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A NOTE ON FLOWS TOWARDS REFLECTORS

OLIVER C. SCHNURER

ABSTRACT. A classical problem in geometric optics is to find surfaces
that reflect light from a given light source such that a prescribed inten-
sity on a target is realized. We introduce a flow equation for surfaces
such that they converge to solutions of this reflector problem both for
closed hypersurfaces and for the illumination of prescribed domains.

1. INTRODUCTION

The classical reflector problem is to find a hypersurface such that light of a
given intensity is reflected at this hypersurface so that a prescribed inten-
sity on a target is realized. A ray of light in direction z is reflected at a
hypersurface according to the reflection law to the new direction

T(z) =z — 2(z,v)v,

where v is a unit normal to the hypersurface at the point where the ray of
light is reflected. In [2] the authors study a light source in R*! n > 2,
located at the origin emitting light in all directions with a given smooth
positive intensity function f : S™ — R, defined on the unit sphere. Each
ray of light is reflected exactly once at a hypersurface that is star-shaped
with respect to the origin. The directions of the reflected light correspond
to points on the unit sphere S™, so the reflection induces a new intensity
function. Using elliptic methods it is shown in [2] that for any two intensity
functions f and g as above there exists a smooth hypersurface that is star-
shaped with respect to the origin such that the intensity function induced
by the reflection equals the prescribed function g provided the energy of the
emitted and reflected light coincide, i. e.

[1=]s (1.1)
J

Sn
Moreover, the solution is unique up to dilatations when T : S — S™ is a
diffeomorphism. Using indices to denote covariant derivatives on S™ with
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respect to the metric 0;; induced from the standard embedding 5™ — R+,
this problem is equivalent, see [2], to the partial differential equation

det (uiy + (u = "5 ) o) p0)
dot (502 o) 9T(@)

(1.2)
2u

for u : S — R4 with positive definite matrices as arguments in the deter-
minants. The geometric meaning of this positivity condition is explained in
[2]. It means that our hypersurface lies on one side of appropriate parabola
that reflect light to one direction. We remark that |Vul is also evaluated
using the induced metric of the sphere. The geometrical meaning of v is
as follows. For z € 8" C R"*! we define p : S" — R, such that p(z) - =
belongs to our hypersurface. Then we have u(z) = ﬁ.

We give an alternative proof of the result presented above using a parabolic
flow equation. The flow, we are going to use, describes the deformation of re-
flecting hypersurfaces. These hypersurfaces converge finally to a stationary
solution solving Equation (1.2). In general it is difficult to use a parabolic
flow equation to obtain solutions to an elliptic problem that admits several
solutions. Here it is known that any two solutions differ by a positive mul-
tiple. As it seems easier to us to consider a situation in which two solutions
differ by an additive constant, we introduce a new function ¢ : S — R by
defining p(z) = logu(x). It is easy to see that equation (1.2) is equivalent
to

det (pij + @ipi + 3 (1= Vo) i) _ f(2)
det (3 (14 |Ve]?) ai5) 9(T ()
We wish to investigate a flow that becomes stationary at solutions of the

elliptic problem and keeps the argument of the determinant in the numerator
positive definite. We choose the following equation

s — 0 100 4 908 (Pis +0i0s +5 (1= [Vol) o) g(T())
p=@ (1 & { det (% (14 |Vel?) Uz’j) f(z) }) (14)

with @ : R - R, ®(0) = 0, ® > 0 and ®” < 0. For a discussion of this
ansatz for the flow equation we refer to [5]. Besides the choice ®(t) = ¢,
another interesting flow is obtained when ®(¢) =1 — e ™, X > 0, i. e.

A
b1 det (5 (1 +|Ve¢l*) 0ij) [
det (w55 + @iy + 5 (1= [Vl 035)  9(T(w))
We get the following

(1.3)

Theorem 1.1. Let f, g : S — Ry be smooth functions and let pg : S™ —
R be a smooth function such that the argument of the determinant in the
numerator in (1.4) is positive definite. Then the evolution equation (1.4)
with initial condition |i=9 = o has a solution for all positive times, i. e.
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there ezists a smooth function ¢ : S™ x [0,00) — R satisfying (1.4). The
function (-,t) converges in C*° topology to a translating solution ©*>° as
t — 00, i. e. there exists v™° € R such that p*°(z,t) = ¢*=°(x,0) + v>° - t.
Moreover, v*° is determined by

v = log/g—log/f , (1.5)
Sn Sn

so that we get a solution to the reflector equation (1.8) provided (1.1) holds
and the hypersurfaces induced by ¢(-,t) as described above converge to the
reflector we look for as t — oo.

