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A NOTE ON FLOWS TOWARDS REFLECTORS

OLIVER C� SCHN�URER

Abstract� A classical problem in geometric optics is to �nd surfaces
that re�ect light from a given light source such that a prescribed inten�
sity on a target is realized� We introduce a �ow equation for surfaces
such that they converge to solutions of this re�ector problem both for
closed hypersurfaces and for the illumination of prescribed domains�

�� Introduction

The classical re�ector problem is to �nd a hypersurface such that light of a
given intensity is re�ected at this hypersurface so that a prescribed inten�
sity on a target is realized� A ray of light in direction x is re�ected at a
hypersurface according to the re�ection law to the new direction

T �x� � x� �hx� �i��
where � is a unit normal to the hypersurface at the point where the ray of
light is re�ected� In 	�
 the authors study a light source in R

n�� � n � ��
located at the origin emitting light in all directions with a given smooth
positive intensity function f � Sn � R� de�ned on the unit sphere� Each
ray of light is re�ected exactly once at a hypersurface that is star�shaped
with respect to the origin� The directions of the re�ected light correspond
to points on the unit sphere Sn� so the re�ection induces a new intensity
function� Using elliptic methods it is shown in 	�
 that for any two intensity
functions f and g as above there exists a smooth hypersurface that is star�
shaped with respect to the origin such that the intensity function induced
by the re�ection equals the prescribed function g provided the energy of the
emitted and re�ected light coincide� i� e�Z

Sn

f �

Z
Sn

g� �����

Moreover� the solution is unique up to dilatations when T � Sn � Sn is a
di
eomorphism� Using indices to denote covariant derivatives on Sn with
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respect to the metric �ij induced from the standard embedding Sn � R
n�� �

this problem is equivalent� see 	�
� to the partial di
erential equation

det
�
uij �

�
u� jruj��u�

�u

�
�ij

�
det

�
jruj��u�

�u � �ij
� �

f�x�

g�T �x��
�����

for u � Sn � R� with positive de�nite matrices as arguments in the deter�
minants� The geometric meaning of this positivity condition is explained in
	�
� It means that our hypersurface lies on one side of appropriate parabola
that re�ect light to one direction� We remark that jruj is also evaluated
using the induced metric of the sphere� The geometrical meaning of u is
as follows� For x � Sn � R

n�� we de�ne � � Sn � R� such that ��x� � x
belongs to our hypersurface� Then we have u�x� � �

��x� �

We give an alternative proof of the result presented above using a parabolic
�ow equation� The �ow� we are going to use� describes the deformation of re�
�ecting hypersurfaces� These hypersurfaces converge �nally to a stationary
solution solving Equation ������ In general it is di�cult to use a parabolic
�ow equation to obtain solutions to an elliptic problem that admits several
solutions� Here it is known that any two solutions di
er by a positive mul�
tiple� As it seems easier to us to consider a situation in which two solutions
di
er by an additive constant� we introduce a new function � � Sn � R by
de�ning ��x� � log u�x�� It is easy to see that equation ����� is equivalent
to

det
�
�ij � �i�j � �

�

�
�� jr�j���ij�

det
�
�
� �� � jr�j���ij

� �
f�x�

g�T �x��
� �����

We wish to investigate a �ow that becomes stationary at solutions of the
elliptic problem and keeps the argument of the determinant in the numerator
positive de�nite� We choose the following equation

�� � �

�
log

�
det

�
�ij � �i�j � �

�

�
�� jr�j���ij�

det
�
�
� �� � jr�j�� �ij

� � g�T �x��

f�x�

��
�����

with � � R � R� ���� � �� �� � � and ��� � �� For a discussion of this
ansatz for the �ow equation we refer to 	�
� Besides the choice ��t� � t�
another interesting �ow is obtained when ��t� � �� e��t� � � �� i� e�

