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A variational problem arising from Mullins-Sekerka problem
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Abstract

We consider a geometric minimizing problem which arises in time dis-
cretization of the Mullins-Sekerka problem. Some new geometric estimate for
the shape of the global minimizer is presented. We also show that such a
geometric estimate is useful to improve standard norm estimates.

1 Geometric variational problem

We suppose that €2 is a bounded Lipschitz domain of R™ (n > 2) throughout this
paper. Let BV(Q2) be the space of all functions in L'(€2) with bounded total varia-
tion. Then BV(Q) is a Banach space with the norm || f||zv(q) := || fllzr@) + Jo IV f],
where

/Q|Vf| = sup {/Qf(a:)divg(w)dw; gcC;()", lg(x)| <1 (x € Q)}

A subset E' C Qs called a Caccioppoli set if its characteristic function x, € BV(€2),
and its generalized perimeter in € is given by [, |VX |- In particular, if £ has a
Lipschitz boundary, [, |V X | is equal to (n — 1)-dimensional Hausdorff measure of
OE. We refer [2], [6] and [10] for detail properties of BV (£2) and the Caccioppoli set,
and the appendix of [9] for a quick review on them. In this paper, we are concerned
with signed characteristic functions of Caccioppoli sets:

K :={p € BV(Q); |p(x)] =1 for a.e. x € Q}.

For 6 > 0, we consider the following functional
Jolgiw) =0 | Vel + e =il (o0 €K),

where the Sobolev space H1(Q) is a dual space of H}(€2). The presice definitions
of their norms are found in the beginning of § 3. Our problem is to find a global
minimizer ¢5 € K of Js(-, 1) for given § > 0 and ¢ € K, i.e.:

Find ¢5 € K s.t. Js5(¢s;1) = min Js(p; ). (1.1)
pel
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This minimizing problem appears in an implicit time discretization of the Mullins-
Sekerka problem and enables us to construct its global weak solution ([5]). A similar
technique can be applied to construct a global weak solution of the Stefan problem
with the Gibbs-Thomson law ([4], [9]).

We remark that ¢ € K is equivalent to ¢ = 2X, — 1 a.e. in € for a Caccioppoli
set £ C Q and that [, |Ve| =2 [ |VXg|. Setting ¢ = 2x o+ —1 a.e. in Q, QF C Q,
the minimizing problem (1.1) is equivalent to the problem to minimize the functional

0 >
= 19Xl + X = Xar [0y

among the all Caccioppoli set E.
In this paper, we use the following notation: For given ¢ € I, we define open
sets QT and Q™ by

0f:={z e r>0 H'({y € B(x) N ¥(y) = F1}) =0}, (1.2)

where H™ stands for the m-dimensional Hausdorff measure in R" and B,(x) =
{y € R"; |z —y| < r}. It follows that ¢ = Xq+ — Xo- a.e. in Q. The essential
boundary of {1 = 1} or {¢p = —1} in Q is defined by

H'({y € B(x) N ¥(y) =+1}) >0y
H"({Z € By(x) N, 1/)(3) =-1})>0 (r> 0)} ’

Then, it is known that I' = Q\ (QTUQ ") =90t NQ =002 NQ. In the same way,
we define Qf;t and ['y from a global minimizer ¢; € .

Our main interest is to know the geometic property on the global minimizer vy,
in other words, to know what shape ['s has. The existence of a global minimizer is
shown as follows.

I:= {m € (1.3)

Proposition 1.1 We assume that Q@ C R™ s a bounded domain with Lipschitz
boundary. For given ¢ € IC and 6 > 0, there exists at least one global minimizer 1

of (1.1).

Proof. Let {¢;}; be a sequence in I which attains inf e Js5(¢, ). Then {p,}; is
bounded in L>(2) N BV(2). Since there exists compact imbedding of BV(£2) into
LY () (see [2], [6]), compact imbedding of L>(2) N BV(£2) into L?(Q) also exists,
and a subsequence of {¢;}; converges to some 95 in L?(€2). From the lower semi-
continuity of the perimeter functional with respect to L'(Q) (see [2], [6]), the lower
semicontinuity of Js(-,1) with respect to L?(2) follows. Hence, 15 belongs K and
minimizes J; globally. O

From Js(vs; 1) < Js(1;¢), we have

45— 01y < 8 ([ 1Vl = [ 1994]). (14)

which is a fundamental inequality in our analysis. The next proposition gives us
some estimates for the global minimizer without any assumption for ¢ € K.
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Proposition 1.2 There exist C = C () > 0 such that any global minimizer s of
(1.1) for 6 > 0 and ¢ € K satisfies the following inequalities;

