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Abstract

In boundary element methods, the evaluation of the weakly singular integrals can be performed either
a) numerically, b) symbolically, i.e., by explicit expressions, or ¢) in a combined manner. The explicit
integration is of particular interest, when the integrals contain the singularity or if the singularity is rather
close to the integration domain.

We describe the explicit expressions for the sixfold volume integrals arising for the Newton potential,
i.e., for a 1/r integrand. The volume elements are axi-parallel bricks. The sixfold integrals are typical for
the Galerkin method. However, the threefold integral arising from collocation methods can be derived in
the same way.

Furthermore, this report contains a description of the program together with examples for its use.

AMS Subject Classification: 65R20, 65N38, 68W30, 35Q99
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1 Introduction

The evaluation of the Newton potential is an often needed task in integral equations. We consider a Galerkin
formulation with cubes (or more generally bricks) as finite elements. Then, in the 3D case, we have to
determine the six-fold integrals

v1 V2 V3, M1, H2, (3
I(B',B") := /// /// ST T U Ur U dyydyodys | dridzades,  (11)
B \/(951 — 1) + (22 —12)” + (w5 — y3)°

B

where B’ and B" are Cartesian bricks
3 3
B' =]]la,b;]  and B" =[] laf,b{]. (1.2)
i=1 i=1
The monomials in the numerator are due to higher order finite element functions and can be replaced by any
polynomial in z;,y; (i = 1,2,3).
The goal of the approach in this paper is a multiple one.

e If the boxes B’, B" have a distance comparable with their diameters, the integral (1.1) can be determined
by expansions of the kernel. This leads, e.g., to the efficient panel clustering method for the matrix-
vector multiplication (cf. [5], [10]) or to the hierarchical matrix technique (cf. [3], [4]). However, for
neighbouring boxes as, e.g., in (1.3) below, accurate numerical approximations are more involved. In
this case, an exact representation is of interest. Nevertheless, numerical approximations are possible
(see, e.g., [1], [6], [7], [10]-[14]).

e In the case of sparse grids, integrals like (1.1) occur for possibly elongated but intersecting boxes (take
for instance B’ = [0, 100] x [0, 1] x [0, 1] and B"” = [0,1] x [0,100] x [0, 1], cf. §3.15 and §6.10). Again, an
accurate numerical approximation is possible but more involved, in particular, if a certain quadrature
error bound is to be guaranteed.



e Due to the exponents v; and u;, we may apply (1.1) to higher-order polynomials as they appear in the
hp-method. In that case the expected exponential convergence requires extremely accurate quadrature
results which are much more costly than in the case of h-methods (cf. [14]).

e In applications of the above mentioned hierarchical matrix technique to a very anisotropic grid, there is
interest in antiderivatives with respect to some of the variables appearing in (1.1). Since in this case one
is interested in the singularity behaviour with respect to the remaining variables, one needs the symbolic
representations offered by this paper.

Problem (1.1) is solved by providing the antiderivatives of the integrand with respect to the six variables
in the order z1,y1,x2, ya2, 3, ys. Therefore, the results can also be used of 1D or 2D integration problems

v Vi .V2, M1, K2
//Ldmdy, // // T T2 9 Y2 dxydyydzodys
b J@—y? W w @ =)t (e — )+ A2
over intervals I', I or rectangles R', R"”, where A is a constant. The case of other elements than rectangles
is discussed in Remark 3.6. The partial results after less than six integrations are of interest, if the direct
integration with respect to the first variable should be combined with a numerical one for the remaining
variables.

Of course, one can find results about antiderivatives here and there in the literature, e.g., [9, p.122] contains
formulae for the piecewise constant case (v; = 0) and collocation (i.e., only z-integration, no y-integration).

As mentioned above, the integral (1.1) can be approximated by the panel clustering method if the bricks
B’, B" have a sufficient distance. However, there remain at least the following cases which are taken as test
examples in §3.14: 1) B’ = B", 2) B', B" have a common face, 3) B', B" have a common edge, and 4) B', B"”
have a common vertex. Then the distance is zero and a singularity appears in the denominator of (1.1). Since
(1.1) is translation invariant, we may assume that B’ has a vertex at the origin. Further, due to a simple
scaling, [a},b}] = [0,1] may be assumed. Therefore, B’ = [0,1]’ may be assumed if B’ is a cube. In each
step of the integration (construction of antiderivatives) in the order z1,y1, z2, y2, T3, ys, the general analysis
is illustrated by the example of (1.1) for piecewise constant finite elements and face-neighboured unit cubes,
ie.,

vi=p =0, B'=1[0,1"x[1,2], B"=[0,1". (1.3)

The antiderivatives are obtained by recursion formulae, which are compactly collected in the final section
§5.

The appendix contains hints how to use the program producing these results. The source text of the
program are obtainable from http://www.mis.mpg.de/scicomp/wh artikel.html

2 Functions needed for the Representation

When we perform the integration with respect x;,y;, the other variables are considered as constants, so that
we consider typically a function of x,y (replacing z;,y;) only. We use the following notation for the constants,
which are variable for other i:

XZ:.CL'l—yl, EZ:Y2+Z2,
Yi=ay—ys, YT:=X2+22, (2.1)
Z:=x3—vy3, O:=X24+Y2

The functions that appear during the integration process are listed below.
We start with the integrand

k,l
Fri(e,y;5) = ————— withZ2>0. (2.2)
(z—y) +E

The integers k, [ will always indicate numbers from Ny. Although = > 0 is a general non-negative real number,
its meaning is seen from (2.1), provided that z = z; and y = y;.



The first and second integration leads to the functions!
Gralz,y;E) = a"y'\/(x —y)* + E, (2.3)
Lii(z,y; ) = 2*y'In (iv—y+ (& —y)* +E>- (2.4)

Fixing the values of z = 1 and y = y; and interpreting the functions from above as function of z = z»
and y = y» (appearing in E) give rise to

My, (z,y; X, Z) = zFy In <X+ (m—y)2+T> with T = X2 + Z2. (2.5)

The x»-integration uses

kol
Akl (xay;Xv Z) = - Y ) (26)
(m—y)2+T<X+\/(m—y)2+T>
k)l _ X — .
By (2,y;X,2) = % arctan ~— Y _arctan | 2 —2 Y with ¥ = X2 + 22,
(=9 + 7

Py(z,y) = 2"y,
The interpretation of the function By, as function of = z3 and y = y3 (appearing in Z) will give rise to?

2

(z—y)\/O+(z—-y) —
Cri (2,y; X,Y) = zfy! (x — y) | arctan <7 — arctan — =CY1—Cry (2.7)
with © = X? +Y? and
=Yy
O (,:¥) =y (o — ) acctan T = (2 — ) Quae ), 28)

(€ —9) /O + (z—y)’
XY

C]:Cl (%Z/;Xa Y) = (Jf - y) thl('rvy;Xa Y)v (29)

C];l (.CL',y,X,Y) = (.CI? _y) Rk:l(mianay) = C]j:l ($7y;Y7X)7

Oy (2,y; X,Y) = 2y (z — y) arctan = O, + Cp, with

where @, and Rkil are defined in

r—=Yy
Qr, ($,y;Y):wkylarctan v

Y - .
R:l(miyﬂ X; Y) = Jfkyl arctan —L , @ _ XZ + Y2, (210)
, X 5
O+ (z-y)
Ry (2, y; X,Y) = z*yl arctan ?i
0+ (z—y)*

le,z could be expressed by Fj; via Gy (¢,y;E) = Fyq2, — 2Fg41,14+1 + Fr 142 + EF .

2For Cy,,; we use arctan(%) =5- arctan(%) forY,Z > 0.

For G}, = C,':l + C; use arctan(z) + arctan(y) = arctan % (0<zy <1)and X,Y > 0 according to Remark 3.13.



The x3-integration uses

Y
(x—y)* +7V?

o V-9’ +0-Y A
Eiiz(:v,y;X,Y)Zny Xln it , O=X*4Y7?
Vie—y)’+0+Y
kol Vie—y)’+0-X
E":l (xaanvy) = x2y Yin 3 = El—ci:l(xayava) (211)
Vie—y) +0+X

Remark 2.1 a) The functions E,:c'fl are not independent of the previous ones but can be expressed via (3.3)
as

Dy (z,y;Y) = z*y!

Ef (2,4, X,Y) = X [My (2,930, X) — My (z,5;Y, X)), (2.12)
Ek:l ($7y;X7 Y) =Y [MkJ (:I;;ya 07Y) - Mk7l (iIJ,y;X, Y)] . (213)

b) Also By can be expressed by means of Qr,; and Ry,

1 _
B (z,y: X,Y) = & (Qk,z (z, ;) — By (@,y; X, Y)) : (2.14)

¢) The limits R,tl (z,9;0,Y) := limx~ 0 R,tl (z,y; X,Y) for Y > 0 will appear. Note that R,tl (2,9;0,Y) =

m’“ylg sign(z —y) for Y > 0. Similar functions appear in G, (z,y;0) = z*y! |z — y|. Using

l

™ .
P (a,y) = aty' = sign(z — y),

we have
R:,l (w,y,O,Y) = Pl;:s,l(may)'

We summarise that the result can be expressed by function evaluations of Gy 1, Ly i, My 1, P, kal,R,ﬁl.
The functions Ay, By, Cr, C,’cvl, ,’c'vl, C,:;l, Dy, E,::l, Py, are used either for intermediate purpose or can be
expressed via the functions of the first group.

The antiderivatives are denoted by the respective superscripts x or y. For example, J—",ﬁl(x,y) satisfies

L Fi (2,y) = Fri(x,y) for Fiy from (2.2). The second antiderivative ;7 is defined by %%f,ﬁ’ = Fj,.

3 Construction of Antiderivatives

3.1 First Integration ()

In the first step, the antiderivative of Fj; with respect to z is to be determined.

Lemma 3.1 7}, (z,y; E) is a linear combination of

E"Gr o (z,y; E) for2m+k +1U' =k+1-1,
E™Loy (z,y; 2) for2m+1 =k +1,

obtained via the recursion formulae (5.1), (5.2), (5.3).

Example 3.2 Fg, = Loo involves only the L-function. But Gy 1 appears when k > 1, e.g., F{' o = Goo+yLoo-
The factor = appears for k> 2: F5, = 2 3y + ) Goo + (y* — 3E) Loo.