�� � ��
�

det
�
�
�

�
� � jr�j���ij�

det
�
�ij � �i�j � �

� ��� jr�j���ij
� � f�x�

g�T �x��

��

�

We get the following

Theorem ���� Let f� g � Sn � R� be smooth functions and let �� � Sn �
R be a smooth function such that the argument of the determinant in the
numerator in ����� is positive de�nite� Then the evolution equation �����
with initial condition �jt�� � �� has a solution for all positive times� i� e�
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there exists a smooth function � � Sn � 	���� � R satisfying ������ The
function ���� t� converges in C� topology to a translating solution �� as
t � �� i� e� there exists v� � R such that ���x� t� � ���x� �� � v� � t�
Moreover� v� is determined by

v� � �

�
	log

Z
Sn

g � log

Z
Sn

f



A � �����

so that we get a solution to the re�ector equation ����� provided ����� holds
and the hypersurfaces induced by ���� t� as described above converge to the
re�ector we look for as t���

We remark that our parabolic approach does not only give a constructive
method to �nd re�ectors� If ����� is violated� a translating solution �at
a �xed time� re�ects the light such that the intensity of the re�ected light
equals g up to a constant factor� Note that Theorem ��� implies the existence
theorem in 	�
 as �� � c � R is an admissible initial value�

In the problem considered so far� the light source emitted light in all di�
rections and light should be re�ected to all directions� Now we address
to a model problem of a re�ector that shall only illuminate a prescribed
domain� We consider the situation when light is emitted from a domain
� � R

n �� R
n�� in direction en��� where we identify Rn and R

n �f�g� We
assume that a hypersurface� the re�ector� is represented as a graph over �
such that the light is re�ected back to a domain �� � R

n �

Figure �� Re�ection at a surface

This is illustrated in Figure �� There we see the upwards directed rays of
light� the re�ecting surface� normals to this surface and �nally the re�ected
rays of light� For simplicity we consider the following simple model� If the
domain � is small compared to ��� we can neglect the size of the re�ector
and assume that the re�ected light is emitted from a single point � we take
��� �� � R

n � R � in the direction given by the re�ector law� This problem
has applications in the design of re�ectors for lamps�
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Figure �� Lamp in the court yard of our institute

Figure � shows a lamp in the court yard of our institute that illuminates
the ground by sending light via a re�ector to the ground� Up to now� the
re�ector consists of four triangles� so it seems desirable to improve the shape
used there�

Using a �ow ansatz similar as above we show that for any bounded smooth
strictly convex domains �� �� � R

n with � � �� and for any smooth
functions f � � � R� � g � �� � R� � there exists a hypersurface� represented
as graph uj�� such that light emitted with intensity f from � is re�ected �
in our model with small � � to �� and the intensity g is realized providedZ

�

f �

Z
��

g�
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Indeed� we can solve this problem for a larger class of domains ��� but
to describe these domains it is useful to have a technical deviation of the
corresponding equations� So we give a description of the admissible class of
domains �� and the formulation of the corresponding theorem in Section ��

In this second part we focus on the geometric description of the situation
considered� Then it turns out that we get a second boundary value problem
for a Monge�Amp�ere equation� This equation has been studied before in 	�

in the elliptic setting and in a slightly di
erent version in 	�
� see also the
appendix in 	�
�

It is a further issue to solve the re�ector problem with prescribed domains
using a model that contains less simpli�cations�

The paper is organized as follows� In Section � we prove a priori estimates
and show that a solution to the �ow equation ����� exists for all time� then
we obtain convergence to a translating solution in Section �� In Section �
we address to the problem of illuminating domains in Rn and state the main
theorem for this problem�

This paper was written at the Max Planck Institute for Mathematics in
the Sciences� Leipzig�Germany� We wish to express our gratitude both to
J�urgen Jost and to the institute for the opportunity to work here�

�� Longtime existence for closed hypersurfaces

In this section we address to Theorem ���� It is known that the initial value
problem ������ �jt�� � ��� admits a smooth solution for a maximal time
interval 	�� T �� We remark that we get a similar result for �� � C��� �Sn��
	 � �� with less regularity at t � �� To prove smooth longtime existence� it
su�ces to prove that the �spatial� C��norm of a smooth solution in a given
time interval 	�� t
 is bounded above by h�t� for any t � �� where h � R � R is
a locally bounded function� As we get that the argument of � is bounded� we
see that our equation is uniformly parabolic� Thus we can apply Corollary
���� in 	�
 and get C����estimates for some 	 � �� Higher regularity follows
from Schauder theory� Then it is possible to extend a solution to 	���� due
to shorttime existence�

More precisely� we will prove uniform estimates for ��� uniform oscillation
estimates for � and uniform estimates for D� and D��� Due to the ��
invariance of our problem these estimates imply uniform estimates for all
derivatives of ��

We will use the Einstein summation convention and lift indices with respect
to the induced metric on Sn�

We �rst bound the time derivative of ��
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Lemma ���� Let � be a smooth solution of our initial value problem� Then
we have the estimate

min
n

min
t��

��� �
o
� �� � max

n
max
t��

��� �
o
�

Proof� We rewrite the �ow equation using

�f�x�r�� � log det

�
�

�

�
� � jr�j���ij

�
� log g�T �x�� � log f�x�

and

wij � �ij � �i�j �
�

�

�
�� jr�j���ij 	 �ij � rij

here and in the following� We get

�� � �
�

log detwij � �f�x�r��
�
� �����

For E �� � ���� we obtain the evolution equation

�E � ��wijEij � ���wij ��i ��j � ��wijrijpsEs ��� �fpiEi�

where the index pi indicates derivatives with respect to r� and
�
wij
�

de�

notes the inverse of �wij�� The inverse wij is the only exception to our
convention to lift indices with respect to the induced metric on Sn� As
�wij ��i ��j � �� the maximum principle gives the claimed inequality� More
precisely� we see that for some time interval �wij� remains positive de�nite�
During this time interval we get the claimed inequality� Thus the argument
of � remains uniformly bounded� From the de�nition of �f � we see that �f
is uniformly bounded from below and deduce a uniform lower bound for
log detwij� thus �wij� remains positive de�nite�

Integrating this estimate we obtain a very rough C��estimate

j��x� t�j � max j��x� ��j � t �max j ���x� ��j�
We need a better estimate� that prevents di
erent parts of the hypersurfaces
from moving �far apart� from each other� This is contained in the following
oscillation estimate

Lemma ���� Let � be a smooth solution of our initial value problem� Then
its oscillation is uniformly bounded during the �ow�

Proof� We rewrite our �ow equation as

det
�
�ij � �i�j � �

�

�
�� jr�j���ij�

det
�
�
� �� � jr�j���ij

� �
f�x� � e���� ���

g�T �x��
� �����

For a �xed time t we consider ���� ��� as a bounded function� Thus we
can apply the C��estimates of Section ��� in 	�
 and get exactly the claimed
oscillation estimate� The C��estimate in the cited paper is obtained for
normalized surfaces� i� e� the surfaces are rescaled so that the distance of
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the surface to the origin is equal to �� Thus these C��estimates correspond
to oscillation estimates in our setting�

The following lemma gives C��a priori estimates�

Lemma ��� �C��estimates�� For any function � � C� �Sn� with positive
de�nite �wij� �see the de�nition in the proof of Lemma 	��� and bounded
oscillation� jr�j is uniformly bounded�

Proof� The quantity
�

�
log jr�j� � �

attains its maximum somewhere on Sn� So we deduce there �we multiply
the covariant derivative of the quantity above with �i�

� �
�i�ij�

j

jr�j� � jr�j��

As �wij� is positive de�nite� we get in the sense of matrices

�ij � ��i�j � �

�

�
�� jr�j���ij

and deduce at the maximum point

� � jr�j��
Since the oscillation of � is bounded� we get a uniform bound for jr�j
everywhere on Sn�

Before we estimate the second covariant derivatives of � we recall formulae
for interchanging the order of covariant di
erentiation for functions on Sn

�ijk � �kij � �j�ik � �k�ij�

�ijkl � �klij � ��ij�kl � ��kl�ij � �kj�il � �il�kj�

Lemma ��� �C��estimates�� The second covariant derivatives of � are uni

formly bounded during the �ow�

Proof� We use the maximum principle for wij and compute its evolution
equation� We will rewrite

�wij � ��wklwijkl

using terms we are able to control� The last two indices of wijkl denote
covariant derivatives on Sn� We use the de�nition

wij � �ij � rij�

di
erentiate this equation and use it to substitute �wij and wijkl� Next� we
di
erentiate the �ow equation ����� twice in spatial directions and replace
��ij using this equation� We rewrite wijkl in terms of derivatives of � and
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rij and interchange derivatives of �ijkl� So the terms containing fourth
derivatives of � drop out�

�wij � ��wklwijkl � ��wkl���kl�ij � ��ij�kl � �il�kj � �kj�il�

� rijpr ��r � ��wklrijpr�rkl � ��wklrklpr�rij

� ��wklrijprps�rk�sl � ��wklrklprps�ri�sj

� ��wkrwlswkliwrsj ���DjDi
�f

� ���
�
wabwabi �Di

�f
��

wcdwcdj �Dj
�f
�
�

The notation D� indicates that the chain rule has not yet been applied to
the respective terms� We interchange both third derivatives of � and get
terms involving wijr and �klr� This last term and ��r can be simpli�ed using
the di
erentiated �ow equation and the de�nition of wklr� Two terms with
third derivatives of � cancel� The quantity rkl depends on �x�r��� but its
covariant derivatives with respect to the x variable vanish� So we get the
evolution equation

�wij � ��wklwijkl � ��wkl���kl�ij � ��ij�kl � �il�kj � �kj�il� �����

� ��rijprDr
�f � ��wklrijpr�rklps�sr � �r�kl � �l�kr�

� ��wklrijprps�rk�sl � ��wklrklprps�ri�sj

� ��wklrklpr�wijr � rijps�sr � �r�ij � �j�ir�

� ��wkrwlswkliwrsj � ��DjDi
�f

� ���
�
wabwabi �Di

�f
��

wcdwcdj �Dj
�f
�
�

Directly from the de�nitions of rkl and wkl we get

�wklrijprps�rk�sl � wklrklprps�ri�sj

� wkl�lr�
rs�sk � �ij � wkl�kl � wir�

rswsj

� wkl�kl � �wir�
rsrsj � wjr�

rsrsi�� wkl�kl � rir�rsrsj�

The term �wkl�kl � wir�
rswsj will be very useful for further estimates� We

remark that the right�hand side of ����� is a tensor with indices i and j

and this is also true for both terms on the left�hand side� We multiply the
evolution equation with 
i
j to be �xed later�on� We will always assume that
�ij


i
j � c and use the notation w�� 	 wij

i
j with obvious generalizations�

but keep in mind that we have contracted the indices� so w�� is a scalar
function� Due to our a priori estimates� rij � wij � �ij is bounded� We use

trwkl � wkl�kl and get


wkl�lj




 �



wklwlj � wkl�wlj � �lj�




 � � �



wklrlj




 � c �
�

� � trwkl
�
�



A note on 	ows towards re	ectors �

We use the concavity of � and obtain the following evolution inequality by
interchanging third derivatives in the term containing �f

�w�� � ��wklw��kl � ��wklrklprw��r � ��wkrwlswkl�wrs�

� ��wkl�kl � w�r�
rsws� � �� �fpkw��k

� c �
�

� � trwkl �


D��



 � trwkl �


D��



�� �
We also used that �� is bounded� Now we consider the function

�x� t� 
� 
� wij

i
j

for x � Sn� t � � and �ij

i
j�x� t� � �� We assume that restricted to a

compact set �x� t� � Sn� 	�� T 
� where the �ow exists and 
 is as above� this
function attains its maximum in �x�� t�� 
�� with t� � �� According to the
parabolic maximum principle we get there

��w�r�
rsws� � trwkl � c �

�
� � trwkl �



D��


 � trwkl �



D��


�� �

Due to our C��estimates for �� wkl and �kl coincide up to estimates terms�
�� is bounded from below by a positive constant� Moreover� as log detwkl

is bounded� we see that w�� � � forces trwkl � �� We deduce that w��

is bounded there and get a time�independent bound for


D��



 as long as a
smooth solution of ����� exists�

�� Convergence for closed hypersurfaces

Here we complete the proof of Theorem ���� The method used in 	�
 to
obtain a translating solution also applies to the case of closed hypersurfaces�
Indeed� the proof is a bit simpler in the closed case� For convenience of the
reader� we sketch the argument given there� Part of the argument is due to
Huisken 	�
�

For t� � � �xed we consider

w�x� t� �� ��x� t � t��� ��x� t��

Using the mean value theorem we see that w satis�es a parabolic �ow equa�
tion of the form