[ 1vusl < [ 19, (15)

Vs — Y|l < </Q |V¢|>%5%,

5 = wllisiey < € (14 [ 1901)" 105 = 0l -1 0

Proof. The first two inequalities follow from (1.4) immediately. The last one is
derived from Corollary 4.3. O

These known estimates guarantee the uniform boundedness of the perimeter
Joy IV05], O(8% )-convergence to 1 in H~1(€2) and O(87)-convergence to 1 in L*($).
Another well known important property of 15 is local Holder regularity of I's when
2 < n < 7 due to the theory of the almost minimal surfaces ([7], [9]). But we do
not touch with this result in this paper. These estimates give us sufficient a priori
estimates for time discretized solution to the Mullins-Sekerka problem and enable
us to extract a subsequence which converges a weak solution using compactness.

On the other hand, nevertheless these estimates give us surprisingly few infor-
mation on the shape of I' which is our main interest. Actually, there exist many
shapes which satisfy the above conditions (but which do not look like a solution of
the Mullins-Sekerka problem). The aim of this paper is to improve the above norm
estimates and to give a new estimate for the shape of I's; under some regularity
assumptions on I'.

2 Regularity assumption and main result

In this section, we state our main result under some regularity assumptions on I'.

We say an essential boundary I' defined by (1.3) from ¢ € K is Lipschitz in
Q if, for any point & € T, there exist an open neighborhood U of @, an open
set V. .C R" and a bi-Lipschitz isomorphism g = (g1, -, g,) from U := UNQ to
V= {(y1,"+,ya) € V; yn > 0} such that g(QENU) = {y € V; £(y1—gi(z)) > 0}.
We remark that if I' C € then this is equivalent to the standard definition of the
locally Lipschitz boundary ([1]).

Let ng be the outward unit normal vector on 0f) and let np be the unit normal
vector on I' from Q~ to QF, where T is defined by (1.3) from ¢ € K. The trace
operators from H'(2) into L2(89) and L*(I') (more precisely, onto Hz(d2) and

H=(I)) are denoted by vsq and 41 respectively. (See Theorem 1.5 of [3] etc.) We



consider the following conditions for ¢ € K:

The essential boundary I is Lipschitz in . 7w € H}(Q)" s.t.
(A1) { yr(m) =nr (H*"'ae onl), [Ax)|<1 (xe9),

Y90(M) ng =0 (H" '-ae ond), divime H(Q).
(A2) TcCQ.

The condition (A1) is a regularity assumption for I', the essential boundary of ¢ = 1
and 1 = —1. We remark that, if I" is a C®-class hypersurface and satisfies (A2), then
(A1) is fulfilled.

To give an estimate for the shape of 'y, we consider the Hausdorff distance
between I's and I'. The Hausdorff distance between two compact sets in R" is
denoted by disty. Under the above assumptions, we can get the main result of this

paper:
Theorem 2.1 We suppose (A1) and (A2). Then, as 6 — 0, we have

195 — lla-10) = O0), |5 — ¥|lrr) = O, (2.1)
disty('s, T) < max (dista (2], 0F), distu(Q,, 7)) = 0(5™"), (2.2)
where
(1
g (TL = 2),
2
=4 1€ (3<n<d), (2.3)
2
>
[ i m_y =9

for any fized € > 0.

The notation O(6”) in the above theorem means that there exists a positive
constants C' and ¢y which depend only on ¢, Q and n (and € if n = 3,4,5), such
that the left hand side is bounded from above by C¢? for 6 € (0,dy). Particularly,
although there is no uniqueness of the global minimizer 15 in general, these constants
are independent of the choice of 5.

A proof of this theorem is given in the last section after preparing some lemmas.
In the rest of this section, we give a proof of ||[¢)5 — ¥||g-1(q) = O(J), which clarifies
the meaning of the condition (Al).

Proposition 2.2 Suppose the condition (A1). Then we have

|05 — ¥lla-10) < [[divRf[my@)d (6> 0). (2.4)



Before the proof, we recall some useful fundamental properties of functions in
BV(Q). It is known that |V f| and Vf for f € BV(2) are regarded as scholar and
vector valued Radon measures in 2. The following Green’s formula for functions in
BV(Q) in known ([2] Theorem 2.10):

| 9:Vf =~ [ divg@)f(@)dz+ [ no-gf'an (g€ C'(@)", feBVQ),

(2.5)
where f* € L'(0)) represents the trace of f to 99 in the sense of BV(Q). It is also
known that there exists a unit vector field ny(x) € R” for |V f|-a.e. € ) such that
Vf =mns|Vf]| (see [6] § 6). In particular, under the condition (A1), [Ve| = 2H™ |
and n, = nr H" '-a.e. on I.