3.2 Second Integration (y;)

According to §3.1, G, and Lo, are to be integrated with respect to y. Using (5.9), G}, is expressed by G141
and F}, , (K'+1' <k+1+2), while £}, yields Lo ;41 and F}, ,, (k' +1' <1+ 1). Since the recursion formula
for 7Y, is analog to Fi 1> we obtain

Lemma 3.3 a) G}/, is a linear combination of Z" Gy 2m+k' +1'=k+1+1) and E" Ly o 2m + k' =
k +1+2) obtained by the combination of (5.9) and (5.4), (5.5), (5.6).

b) L}, is a linear combination of Ly 111, Z" Gy 2m~+k +1' =k+1) and =" Ly o 2m+k =k+1+1)
obtained by the combination of (5.7) and (5.4), (5.5), (5.6).

Applying both parts of Lemma 3.3 (with & = 0 in Part b) to the result of Lemma 3.1, we obtain

Theorem 3.4 The twofold antiderivative F," of Fy; with respect to x,y is a linear combination of

EMGr o (x,y; 2) for2m+k +1U'=k+1,
E™ Ly o (z,y; 2) for2m+k =k+1+1, (3.1)
E™ Loy (z,y;2) for2m+1U' =k +1+1.
3.3 Example
The example of (1.3) with £ =1 = 0 yields the twofold antiderivative
Foo 't (x1,y1;E) = Lot — Lo + Goo = Goo (21,91, ) — (21 — y1) Loo (21,913 2) .

Evaluation at the boundaries z; = 0,1 and y; = 0,1 results in

1 .1
I (w2,y2,3,y3) = / / Foo (z1,y1; E) doydyy = f‘or()ly1|i;1:0|?1J1:0 (3.2)
o Jo

:1n(1+\/1+—5)—1n(—1+\/1+—5)+2\/§—2\/1+—5,

where 2 = (3 — y2)° + (23 — y3)* contains the further variables (cf. (2.1)).

3.4 Interpretation as x5, y,-Functions
After the z1,y;-integration the variables z1,y; are fixed by the integration bounds and thus become constants.
Hence, G, = const x Gop and Ly; = const * L.

Instead, we have to consider the a,yo-variables hidden in = := (x5 — y2)° + (23 — y3)”. Due to (2.1),
we have \/(:cl — y1)2 == \/(:cg — yg)2 + Y. Therefore, the function Gog (z1,y1;Z) equals Goo (x2,y2; Y).
However, the function Log (x1,y1; =) is not reproduced:

Goo (z1,y1;Y2 + Z%) = Goo (z2,y2; X2+ Z2?)  with X =21 —y1,Y =22 — yo,
LOO (iL‘l,yl;Y2 + Zz) = MOO (l‘Q,yz;X, Z) (Cf (25) fOI" Mk:7l)~

The function Moo (z,y; X, Z) = In(X + \/(ac —4)® 4+ X2 4 Z2) is analytic if X > 0 and has a singularity only
when z =y, Z =0, and X < 0. This singularity is made more obvious by using In (X + R) +In(—X + R) =
In (R? — X?):

My (z,y; =X, Z) = =My (2,y; X, Z) + 2My 1 (2, 9;0, Z). (3.3)
The factors =™ in (3.1) produce monomials of z» and y2 of degree 2m. This proves

Remark 3.5 o) The functions to be integrated with respect to x2,y2 are My (z2,y2; X, Z) and Gy (x2,y2; T)
for various values of Y and X. Because of (3.8) we may assume X > 0 for the second last argument of My ;.
b) Starting with Fy; in §3.1, we arrive at My p for k' +1' <k +1 and Gy p for k' +1' <k +1.

Remark 3.6 If the rectangle R = {(z1,22):a} < <b,al <xo <by} is replaced by a trapezium
{(@1,22) - @y + chay <@y <Y+ dyar,ah < wp <UL}, the twofold antiderivative Fiy is to be evaluated an
1 = a + chxo, by + dyxy. This gives rise to functions of xa,ys different from My, 1, Gy and therefore requires
new considerations concerning the following integrations.



3.5 Example
The result (3.2) can be rewritten as
2Goo (:cg,yg; Z2) — 2Goo (:cg,yg; 1+ Z2) + Moo (x2,y2;1,Z) — Moo (z2,y2; —1,Z) .
By (3.3), we obtain
2 [Goo ($2;y2; Z2) — Goo (m27y2; 1+ Z2) + Moo (22,y2; 1, Z) — Moo (22, y2; 0, Z)] . (3.4)
Therefore, it remains to determine the xo,ys-antiderivatives of Mog (z2,y2; X, Z) and Goo (x2,y2;T) for

Y=2%1+22and X =0,1.

3.6 Third Integration (z,)

Now, x2,y2 are denoted shortly by z,y.
Similar to Part a) of Lemma 3.3, the antiderivative Gy, of Gy (#,y; Y) can be expressed by Gy+1, and
Fir p, while Fi, , is discussed in Lemma 3.1.

Lemma 3.7 Gi, (z,y; Y) is a linear combination of

TmGk/J/ (m,y,T) fOT 2m+k'+l' :k+l+1, (3 5)
Y Loy (z,y;Y) for2m+1l'=k+1+2 '
obtained by the combination of (5.8) and (5.1), (5.2), (5.3), where E is replaced by Y.

The antiderivative My, of My, is expressed by My, and the antiderivatives of Af, ,, (cf. (5.16)). By
the recursion formulae (5.10), (5.11), (5.12), one can replace Af ; by Boy, Mo,ir, Prr iy Figr -

Lemma 3.8 The antiderivative My, ; (z,y; X, Z) of My, is a linear combination of My1,, Z* Moy (2n+l =
k+1+1), Z°"Boy (2n+1' =k+1+2), Z*"Pyy 2n+k +1'=k+1+1), Z2"XFj 0 2n+k +1' =k+1)
obtained by (5.16), (5.10), (5.11), (5.12).

Together with the recursion for 7, (cf. Lemma 3.1), one obtains

Theorem 3.9 The xzs-integration of G (x,y;Y) yielding (3.5) is discussed in Lemma 3.7, while
Mi, (z,y; X, Z) is a linear combination of

Z2" My pr (z,y; X, Z) for2n+k +1U'=k+1+1,
Z*"Boy (z,y; X, Z) for2n+l'=k+1+2 n>1,
Z2" Py (2, y) for2n+k +1'=k+1+1, (3.6)

Z2nXY"Gr y (z,y; 1) for2m+2n+k +1'=k+1-1,
Z2n XY™ Loy (z,y; ) for2m+2n+1' =k +1,

where3 Y := X% + Z2.

Proof. The inequality n > 1 for Z?" By (z,y; X, Z) will be important. For its proof one has to check the
recursions (5.10)-(5.12). The term Z?Af _, |, in (5.12) leads to Z*" By with n > 1. Therefore omit this term
from the recursion and note that the remaining recursions applied to the special difference A3 1041 A Y
appearing in (5.16) terminate for £ = 1 so that no By, is generated. ]

3.7 Example
The functions appearing in (3.4) have the following antiderivatives (T := X2 + Z?):

1 1 1 1
Goo (x,y;Y) = §TL00 + §G10 - §G01 =3 [YLoo (z,y; ) + (z — y)Goo (z,y; T)],

M (w,y; X, Z) = Z*Boo + +X LogM1o — Moy —
= Z”Boo (x,y; X, Z) + X Loo (z,y; T) + (z — y) Moo (z,y; X, Z) — .

3Note that Z2"XT™ can be rewritten as a sum of terms of the form Z27 X2m'+1 (n/ 4 m/ = n + m).



3.8 Fourth Integration (y3)

The y-integration of Gy, and Lg,; (appearing in (3.5)) is already discussed in Lemma 3.3. The integration of
Py yields Py yy1/ (I +1). Concerning My, the analogue of Lemma 3.8 is

Lemma 3.10 The antiderivative M%J (z,y; X, Z) of My, is a linear combination of My 41, Z*" My o (2n+
K =k+1+1), Z"B o 2n+k = k+142), Z°" Py 2n+k +1' = k+1+1), Z*"XF}, ) 2n+k +1' = k+1)
obtained by (5.17), (5.13), (5.14), (5.15). By means of (5.13), (5.14), (5.15), ZQ"Xf,i’,J, can be transferred
into a linear combination of Z*"XY"Gr p (x,y; ) Cm+2n+k +1U' = k+1—1) and Z*" XY™ Ly o (z,y; T)
Cm+2n+k =k+1).

Since X is already treated as constant, the factor X (e.g., in Z?"XY™G} ) can be omitted.
It remains to determine the antiderivatives Bg’l of By.

Lemma 3.11 Due to (5.18), Bg,l can be expressed by Bo 41 and Ag,l+17 while the latter term yields a sum
Of Z2an/70 (2TL + k' = l), Z2nPk/’l/ (2TL + K+ = l), Zank/70 (2TL +k =101+ ].), TmXZZHGk/J/ (iIJ,y; T)
Cm+2n+k +1'=1-2) and Y"XZ*"Lyr o (z,y; ) 2m+2n+k =1-1).

We summarise in

Theorem 3.12 The twofold antiderivative g,”f@; (z,y;Y) is a linear combination of

TGy (2,y;X)  for2m+k +1'=k+1+2, m>0,
Y™ Loy (z,y; 1) for2m+U =k+1+3, m>1,
Y™ Ly o(z,y;Y) for2m+U =k+1+3, m>1,

while MY (z,y; X, Z) is a linear combination of

Z2" My p (z,y; X, Z) for2n+k +1U'=k+1+2,
Z°" By (z,y; X, Z) for2n+k +1'=k+1+3, k'l'=0,n>1,
Z2" Py i (z,y) for2n+k +1' =k+1+2,

Z2nXY"Gr oy (z,y; 1) for2m+2n+k +1' =k +1,

Z2n XY™ Ly (z,y; 1) for2m+2n+k +1'=k+1+1, k'l' =0.
3.9 Example
Due to (3.4), the twofold antiderivatives Go¢ and Mgy are required. The result is?

& (2,35 0) = =50 (@~ y) Lon (9 T) + (zr— (@ =1)") Goo (2,5 ).