We remark that our parabolic approach does not only give a constructive
method to find reflectors. If (1.1) is violated, a translating solution (at
a fixed time) reflects the light such that the intensity of the reflected light
equals g up to a constant factor. Note that Theorem 1.1 implies the existence
theorem in [2] as ¢p = ¢ € R is an admissible initial value.

In the problem considered so far, the light source emitted light in all di-
rections and light should be reflected to all directions. Now we address
to a model problem of a reflector that shall only illuminate a prescribed
domain. We consider the situation when light is emitted from a domain
Q C R* — R*! in direction e, 1, where we identify R” and R" x {0}. We
assume that a hypersurface, the reflector, is represented as a graph over (2
such that the light is reflected back to a domain Q* C R".

57\ N

FIGURE 1. Reflection at a surface

This is illustrated in Figure 1. There we see the upwards directed rays of
light, the reflecting surface, normals to this surface and finally the reflected
rays of light. For simplicity we consider the following simple model. If the
domain € is small compared to 2%, we can neglect the size of the reflector
and assume that the reflected light is emitted from a single point — we take
(0,1) € R" x R — in the direction given by the reflector law. This problem
has applications in the design of reflectors for lamps.
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FI1GURE 2. Lamp in the court yard of our institute

Figure 2 shows a lamp in the court yard of our institute that illuminates
the ground by sending light via a reflector to the ground. Up to now, the
reflector consists of four triangles, so it seems desirable to improve the shape
used there.

Using a flow ansatz similar as above we show that for any bounded smooth
strictly convex domains Q, Q* C R” with 0 € Q* and for any smooth
functions f : @ — R, , g : O — R, there exists a hypersurface, represented
as graph u/,, such that light emitted with intensity f from € is reflected —
in our model with small Q — to Q* and the intensity g is realized provided

[

Q*
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Indeed, we can solve this problem for a larger class of domains *, but
to describe these domains it is useful to have a technical deviation of the
corresponding equations. So we give a description of the admissible class of
domains Q* and the formulation of the corresponding theorem in Section 4.

In this second part we focus on the geometric description of the situation
considered. Then it turns out that we get a second boundary value problem
for a Monge-Ampere equation. This equation has been studied before in [6]
in the elliptic setting and in a slightly different version in [5], see also the
appendix in [4].

It is a further issue to solve the reflector problem with prescribed domains
using a model that contains less simplifications.

The paper is organized as follows. In Section 2 we prove a priori estimates
and show that a solution to the flow equation (1.4) exists for all time, then
we obtain convergence to a translating solution in Section 3. In Section 4
we address to the problem of illuminating domains in R” and state the main
theorem for this problem.

This paper was written at the Max Planck Institute for Mathematics in
the Sciences, Leipzig/Germany. We wish to express our gratitude both to
Jurgen Jost and to the institute for the opportunity to work here.

2. LONGTIME EXISTENCE FOR CLOSED HYPERSURFACES

In this section we address to Theorem 1.1. It is known that the initial value
problem (1.4), ¢|,_, = o, admits a smooth solution for a maximal time
interval [0,7"). We remark that we get a similar result for ¢y € C%2 (S"),
a > 0, with less regularity at £ = 0. To prove smooth longtime existence, it
suffices to prove that the (spatial) C2-norm of a smooth solution in a given
time interval [0, ¢] is bounded above by h(t) for any ¢t > 0, where h : R — Ris
a locally bounded function. As we get that the argument of ® is bounded, we
see that our equation is uniformly parabolic. Thus we can apply Corollary
14.9 in [3] and get C*“-estimates for some o > 0. Higher regularity follows
from Schauder theory. Then it is possible to extend a solution to [0, c0) due
to shorttime existence.