We consider a symmetric mollifier p € C§°(R") such that p(x) > 0 for x € R,
Jgn p(@)dz =1, p(—x) = p(x) and supp(p) C B1(0). For u € L'(Q) and £ > 0, a
regularization of u is defined by the convolution u * p.(x) := [qu(y)p.(x — y)dy,
where p.(x) :=c "p(x/e).

Proof of Proposition 2.2. By a formal calculation, we have

Livel= [l < [7-ve- [ 797 = [ divae)(/f(@) - é(@)de, (26

for f € BV(Q) N L*>(2). We apply this inequality to (1.4) with f = 1s5. Then we
have

|5 — ¢||§{—1(Q) < 6/Qdivﬁ(:1:)(¢5(w) — (z))de < Of|divae|| gy o) l|vs — Ylla-1),
and this yields (2.4).

To show (2.6), we define m. := T x p., then |m.| < 1, m. € C®°(Q)". Let
fe€BV(Q)NL>®(). Since |, -nyg| <1 |Vf|-ae. in Q, we have

L1vs1= [ mnglvil= [ m- vy

Q Q Q

From |Vi| = 2H" |1, we also have
[1vel = [a.-ve+ [ —n) vyl
Q Q Q

< [ Ve [ e -n)ld,

LIvel= [Vl < [ 7V - p+2 [ -l
- /Qdivﬁg(f—w)der/mng-(ﬁg—q/ag(ﬁ))(w—f)*d?{“’l
+2/Q|fyp(ﬁ—m)|dw*.
Since, as € — 0,

/Qdivﬁg(f—w)dm%/fzdivﬁ(f—w)dw,
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ng - (M. —700(M)) (Y — ) dH" " < yea(@e — )| 2o0)ll(¥ — f)*||lL200)
Cll7 — 7| @)l (¥ — ) ||lz2@0) — 0,

onN

IN

[ e = mlann < 1 ) e = )Ly < Cllie = 7o) — 0,

we obtain (2.6). O

3 Estimates for H l-norm

In this section, we give some useful lemmas to estimate the difference ||<,02—1/)||fq—1(9) -
|1 — |l5-1() under the condition (3.3) below. These lemmas will be used in the
proof of the main theorem.

Before stating the lemmas, we fix our notation in this paper concerning the
Sobolev spaces Hy(€2) and its normed dual space H~'(Q). (See [1] and [8] for their
definitions. Convenient brief reviews on Sobolev spaces are found also in [3], [9]
etc.) They are both Hilbert spaces and, in this paper, the following inner product
of H}() is adopted:

(1, 0) 3y = /Q Vu(z) - Vo(z)de  (u,0 € HH(SQ)).

The duality pairing 1 (q)(u, v) n-1(0) is chosen as the standard way, i.e. it is given by
Jou(z)v(x)de if v € L*(2). Then, it is known that the Laplace operator is an iso-
morphism from Hg(Q2) onto H~(Q) and that (u,v)g-1() =m0 (—=Ap'u, v) g-1(0),
where Ap is the Laplacian with zero Dirichlet boundary condition (see [8] Theo-
rem 23.1).

The inner product of H () for L-functions is represented in term of the Green
function G(z,y) for —Ap:

(u, V) 110 :/Q/QG(Q:,y)u(w)v(y)da:dy (u,v € L*(Q)). (3.1)

The symmetricity G(x,y) = G(y,x) and the positivity G(x,y) > 0 (z,y € Q,
x # y) are well-known properties. The following proposition is a simple consequence
of the maximum principle.

Proposition 3.1 Let n > 2. Then the Green function in a bounded Lipschitz do-
main 2 C R" satisfies

1 dist(w, 99) 1 diam(2) _

nwy Jle - y| nwy, J|z —y|

where w, denotes the n-dimensional volume of a unit ball of R™



Proof. The fundamental solution of —A in R"™ is given by f,(|x|), where f,(s) :=
—(nwy) "t [ s17"ds for s > 0. For a fixed € Q, G(z,y) — fu(|z — y|) is harmonic
in © with respect to y and is equal to — f, (|z —y|) for y € 0f2. From the maximum
principle for the harmonic function, we have

Gz, y) = fullz —yl) < max(—fullz — yl) = —fo(max |z — y|) < —fo(diam(§2)),

G(may) - fn(|w _y|) > %é%(_fnGw - y|)) = _fn(érelgflz |'f‘c _y|) - _fn(diSt(m>Q))>

and these inequalities yield the proposition. O

For A C Q2 and € > 0, e-neighborhood of A is defined by
Ne(A) == {x € Q; dist(x, A) < e}. (3.2)
We assume the following condition and notation in this section:
(¢ €K, QFf and I are defined by (1.2) and (1.3),
I C FyCQ, E:Fl\Fz, Hn(E) > 0,

(3.3)
Y1, P9 € IC, Y; = (1 — QXF,)w a.e. in (Z = 1,2),

g1 :=inf{e; H*(EN N&(T)) > 0}, 9 :=inf{e; H"(E N N=(0Q)) > 0}.

