-
versity Press, 1999.

[8] B.N. Khoromskij and J.M. Melenk. Boundary concentrated finite element methods. Tech-
nical Report MPI-MIS 45/2001, MPI for mathematics in the sciences, 2001.

9] D.E. Knuth. The Art of Computer Programming, volume III: Sorting and Searching.
Addison-Wesley, 1973.

[10] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation.
J. Algorithms, 18:548-585, 1995.

[11] J.R. Shewchuk. 2d mesh generator “triangle”. http://www.cs.cmu.edu/ quake/triangle.html.

[12] B. Szabé and 1. Babuska. Finite Element Analysis. Wiley, 1991.

Max-Planck-Institute for Mathematics in the Sciences
Inselstr. 22-26, D-04103 Leipzig, Germany
{bokh,melenk}@mis.mpg.de

23