Mol (2, y; X, Z) = — (z — y) Z*Boo (v, y; X, Z) + XGoo(x y; ¥) — (z —y) X Loo (z,y; 1)

1 1 3
+§(Z2 ) )MOO(xvy;X7Z)+Zy — 5

where Z? is introduced via X2 + Z2 = Y. Inserting the different arguments for T and X appearing in (3.4),
we obtain finally

2 (5622— Y2) Z22Boo (72,9250, Z)
2Z7—(x2—y2) .72
+ 25— Goo (22, y25 Z2)
L 72) . 3 1 J2 &
Iy (2,923 Z2%) = — Z% (33 — ) Loo (x2, y2; Z7)
- (22 (2 — o) )Moo (22,920, 2)

2 (372 - yZ) Z BOO (wby?; ]-7 Z)

1272 +(z2 y2)2G00 (ac2,y2,1+Zz)
(22 - 1) (22 — y2) Loo (w2,y2; 1 + Z?)
(ZZ — (29 — y2)2) Moo (72,y2;1, Z) .

+ 4+ +

(3.7)

4The polynomial %y2 — %zy can be replaced by % (z — y)2 , since y? and 2 terms do not matter for the twofold antiderivative.
In the later differences, the polynomials will disappear in any way.



3.10 Interpretation as x3,y3;-Functions

All functions listed in (3.5) and (3.6) are to be evaluated at certain s, yo-values (written above as z,y). Hence,
ZTo2,Y2 as well as Y = x5 — yo are considered as constants. The z3, ys-variables appear in Z = z3 — y3 and
T = X? + Z2. The factors Z>" are polynomials in x3,ys of degree 2n. Similarly, Y™ is a polynomial of degree
2m.

In the following the functions Gy, ... are considered as functions of the variables z3, ys. Since the indices
k,1 refer to x5y, which is now a constant after the evaluation, it suffices to discuss Goo,.... We have

Goo (72,92; 1) = \/(ac2 —y) + YT = \/(373 —y3)® + O, where © = X24Y2 = (21 — y1)° + (22 — y2) is a fixed
constant. The new function of the variables x3,ys is again Ggo, but now with the arguments Goo (z3,y3;0) .
The complete list is

Goo (22,25 X2 + Z2?) Goo (z3,y3; X2 +Y?), withY =2y —y2, Z = 23 — y3,

Loo (z2,y2; X2+ Z%) = Moo (23,y3;Y,X)

Moo (w2,y2; X, Z) = Moo (v3,y3; X,Y) (cf. (2.5)),
Z? By (w2,92; X, Z) = Coo (73,y3; X,Y) (cf. (2.7)),
1 = Poo (73,y3).

The equality Z2Bgg = Cgo needs some care as discussed in
Remark 3.13 a) Due to Remark 3.5, we have X > 0. Let Y = x2 — y2 be a fived value. Applying
Boo (z2,Y2; X, Z) = —Boo (Y2, 22; X, Z) = —Boo (—z2, —y2; X, Z)

for'Y <0, we can ensure Y > 0. Since Y = 0 implies Bog (v2,22; X, Z) = 0, we may even assume Y > 0.

b) The case X = 0,Y > 0 can be considered as the limit case X N\, 0 resulting in Coo = Cy + Cio — Co
with Cgfy (w3,y3;0,Y) == % lrs —ys| and Cyy (73,93;0,Y) = 0.

c¢) Under the condition X,Y > 0, the equality Z*Boo (72,y2; X, Z) = Coo (v3,y3; X,Y) holds.
Proof. ¢) Assume X,Y > 0. Note that Boo (z2,y2; X, Z) = & (arctan L — arctan %) (Y =9 —yo) is

an even function with respect to Z. Choose Z > 0. Then X,Y,Z > 0 implies arctan % = § — arctan % and

Xy  _ ASAESS) : <2 . _ VAV AERS) Z
arctan o—-——s = T —arctan =Yg, which results in Z*Bog (w2,92; X, Z) = Z (arctan 2VZS — arctan 7)

= Coo (v3,y3; X,Y) (Z = x3 — y3). Since the right-hand side is again an even function in Z = x3 — y3, the
equality Z2Bgg = Cop holds for all z3,ys. ]

3.11 Example

The function J, (m2,y2; Zz) =Jy ($2,y2; (z3 — y3)2) from (3.7) is to be evaluated at the boundaries 0,1 of
the cubes B', B" (cf. (1.3)). Since Gog as well as Log, Moo, Boo depend only on x — y, we rewrite Goo(x,y; - - -)
as Goo(x —y;...). Then

Iz (22,925 Z%) [hymolysmo = J2 (1,15 2%) + J5 (0,0; 2%) — J» (1,0; Z%) — J2 (0,1; Z7)

== —4Z2.B()0 (1, 0, Z) + 4Z2.B()0 (1, ]., Z)

472 . 2472 . 2472 . 472 — 4 .
+ TGOO (0, Zz) + 3 Goo (0, 1+ Zz) + 3 Goo (1; Zz) + 3 Goo (1; 1+ Zz)

—2Z%Loo (0;2%) +2 (2% = 1) Loo (0;1+ Z%) +2Z° Lo (1; 2%) —2(Z° — 1) Loo (1;1+ 2?)
—27%Moo (050, Z) + 2Z2° Moo (031, Z) + 2 (2% — 1) Moo (1,0, Z2) — 2 (Z* — 1) Moo (131, Z).

Its expression as function of x3,ys is

4 : 4 8 :
L (z,9) = 8Ci (5 1,1) + 3 (= 9)° Goo(w,y;0) + (5 —g@- y)2> Goo(,y;1) (3:8)

4 4
+ (—— + 5 (- y)2> Goo(,y;2) — 4 (z — y) Moo(z,y;0,0) + 4 (z — y)* Moo(z,y;1,0)

+ (~4+ 4@ = 9)*) Moo(w,530,1) + (4= 4 (& —)°) Moo(,y51,1) = 27|z — .



3.12 Fifth Integration (z3)

Now, z3,y3 are denoted shortly by z,y.

The antiderivatives G}, and M, are known from above. The z-integration of L, is similar to the
y-integration discussed in Lemma 3.3.

The only new function to be considered is Cy (z,y; X,Y") . For its integration we split Cj; into the terms
Cy, and C,fl defined in (2.8) and (2.9), respectively, and introduce auxiliary functions Dy ;, Qp , R,il, Eki’l
(cf. (2.10)-(2.11)). The final result is then given by Lemma 3.16.

Lemma 3.14 The antiderivative Df ; (z,y;Y) of Dy (z,y;Y) = xkyl(w_y)% can be determined by the
recursion (5.19), (5.20), (5.21) which yields a linear combination of

Y2 Qo for2m +1' = k+1,
Y2 Moy (2,y;0,Y)  for2m+1+1 =k +1, (3.9)
Y2l py (@, y) for2m+1+k +1U'=k+1.

Note that the formulae make sense only if Y # 0; otherwise, Dy (z,y;0) =0 implies Df ; (z,y;0) = 0.

Lemma 3.15 The z-antiderivatives of R+ (z,y; X,Y), E,j:l (z,y; X,Y) can be determined by the combined
recursions (5.23)-(5.26). R;:l is a linear combmatwn of

X2mRk+,7l, (z,y; X,Y) for2m+k +1'=k+1+1,

XmEE L (z,y;X,Y) for2m+ kK +1' =k +1,

XY QG ) (2,1,0)  for2m+2n+ K 41 =k+1-2, 0 =X24Y?2,
X2y O Ly (z,y; ©) for2m+2n+1'=k+1-1,

(3.10)

while 5,':;” is a linear combination of

XQmRka,J, (z,y; X,Y) for2m+k +U'=k+1, m>1,

XPmES | (2,y; X,Y) for2m+k +1'=k+1+1,

X2y 0rGy v (z,y; 0) for2m+2n+k +1'=k+1-1,0 =X2+Y?,
X2y O Ly (z,y; ©) for2m+2n+1' =k +1.

In the case of R, (x,y; X,Y) and E, , (x,y; X,Y), one has to interchange X and Y. Due to (2.12), (2.13),
E} i in (3.10) can be replaced by My 1.

The antiderivatives Dy ; and RH, E,Tl are needed to integrate Cy; = C’“ +Cryi—Chy

Lemma 3.16 a) The antiderivative C;%) (z,y;Y) of C}; can be obtained by the recursion formulae (5.28),
(5.28). Ci7) is a linear combination of Qk, v (K +1U =k+1) and the functions in (3.9).

b) The antiderivative C; wt (@y; X,Y) of Cfl can be obtained by the recursion formulae (5.23)-(5.26) and
is a linear combination of the functions from (3.10) and with k + [ replaced by k + 1 + 1. Similarly for C,:rf

¢) Concerning the limit case (X \, 0) of Cfy (z,4;0,Y) = % |z —y| from Remark 3.13b, we remark that
the z-antiderivative of ¥ sign(zx — y) is (! —y* ) sign(z —y)/ (k +1).

3.13 Sixth Integration (y3)

The two-fold antiderivatives G, 9 and M}? are known from above. The y-integration of Cj; = C,:fl + C,;l — C,’al
requires the y-antiderivatives of Qg , Mo, (z,9;0,Y) ,Pk,l,TOil,R,fl,Ef:l,Gk,l,LoJ. Ouly the recursion (5.22)
for Q. is new. In the other cases the y-integration is already discussed or similar to the z-integration.



3.14 Example

The second antiderivative of (3.8) is the following function of z = z3 and y = ys:

2 o) = =15 (0= )" Gunl350) + (15 = 2 (0= + 5 (0= 9)") Gl (311)

2 - @0 Gunle i) - T Lan(es) - 3 (0 - 9) Loo(e:2)

1
(z —y)" Moo(z,y;0,0) — 3 (z —y)* Moo(z,9;1,0)

+ | - +2(ac—y)2—%(m—y)4>Mog(m,y;0,1)+(%—2(:6—1/)24—%(:6—1/)4)Mog(m,y;l,l)

(. —y)* |z —y|+ (g - % (x — y)2> (x —y) Ry (z,y;1,1).

The integral I3 = f12 (fo1 L (z,y) dy) de = J3(2,1) — J3(2,0) — J5(1,1) + J3 (1,0) corresponds to (1.3) and
equals 0.9808851836 . .., which is the numerical evaluation of

A 2 2 1 4 2
Itace = 1([0,1]* x [1,2],[0,1]*) = l—i —27r+8arctan\/j— g\/§+ g\/3— V5 — §\/€—41n2— gln5

—§1H(1+\f)—41n(1+f)+—1n(1+f) ln(1+\/_) ln(2+\/_) —1n(2+\/_)

As a verification we give the numerical result of the Gaufl quadrature rule with 12 quadrature points in each of
the three dimensions: 0.9810823 ... . Note that this quadrature is of limited accuracy because of the singularity
along the common face of [0,1]? x [1,2] and [0, 1]3.