\

Lemma 3.2 Under the condition (5.3), we suppose that there exist 3 > 0 and
q € L'(E; Hy(Q) (¢ =q(x,y), © € E, y €Q), such that

gz, y) =G(z,y) (zc€kE, yech, () #Y(y)), (3.4)
q(z,y) <G(z,y) (x€FE, ych, ¢(x)=1Yy)), (3.5)
q(x,y) < BG(x,y) (z€E, yek, () =1y)). (3.6)

Then
2=t 1@y ller—ll 1) < 4llalloim;my o ler—vla-1 @) +42B-DIGllr &xp).
Proof. Since X = Xp, + X, We have

o2 = Ylla-1)2 — llor = Ylla-102 = 12X Ylla-10)2 — 12Xl 51002
= —4 ((XE +2X 1,0, XE@D)H,l(Q) .

Using the relation X % = (¢ — ¢1)/2, we obtain, for ¢ € F,
Xz + 2Xp,)G (2, )¢
= XG0+ 2 (X 6o ale. D6~ Xl )0+l )P

2
= XE(G(m> ) - 2q(iB, ))1/) + 2XF2 (G(CD, ) - Q(m> )W + Q(wa )(1/) - SOI)'
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From (3.1), we have
2 = YllEe) = llor = ¥l
= 4 v@) | (XeW) +2x, W) Gle.y)(y)dyde
= 4 [ Cal@.y) - Gla,y))i(@)i(y)dyde
8 [ [ (o) - Gla.y)v(@)iy)dyde
w4 [ [ ot y)e@)(ei(y) - v(y)dyda.

To estimate the first and second integrals, we apply the following inequalities:

(2q(x,y) — G(z,y)¢(x)(y) < (28 - 1)G(x,y) (x€E, yck),
(¢(z,y) — Gz, y)v(x)Y(y) <0 (x€E, yc ),

which are directly shown by the assumptions. Hence, we obtain
2 — ¢||§{—1(Q) — |lor — ¢||§1—1(Q)
128-1) [ [ Gle.y)dyde + 4y ([ o(@ Jo(@)dz, o - v)

< A28 - DG @xp)- + 4ldll o @m @ ller — Ylla-1@)-

IN

H=HQ)

Choosing some suitable ¢(x,y), we have the following lemmas:

Lemma 3.3 We suppose (3.3) and €1 > 0. Then there exists C > 0 which depends
only on €1 and Q) such that

o2 = PllE-1@) = ller = V-1 + 4G Exm < CH(E)|ler — ¢lli-10)-
Proof. We define

2

max (1 - g—dist(y,Q’), 0) G(x,y) (k€ ENQT, yeQ),
1

q(z.y) =

2
max (1 — —dist(y,Q7"), 0) Glxz,y) (ke ENQ, ye),

€1
and apply Lemma 3.2 with § = 0. Since
Vya(@,y)| < 260Gz, y) + [V,G@,y)| < 257 0+ (€E, yeQ),

v =sup{G(x,y); [z —yl>e1/2},  y=sup{|V,G(z.y)|; |& —y[>e1/2},
we have [|g|| L1 (g;m3(0)) < (261_1’}/0 + 71) H"(Q)2H"(E) and the assertion follows. O



Lemma 3.4 Under the condition (3.8), we suppose that e1 > 0 and e5 > 0. If

B > 0 satisfies
diam(£2) 1 €2 1—
/ s "ds < ﬁ/ s "ds, (3.7)

€1 diam(FE)
then we have

o2 = P F-10) = llor = YllE-10

1

1 diam(2) 2
= 4 < / 81‘"d8> HY(E)lor = ¢lla-1) + 426 = DG 1 (xp)-

Nnwy, Jep

Proof. We define

1 diam(2) n % . 9
wi= ([ sds) L a(my) = minGley)@) (@B ye),

Nnwy Jer

and apply Lemma 3.2. For x € E, y € Fy, ¥(x) # ¢(y), from Proposition 3.1, we
have

1 diam(€)
G(z,y) < / s'"ds < g,
nNwy, J|z—y|

and (3.4) follows. The condition (3.5) also follows from the definition of ¢. For
x € FE ycFE, y(x)=1(y), from Proposition 3.1, we have
B

NWy, Jdiam(E)

(@, y) < g5 < s"ds < BG(z, y).