�w � aijwij � biwi� �����

The strong maximum principle shows that the oscillation of w is strictly
decreasing during the �ow or w is constant� We wish to show that the
oscillation does not tend to � � �� Otherwise we consider for x� � Sn �xed
and tn ��

��x� t � tn�� ��x�� tn� and ��x� t � t� � tn�� ��x�� t� � tn�� �����

Due to our a priori estimates we can �nd a subsequence such that the ex�
pressions above converge locally uniformly �in time� in any Ck�norm to a
solution of our �ow equation for all time� It is easy to see that the di
erence
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of the limits solves a parabolic equation similar to ����� and has constant
oscillation � � �� This is excluded by the strong maximum principle� As
the oscillation of w tends to zero and w satis�es a parabolic equation of the
form ����� we see that w tends to some constant as t � �� Considering
sequences similar to ����� we obtain a solution �� for all time� One checks
that

���x� t � t��� ���x� t� � const�� �����

Next� we take an appropriate number� e� g� t� �
p

�� instead of t� and start
with the solution �� obtained� Our procedure gives a solution that satis�es
����� �with a di
erent constant� also for t� �

p
� instead of t�� i� e� we obtain a

translating solution� Now we compare our original solution with the trans�
lating solution and get as above that the oscillation of the di
erence tends
to zero� Smooth convergence to a translating solution is then obtained by
using interpolation inequalities�

Thus � converges smoothly to a translating solution �� of ����� as t���
To check that the velocity v� is as claimed in ����� we use the �ow equation
����� in the form ����� for the translating solution ��� We consider this
equation as an elliptic equation and obtain from the conservation of energy
and the deviation of the ellitic re�ector equation� see the appendix in 	�
�Z

Sn

e�
���v��f �

Z
Sn

g

and obtain ����� as v� is a constant� This completes the proof of Theorem
����

We wish to remark� that we can enclose our initial function � from above
and from below by the translating solutions obtained� Due to the maxi�
mum principle� these translating solutions act as barriers and show that our
solutions stay at a �nite distance to a translating solution�

�� Illuminating prescribed domains

We start with a deviation of the equation ful�lled by solutions� Therefore
we follow light that moves upwards from �x� �� � R

n � R� x � �� in direc�
tion ��� ��� The re�ector is described as graph uj�� a unit normal to this
hypersurface is given by

� �
��Du� ��p
� � jDuj� �

The direction of the re�ected light is obtained as a function of x as follows

x 
� ��� �� � �h��� ��� �i� �

�
�Du��� � jDuj��

� � jDuj� �



A note on 	ows towards re	ectors ��

Due to our hypotheses that in the simpli�ed model the re�ected rays of
light start at ��� ��� we see that this ray of light meets the �ground�� i� e�
the hyperplane Rn � f�g� at �Du

��jDuj�
� Thus we get a map T � � � �� such

that light from x is re�ected to T �x�� in a formula

T �x� �
�Du

�� jDuj� �

It is easy to see� that T is a di
eomorphism onto its image for a smooth
strictly convex function u with jDuj � � we will assume this in the following�

Next we derive the equation to be ful�lled by u� We assume that u is a
solution to our re�ector problem� From the conservation of energy and the
transformation formula for integrals we get for open domains E � �Z

T �E�

g�y�dy �

Z
E

f�x�dx �

Z
T �E�

f�x� � �

det Tij
dy�

where Tij denotes the derivative of the i�th component of T in direction
j and y � T �x�� Thus we obtain the elliptic equation for the re�ecting
hypersurface

det Tij �
f�x�

g�T �x��
�

More explicitly� we use the Einstein summation convention and get

Tij �

Ti


xj
�

�

�� � jDuj���
�
uij
�
�� jDuj��� �uiul�

lkukj

�
�

For the evaluation of the determinant of Tij we may assume without loss of
generality that we have chosen coordinates such that hDu� e�i � jDuj� �Tij�
is then given by