Similarly, the integral for two unit cubes intersecting only in one edge is

Leage == I([0,1] x [1,2]*,]0,1]%) = 0.708 495126 86. .. =

2
_%+27r—16arctan\/;+4arctan—+ \/_——\/_+\/_+ \/_+101H2+71n5

+?01n(1+\/§)+41n(1+\/§)—81n(1+\/5)—Eln(lﬁ—\/é)—1n(2+\/3)—§1n(2+\/6).

Here, the Gaufl quadrature leads to 0.70849588... .
Two unit cubes intersecting in one corner yield

Teorner := I([1,2]3,[0,1]*) = 0.578 797001 778 ... =

2 4 12
+ % —47r+24arctan\/;— 16arctan§ + 8arctan 3 — gx/_— g\/§— V5 — 2\/6— 24In2 —7Inb
—91n(1+\/§) +121n(1+\/§) +81n(1+\/5) +71n(1+\/6) +1n(2+\/5) +41n(2+\/6),

which is to be compared with the Gauf} result 0.578 797 001 808... .
Two identical cube lead to

Lig == 1([0,1]*,]0,1]%) = 1.882312644 . .

+§—— \/_——\/_—21n2+21n(1+\/_)+41n(1+\/_)

In this case the singularity is too strong to use the simple Gaufl quadrature, but the result satisfies the following
Remark 3.17 The identity I;q = Itace + leage + %Icomer holds.

Proof. Divide the integral I([0,2]3,[0,2]?) = 41,4 into 64 integrals over unit cubes. |
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3.15 Stabilisation

The evaluation of the symbolic results like in (3.11) needs some care when = —y becomes large. The reason is
that the final result Is must decay as 1/r with r = |z — y| while some of the summands increase polynomially.
Either one uses a high accuracy for the evaluation of the functions or tries to reduce cancellation, e.g., by
using

_ 2
VX - VY = X-r ln(a+ b2+R2):ln(R)+ln<3+ b—+1>,

VXY VR
tan ——— = arct ¢ i for large r > 0 and p > 0
arctan \/ﬁ — arctan p — arctan (m+ pzr) (r n m) or large r =~ U and p =~

for differences of Gog, Log, Moo and Rgf) functions. To illustrate the problem, we remark that the result for
B' =10,100] x [0,1] x [0,1] and B" =[0,1] x [0,100] x [0,1] and v; = p; = 0 equals 181.4... It is a sum > a;
of 51 terms with different signs. The sum > |a;| = 8.319 + 10 yields the condition number® 4.619+8 so that
only 7-8 digits of the result are accurate. While the complete result can be found in §6.10, we show only a
group of 6 terms involving square roots of similar size:

201 192 4
320 9867>'< 9801 + 9 060398>'< 9802_9600079 « /9303

5 15 15
20000000 199940002 33313333
+ —s /10000 — — * /10001 + —5 * v/10002.
Their sum is —0.41667 ... , whereas the sum of absolute terms equals 5.21¢9+9 indicating a loss of 10 digits.

Since the sum of the rather large coefficients vanishes exactly, a simple remedy is the use of /100004 =
100 + w (6) with w(d) = m for § € {-199,-198,—-197,0,1,2}. The condition number of the

resulting sum —32015& *w (—199) + ... is reduced to 2.519+7.

3.16 Symbolic Computation

The type of quantities to be treated are sums of linear combinations like ZM akG’levl, ZM a}c\{l My, etc. The
latter sums can be written as (ZM ag (2) :ckyl) Goo (z,9;2), (ZM ayy (2?) xkyl) Moo (z,y; X, Z) etc. The

first factor is a polynomial in z,y with coefficients being polynomials in a further parameter. The following
steps have to be performed:

1. The starting function is &7y} Foo (@1, y1;Z) = Fuy py (@1, y1; Z), which may be generalised to a polyno-
mial f(z1,y1;2) == 2y, ap  Fri (21,915 ).

a) Apply the recursions (5.1)-(5.3) to obtain g =}, , aﬁlGM and £ =}, aﬁlLkJ with the arguments
(z1,y1; Z). Note that the coeflicients are polynomials in =.

b) Given g, ¢, apply the recursions (5.9), (5.7) and (5.4)-(5.6) to obtain new g, £. Then Jo(z1,y1;E) :=
g + £ is the twofold antiderivative of f.

c) Evaluate I1(Z) := Jy (a],a); E) — Jo (a},b);E) — Jo (b}, af; E) + Jo (b],b]; E) at the integral bounds
(cf. (1.2)).

d) Interpret I1(Z) = I;(x2,y2; Z) as a function of z2,y2 (cf. §3.4).

2. The result of Step 1d is I;(x2,y2; Z), which is a sum of g; and m;, where

9i(@2,y2; Z) = Y ag} Gra(w2,y2; X7+ Z%), mi(wa, 403 2) = D agy Myu(2, y2; Xi, Z)
k1l Kyl

M,i

R

for various X;. The coefficients akGf can be organised as polynomials in X? + Z%, while ay; may be

written as polynomial in Z2.

5The condition number of a sum is defined by 3" |a;| /|3 a;] -
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a) Multiply I (xa,ys2; Z) by x5%y4? from (1.1).

b) Apply the recursions for Gy ;,My; to obtain the z-antiderivative as sum of new my, b;,p,g,¥¢
corresponding to Mle(Jig,yg;Xi,Z), Ble(.rg,yg;X,',Z), Ple(:EQ,yg), GkJ(xQ,yQ;XZ'Q + ZQ), and
Ly (w2,y2; X? + Z?). Note that X = X; in recursion (5.12) is a constant.

c) Apply the recursions for Gy, Ly, My, By, Pry to obtain the y-antiderivative as sum of new
m;, bi, p, gi, £;. The result is denoted by Ji (z2,y2; Z).

d) Evaluate I(Z) := Jy (ah,al; Z) — Jy (ab,by; Z) — Jy (bhy,al; Z) + Jy (bh, 05 Z) .
e) Interpret I5(Z) as function of z3,ys (cf. §3.10).

3. The result of Step 2e is I (x3,ys3), which is a sum of g;,m;, ¢}, cl , where, e.g.,

+ L7y — Z Cti ot .
¢; ('r27y27Z)_ klak7l Ck7l(x37y37Xi7}/;)
. . + 4
for certain X;,Y;. The coefficients akol " are constants.

a) Multiply I»(z3,y3) by z5*y4?® from (1.1).
b) Apply the recursions to obtain the twofold antiderivative Ja(x3,ys) of Ir(zs3,ys).
c) Evaluate the final value of (1.1) by I(B', B") = Ja (a}, a¥) — Jo (a4, by) — Jo (b5, a¥) + Jo (b5, %) .

A program realising these steps is described in §6.

4 Collocation

The integral

vy , V2, V3
/// \/ =Rk dwydzadrs  for y = (y1,y2,y3) € R? (4.1)

(z1 = 31)° + (22 — 92)° + (z3 — y3)°

with B = Hz’:l [ai, b;] appears, e.g., in the collocation method and can be treated similarly.

After the first integration (see §3.1), we have to insert the z;-values from the integral bounds and the
yp-value fixed in (4.1) into the antiderivative. A comparison of Lemma 3.1 with Theorem 3.4 shows that the
arising expressions are of the same form as those obtained previously from the twofold antiderivative. Similar
statements hold for the z5- and x3-integration.

5 Recursion Formulae

5.1 F
The z- and y-integration of Fj yields 7, — Gy 1, Lo,y and ]-',il — Gy v, Ly o (cf. Lemma 3.1):

Fou(@,y;:5) = Loy (#,9;E) (5.1)
fil (-T,y, E) = GOJ (:I;;ya E) + L07l+1 (maya E) ’ (52)
Gro1,+ 2k —-1)F} —(k=1)F¢ —(k=1)EF}
Fiy(a,y;E) = —— bty Sl i Vi =Dt g )5y (5.3)
2 = —_

PT‘OOf. %Gk—l 1= xk_lek(w_y)\;iliyl))Qlt ye=y) = kF}, l—(2k — 1) Fi_4 l+1+(l€ — 1) Fk_27l+2+(k — 1) .:Fk_gJ
proves (5.3) for i ;, while (5.1) and (5.2) are trivial. ]
‘7:]:570 (:I;;ya E) = _Lk70 (:I;;ya E) ’ (54)

Fi1 (@,9;5) = Gro (2,93 E) = Litr,0 (2,45 5)

Graa+Q@-1)F ,_ —(0-1DF o, s —(1-1)EF,_

FY @y E) = ki-1+ ( )Fig1-1 — ( : )F kg2 — ( JEF 12 for I > 2. (5.6)
Proof. For FYl use fL.Gry1 =1Fyy — (20 = 1) Fypa0-1 — (1= 1) Fyyop2 + (I = 1) EFp 0. n
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5.2 L

Integration of %Lk+17l =(k+1)Lk;+ Fry1, and %LMH =+ 1)Ly — Fy 41 yields the following expres-
sions for the z- and y-antiderivatives L} ;, £} ; of Lg; (cf. Lemma 3.3):

" v Lipra(z,y:5) = Fipq (2,95 5)
Ly (z,y;2) = P ;
o Lk (2,9:5) + F oy (2,555)

Ly, (z,y;8) = 1 - : (5.7)

53 G

For Gy, use L Grp1y = (k+1)Gry + Freyay — Frg1a41, while (;i_ka,l-i-l = (U +1)Gry+ Frap2 — Frp1,041
proves the recursion for g};jl (cf. Lemmata 3.7, 3.3):

Gk+17l (may; E) - flf+27l (maZU; E) + -7:1?+171+1 (%ZUQ E)

v (2) = 5.8
gk7l (waya ) k+1 ’ ( )
o Grun1 (2,455) = F o (2,9 5) + FY (7,y; =)
Gl (g E) = B S - (5.9)
’ l+1

5.4 A
The auxiliary function A;; will be needed in the next subsections.

The z- and y-integration of Ay ; yields A%, — Bow,MOJI,Pkgz/,f/f/JH

Ab (z,y; X, Z) = Boy (z,4; X, Z) (5.10)

Af,l (xay;Xa Z) = Ag,l—i—l (xay;Xa Z) + MO,l (xay;Xa Z) ) (511)

-’4%71 (z,y;X,2) = 2A£717l+1 - -’4%727l+2 - ZQ-AglgfzJ + lelPk—l,l - X}_Iffu (z,y; ) for k > 2, (5.12)
where T = X2 + Z2 (cf. (2.1)).

d _ da z— z— X _ _ .