Hence, (3.6) is fulfilled and the assertion follows from Lemma 3.2 and the equality:

llq(, ')||H3(Q) =q (z€k).

This equality is shown as follows. We define D := {y € Q; G(z,y) > ¢} for
fixed x € F, and let np be the inner unit normal on dD. Using the property
—A,G(x,y) = 0(y — x) (Dirac’s delta distribution) in the sense of D’(€2), we have

M2, _ 2 _ .
lat@ Mgy = [, V6@ WLy = [ no)-v,6@.v)G@ v)d,

= q /8D np(y) - V,G(z, y)do, = q;.

Corollary 3.5 Let n = 2. Under the condition (3.3), we suppose that 1 > 0 and
Eg > 0. If

2
diam(FE) < c1°2

= m; (38)

then we have

1 diam(Q)\”
e = Wl — o = Wl < 4 (5 108 2 ) BB s = bl



Proof. Since the condition (3.8) is equivalent to (3.7) with § = 1/2, the assertion
follows by Lemma 3.4. O

Corollary 3.6 Let n > 3. Under the condition (3.3), we suppose that 1 > 0 and
g9 > 0. If
diam(E) < 5772 min(ey, £9), (3.9)

then we have

|2 — ¢||§171(Q) — [l — ¢||§171(Q) + 2||G||L1(ExE)
< A(n(n = 2waet™?) T H Bl — bllu-r)-

Proof. We apply Lemma 3.4 with 3 = 1/4. The condition (3.7) is shown as follows;

1

1 €2 51_”d5 S 1 5n—2diam(E)Sl_ndS:diam(E)z—n

4 Jdiam(E) 4 Jdiam(E) 5(n —2)
g2

>

+00 diam(€2)
= / s'™ds > / s'7"ds.
n — 2 €1 €1

4 Estimates for L'-norm

In this section, we derive an interpolation inequality for L'-norm, which is estimated
in terms of the total variation and H '-norm (Lemma 4.2). Coefficients in the
inequality is explicitly given and, in particular, the dependence on the support of
the function is clarified. This will enable us to use a geometric information on the
support of the function in § 5.

Let p € C§°(R") be a symmetric mollifier as in § 2. We define

1
2

Cy = /R" lz|p(x)de, C):= <Z||aip||il(m)> 3
i=1

where 0; = a%i. We also define QF := Q \ N¢(012) for € > 0, where N*(-) is defined
by (3.2). Then we have the following lemmas.

Lemma 4.1

lu — w pellrae) < Co (/Q |Vu|> c (WeBV(Q), £>0).
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Proof. Let w € C1(Q)NBV(Q) and let 3 > ¢ > 0 be fixed. For z € R", |2| < ¢, we
have

/QB w(@) — w(z — 2)|de = /m
Hence, we have the following estimate:
LA w@) = w(@ = 2)p.(2)dz
08 < (0)

/(0 <|Z| Qb— |Vw( )|dw> p:(z)dz
N ( 08—« V(e |dw> (4.1)

1
/ z-Vw(m—tz)dt‘dm <J#l [ IVu(@)\de.
0 Qb —¢

dx

lw —w * Ps”Ll(Qﬂ)

IN

For u € BV(Q2), we can choose 7, > 0 (k € N) such that limg_,o 7, = 0 and
/ Vul=0 (keN), (4.2)
Bk

as a consequence of the coarea formula ([2], Theorem 1.23). For a fixed ¢ > 0, we
define (3 := € + 1y, and we apply (4.1) for w = u * p, € C®(R2) (0 > 0). Then we
have

|u—u* Ps”Ll(Qﬁk)

< luxpe — (uxpy) * pEHLl(Qﬂk) + |lu —ux pO’”Ll(Qg) + [[(w — u* ps) * pEHLl(QBk)
< G [ IV p)(@)lde) e+ 2u—u ol

From (4.2), limy—y10 fou |V(u * py)(x)|de = [qn. |Vul| is derived (see [2] Proposi-
tion 1.15). Taking o — 0, we have

=t pellaoony < Co ([ Val)e < Co ([ 1Vl e

and we have the assertion of the lemma by taking the limit £ — oc. O

Since €2 is a bounded domain with a Lipschitz boundary, We can define

Cq = sup H"(N°(0Q) N Q)e * < cc.