More precisely, we will prove uniform estimates for ¢, uniform oscillation
estimates for ¢ and uniform estimates for Dy and D?p. Due to the ¢-
invariance of our problem these estimates imply uniform estimates for all
derivatives of ¢.

We will use the Einstein summation convention and lift indices with respect
to the induced metric on S™.

We first bound the time derivative of ¢.
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Lemma 2.1. Let ¢ be a smooth solution of our initial value problem. Then
we have the estimate

min {Itn_i(l]rlgb,O} < ¢ < max {r?_aoxgb, 0} .
Proof. We rewrite the flow equation using

e, Vo) = togdet (5 (14 V) 0 ) — Iogg(T(a) + 106 10

and

1
wij = ij + ¢ipj + 5 (1=1Vepl?) 0ij = @ij + 13

here and in the following. We get
o =0 (log det w;; — f(z, w)) . (2.1)
For E := (¢)? we obtain the evolution equation
E=93dw 4By — 20"w i + ' wry,, B _(I)fpl i

where the index p; indicates derivatives with respect to V¢ and (wij ) de-
notes the inverse of (w;;). The inverse w is the only exception to our
convention to lift indices with respect to the induced metric on S™. As
—w¥ ¢ip; < 0, the maximum principle gives the claimed inequality. More
precisely, we see that for some time interval (w") remains positive definite.
During this time interval we get the claimed inequality. Thus the argument
of ® remains uniformly bounded. From the definition of f , we see that f
is uniformly bounded from below and deduce a uniform lower bound for
log det w;j, thus (w;;) remains positive definite. O

Integrating this estimate we obtain a very rough C%-estimate
o2, t)| < max|p(z,0)] + ¢ - max |@(z, 0)].

We need a better estimate, that prevents different parts of the hypersurfaces
from moving “far apart” from each other. This is contained in the following
oscillation estimate

Lemma 2.2. Let ¢ be a smooth solution of our initial value problem. Then
its oscillation is uniformly bounded during the flow.

Proof. We rewrite our flow equation as

det (¢ij + s + 3 (1= [Vel*) 0i) _ f(w)-e® @) (2.2)

det (1 (1 + |w| ) 0i) 9(T ()
For a fixed time ¢ we consider ® !(¢) as a bounded function. Thus we
can apply the C%estimates of Section 2.1 in [2] and get exactly the claimed
oscillation estimate. The C-estimate in the cited paper is obtained for
normalized surfaces, i. e. the surfaces are rescaled so that the distance of
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the surface to the origin is equal to 1. Thus these C-estimates correspond
to oscillation estimates in our setting. O

The following lemma gives C'-a priori estimates.

Lemma 2.3 (Cl-estimates). For any function ¢ € C?(S™) with positive
definite (w;;) (see the definition in the proof of Lemma 2.1) and bounded
oscillation, |V| is uniformly bounded.

Proof. The quantity
1
5108 |Vel® + ¢

attains its maximum somewhere on S™. So we deduce there (we multiply
the covariant derivative of the quantity above with ¢*)

0= Peiud’
Vel

As (w;j) is positive definite, we get in the sense of matrices

+ |Vl

1
Pij > —Qipj — 2 (1—|Vel?) 0y

and deduce at the maximum point
1> [Vl

Since the oscillation of ¢ is bounded, we get a uniform bound for |Vy|
everywhere on S". U

Before we estimate the second covariant derivatives of ¢ we recall formulae
for interchanging the order of covariant differentiation for functions on S™

Pijk = Pkij T Pj0ik — PkOij,
Pijkl =  Prlij T 20ij0k1 — 20k1045 + PrjOiu — PilOk;j-

Lemma 2.4 (C?-estimates). The second covariant derivatives of ¢ are uni-
formly bounded during the flow.