Proof. LBy = L (arctan ¥ — arctan(*¥ m)) = (\/(zfy)2+'r+1)() T Ago yields
(5.10), while A9 — Ag; = 2y L In(X +1/(z —y)* + ) proves (5.11).

Va1 (X /@) @
[(e—u)2 _
For (512) use AkJ - 2Ak_171+1 + Ak_gJ_i_g + ZzAk_QJ = ((Jj - y)2 + Z2) Ak_gJ = $k72ylw

(2—y)*+7
- k-2, 1 .

— JJ’" 2yl _ Xﬁ — .fL'k Zyl _ XFk:fZJ- -
A%O ('rvy;Xaz):_Bk,O (xaanvz)v (513)
Azg (maya X7 Z) = Az-t,-l,o (-T,y, X7 Z) + Mk70 (m,y;X, Z) I (514)
A @y X, 2) =240 — AL = ZPAY 4 PP — XFY (s ) for 1> 2, (5.15)

Proof. One can transfer the recursions of Ay ; as follows to A? . Note that Ay(z,y; X, Z) = Aix(y, 2; X, Z)
and My (z,y; X,Z) = M x(y,; X, Z). This implies A%J(x,y;X, Z) = Aﬁk(y,x;X, Z), where ® (¥) denotes
the integration with respect to the first (second) argument. ]

Remark 5.1 To avoid cancellation of terms, we recommend to introduce the related functions

A;s:l (way;X; Z) = (fﬂ - y) At (fﬂay;X; Z) = Ak+17l - Ak7l+1;
A;cll ('rvana Z) = Z2Akl (xaanv Z) .
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Then, formulae (5.10-5.12) become
Agy (2,y; X, Z) = Moy (2,93 X, Z)

A;cgfl (z,y; X, 2) = ;cm—17l+1 - Ziu + %PM - X]:I?le (z,y; ) fork>1,

Aot (,y; X, Z) = By (z,y; X, Z),

19 @,y X, 2) = AQi (0,93 X, Z) + Z° Moy (2,93 X, Z),

Wi (@, X, Z) = 245 1y — Al 0 — Z2AE 0 + 5 2P Piag — XZP Ty (2,y;T) for k> 2,

where B, (z,y; X, Z) := 2By (z,y; X, Z) . The y-antiderivatives are rewritten similarly. As a consequence,
all resulting terms By, are replaced by B;C’J. Then, formula (2.14) can be replaced by the less dangerous one

Bily (.5 X,Y) = Y (Qua (2,33 Y) = By (0,3, X,7)
55 M

The recursion formulae M§ ; — Myi1,, Af o and My | — My 41, A}, are formally equal to (5.8), (5.9):

Myt (2,9, X, 2) = Af oy (2,93 X, 2) + Af L (2,93 X, 2)

i 1 X, Z) = 5.16
Mk,l (waya ) ) E+1 ) ( )
M, z,y; X, 7) — AY z,y; X, 7Z) + AY z,y; X, Z
M%l (2,y: X, Z) = ki1 (T,y ) k42 (z,y ) k41,041 (z,y ) (5.17)
’ l+1
Proof. Let w := /(z —y)* + T. The identity & («#'In (X +w)) = (k+1)a¥In (X +w) + Lot
shows %MkJrLl = (k + 1) Mk,l + Ak+27l — Ak+1,l+1 proving (516) |

In formulae (5.16) and (5.17), the A terms become —A}%, | ; (z,y; X, Z) and A;j{lﬂ (z,y; X, Z) , respectively,
when we apply the choice from Remark 5.1.
5.6 B
Use %Bk’lﬂ =(10+1)B, + m’“ylH%BOO = (Il +1) By — Ag,14+1 because of %Bog = —Ago to obtain

Bk,l-i—l ('rvana Z) + A%7l+1 (xaanv Z)

Bllc/,l(xay;sz): l+1

, (5.18)

which is the same recursion as (5.7).
The recursion remains valid when we replace the symbols Ay, By by A}, By, (see Remark 5.1).

5.7 D

The auxiliary function Dy, will be needed in the next subsection. The z-integration of Dy (cf. Lemma 3.14)
yields

T
Dy, (z,4;Y) = Qo (z,y;Y) = y! arctan % y, (5.19)
Y
DY, (z,y;Y) =Y Mo (2,y;0,Y) +Dg 14y (,95Y) = 53/’ In ((:c — y)2 + YQ) + DG 1415 (5.20)
1
Diy (z,y;Y) = Y Pt + 2D§ 1111 — Di_pu40 —Y?Di_y, for k > 2. (5.21)
Proof. Use L4 In ((m -y’ + Y2) = Yyl% = D1 — Do, 41 for k =1, while the case k > 2 follows
from Dy — 2Dg_1141 + Di—2,442 + Y2 Dy_oy = Yah=2yl. n
Similarly,

sz (,1;Y) = =Qro (w,y;Y) = —a* arctan :c v y)

Y . .
,Dz,l (z,y;Y) = =Y My 0 (2,4;0,Y) + ,D]z.t,_Lo (z,9;Y) = Emk In ((.Z' - y)2 + YZ) + ,Dz+170;

1
,Dz,l (m7y7 Y) = l — 1YPk,l71 + 2Dz+17l_1 - Dz-ﬁ-?,l—? - Y2Dg,l—2 for l Z 2.
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5.8 Q

The recursion for QJ ; is identical to those of (5.7) and (5.18):

Qi1 (@, 4;Y) = Diyyy (2,y3Y)

T _Y —
Qk,l (waya ) E+1 )
Qri+1 (2,4, Y) + D)y (2,5;Y)
QY (w,y;Y) = bt . (5.22)
l+1
Proof. Use £ Q11,1 = (k+1) Qg + Dys1, and %QMH =(+1)Qrs — Drt1- u

59 R,E

Since Ry, and E,, are obtained from R,il and E,il by swopping the roles of the parameters X, Y, it suffices
to discuss R,il and Ezrl Their z-antiderivatives are obtained by the combined recursions

R(ﬁ (z,y; X,Y) = er Ra_l+1 E(Tlv (5.23)
Eqi (x,y; X,Y) = BEf, — Efyy + X°R{, — XY F§, (2,4;0), 0=X*+Y?, (5.24)
R ., — RS E+ +EkR" + k&
sz (z,y; X,Y) = k1l kii+1 kl+ . k141 k1 for k > 1, (5.25)
E (2, X,Y) = Bicvr = Bty + Xy o Gy = XOWRGZ = XV TR (5.26)
k,l y ’ k + 1 = 1. .
Proof. The following proof uses
d T—y d 1
%Egg = XY : %Rgo = XY . (5.27)

O+ (@—y) (X2+@-v)°) O+(@-y)° (X2+@-v)°)

(5. 23) and (5.24) are the cases k = 0 of the following formulae.
Use it (Rf 1 = Bl = By = (k4 DR — KRy = KB, + 2%y [(@ — y) £ Ry — (LB and

note that [...] = 0 because of (5.27). This proves (5.25).
The identity z*y'[(x —y) LEf + X*LR{] = XYFy implies L ((:c —y) E,j:l + XZR,L) =
(k+1) E,;‘:l — kElj—l,H-l + szRk"'_Ll + XYFM proving (5.26). ]
Similarly,

R;?(J) (iC,y;XaY) Rk++10+Rk+71+Ek+707

(@, y; X,Y) =B, o+ Bl - X°R, - XY T (2,4;0), 0=X2+Y2,
R, +Rf,. ., +EH+IR™Y, ,  —I&Y
RH (2,4 X,Y) = k+1,1 k,l+1 lill k+1,0—-1 — “Cki—1 for I > 1,
-Ef,  + B - XPRE, +1E + X2RY - XYFY
g;iy (2,45 X,Y) = k+1,1 k,l+1 k.l k+1,01—1 k-1 k1l for 1 > 1.
, I+1
5.10 C
The relation C,’cvl = Qk+1,1 — Qi1 (cf. (2.8)) yields
City (YY) = Qfyy (2,45Y) = Qf 14y (2,33Y) . (5.28)

Similarly, C,jfl =(z—y) RkiJ = Rli-l,l — R,ﬁHl leads to

Ck:;‘:,lz (m,y;X, Y) = Rk:tle ($7y;X7 Y) - Rk%f—i—l (.T,y;X, Y) .

Acknowledgment. I thank Mrs. J. Dorkic (MPI Leipzig) for checking the formulae of this paper and
providing the quadrature results of §3.14.

15



References

[1]

2]
3]

[4]

[11]
[12]

[13]

[14]

S. Erichsen and S. A. Sauter: Efficient automatic quadrature in 3D Galerkin BEM. Comp. Meth. Appl.
Mech. Eng. 157 (1998) 215-224.

W. Hackbusch: Direct integration of the Newton potential over cubes. To appear in Computing.

W. Hackbusch: A sparse matriz arithmetic based on H-matrices. Part I: Introduction to H-matrices.
Computing 62 (1999) 89-108.

W. Hackbusch and B.N. Khoromskij: A sparse H-matriz arithmetic. Part II: Application to multi-
dimensional problems. Computing 64 (2000) 21-47.

W. Hackbusch and Z. P. Nowak: On the fast matriz multiplication in the boundary element method by
panel clustering. Numer. Math. 54 (1989) 463-491.

W. Hackbusch and S. A. Sauter: On the efficient use of the Galerkin method to solve Fredholm integral
equations. Applications of Mathematics 38 (1993) 301-322.

W. Hackbusch and S. A. Sauter: On numerical cubatures of nearly singular surface integrals arising in
BEM collocation. Computing 52 (1994) 139-159.

W. Hackbusch and G. Wittum (eds.): Boundary Elements: Implementation and Analysis of Advanced
Algorithms. Notes on Numerical Fluid Mechanics 54. Vieweg-Verlag, Braunschweig. 1996.

A. Hubert and R. Schifer: Magnetic domains. Springer, Berlin 1998

S. A. Sauter: Uber die effiziente Verwendung des Galerkin-Verfahrens zur Lisung Fredholmscher Inte-
gralgleichungen. Dissertation. Universitat Kiel. 1992.

S. A. Sauter: Cubature techniques for 8D Galerkin BEM. In Hackbusch - Wittum [8], pp. 29-44.

S. A. Sauter and A. Krapp: On the effect of numerical integration in the Galerkin boundary element
method. Numer. Math. 74 (1996) 337-359.

S. A. Sauter and C. Lage: On the efficient computation of singular and nearly singular integrals arising
in 8D Galerkin BEM. ZAMM 76 (1996) 273-275.