e>0

Lemma 4.2 For u € BV(Q2) N L>*(Q) and ¢ > 0, we have

ey < (Co [ IVul+ Callullimman )
+C1\/’H“(N5(supp(u)) N Q) ||ul| -1 e

11



Proof. Setting sgn(s) := 1 (£s > 0) and sgn(0) := 0, we have

(wx p)(@)sgn((u * pe)(x))dz

=

||u * Ps||L1(QE) =

S5

=1 (s P=(® = -)) gy (ysgn((u + pe) (2)) da

=

= s (o [, po(@ = Jsn((us p) (@) de)

= HYQ) (u, (Xq-sgn(u * p.)) * pE>Hé(Q)
< lullz-r) 1(Oxassgn (v pe)) * pell 1oy

Hg(Q)

Using the equality ||0;pc|| L1 mn) = € '|0ipllLrme) (1 = 1,2, -+, n), we have

M=

I(Xqesgn(u s pe)) * pellney = D110 (Xassgn(u * p2)) * pe)llz2q)

1

~.
Il

IN
M=

2 2
X q-sgn(u * pe) ||L2(Q) ||aip6||L1(R")
=1

2 _
= Ot lIXa-sgn(u* p)l 2y €7

From these inequalities and Lemma 4.1, we have
lulli)y < flu—ws pellpre) + [lu pellLiee) + [lullLr@vor)
< Co ([ 1ul) e+ lulln-s0,Ca X8l % 92) ]y =™
+Callul| oo (\00)E -
Hence, the assertion follows from

|| X e 580 (1 * p5)||iQ(Q) = H"(supp(u * p;) N Q) < H"(N®(supp(u)) N Q).

1
Setting ¢ = ([, |Vul + ||u||Loo(Q))’%||u||§I,1(Q) in this lemma, We also have the
standard interpolation inequality:

Corollary 4.3 For u € BV(Q2) N L*(Q2), we have

1
EEN
el < € ([ 190l + ullze ) Hll-s o

where C := max(Cy, Cq) + C1H™(Q)=.

5 Estimates for the global minimizer

Some estimates for the global minimizer 15 of (1.1) are proved in this section. A
proof of the main theorem (Theorem 2.1) is given at the end. We start from the fol-
lowing geometric lemma which is based on the isoperimetric inequality. We remark
that, in the statement of the next lemma, if A C B,(x¢) then (5.1) becomes a usual
isoperimetric inequality.

12



Lemma 5.1 Let n > 2. Then there exist positive constants Ry and oy depending
only on n such that, for A C R"™ and &y € R" satisfying X , € BV(R"), H"(A) >0
and H™(A N Be(x0)) > 0 (Ye > 0), there exists r € (0, RyH™(A)w) and

0 < oW (ANB, @) T < [ 1Vl = [ VXas@ol 6D

Proof. We define
f(r):=H"(AN B,(x)) (r>0)

For a fixed 6 € (0,1), we define ro := (H"(A)/(fw,))w. Since
0 < f(r) < H"(A) < OH"(Bry (o)) < OH"(Br(®0)) (1 > o),

from the isoperimetric inequality in a ball (see [2] Corollary 1.29, [10] Theorem 5.4.3),
we have

200 f (r <§/ VXAl (=), (5.2)

where og > 0 depends only on 6 and n.
We have the following equality from Remark 2.13 and 2.14 of [2];

PO = [, o 1901 [ VX0l [ 9 e e 0.0, (653
We define n ) .
RO = — 4+ (Hwn)_ﬁ, ry = R()%n(A);

0o
If we assume, contrary to the lemma, that

n—1
W H (AN B, (@)™ > [ 1Vl = [ 1VXam@el (€ 0,
then, by (5.2) and (5.3), we have

oo f(r) e > 200 f(r) s — f'(r)  (ae. 1 € (ro,m1)).

This is equivalent to (f(r)=) > og/n a.e. 7 € (rg,71), and integrating this inequality
by r over the interval (ry,r;), we have

1

flry)= — f(ro)% > %(rl —719) = ’}-[“(A)%

This contradicts to f(r;) < H"(A). O

If we assume the condition (A1), then we can define the constants

M1 = Sup’H"(NE(F) N Q)é—il < o0, M2 = ||d1Vﬁ||Hé(Q) (54)
e>0

From Proposition 1.2 and 2.2, we have

s =l < €@ (1+ [ 1V01)7 My ah, (55)

13



where C(2) is the constant which appears in Proposition 1.2. Since ||¢; —||11() =

2H" (supp(1hs — 1)), (5.5) gives us a decay order O(62) of the volume of symmetric
difference between QF and Q*. If we have a geometric information on supp(¢; — 1),
then we can improve (5.5) as follows.