Proof. We use the maximum principle for w;; and compute its evolution
equation. We will rewrite

. 1, Kkl

Wij — QW Wik
using terms we are able to control. The last two indices of w;jx; denote
covariant derivatives on S™. We use the definition

Wij = Pij + Tij,
differentiate this equation and use it to substitute w;; and w;jx;. Next, we

differentiate the flow equation (2.1) twice in spatial directions and replace
¢i; using this equation. We rewrite w;jx; in terms of derivatives of ¢ and
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r;; and interchange derivatives of ;. So the terms containing fourth
derivatives of ¢ drop out.

wij — Q' wtwiy = @M (20055 — 20500 + uokj — orjoi)
+ Tijp,r — (I)Iwkl'rijpr Pril + ‘I)'wklrkszst'j
- (I)Iwkl'rijprps PrePst + (I"wklrklprps PriPsj
- wkrwlswklzwm] d'D 4D~f

+ " (w“bwabZ D; f) (w Wegj — Djf> .

The notation D. indicates that the chain rule has not yet been applied to
the respective terms. We interchange both third derivatives of ¢ and get
terms involving w;;, and g;,. This last term and ¢, can be simplified using
the differentiated flow equation and the definition of wg;.. Two terms with
third derivatives of ¢ cancel. The quantity r; depends on (x, Vi), but its
covariant derivatives with respect to the x variable vanish. So we get the
evolution equation

wij — Q' wtlwig = @M (20005 — 2050k + uokj — Yrjoi) (2.3)
— ®"rijp, D f + @0 rii (Thip, Psr — Prokl + Q1Okr)
— " wMrijp, p ork st + R WMk, p orios
+ &'y 'rklpT (Wijr — TijpsPsr + Oroij — Qj0ir)
— &'kt Swgriwrsj — ®'D 4D~f

(I)” (w Wabi — D; f) (’U} Wedj — D]f~> .
Directly from the definitions of r;; and wy; we get

kl kl
— W Tiip.ps PrkPsl T W Tkip.p, PriPsj

kl rs kl rs
= W Q0 Psk 045 — W Okl - Wir0 Wgj

+ whloy - (wiro ™ rg; + wjro" rg) — whop - Tir0 “Tgj.
The term —wkloy; - w0 *w,; will be very useful for further estimates. We
remark that the right-hand side of (2.3) is a tensor with indices ¢ and j
and this is also true for both terms on the left-hand side. We multiply the
evolution equation with £°¢7 to be fixed later-on. We will always assume that
aijfifj < c and use the notation wy; = wijfifj with obvious generalizations,
but keep in mind that we have contracted the indices, so wq; is a scalar
function. Due to our a priori estimates, r;; = w;; — ¢;; is bounded. We use
trwh = whloy; and get

‘wkl(plj‘ = ‘wklwlj — ’U)kl(wlj — ‘Plj)‘ <1+ ‘wkl’f'lj‘ <c- (1 + trwkl> .
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We use the concavity of @ and obtain the following evolution inequality by
interchanging third derivatives in the term containing f

g — P wlwiy < @ wFr,, win, — W W W w,g
— ' wMoy - wir o wey — @ fwin
+c- (1 + trwf + ‘D2<p‘ trwhl 4 ‘D2<p‘2> .
We also used that ®' is bounded. Now we consider the function
(,1,&) = wij€'¢)
for z € S™, t > 0 and 0,;¢'¢(z,t) = 1. We assume that restricted to a
compact set (z,t) € S" x [0,T], where the flow exists and ¢ is as above, this

function attains its maximum in (z, to, &) with ¢g > 0. According to the
parabolic maximum principle we get there

&' w0 wgy - trwf < c- (1 + trwht + ‘DQQD‘ trwkl + ‘DQ@‘Z) .

Due to our C'-estimates for ¢, wy; and ¢y coincide up to estimates terms.
@’ is bounded from below by a positive constant. Moreover, as log det wy,
is bounded, we see that w1 — oo forces tr wk — 0o. We deduce that wiq
is bounded there and get a time-independent bound for ‘D%p‘ as long as a
smooth solution of (1.4) exists.

3. CONVERGENCE FOR CLOSED HYPERSURFACES

Here we complete the proof of Theorem 1.1. The method used in [4] to
obtain a translating solution also applies to the case of closed hypersurfaces.
Indeed, the proof is a bit simpler in the closed case. For convenience of the
reader, we sketch the argument given there. Part of the argument is due to
Huisken [1].

For tg > 0 fixed we consider

w(z,t) = @(x,t + to) — o(x,t).