S. A. Sauter and C. Schwab: Quadrature for hp-Galerkin BEM in R®. Numer. Math. 78 (1997) 211-258.

16



6 Appendix: The Program coulomb

The program coulomb allows to perform the operations described before. The source code exists as Pascal
program coulomb.pas as well as C program coulomb.c. Since the latter is automatically translated from
the former one, the Pascal source text is better readable. Both programs are obtainable from http://777

6.1 First Test Example

We show how the first example from §3.14 can be obtained. After starting the program, the main menu arises,
which contains a subset® of the following options:

MAIN MENU

define actual function expression

integration

evaluation

interpretation of the function w.r.t. a,y2/Z3,ys
output and storage of actual function expression
internal status

7,1 list the actual function expression

blank end of program

o O WN -

The options 1,2,3,5,6 lead to sub-menus which are described in detail below. We use the notation Option(1f)
for the result of selecting “1” in the main menu and “f” in the arising sub-menu. Similarly, a sequence of
options is written as Option(aiby,asbs,... ), where a;,b; are characters.

The first test example consists of the options Option(1f,22,31,4,22,31,4,22,83,6n). The resulting number
0.980885... is the result given in §3.14.

Step  main menu  sub-menu  comment

1) 1 f define expression := F = 1/\/(3: — )’ + X2 4Y2
2) 2 2 perform z- and y-integration (z = z1,y = y1)

3) 3 1 evaluate at ... |2=}|Y=¢ (v = 21,y = 1)

4) 4 interprete as function w.r.t. zs,ys

5) 2 perform z- and y-integration (z = z2,y = y2) (6.1)
6) 3 1 evaluate at ...|*=} zié (x =20,y = ¥2)

7 4 interprete as function w.r.t. z3,ys3

8) 2 2 perform z- and y-integration (z = x5,y = y3)

9) 3 3 evaluate at ...|*=2 zié (x =23,y = y3)

10) b5 n compute the numerical value 0.9808851836009822

6.2 First Test Continued: Further Output

After each step in (6.1) the actual expression can be shown by means” of Option(7). Before Step 1) it produces
the answer ZERO. After Step 1) the result is +{[+(1)]} * F'(z — y; Y, Z), while after Step 2) Option(7) yields

+{[+(2)* Z" 2] xx + [+(-2) * Z"2] x y} x B(z — y; +(0), Z) (6.2)

[+(

[+(
FA{[+(2/3) % Z72 + [+(=1/3)] * "2 + [+(2/3)] * x x y + [+(-1/3)] x y "2} « G(z — y; +(0), Z)
F{[+(A/3) + (=2/3) * Z72] + [+(1/3)] % 2”2 + [+(=2/3)| x x x y + [+(1/3)] % y 2} x G(z — y; +(1), 2)
+{[+(=1)x Z"2]xx + [+(1) x Z"2] x y} * L(z — y; +(0), Z)
F{+(=D+ Q) *Z72]xx + [+(1) + (=1) * Z"2] x y} * L(z — y;+(1), 2)
A+« Z72] + [+()] * 2”2 + [+(=2)] * z xy + [+(1)] xy "2} * M(z — y;+(0), 2)

[+(

]
+(U) * Z72l+ [H(=D]x 2”2+ [+ x v xy + [+(=D)]x y 2} * M(z — y;+(1), Z)

60nly those options are shown which are reasonable in the present situation. Although the other options are selectable, their
result may lead to wrong results.
7 Option(7) and Option(l) are identical. The character 1 is used for the same purpose in many of the sub-menus.
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which?® is identical to (3.7). The notation B(x —y;+(0), Z) is used instead of Boo(z,y;0, Z), since z,y appear
only as the difference. It is multiplied by the preceding polynomial {...}. Each term of this polynomial is
written as [...] * 2"k % y"l. The notation of the monomial 2"k is omitted when k£ = 0 and abbreviated by z
when k = 1. The expression (6.2) is also written into the protocol file coulomb.log.

In the end, when all parameters are evaluated, the result can be transferred into TEX format. After Step
9), Option(5t) produces the file coulomb.tex which then contains

4 1 4 16 2 3
S D Vi-Zay5-2 .
B 3*\/_+5*\/§+15*\/_ 3*\/5 5*\/5 (6.3)

+§*ln(\/§)—?*ln(\/i)—g*ln(\/g)—g*ln(l—i-\/i)
—4*ln(1+\/§)+§*ln(l+\/5)+g*ln(1+\/6)+§*ln(2+\/g)+§*ln(2+\/6)

1
—2xm+ 8xarctan | 2x —
( \/6>

as TEX expression. One may check that (6.3) is equal to the value I¢,c. given in §3.14, although the terms
are not identical.

6.3 Sub-Menu for Output

After the previous examples, we discuss in detail the following sub-menu (called by Option(5)):

MENU for output and storage of the actual function expression
screen ...
1 list the actual value of the expression
compute the numerical value of the expression
internal ... (6.4)
s write into intermal storage '
external ...
t write into TEX file <name>
X write into extermal storage <name>
blank return to main menu

e Option 1: It produces a display at the screen and a printout into the protocol file whose standard name
is coulomb.log. This name may be changed by Option(6p).

e Option n: Only possible if all parameters are evaluated. Then it computes the numerical value of the
actual expression, which is a sum like in (6.3). To check the possible influence of floating-point errors,
also the sum of the moduli of all terms is given. In the case of (6.3), the latter sum is 43.07... Assuming
a maschine precision eps = 2.219-16, the rounding error effect should be bounded by 119-14 so that the
last two digits in 0.9808851836009822 are in doubt.

e Option s: The actual expression is memorised internally. Option(1s) returns the expression.

e Option t: Only possible if all parameters are evaluated. Then it translates the expression into TEX
format and writes it into a file whose standard name is coulomb.tex. The actual name <mname>is written
in the menu line. This name can be changed any time by Option(6t).

e Option x: The actual expression is stored onto a file whose standard name is coulomb.ext. The actual
name <name>is written in the menu line. This name can be changed any time by Option(6z). For
reading the stored expression use Option(1z).

6.4 Notation of Variables

The notation of the variable and parameter names must be defined more explicitly.

8The original output uses much more but shorter lines. The reason for having one separate line for each term is that the
number of terms in the polynomials is not limited.
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The function Fj; is defined in (2.2) by means of = = Y?
parameter & :

+ Z2. Now we use Y, Z explicitly and add the

oyl
Frg(z,y; X,Y) = A : (2.2%)
Va@—p?+x2+y?
Here, X,Y are the generic names for the parameter variables. Due to the interpretation by = = Y2 + Z2, we

may associate the symbol “Y” to X and the symbol “Z” to Y.

Remark 6.1 The notation of the variables for the following functions will be always x,y; X,Y, unless the
function does not depend of some of these variables (as, e.g., the polynomial Py, (x,y)). Depending on what
integration step we are considering, the meaning of these variables might be different. For instance, x,y are
understood as z;,y; in integration phase i (1 <i < 3).

The meaning of X,Y is given by its symbols o(X),0(Y) (e.g., o(X) = Y7, o(Y) =
(2.1)).

“Z” according to

As long as 0(X) = “Y”, X carries no value. In the case of an evaluation, we redefine o(X) ="" (empty
name) and X cannot be treated symbolically any longer.’
6.5 Reformulated Recursion Formulae
Similar to Fj;, we write
G,y X, V) = by (@ — y)? + X2 4 72, (2.3
Lia(n, 5 X,Y) = 2/ In ( —y+ -y X2t YZ) . (2.4%)

The recursion formulae for the integrals of F' are to be adjusted whenever = appears, as in (5.3), (5.6):

G- 1,0+ (Qk - 1) k 1,141 (k - 1)\7:1?—2,l+2 - (k - 1) (X2 + Yg) ‘7:1?—2,l
k

1)‘7:13+17l71 - (l - 1)‘7:13+27l72 - (l - 1) (X2 + Yg) ‘7:1?7172
l

where all functions have the arguments (z,y; X,Y, ) . The formulae (5.1/2/4/5) and (5.7-9) for G, L stay valid
when we replace the argument list (x,y; Z) by (z,y; X,Y).

Fi = for k > 2, (5.3%)

Gr—1+ (21—

Fii= for 1 > 2, (5.6%)

Remark 6.2 The recursion (5.3%) is managed differently when X represents a symbolic variable or a given
real number. In the first case, the coefficients of the functions are polynomials also in X, while in the second
case, the real number is used instead. Obviously, the amount of work and the length of the resulting expression
is reduced a lot, when we evaluate X as soon as possible.

We follow the device in Remark 5.1 and use Ay, A, instead of Ay and By, instead of By.
The translation of the function names introduced so far and the names used in the program and output is
given in the following list.

mathematical name | program mathematical name | program

Ao (z,y: X,Y) DA(x-y;X,Y) | Abo (2,95 X,Y) AZ(xy;XY)
BgO ($7y;X7 Y) BZ(X'anJY) 060 (.T,y;X, Y) CO(X'Yaan)
Cgo (2,y; X,Y) Cp(x-y;X,)Y) | Cyo (2,95 X,Y) Cm(x-y;X,Y)
Doo (z,y;Y) D(x-y;Y)

(m y; X,Y) Ep(x-y;X)Y) | Ep (z,y; X,Y) Em(x-y;X)Y) (6.5)
Foo (z,y; X,Y) Fx-y;X,Y) | Goo (2,95 X,Y) G(xy;X,Y)
Loo (z,y; X,Y) L(x-y;X,Y) | Moo (z,y; X,Y) M(x-y;X,Y)
Pyo (z,y) 1 P (z,y) m/2*sign(x-y)
Qoo (m y;Y) Q(x-y;Y)

Rgy (2,y; X,Y) Rp(x-y;X,Y) | Ry (2,43 X,Y) Rm(x-y;X,Y)

7 [43 7’

Furthermore, if z,y are evaluated, we chance “r/2*sign(x-y)” into a factor times “x

9In the program, the empty file is replaced by ”$” because of better visibility.
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6.6 Internal Representation

In the following, the sub-menu called by Option(6) is of interest:

MENU for internal variables
1 list status of internal variables
representation for output ...
use floating point numbers
use rational numbers
change value of Tolerance
change value of TolRational
change value of MaxDenominator
files ...
change name of external TEX file
X change name of external storage file
P change name of protocol file
for further choices see output produced by “1”
blank return to main menu

MO KR H

ct

Option(6t), Option(6x), and Option(6p) are already mentioned in §6.3. The other options are explained below.