Lemma 5.2 Under the assumption (A1), we suppose that
vy =1 ae. in Q\N®T) (0<d <), (5.6)

where a5 == Q0* and Q > 0, a € (0,2/3) and §y > 0 are constants which depends
only on v, Q and n. Then there exists R = R(1,,n,Q, a,d) > 0 such that

b5 — |l i) < ROZFE (0 <6 < &y). (5.7)

Proof. Setting ¢ = §3%, we apply Lemma 4.2. Using the inequalities (1.5) and
(2.4), for 0 € (0,0¢), we have

s — Yl < 2 (CO/Q V| + Cﬂ) e+ C1M{ (a5 + £)? Myde !

_ 2(00/Q|w|+09>5

[NIES

+

iN/s}

+ Oy My (555 4 Q0™8)

[NIES

2—3a

4 CMEM, <504 +Q>56

iN/s}

+e

[NIES
[NIES

< 9 (cofﬂ Vo +CQ) 5

As shown in Lemma 5.2, a geometric estimate for the shape of Q3 such as (5.6),
helps us even in quantitative estimate, such as L'({2)-estimate.
We first prove the following theorem which is slightly weaker than Theorem 2.1.

Theorem 5.3 Under the assumptions (A1) and (A2), there exist §g = do(¢, Q,n) >
0 and Q = Q(,Q,n) > 0 such that

Vs =P a.e. inQ\N“‘S(F) (0<5<(50),

where as :== Qd*" and

(< (n=2)
1 3<n<h
Q,, = o (3<n<h), (5.8)
2
| rDmoy 29

To prove this theorem, we need the following lemma, whose proof will be given at
the end of this section. We remark that the condition (A2) is equivalent to

by := gg dist(x, 0Q2) > 0.
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Lemma 5.4 Under the assumptions (A1) and (A2), for a fized a € (0,by), there
exists &g = do(a, 1,2, n) > 0 such that

s =1  ae in Q\ NYT) (0 < d < dy)-

Proof of Theorem 5.3. Let a € (0,by) and let dg > 0 be as given in Lemma 5.4. For
a sufficiently large @) > 0, we define

A% = {2 € Q\ N“(I); vs(z) # ¢(x) = £1}.

On the contrary to the assertion of the theorem, let us assume that H"(ATUA™) > 0.
Without loss of generality, we assume that H"(A") > 0. We define

A:={z e Py(@) # () =1} D A7,
and fix &y € A" such that H"(A N B.(xy)) > 0 (V¢ > 0). We remark that, from
(5.5),
1 1
HAA) < s~ bllisey < Bi6h (5 0), 59

1
where Ry := 3C(Q) (1 + Jq, |V1/)|)% M. By Lemma 5.1, there exists € (0, RyH"™(A)7)
such that (5.1) holds. From (5.9), we have

r < RyH"(A)* < RyRI 6% (6> 0). (5.10)
Since
<L (5.11)
Ap S 2n .

taking enough large Q@ = Q(¢,€2,n) > 0 in advance (and changing ¢y > 0 smaller if
necessary), we can assume that 2r < Q0% =as < a (0 <0 < dp).

We define E := AN B,(xg) and pgr := (1 — 2Xz)s. We remark that (3.3) is
fulfilled by Fy = {x € Q; s(x) # (x)}, Fo = F1 \ E, ¢1 = ¢s and vy = pp. In

particular, we have
< min(ey,e9) (0 <d < dp). (5.12)
Then, from (5.1) and (5.12), we have
0 <ot (B)F < [ 19Xal = [ 19xasl =5 ([ Vsl = [ 1962).
Since 15 is a global minimizer, hence we have
0 < o H"(B)55 < 3 (low — Ul — 05— ) (0<5 <) (5.13)

Let n = 2. We apply Corollary 3.5. Taking enough large @, the condition (3.8)
is satisfied as follows. From (5.10), (5.12) and ey > by — a, we have

. L bo—a [as)? eles
diam(E) < 2r < 2RyR?§ <7<_><7.
fam(E) < 2r < 2R R70% < oo (3) S Tam)?

15



Hence, from Corollary 3.5 and Proposition (2.2), we have

1 diam(Q)\?
e = WlFmsn — s = ol < 4 5110w T2 ) 2

€1

Together with (5.12) and (5.13), for 6 € (0,dy), we have

1 diam(Q)\? 1 1 2diam(Q)\?
(o) S 2M2 <% log %) HQ( )3 2M2 <% log QTE)> %Z(E) .