Using the mean value theorem we see that w satisfies a parabolic flow equa-
tion of the form

w = aijwij + biwi. (3.1)
The strong maximum principle shows that the oscillation of w is strictly
decreasing during the flow or w is constant. We wish to show that the

oscillation does not tend to ¢ > 0. Otherwise we consider for zy € S™ fixed
and t,, — o0

<p(x,t+tn) - w(x(]atn) and w(x7t+t0 "J’_tn) - (p(antO +tn) (32)

Due to our a priori estimates we can find a subsequence such that the ex-
pressions above converge locally uniformly (in time) in any C*-norm to a
solution of our flow equation for all time. It is easy to see that the difference



10 Oliver C. Schniirer

of the limits solves a parabolic equation similar to (3.1) and has constant
oscillation € > 0. This is excluded by the strong maximum principle. As
the oscillation of w tends to zero and w satisfies a parabolic equation of the
form (3.1) we see that w tends to some constant as ¢ — oo. Considering
sequences similar to (3.2) we obtain a solution ¢* for all time. One checks
that

©*(x, t +tg) — ¢ (z,t) = const.. (3.3)

Next, we take an appropriate number, e. g. to - /2, instead of ¢y and start
with the solution ¢* obtained. Our procedure gives a solution that satisfies
(3.3) (with a different constant) also for to-v/2 instead of tg, i. e. we obtain a
translating solution. Now we compare our original solution with the trans-
lating solution and get as above that the oscillation of the difference tends
to zero. Smooth convergence to a translating solution is then obtained by
using interpolation inequalities.

Thus ¢ converges smoothly to a translating solution > of (1.4) as t — oc.
To check that the velocity v*° is as claimed in (1.5) we use the flow equation
(1.4) in the form (2.2) for the translating solution ¢>°. We consider this
equation as an elliptic equation and obtain from the conservation of energy
and the deviation of the ellitic reflector equation, see the appendix in [2],

/ecp—l(uw)f:/g
Sn

Ssn

and obtain (1.5) as v is a constant. This completes the proof of Theorem
1.1.

We wish to remark, that we can enclose our initial function ¢ from above
and from below by the translating solutions obtained. Due to the maxi-
mum principle, these translating solutions act as barriers and show that our
solutions stay at a finite distance to a translating solution.

4. TLLUMINATING PRESCRIBED DOMAINS

We start with a deviation of the equation fulfilled by solutions. Therefore
we follow light that moves upwards from (z,0) € R* x R, z € , in direc-
tion (0,1). The reflector is described as graph u|g, a unit normal to this
hypersurface is given by

(_Du7 1)

V14 [Dul?
The direction of the reflected light is obtained as a function of = as follows
2Du, —1 + |Dul?)

1 + |Duf? '

£ s (0.1) — 2((0,1), ) = &
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Due to our hypotheses that in the simplified model the reflected rays of
light start at (0,1), we see that this ray of light meets the “ground”, i. e.
the hyperplane R" x {0}, at 1 |D (Dl Thus we get a map T : @ — Q* such

that light from z is reflected to T'(z), in a formula
2Du
1 —|Dul?
It is easy to see, that T is a diffeomorphism onto its image for a smooth
strictly convex function u with [Du| < 1; we will assume this in the following.

T(z) =

Next we derive the equation to be fulfilled by u. We assume that u is a
solution to our reflector problem. From the conservation of energy and the
transformation formula for integrals we get for open domains £ C )

/ dy—/f d:f:—/f e

where T;; denotes the derivative of the i-th component of 7' in direction
j and y = T'(z). Thus we obtain the elliptic equation for the reflecting
hypersurface

det Tij = —

More explicitly, we use the Einstein summation convention and get
oT; 2
T = A = 2 ( ij (
9s1 ~ (1 + |DuP)
For the evaluation of the determinant of T;; we may assume without loss of

generality that we have chosen coordinates such that (Du,e;) = |Dul|. (T3 )
is then given by

1-— |Du|2) + 2Uiul5lkukj> .

U1 (1 + |DU,|2) U12 (1 — |DU,|2) S Uiy (1 — |DU,|2)
2 uiz (1 + [Dul?) wuge (1 —|Dul?) -+ wugy (1— |Duf?)