6.6.1 Format of real numbers

All (non-zero) coeflicients are internally represented by standard floating point numbers. In the procedure
SparsifyPolynomial, where zero terms are omitted from the list, all real numbers with

|z| < Tolerance (6.7)

are treated as zeros. The standard value of this constant is T'olerance = 100x M achine Eps, where the machine
precision MachineEps is a constant (the used value MachineEps =2.2E-16 should be adapted to the actual
computer). Change the value of T'olerance into zero, if the rounding to zero should be avoided. A redefinition
of Tolerance is possible by Option(6T).

Since the recursion formulae use only simple rational numbers as coefficients, the exact result of the
computations are also rational, provided that also the possible values at which the variables are evaluated
are also simple rationals. By this reason we provide an output, where all reals are interpreted as rationals.
Option(6r) allows to choose this representation (standard option). Otherwise, after Option(6f), the floating
point number representation is used for the output.

In the case of rational output, the rational number n/m has the property that |z — | < TolRational
and 0 < m < MaxzDenominator. If such an - is not found or if || < T'reat As Rational Number, x is repre-
sented as floating point real. To redefined T'ol Rational or M axDenominator use Option(6q) or Option(6a),
respectivelyl?.

Another constant, which should be adapted to the actual machine, is the maximal long integer number
maz LongInteger. This value is used to check whether abs(xz * m) > maxLongInteger. In the positive case,
the corresponding rational number -+ is not representable since n exceeds max LonglInteger.

Option(6l) shows all internal parameters.

Again we remark that the choice of the various parameters except Tolerance concerns only the output,
while the (quality of the) computation is not influenced. The rounding due to (6.7) makes sense, because of
the rational nature of the exact results. Very small non-vanishing numbers are not expected as true results
but should result from the cancellation of equal rationals. Here, we recommend to scale the problems such
that the coefficients are expected in the size O(1).

6.6.2 Function Representation

The computation deals with expressions of the form

®(z,y; X,Y) = 20@1@71‘1’271(%%){; Y). (6.8)
ikl

10The value TreatAsRational Number := 1/(MaxDenominator + 1) depends only on the choice of MaxDenominator.
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In the program, this expression is represented by a list (the index ¢ in corresponds to the ith list element).
Here, ®* for different ¢ represents different function names F, G, ... and possibly different evaluations. The
lower index in @ ; has the meaning zFyl, ie., ¢, = m’“y“ﬁ&o as already used for Fj,.... Therefore, we
rewrite the above expression as

Zczymwkqu’i(%y;X; Y)= Z Zczykﬂkyl @' (z,y; X,Y), (6.9)
i,k,l 7 k.l

where @ is a short notation for @670. The resulting coefficient 3, , cikax¥yl is a polynomial described in the
next subsection.

If the parameters z,y; X,Y are symbolic, the different indices ¢ correspond to different function names
from Table (6.6). As soon as parameters are evaluated, we must distinguish, e.g., between F(x,y; X,0) and
F(z,y; X, 1). Hence, different evaluations appearing in (6.8) get different indices i, i.e., they are represented
by different elements in the list (compare the listing (6.2)).

The output of an expression (6.8) is a sum of terms of the form Polynomial(z,y, X,Y) * FunctionN ame.
The meaning of the function names is explained in (6.6).

Remark 6.3 a) Since all functions depend on the difference x — y, this difference is used in the output.
b) The variables z,y, X,Y are named by their symbols or when evaluated by their values (e.g., F(1-x;1,7)).
¢) The internal function name of Poo is P. Similarly, the names Ps and Pi is used for P, (x,y) and .
d) The procedure stabilise tries to convert some of these functions into other ones, so that the output will
not contain all function types although they have been produced by the recursion formulae.

The conversions mentioned in Remark 6.3d concern

from into under the condition
a) L(;X)Y) - L(;Y,X) X > Y evaluated (same for F,G)
b) F(5X,-) -  F(X;4,) 0=z —y > X evaluated (same for G)
c) M@ X,)Y) — L(X;6,Y) 4, X evaluated (6.10)
d) Cm(;X,Y) — Cp(1;Y,X) (same for Em)
e) M(sX,Y) -  =M(-X)Y) + 2+sM(0,Y) X < 0 evaluated (ctf. (3.3))
f)  L(6XY) =  —L(-0;-X,Y) + 2xL(0;X)Y) ¢ < 0 evaluated

The standard choice is that a-f) are allowed, where d) is restricted to the case when X,Y are evaluated.
By Option(6G), Option(6g), Option(6m), Option(6c) we may stop the conversions. On the other hand,
Option(6X) allows the conversion d) even if X,Y are not evaluated. This, however, leads to wrong results
when at the end of Phase 2, Option(4) tries to interpret the expression as a function of Y = z3 — ys, since YV’
is expected in the fourth parameter place.

6.6.3 Polynomial Representation

The coefficients in (6.9) are polynomials of the form
>, k(X Y)aky (6.11)
where the coefficients ¢ ;(X,Y") are again standard real polynomials in X,Y :
_ kL
oX,Y) = Zk,l G XY (Cest € R). (6.12)

In the program, expressions of the form (6.12) are associated with level = 0, while polynomials (6.11) corre-
spond to level = 1. Mathematically, we are able to express all polynomials in four variables z,y, X,Y.
Similar to Remark 6.2, the computing time and the length of the expressions is reduced when we evaluate
some of the variable by a real value. For instance, the evaluation X := ¢ and Y := 5 replaces the possibly
lengthy polynomial ¢(X,Y") by the constant polynomial {0 = c(&,n).
Since the polynomials are represented by lists of the non-vanishing terms, we have no bounds for the
maximal polynomial degree (except storage limitations).
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6.7 Function Input

The following sub-menu called by Option(1) allows to define or change the actual expression:

MENU for defining the actual function expression
standard start ...

f define expression by F' and return to phase:=1
special ...
a add a term polynomial * function
0 set expression to zero
m multiply by a polynomial (subject of input)
from storage ...
s take from internal storage (expression overwritten by storage content)
+ add from internal storage (expression := expression + storage)
X read from external storage “<name>”

other actions ...
1 list the actual value of the expression
b stabilisation and further simplifications
o omit zero terms, combine suitable terms
P change phase number
blank return to main menu

e Option f: actual expression := Fyo(z — y; X,Y) (with symbolic z,y, X,Y). Further Phase := 1 is
defined (see §6.8.2). After this (standard) option, the program return immediately to the main menu.
After all other options, the program does not leave this sub-menu.

e Option a: The term Polynomial(z,y,X,Y) x FunctionName defined during this action is added to
the actual expression. First, the program asks for the name of the function, which is DA,AZ,... as in
Table (6.5). Additionally, P, Pi and Ps represent Py, 7 * Pyo and FPg,. Next, the program asks for the
polynomial (see §6.7.1).

e Option 0: The actual expression is replaced by zero.

e Option m: The program asks for a polynomial p(x,y; X,Y’). The product of the actual expression and
the input polynomial defines the new expression. This action corresponds to the Steps 2a,3a from §3.16.

e Option s: The expression previously stored by Option(5s) into the internal storage becomes the actual
expression.

e Option +: The internally stored expression is added to the actual one.

e Option x: The expression previously stored by Option(5z) into the external storage becomes the actual
expression. The file name of external storage is given in the menu line. Note that this name can be
changed by Option(6z).

e Option 1: As Option(5l). Although this is an output action, it is added here to check the input
expression.

e Option b: The procedure stabilise produces the conversions (6.10). Furthermore, coefficients satisfying
(6.7) are omitted. Usually, this procedure is implicitly called.

e Option o: This is a weaker form of the previous option, i.e., no conversions are performed, only zero
terms are omitted and terms with equals function names are added into one term.

e Option p: The actual expression is unchanged, only the phase number is redefined (see §6.8.2).
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6.7.1 Polynomial Input

An explicit input of polynomials of the form (6.11) happens in the second part of Option(1a). The input of
the polynomial p(z,y; X,Y) =1+ (3 + 4X2) y? requires the following dialogue, in which the bold-face part

indicates the input. The text on the right-hand side are additional comments.

#77 input of polynomial ...
choose the degrees k, [

level-1-polynomial started
<terminate with k < 0 >

>k=0
>l=o0 2090
choose ”0” for real coefficient (constant polynomial) or
?1” for non-constant polynomial. Choice = 0
->value of coefficient[0,0] = 1 constant term 1 defined
choose the degrees k, [ <terminate with k < 0 >
>k=0
>l=2 2092
choose ”0” for real coefficient (constant polynomial) or
or ”1” for non-constant polynomial. Choice =1
#7777 input of coefficient polynomial ... level-0-polynomial started
choose the degrees k, [ <terminate with k < 0 >
>k=0
>l=0 X0y°
->value of coefficient[0,0] = 3 constant term 3 defined
choose the degrees k, [ <terminate with k < 0 >
>k =2
>l=0 X2y?©
->value of coefficient[2,0] = 4 2nd term 4X? defined
choose the degrees k, [ <terminate with k < 0 >
>k=-1
value must be non-negative
# 74 input of coefficient polynomial finished level-0-polynomial defined
choose the degrees k, [ <terminate with k < 0 >
>k=-1
value must be non-negative
#7 7 input of polynomial finished level-1-polynomial defined

6.8 Integration and Phases

6.8.1 Integration

Integration with respect to x or y is possible as long as the respective variables are symbolic. Option(2) leads

to the corresponding sub-menu.

MENU for integration

=< XM MKN

blank

integration ...
xy-integration including stabilisation
X - integration followed by stabilisation
. . . . without stabilisation
y - integration followed by stabilisation
. . without stabilisation
other actions ...
list actual expression
stabilisation and further simplifications
omit zero terms, combine suitable terms
return to main menu
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e Option 0: This is the standard choice, combining the options x,y, i.e., the z- and y-integration are
performed including stabilisation (call of stabilise as discussed in Remark 6.3d).

e Option x: The z-integration is performed including stabilisation.

e Option X: The z-integration is performed without stabilisation. This is of interest, if one wants to see
the direct result of the recursion formulae.

e Option y: The z-integration is performed including stabilisation.
e Option Y: The y-integration is performed without stabilisation.
e Options 1,b,o0: Identical to Option(1l), Option(1b), Option(1o).

As soon as the z- and y-integration are performed, the program returns directly to the main menu.