(M

This contradicts to H"(E) < H"(A) < R;62 if § is small.
Let n > 3. We apply Corollary 3.6. From (5.10) and (5.12), taking enough large
Q, we have

diam(E) < 2 < 2RyR} 6% < 5*m5‘5 <5 o min(er,e)  (0<6 < d),

and the condition (3.9) is fulfilled for § € (0,4y). To estimate the term ||G||1(pxk),
we define
Gy = inf{G(zx,y); € € N*(I'), y € N*(I')} > 0.

Then |G| L1 (zxr) > GoH"(E)? for ¢ € (0,dp) since E C N*(I'). From Corollary 3.6,
Proposition 2.2, (5.12) and (5.13), for ¢ € (0, dy), we have

UOH"(E)%5+G0H"(E)2 < Z(n(n 2)wpel™ 2) H”(E)M25

(n—2)an

R3Q7%HH(E)517 2 ,

IN

where Rs := 2% (n(n — 2)w,)2 M,. Hence, we have

(n— Z)Otn

000 T < RQTTHUE)T, G (B) < RyQ TR

and they yield the following inequality for § € (0, do);

1
N on R _ 2 51 (n 2)0¢n n
i s ( 2 )

n—+1 —%an
_ (Ré()) o (+0=2) (1 (;_(2=Ben) (5.14)

We remark that

is equivalent to

(5.15)



Since
a;, = min <i 2 ) (n > 3), (5.16)

2n’ (n+1)(n—2)

if @ is large enough, we have contradiction from the inequality (5.14). O

Hence, we have obtained a geometric estimate in Theorem 5.3 and simultaneously
a sharper L'-estimate as in Lemma 5.2. Let us check the proof of Theorem 5.3 in
detail. The decay rate «, for n > 3 is given by (5.16), which is required from (5.11)
and (5.15). The condition (5.11) is also required from (5.9), but now, we have a
better estimate (5.7) than (5.9). A recursive argument for «,, between the geometric
estimate and L'-estimate leads us the following proof of Theorem 2.1.

Proof of Theorem 2.1. Let n > 3 and let o2 be as in (5.8). From Lemma 5.2, (5.9)
in the proof of Theorem 5.3 can be replaced by

qold

1 ~ 1 af
H"(A) < 5”% — |l < Rid2 T (0< 8 < dy),

for some Ry > 0, and then, the condition (5.11) can be replaced by

<1 1+a;’;d
W=\ T Ty )

Hence, the assertion of Theorem 5.3 is valid even for

On = min <% G * a4> o 1)2(n— 2)) (n=3).

If 3 < n <5, this new exponent «,, is greater than the old one. Repeating this
procedure recursively, it is shown that the assertion of Theorem 5.3 is valid even for
a;, of (2.3). The norm estimate (2.1) follows from Proposition 2.2 and Lemma 5.2.

To prove (2.2), we note that, since I' is Lipschitz and I' = T' C €, there exist
C,>1 and ¢, > 0 such that

QC N (Q\N°(I)) (0<e<e,).

For simplicity we define d(d) := max (distH(Q—;, QF), disty (Q; T)) From the
inequalities;

dist(z, ) = dist(z, 2F) < d(6) (x € TN OF),

dist(z, Iy) = dist(z, Q) < d(8) (x el NQ;),

we have

disty (D5, I) < d(3),
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for small 8. It is clear that dist(z, QF) < ay ( € QF). We also have
dist (e, F) < dist(z, QF \ N% (D)) = dist(z, Q* \ N9 ([T)) < C,as (& € OF).

Hence we have d(0) < C,as for small 6 and we obtain the desired result. O

Finally, we give a proof of Lemma 5.4 and then complete the proof of our main
theorem.

Proof of Lemma 5.4. For fixed a € (0,by), we also fix b € (0,by — a). First we note
that
Ys =1 ae in Q\ (N*(I') U N*(09Q)),

for small 6. We omit its proof, since it is proved by an argument similar to (but
rather simpler than) the proof of Theorem 5.3.

Then the assertion of the Lemma is shown as follows. Let F := QN N°(99Q)
and let ¢ == (1 — 2x,)9s € K. From the isoperimetric inequality in Q (see [10]
Theorem 5.4.3 and 5.11.1), there exists og > 0 which does not depend on ¢, such
that

o' (B)'T < [ VXl

and (5.13) holds. We apply Lemma 3.3 with ¢ = 15 and h = (by — b)/2. There
exists C' > 0 which depends only on b, ¥, Q and n, such that

oo H" (E)*% 8 < CH™(E)||vhs — ¥||lu-1(0) < CMyH"(E)0.

This contradicts to H"(£) < |[v5 — ||1(0)/2 if 6 is small. O
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