�

��� jDuj���

�
BBB	

u��
�
� � jDuj�� u��

�
�� jDuj�� � � � u�n

�
�� jDuj��

u��
�
� � jDuj�� u��

�
�� jDuj�� � � � u�n

�
�� jDuj��

���
���

� � �
���

u�n
�
� � jDuj�� u�n

�
�� jDuj�� � � � unn

�
�� jDuj��



CCCA �

so we see immediately that

det Tij � �n � ��� jDuj���n�� � �� � jDuj�� � detD�u

and the re�ector equation

detD�u �
f�x�

g�T �x��
� ��n �

�
�� jDuj��n��

� � jDuj�
follows� In our approach we consider the �ow equation

�u � �

�
log detD�u� log

�
f�x�

g�T �x��
� ��n �

�
�� jDuj��n��

� � jDuj�
��

�����
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with � as in ������ The inverse map to

Du 
� �Du

�� jDuj�
is given by

� � y 
� y

jyj�
�p

� � jyj� � �
�
� �����

From the Taylor expansion of the square root at y � � we see that � extends
smoothly to y � �� The map � is a di
eomorphism onto its image� so we
can rewrite the boundary condition T ��� � �� as Du��� � ������ Directly
from the estimates in 	�
 and the appendix in 	�
 we obtain

Theorem ���� Let �� �� � R
n be smooth bounded domains such that �

and ����� are strictly convex domains where � is the di�eomorphism intro

duced in ���	�� Let u� � � � R be a smooth strictly convex function such that
Du���� � ������ Then there exists a smooth solution u � ������� to Equa

tion ����� � with u��� t� � u� in C�

�
�
�
as t � � � such that Du��� � �����

or equivalently T ��� � �� �T is evaluated using u��� t��� u��� t� converges in
the C�

�
�
�
topology to a translating solution of ����� that moves with speed

�

�
	log

Z
��

g � log

Z
�

f



A �

Proof� The existence and convergence to a translating solution follows from
the appendix in 	�
 where we use essentially estimates from 	�
� Using the
conservation of energy and the transformation formula for integrals as in
the deviation of the re�ector equation above� we obtain for a translating
solution with velocity v�Z

��

g�y�dy �

Z
�

e�
���v��f�x�dx�

Thus we get the formula for v��

We remark that the maximum principle shows the uniqueness of translating
solutions up to additive constants� Again our solution becomes stationary
provided the total amount of energy emitted and prescribed on the ground
coincide�

At a �rst glance� the convexity condition for � ���� seems arti�cially� As
it turns out� however� that our problem corresponds to a second boundary
value problem for a Monge�Amp�ere equation� which can be solved � at least
at the moment � in general only for strictly convex domains� we see that
our condition for �� is indeed natural� We show in Lemma ��� that the
convexity condition for � ���� is ful�lled for a large class of domains�



A note on 	ows towards re	ectors �


It remains to prove the assertion of the introduction that this illumination
problem can be solved for strictly convex domains �� that contain the origin�
i� e� it su�ces to prove

Lemma ���� Let �� � R
n be a convex open set� � � ��� For � as in ���	��

����� is strictly convex�

Proof� As � maps each point x � Rn to a point � �x where � � ��jxj�� we see
that it su�ces to prove this lemma for �� � R

� � Moreover� as jxj 
� j��x�j
is a strictly monotone increasing function� we have only to check that �

maps half�planes containing the origin to strictly convex sets� Due to the
rotational symmetry it su�ces to show that horizontal lines lying �above�
the origin are mapped to graphs over part of the horizontal axis� graphu�
such that u is a strictly concave positive function� More precisely� we �x
a � � and consider the horizontal line in R� parameterized by R � t 
� �t� a��
The di
eomorphism � maps this line to

t 
� �t� a� �
p

� � a� � t� � �

a� � t�
	 �t� a� � g�t� 	 �x�t�� y�t���

Direct calculations show that


x


t
�

�
t� � a�

� � �p� � a� � t� � �
�

� a� � �a� � t�
�

�a� � t���
p

� � a� � t�
� ��

Thus we can use x to parameterize the image� We use the chain rule and
obtain


�y


x�
�


�y


t�

�

t


x

��

�

y


t


�t


x�

�

�

�y


t�
� 
y


t


�x


t�

t


x

�
�
�

t


x

��

�

Thus it su�ces to show that

�
�
g��t�

��
� g�t� � g���t�� �����

To avoid long calculations we note that

g�t� �
�

� � f
� where f�t� ��

p
� � a� � t�� so f � �

t

f
�

Now it is easy to obtain ����� by direct calculation� Thus our lemma follows�
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