(1 —|Du?)? : : :
utp (14 [Du?) ugy (1= |Du?) -+ upy (1 —|Dul?)

so we see immediately that
det Ti; = 2" - (1 — [Duf2) """ (1 + |Dul?) - det D%u
and the reflector equation
+1
@) o (= IDuP)"
9(T'(z)) 1 +|Dulf?

follows. In our approach we consider the flow equation

n+1
iu=o <logdet D%y — log ( J@)  gn %» (4.1)

det D?u =

9(T(x)) 1+ |Duf?
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with @ as in (1.4). The inverse map to

2Du

Duws ——74
“ 1 — |Dul?

is given by
Y /

From the Taylor expansion of the square root at y = 0 we see that 7 extends
smoothly to y = 0. The map 7 is a diffeomorphism onto its image, so we
can rewrite the boundary condition 7'(Q2) = Q* as Du(Q2) = 7(*). Directly
from the estimates in [5] and the appendix in [4] we obtain

Theorem 4.1. Let Q, Q* C R" be smooth bounded domains such that
and T(2*) are strictly convex domains where T is the diffeomorphism intro-
duced in (4.2). Letug : @ — R be a smooth strictly convez function such that
Dug(2) = 7(Q*). Then there exists a smooth solution u : Qx (0, 00) to Equa-
tion (4.1) — with u(-,t) — ug in C? (Q) ast 0 — such that Du() = 7(2*)
or equivalently T(Q) = Q* (T is evaluated using u(-,t)). u(-,t) converges in
the C'*° (ﬁ) topology to a translating solution of (4.1) that moves with speed

P log/g—log/f .
Q* Q

Proof. The existence and convergence to a translating solution follows from
the appendix in [4] where we use essentially estimates from [5]. Using the
conservation of energy and the transformation formula for integrals as in
the deviation of the reflector equation above, we obtain for a translating
solution with velocity v

/g(y)dy = /e“’_l(”“)f(x)dx.
O Q

Thus we get the formula for v™>°. O

We remark that the maximum principle shows the uniqueness of translating
solutions up to additive constants. Again our solution becomes stationary
provided the total amount of energy emitted and prescribed on the ground
coincide.

At a first glance, the convexity condition for 7 (2*) seems artificially. As
it turns out, however, that our problem corresponds to a second boundary
value problem for a Monge-Ampére equation, which can be solved — at least
at the moment — in general only for strictly convex domains, we see that
our condition for Q* is indeed natural. We show in Lemma 4.2 that the
convexity condition for 7 (2*) is fulfilled for a large class of domains.
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It remains to prove the assertion of the introduction that this illumination
problem can be solved for strictly convex domains 2* that contain the origin,
i. e. it suffices to prove

Lemma 4.2. Let Q* C R" be a convex open set, 0 € Q*. For 7 as in (4.2),
T(2*) is strictly convex.

Proof. As 7 maps each point z € R" to a point A-z where A = A(|z]), we see
that it suffices to prove this lemma for Q* C R?. Moreover, as |z| — |7(z)|
is a strictly monotone increasing function, we have only to check that 7
maps half-planes containing the origin to strictly convex sets. Due to the
rotational symmetry it suffices to show that horizontal lines lying “above”
the origin are mapped to graphs over part of the horizontal axis, graph u,
such that w is a strictly concave positive function. More precisely, we fix
a > 0 and consider the horizontal line in R? parameterized by R 3 t + (¢, a).
The diffeomorphism 7 maps this line to

A~ (ha) o) = (1), 5(0),

Direct calculations show that
oz (t2—a2)-<\/m—1)+a2-(a2+t2)
a (a2 +12)° VIt a®+12

Thus we can use z to parameterize the image. We use the chain rule and

obtain

t— (t,a)-

> 0.

9z2 — 92 \9x) T Ot 92

_(Py_wPaory (o)’
— \ot2 Ot Ot Oz or)
Thus it suffices to show that
2
2(g'(1)" > g(t) - g" (1) (4.3)
To avoid long calculations we note that

g(t) = ﬁ, where f(t) := V1+a2+1t2, so f' = %

Now it is easy to obtain (4.3) by direct calculation. Thus our lemma follows.
O

%y 82y<8t>2 dy 9%t
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