6.8.2 Phases and Functions Reinterpretation

The Phases 1 to 3 are characterised by the fact that the integration can be performed with respect to the
variables z = z;, y = y; (1 < i < 3). The meaning of the parameters X,Y changes in each phase:

Phase | meaning of X meaning of Y o(X) | oY)

1 x2 — y2 (symbolic) | x3 —ys (symbolic) | “Y” “zr (6.13)
2 x1 —y1 (evaluated) | z3 —ys (symbolic) | “X” | ?2” '

3 x1 —y1 (evaluated) | xo — y2 (evaluated) | “X” | 7Y”

The output uses the symbols o(X), o(Y) from this table, but note that, e.g., in Phase 3 under regular
assumptions these symbol should not appear, since the parameters are already evaluated.

The program is starting with Phase 1. Phase 1 is concluded by the reinterpretation Option(4), which
leads!! to a function in xs,ys. Option(4) requires that the z,y-variables are evaluated, while the parameter
X is still symbolic.

After the reinterpretation the phase number is 2. Due to the assumptions from above, the requirement
"x1 — y1 evaluated” from (6.13) is satisfied. Phase 2 allows to integrate and evaluate with respect to z =
T2,y = y2. As soon as x,y are evaluated (and Y = “Z” is still symbolic), we may call Option(4), which now
leads to a function in x3,ys in Phase 3 (the only free variables are © = x3,y = y3).

We add that the phase numbers can be changed by Option(1p). This allows to jump from Phase 1 (starting
situation) immediately into Phase 2. Then, e.g., the function Moo(z,y; X;Y) can be defined (by Option(1a))
and its z, y-antiderivative can be determined (by Option(22)). In the latter, case the variable X is symbolic
which is different from the standard situation in (6.13).

Remark 6.4 a) The ezxact conditions for Option(4) in Phase 1 (transition from Phase 1 to 2) are: x,y-

variables evaluated and X = “Y” symbolic. The status of the variable Y = “Z” is not of interest. For
instance, Y = & may be already evaluated to compute the 2D-integral
vy ,,V2, M1, 12
/ N % 9 Yy d.fl?ldyldl'Qdyg.

R R \/(xl - y1)2 + (xQ - y2)2 + 52

b) Option(4) in Phase 2 (transition from Phase 2 to 8) requires: x,y- and X -variables evaluated and
Y = “Z” symbolic.

1 More precisely, the old expression ®(z,y; X,Y) = ®(z1,y1; “Y?”, “Z”) is replaced by ®(z,y; X,Y) = ®(x2,y2; 21 —y1, “Z7) =
®(z1,y1522 — Y2, “Z”). Here, we have used that after evaluation of z1,y1 in ®(z1,y1; “Y”, “Z”), this is expressed by a linear
combination (6.8) with Zk,lci,k,la:’fyll = ¢i,00 = ¢i,00(X,Y) and the functions ®!(z1,y1;X,Y) in (6.8) depend only of the
difference x1 —y1, which becomes the value of X in 'i>(a:, y; X,Y). The old X parameter appearing in the functions ®¢(x1,y1;X,Y)
as well as in the coefficients ¢;,0,0(X,Y) is substituted by 1 — y1. Since ¢;,0,0(X,Y) is a polynomial in X,Y, the substitution
yields a new polynomial in = z2,y = y2 and Y.
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6.9

Evaluation

Option(3) yields the sub-menu, which offers various possibilities for the evaluation of the parameters.

MENU for evaluation
evaluation of x ...

X replace « by a real value (value is subject of input)

i . . . . . plz,y) by p(x2,y) — p(x1,y) for real values x1,x2
. same without stabilisation ...

a replace r by a real value

A . . p(z,y) by p(z2,y) — p(zl,y) for real values zl,z2

evaluation of y ...
replace y by a real value (value is subject of input)
j . . p(z,y) by p(z,y2) — p(z,yl) for real values yl,y2
. same without stabilisation ...
replace y by a real value
B p(z,y) by p(z,y2) — p(x,yl) for real values yl,y2
evaluatwn of zand y .

c comblne actions ’’x’’ and ’’y’’
1 2=0,1 and y=0,1
2 2=0,1 and y=1,2
3 z=1,2 and y=0,1
4 z=1,2 and y=1,2
evaluatwn of parameters X or Y .
X replace o(X) by a real value
Y replace o(Y) by a real value
other actions ...
1 list actual expression

blank return to main menu

Option x: Only possible if z is a symbolic variable. The expression ®(z, -;-,-) is replaced by ®(a, ;- "),
where the real number a is the input during this action. A following call of stabilise leads to a simplifi-
cation and stabilisation (cf. 6.3d).

Option i: Only possible if x is a symbolic variable. The expression ®(z, -; -, -) is replaced by ®(z, -; -, -)|2=
with following stabilisation.

Option y, j: Analogous actions concerning the y-variable.

Option a,A,b,B: Same as x,1i,y,j but without stabilisation.

Option c: The combination of x and vy, i.e., ®(z,y;-, ) is replaced by ®(z,y; -, )|2= | 4 with following
stabilisation.
Option 1: Model case ®(z,y;-,-)|2= |y o, l.e. Option ¢ witha=¢=0,b=d=1.

( )

Option 2: Model case ®(z,y;-,-)|%= |y 1,1e Option c witha=0,b=c=1,d=2.
Option 3: Model case ®(z,y;-,-)|2= |y 0, 1.e. Option ¢ withe=0,a=d=1,b=2.
Option 4: Model case ®(z,y;-,-)|%= |y 1,1e Optionc witha=c=1,b=d=2.

Option X: Only possible if X is a symbolic variable. The expression ®(-,-; X, -) is replaced by ®(-,-; a,-),
where the real number a is the input during this action.

Option Y: Analogous action concerning the Y -variable.

Option 1: As Option(51).

Remark 6.5 The evaluation concerns only those terms in (6.8) where the corresponding variable is not
yet evaluated. This is important, since for instance the expression may contain M (z,y; X,Y) as well as
M(x,y;0,Y). Then the evaluation of X at & must not change M (x,y;0,Y).
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6.10 A further Test Example

In the introduction we mentioned the case B’ = [0,100] x
two long bricks intersecting in B’ N B"” = [0,1] x [0,1] x [0,
exponents in (1.1). The require program input is

[0,1] x [0,1] and B" = [0,1] x [0,100] x [0,1] of
1]. The integrand is Fyo, i.e., v; = p; = 0 for the

Option(1f,22,3¢ {input:100,0, 1,0} ,4,22,3¢ {input:1,0, 100,0} ,4,22,31).

The output Option(l) shows Q-term with small coefficients. These are typical cancellation effects: The re-
placement B;’J (z,y; X,Y)=Y (QM (z,y;Y) — Ry, (z,y; X, Y)) from §5.4 yields several Qg (x,y;Y) terms
corresponding to By, (z,y; X,Y) with same z-,y-,Y-values but different X-values. Using Option(6T) and
Option(6q) we choose Tolerance := 1E — 5 and T'ol Rational :== 1E — 5. Then, after Option(10), we get rid of
the Q-terms'?.

The numerical evaluation by Option(5n) yields the output

value = 181.4393098137807101011276 *** sum of moduli of terms = 8.294779762E+10

As discussed in §3.15, this leads to the condition number 8.29;0+10/181=4.610+8, hence the absolute
floating point error is of the size 4.610+8xeps. Assuming the machine precision eps=2.2o-16 we get 10~7 and
conclude that 181.43931 should be a correct rounding.

Option(5t) yields the TEX expression (6.14) (after interchanging some terms). We partition this rather long
expression into the parts (6.14a) to (6.14i). We will observe that each subexpression has a value comparable
with the size of the total result. Therefore, stabilisation considerations can be restricted to each subexpression
separately.

First, (6.14a) collects the small and uncritical terms.summing up to —1.331267 ...
More interesting the part (6.14b) involving 6 roots +/r with r &~ 10000. This sum is discussed in §3.15 and
summing up to —0.41667 ...

Similarly, (6.14c¢) consists of 6 roots /r with r & 20000. Again, the coefficients sum up to zero:

48059203 _ 97970399 1 98029501 4 10000000 _ 33353333 — (). Hence, the condition number can be improved as in

15 15 15 3
§3.15. The expression (6.14c) yields the value —33.712298. ..

(6.14d) is a sum of In (r) with r = 100. In this case, the coefficient give the sum —199. The condition number
of 3 a;In(r;) can be improved by rewriting (6.14d) as (>_ a;) In(100) + > a; In(r; /100), since (3 a;) In(100) =
—199%In(100) = —916.4 . .. is precisely computable, while In(r; /100) ~ 0.01 yields a reduced condition number
> la;In(r;/100)| /1> a; In(r; /100)| . The true value of (6.14d) is —996.180...

(6.14e) is a similar sum of In (r) with r ~ /20000 = 141.4 ... Here, the sum of the coefficients is vanishing
and (6.14e) equals 111. 3967 . ..

(6.14f) is simpler since this linear combination of In (r) with r ~ 200 has comparatively small coefficient
which add up to —33 — 66 + 132 + 200 = 1. (6.14f) has the value 6.293258. ..

(6.14g) is the counterpart of (6.14d), since the sum of its coefficients is 199. It is a sum of In (r) with
r & 100 + /20000 = 241.4 ... Its value is 1225.044 ...
(6.14h) has the small value +646800 * arctan (m) — 666600 xarctan (m) = —0.666801302.. .,

although the coefficients do not cancel: 646800 — 666600 = —19800. Here, the expansion arctanz = z — $z° +
O (z*) for = ~ 1/10000 provides accurate results.

(6.14i) is of similar nature. Again the coefficients sum up to —19800. The arguments of arctan are x =~
0.0071... The value of this subexpression is —128.987543...

We observe that an accurate computation of each subproblem reduces the losses by cancellation.

32019867 _
10

I2Unfortunately, not all coefficients are represented by rational numbers. The reason is that the ratio 2 requires an integer

n larger than the maximal long-integer number. The ratios given in (6.14g) are constructed “by hand” from the floating point
numbers.
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32019867 192060398
* V9801 + ————
19994000 3313333
———— x /10001
15
32019867 48059203
T * /19602
3353333

1
+— 000000 20000 —

96000794
* v 9802 — 75 * v 9803 +

* /10002
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+ 646800 * arctan <
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) -

1
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+ 65993400 * arctan < 99

100

1
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1
vV 20001)
100

99

* [E——
100 +/ 10002>

1
V19802

98029801
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(\/§)+%*ln(1+\/§)+ln(1+x/§)—g*w

* /10000

* /19802

* In (\/m)

m(y+¢ﬁﬁﬁ)+1%g?gp*m(1+¢X@ﬁ)

(6.14a)



