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Abstract

We prove a generalization of Rellich�s theorem for weakly di�eren�
tiable functions on curvature varifolds �see de�nitions below� and apply
it to prove regularity of minimizers of curvature integrals under certain
assumptions�

� Introduction

Let M be a C��submanifold of dimension n of the Euclidean space RN � and let
B be the second fundamental form of M � One may assign to M the numberZ

M

F �B� dHn

for some function F � where Hn is the n�dimensional Hausdor� measure� This
de�nes a functional on the set of such submanifolds� Further one may ask
whether there are minimizing submanifolds or critical points of this functional
and what their properties are�

For the existence problem� a reasonably satisfactory answer has been given
by Hutchinson ��	 �and by Mantegazza �
	 in the presence of a boundary��
Namely� under reasonable assumptions� a minimizer of the functional exists in
the class of curvature varifolds �or curvature varifolds with boundary� de�ned
in those papers� It is no surprise that the space where the functional is de�ned
has to be enlarged� especially as the direct method in the calculus of variations
is used to �nd these minima� This however raises other questions� in particular
concerning the regularity of the solutions of the problem�

A very important tool for attacking such questions for variational problems
in general is the theory of Sobolev spaces� In this case however we do not have
it at our disposition� since the underlying structures are no longer manifolds
but varifolds� which furthermore may vary� On the other hand� the second
fundamental form does still behave like a derivative in many ways� indeed it
may be expressed in terms of approximate derivatives� as was shown in �
	�
Moreover� various results for Sobolev spaces apply also in the varifold setting�
like e� g� the Sobolev inequality �see ���	��
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The aim of this paper is to give a generalization of Rellichs theorem for
the situation of functions on �varying� curvature varifolds� and to apply it to
the regularity problem mentioned above� We now give an outline of the con�
tent� In Sect� �� we repeat some of the de�nitions and results of Allard ��	 �on
which Hutchinsons paper is based� and of Hutchinson ��	 and Mantegazza �
	�
More de�nitions and results of ��	 are looked at in Sect� �� along with a few
generalizations and new results� In Sect� �� we give a de�nition of a notion of
di�erentiability with respect to a varifold� We prove some results for functions
with that property� including in particular a generalization of Rellichs theo�
rem� We also show that the Sobolev inequality of Michael�Simon ���	 holds for
that situation� We turn our attention back to functionals as discussed above in
Sect� �� We obtain a regularity result for minimizers under certain assumptions�
However these assumptions are not easily veri�ed in general� in fact we can only
prove them under very strong conditions� We will prove that they hold true in
a special situation in Sect� �� namely for varifolds given as graphs of Lipschitz
functions� Of course this assumption is in general not justi�ed a priori� The re�
sults of Sect� � and � are therefore to be considered either as preliminary results
of as a demonstration of how the previous results might be applied�

We would like to point out one special example of a functional as above�
The Willmore functional for a compact surface M in RN is de�ned by

F�M� �
�

�

Z
M

jHj� dH��

where H is the mean curvature vector of M � This can be written

F�M� �
�

�

Z
M

jBj� dH� � ����� g�

by the Gauss�Bonnet formula� where g is the genus of the surface� If g is �xed�
we therefore have a functional of the form as described above� Existence and
regularity of minimizing surfaces of the Willmore functional have been studied
by Simon ���	� That paper actually provides tools to �ll the gaps in our reasoning
to prove regularity for minimizers of the Willmore functional� but it also renders
our methods redundant in that case� for regularity is already proved there�

Other papers worth mentioning are ��	� where similar problems are studied
in the context of currents rather than varifolds� and ��� �� �	� which provide the
basic ideas for some of the concepts presented here�

� Varifolds and curvature varifolds

We �rst repeat some of the de�nitions� ideas� and results of Allard ��	� of
Hutchinson ��	� and of Mantegazza �
	� Standard reference for unexplained no�
tation is ���	 �see also ��	�� We always work in an open set � � RN as ambient
space�

By G�N�n� we denote the Grassmann manifold consisting of all n�dimen�
sional subspaces of RN � If S is a subset of RN � we write Gn�S� � S �G�N�n��
We may identify any P � G�N�n� with the orthogonal projection onto P and
therefore with a matrix in RN�N � We will usually denote this matrix with the
same symbol� thus we may write P � �Pij��
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In this paper we will often consider Radon measures on Gn���� A special
role will be played by the following particular kind of Radon measures� Let
M � � be a countably n�recti�able �subsequently simply called n�recti�able�
and Hn�measurable set� and � � M � ����� locally integrable with respect to
Hn
xM � Then for Hn�almost every x � M � there exists a unique approximate

tangent plane TxM toM at x� Moreover the measure V on Gn��� characterized
by Z

� dV �

Z
M

��x���x� TxM� dHn�x�

is a Radon measure� We write V � v�M� ���

De�nition ��� A Radon measure V on Gn��� is called an n�varifold in �� If
V � v�M� �� as above� then it is called a recti�able n�varifold� If moreover �
takes integer values� then V is an integral varifold�

If V is an n�varifold in �� then we denote by �V � ��V the induced measure
by the canonical projection � � Gn���� ��

By varifold convergence we mean convergence in the measure sense� i� e�
weak� convergence in the dual space of C�

� �Gn����� the space of continuous
functions on Gn��� with compact support� We write Vk � V if Vk converges to
V in the varifold sense�

Varifolds� in particular integral varifolds� are supposed to be generalizations of
submanifolds� When studying curvature integrals� one needs a generalization
of the second fundamental form� or at least the mean curvature vector� as well�
The latter can be de�ned as follows �cf� ��	��

Let V � v�M� �� be an integral varifold in �� and de�ne its �rst variation

�V �X� �

Z
divMX d�V � X � C�

� ���R
N ��

where divMX is the tangential divergence of the vector �eld X with respect to
M �

divMX � �TxM�ij
�X i

�xj
�

Here and throughout the paper we sum over repeated latin indices from � to
N � �The �rst variation can also be de�ned for general varifolds� but we are
only interested in this case�� This is a linear functional on C�

� ���R
N �� If it has

a continuous extension to C�
� ���R

N �� then it can be represented by a vector
valued Radon measure� which we can split into an absolutely continuous part
and a singular part with respect to �V � using the theorem of Radon�Nikodym�
We obtain the representationZ

divMX d�V � �

Z
X �H d�V �

Z
X � �� d	V � ���

where H � L�
loc��V �R

N �� 	V is a Radon measure on �� which is singular with
respect to �V � and �� � L�

loc�	V �S
N���� Considering the integration by parts

formula on C��manifolds� it is natural to call H� ��� 	V respectively the gener�
alized mean curvature vector� the generalized inner normal and the generalized
boundary of V �

The notion of a second fundamental form was generalized to varifolds by
Hutchinson ��	� His de�nition was further generalized by Mantegazza �
	 to
include varifolds with boundary�
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De�nition ��� Let V be an n�varifold in �� We say that V is a curvature
varifold with boundary� if there exist functions Aijk � L�

loc�V �� called the gen�
eralized curvature of V � and an RN �valued Radon measure �V on Gn���� such
thatZ �

Pij
��

�xj
�x� P � �

��

�Pjk
�x� P �Aijk�x� P � � ��x� P �Ajij �x� P �

�
dV �x� P � ���

�

Z
��x� P � d��Vi��x� P � � �

for all � � C�
� �� � RN�N � and for i � �� � � � � N � If �V � �� then V is simply

called a curvature varifold� A recti�able curvature varifold is a recti�able varifold
which is also a curvature varifold� etc�

Note that if we choose a � which is independent of P � then ��� simply readsZ
Pij

��

�xj
dV � �

Z
�Ajij dV �

Z
� d��Vi��

If V � v�M� �� is a recti�able varifold� then any function f on Gn��� agrees
V �almost everywhere with the function g�x� P � � f�x� TxM�� which does not
depend on P � We may therefore identify functions on Gn��� with functions on
�� Writing H � �Hi� for Hi � Ajij and �V � ��	V � where 	V is a Radon
measure on � and �� � L�

loc�	V �S
N���� we recover ����

According to ��� 
	� the functions Aijk and the measure �V are uniquely deter�
mined by ���� Moreover� they have the following properties�

�i� Aijk � Aikj �

�ii� Aijj � ��

�iii� Aijk � PjrAirk � PrkAijr �

If M is a C��submanifold of � with second fundamental form B�x� � TxM �
TxM � �TxM��� then they satisfy�

�iv� Bk
ij � PrjAikr �

�v� Aijk � Bk
ij �B

j
ik�

where the Bk
ij are given by extending B�x� to RN � RN by composition with

the orthogonal projection onto TxM and setting Bk
ij � ek � B�ei� ej� for the

standard unit vectors e�� � � � � eN in RN � Again we identify functions on � with
functions on Gn���� All these properties are proved in ��	�

In general we take �iv� as a de�nition for the generalized second fundamental
form B � �Bk

ij�� The property �v� then follows as in ��	� Moreover� the following
holds true�

Lemma ��� The generalized second fundamental form B � �Bk
ij� of a curva�

ture varifold satis�es PrkB
k
ij � � almost everywhere with respect to V �

�



Proof� From �iv� and �v� we conclude that

Bk
ij � PrjAikr � Prj�B

r
ik �Bk

ir��

Thus we see that

PrkB
k
ij � PrsPskB

k
ij � Prs�B

j
is � PskB

j
ik� � PrsB

j
is � PrkB

j
ik � ��

using the fact that the Pij belong to orthogonal projections� �

� Measure�function pairs

Another useful notion from ��	 is that of measure�function pairs� We �rst recall
the de�nition� In the following� E is a subset of some Euclidean space� and
� � p 
��

De�nition ��� A measure�function pair over E with values in Rs is a pair
��� f�� where � is a Radon measure on E and f � L�

loc���R
s ��

Example� Let V be a curvature n�varifold in � with generalized second funda�
mental form B� then �V�B� is a measure�function pair over Gn��� with values
in RN�N�N �

De�nition ��� Let f��k� fk�g be a sequence of measure�function pairs over E
with values in Rs such that fk � Lp��k�R

s �� We say that ��k� fk� converges
weakly in Lp to a measure�function pair ��� f�� if

� �k � � as k �� in the sense of measures�

� �kxfk � �xf as k �� in the sense of vector�valued measures� and

� the norms kfkkLp��k� are uniformly bounded�

In this case� we write ��k� fk�
Lp

� ��� f�� We say that the convergence is strong

in Lp� and write ��k� fk�
Lp

� ��� f�� if

� limk��

R
��x� fk�x�� d�k�x� �

R
��x� f�x�� d��x� for all � � C�

� �E �R
s ��

and

� limj��

R
Skj

jfkjp d�k � � uniformly in k� where

Skj � fx � E � jxj 	 j or jfk�x�j 	 jg �

When working with measure�function pairs� it is often convenient to consider
the graph measures associated to them�

De�nition ��� Let ��� f� be a measure�function pair over E with values in Rs �
The graph measure ��� f 	 on E � Rs is de�ned by

��� f 	 � G���

where G � E � E � Rs is given by G�x� � �x� f�x���

�



De�nition ��� Let � be a Radon measure on E � Rs and � � E � Rs � E
the projection� Then k�k � ��� is called the weight measure of �� If k�k is a
Radon measure� then the �ber measure ��x� can be de�ned for k�k�almost every
x � E by Z

� d��x� � lim
r��

�

k�k�Br�x��

Z
Br�x��Rs

��y� d��x� y��

The following results are due to Hutchinson ��	�

Proposition ��� Let � 
 p 
�� Suppose that ��k� fk�� k � N� and ��� f� are
measure�function pairs over E with values in Rs �

�i� If ��k� fk�
Lp

� ��� f�� then there exist a subsequence fk�g � N and a Radon
measure � on E � Rs such that ��k� � fk� 	� �� Moreover� k�k � � and

f�x� �

Z
y d��x��y�

��almost everywhere�

�ii� the following statements are equivalent�

� ��k� fk�
Lp

� ��� f�

� ��k� fk	� ��� f 	 and Z
Sj

jyjp d��k� fk	�x� y�� �

as j �� uniformly in k� where

Sj �
�
�x� y� � E � R

k � jxj 	 j or jyj 	 j
�
�

Theorem ��� Let � 
 p 
 �� Suppose that ��k� fk�� k � N� are measure�
function pairs over E�

�i� If �k�K� and kfkkLp��k� are uniformly bounded for any compact K � E�
then there exists a subsequence which converges weakly in Lp�

�ii� Suppose ��k� fk�
Lp

� ��� f�� Then

kfkLp��� � lim inf
k��

kfkkLp��k��

�iii� If equality holds� then the convergence is strong in Lp�

This is one example which shows that weak and strong convergence in Lp for
measure�function pairs behave in some aspects like weak and strong convergence
in the Banach spaces Lp��� for a �xed measure �� although we have not even a
vector space in this case� The next result provides another example�

Proposition ��� Let p� q � ����� such that �
p � �

q � �� Suppose that �k
and � are Radon measures on E and that fk � Lp��k�R

s �� f � Lp���Rs ��

gk � Lq��k�R
s �� and g � Lq���Rs �� Suppose further that ��k� fk�

Lp

� ��� f� and

��k� gk�
Lq

� ��� g�� Then ��k� fk � gk�
L�

� ��� f � g��

�



Proof� Consider the Radon measures ��k � ��k� fk	 and the functions �gk�x� y� �
gk�x� on E � Rs � We haveZ

j�gkj
q d��k �

Z
jgkj

q d�k�

which is uniformly bounded� hence ���k � �gk� are measure�function pairs over E�
Rs which satisfy the conditions of Theorem �����i�� Thus for a subsequence
�which we denote the same as the whole sequence� there exists a weak limit
���� �g� in Lq� By Proposition ���� �� � ��� f 	�

Now choose � � C�
� �E�� and let �j � C�

� �R
s � satisfy � � �j � � and

�j�y� � � for jyj � j� Then we have

lim
k��

lim
j��

Z
��x��j �y��gk�x� y� d��k�x� y� � lim

k��

Z
��x��gk�x� y� d��k�x� y�

� lim
k��

Z
��x�gk�x� d�k�x�

�

Z
�g d��

using Lebesgues convergence theorem� and

lim
j��

lim
k��

Z
��x��j �y��gk�x� y� d��k�x� y� � lim

j��

Z
��x��j �y��g�x� y� d���x� y�

�

Z
��x��g�x� f�x�� d��x��

Moreover�����
Z
��x��j�y��gk�x� y� d��k�x� y��

Z
��x��gk�x� y� d��k�x� y�

����
�

����
Z
���j 
 fk � ��gk d�k

����
�

Z
fx�E � jfk�x�j�jg

j� gkj d�k

�

�
sup
E
j�j

�
�k�supp� � fx � E � jfk�x�j 	 jg�

�
p kgkkLq��k��

The right hand side converges to � uniformly in k as j � �� It follows that
g�x� � �g�x� f�x�� for ��almost every x � E�

Similarly we compute

lim
k��

lim
j��

Z
��x��j�y�y � �gk�x� y� d��k�x� y� � lim

k��

Z
� fk � gk d�k

and

lim
j��

lim
k��

Z
��x��j �y�y � �gk�x� y� d��k�x� y� �

Z
��x�f�x� � �g�x� f�x�� d��x�

�

Z
� f � g d��

�



That the convergence for j � � is uniform in k is proved like before� except that
we now have on the right�hand side of the corresponding estimate the expression

�
sup
E
j�j

��Z
fx�E � jfk�x�j�jg

jfkj
p d�k

� �
p

kgkkLq��k��

According to Proposition ���� this also converges uniformly to �� and hence

lim
k��

Z
� fk � gk d�k �

Z
� f � g d��

The proof is thus �nished� �

We now extend the de�nition of measure�function pairs to include multiple�
valued functions�

De�nition ��� If S is a set� then we write S� for the set of all sequences in
S� Let � be a Radon measure on E and � � E � N a ��measurable function� If
f � �f���� f���� � � �� � E � �Rs �� is a multiple�valued function such that ��xf� �
lg� f�l�� is a measure�function pair for all l � N� then we call ��� f� a multiple�
valued measure�function pair over E with values in Rs and with multiplicity ��
We de�ne the graph measure ��� f 	� on E � R

s by

Z
��x� y� d��� f 	��x� y� �

Z
��x���

��x�X
l��

��x� f�l��x�� d��x��

We use the notation

Z
f d� �

Z
��x���

��x�X
l��

f�l��x� d��x��

when it is clear what the multiplicity function is �which will usually be the case��
In this case we also drop the subscript � for the graph measure and write ��� f 	 �
��� f 	��

If � � p 
�� then we write �using this notation�

kfkLp��� �

�Z
jf jp d�

� �
p

�

Let ��k� fk�� k � N� and ��� f� be multiple�valued measure�function pairs with
multiplicities �k and �� respectively� We say that ��k� fk� converges weakly in
Lp to ��� f�� if �k converges to � in the sense of measures� limk��

R
�fk d�k �R

�f d� for all � � C�
� �E�� and kfkkLp��k� is uniformly bounded� The conver�

gence is strong in Lp� if ��k� fk	� ��� f 	 andZ
Sj

jyjp d��k� fk	�x� y�� �

as j �� uniformly in k� where Sj is de�ned as in Proposition ��	�

�



Remarks�

� Given a �single�valued� measure�function pair over E and a multiplicity
function � � � � N which is measurable with respect to �� we can �and
often will� regard f as a multiple�valued measure�function pair by consid�
ering the sequence �f� f� � � ���

� Let ��� f� and ��� g� be multiple�valued measure�function pairs over E
with values in R and with the same multiplicity �� Then the multiple�
valued measure function pairs ��� f � g� and ��� fg� can be de�ned by
component�wise addition and multiplication �the latter provided that the
product is in L�

loc����� The same procedure works for other operations�
e� g� the scalar product�

We have the following version of Proposition ��� for multiple�valued measure�
function pairs�

Proposition ��� Let � 
 p 
 � and � 
 q 
 �� Suppose that ��k� fk� are
multiple�valued measure�function pairs over E with values in Rs and multiplicity

�k� such that ��k� fk�
Lp

� ��� f� for a multiple�valued measure�function pair ��� f�
with multiplicity �� Suppose further that ��k� gk� are multiple�valued measure�
function pairs over E with values in Rt and multiplicity �k� such that kgkkLq��k�

is uniformly bounded�

�i� There exist a subsequence fk�g � N and a multiple�valued function g �
E � �Rt �� such that ��� g� is a multiple�valued measure�function pair
over E with multiplicity � andZ

��x� f�x�� � g�x� d��x� � lim
k���

Z
��x� fk� �x�� � gk��x� d�k� �x� ���

for all � � C�
� �E � R

s �Rt �� Moreover� ��k� � gk��
Lq

� ��� g� and

kgkLq��� � lim inf
k���

kgk�kLq��k� �
�

�ii� If ��k � gk� are single�valued measure�function pairs and if ��k� gk�
Lq

� ��� g�
for a measure�function pair ��� g�� thenZ

��x� f�x�� g�x�� d��x� � lim
k��

Z
��x� fk�x�� gk�x�� d�k�x�

for all � � C�
� �E � R

s � R
t ��

Proof� De�ne ��k � ��k� fk	 and �� � ��� f 	� Further de�ne on E � Rs the
functions

�gk�x� y� �

�
�gk��l��x�� if y � �fk��l��x��
anything� else�

This is well�de�ned ��k�almost everywhere only if for �k�almost every x � E we
have for all l�� l� � f�� � � � ��x�g either �fk��l���x� �� �fk��l���x� or �gk��l���x� �
�gk��l���x�� However we may assume without loss of generality that this is true�






We have Z
j�gkj

q d��k �

Z
jgkj

q d�k�

hence by Theorem ��� there exists a function �g � E � Rs � Rt such that

���k� � �gk��
Lq

� ���� �g� for a subsequence�
To prove �i�� set g�x� � �g�x� f�x��� Then ��� and the inequality follow imme�

diately� For the weak convergence� use estimates like in the proof of Proposition
����

Under the conditions of �ii�� de�ne �h�x� y� � g�x�� It is easy to see that for
� � C�

� �E � Rs �Rt �� the functions

k�x� � �k�x�
��

�k�x�X
l��

��x� �fk��l��x�� and �x� � ��x���
��x�X
l��

��x� f�l��x��

satisfy ��k� k�
Lr

� ��� � for any r 
 �� According to Proposition ���� this
implies ��� for the given function g� Hence �g � �h� We conclude that k�gkLq���� �
limk�� k�gkkLq���k�� and the convergence of ���k� �gk� to ���� �g� is strong in Lq by
Theorem ���� This proves �ii�� �

� Weak derivatives

Using formula ���� we can integrate by parts C��functions on a curvature vari�
fold� We want to generalize the notion of di�erentiability of a function based on
such an integration by parts formula� We will consider multiple�valued functions
however�

De�nition ��� Let V � v�M� �� be an integral curvature n�varifold in � with
generalized curvature A � �Aijk�� A multiple�valued function f � � � �Rs ��

is called weakly di
erentiable with respect to V � if ��V � f� is a multiple�valued
measure�function pair over � with values in Rs and multiplicity �� satisfying

jA�x� P �j��x���
��x�X
l��

jf�l��x�j � L�
loc�V ��

and if there exists a multiple�valued function g � � � �RN�s �� such that also
��V � g� is a multiple�valued measure�function pair with multiplicity �� and such
thatZ �

Pij
��

�xj
�x� f�x�� P � �

��

�y�
�x� f�x�� P �gi��x� ���

�
��

�Pjk
�x� f�x�� P �Aijk�x� P � � ��x� f�x�� P �Ajij �x� P �

	
dV �x� P � � �

for all � � ��x� y� P � � C�
� �� � Rs � RN�N � and for i � �� � � � � N � �Here the

notation of De�nition ��� is used� regarding the integrand as a multiple�valued
function on Gn���� We sum over alpha from � to s�� We call g the weak
gradient of f with respect to V and write g � rV f �

��



Example� The function P �x� � TxM is weakly di�erentiable with respect to V
with

rV
i Pjk�x� � Aijk�x� TxM��

Proposition ��� Let V � v�M� �� be an integral curvature n�varifold in �
and f � � � �Rs �� a multiple�valued function that is weakly di
erentiable
with respect to V� If � � � � Rs � RN�N � Rt is a Lipschitz map� then
g�x� � ��x� f�x�� P �x��� where P is de�ned as above� is weakly di
erentiable
with respect to V and satis�es

rV
i g�x� � Pij�x�

��

�xj
�x� f�x�� P �x�� �

��

�y�
�x� f�x�� P �x��rV

i f
��x�

�
��

�Pjk
�x� f�x�� P �x��Aijk �x� P �x���

Proof� If � is smooth and has the property j��x� y� P �j 	 jyj for y �� K� where K
is a compact subset of Rs � then this follows simply by inserting ��x� f�x�� P �x��
into ���� Otherwise approximate � by such maps and apply Lebesgues conver�
gence theorem to compute the limits� �

Remarks�

� It is easy to verify that rV f is uniquely determined by V and f �

� If � is a Lipschitz function of Gn���� then it de�nes a weakly di�erentiable
function with respect to V by Proposition ���� It is therefore convenient
sometimes to think of functions on Gn��� rather than ��

� The reason why we consider multiple�valued functions is that we want to
prove a generalization of Rellichs theorem for pairs of integral curvature
varifolds and weakly di�erentiable functions� However the following ex�
ample shows that this is not possible for single�valued functions� Consider
the varifolds Vk � v�R � f�� �kg� �� in R

� and the function

f�x� y� �

�
�� if y � ��
�� if y � ��

Clearly f is di�erentiable with respect to Vk for any reasonable de�nition of
di�erentiability with rVkf � �� On the other hand� Vk � v�R�f�g� �� in
the varifold sense� but the measure�function pairs ��Vk � f� do not converge
in the strong sense unless we allow the multiple�valued function ��� �� � � ��
as the limit�

� Weak di�erentiability with respect to integral curvature varifolds with
boundary can be de�ned similarly� For simplicity we do not consider that
case however�

De�nition ��� Let � � p 
 � and V � v�M� �� be an integral curvature
n�varifold in �� We denote by W ��p�V�Rs � �or W ��p�V � if s � �� the set of
all multiple�valued functions f � � � �Rs �� that are weakly di
erentiable with
respect to V and satisfy

kfkW ��p�V � �� krV fkLp��V � � k jAj fkLp��V � 
��

where A is the generalized curvature of V �

��



The Sobolev inequality of Michael�Simon ���	 holds also for this situation�

Theorem ��� Suppose that V � v�M� �� is an integral curvature n�varifold in
� and � � p 
 �� Let f � W ��p�V�Rs �� Suppose further that supp f b ��
Then

kfkLq��V � � CkfkW ��p�V �

for q � np
n�p and C � 	n��p�n���N

�
��n
n �n�p�

� where �n is the volume of the unit ball in

Rn �

Proof� Assume �rst that p � �� s � �� and f 	 � almost everywhere with
respect to �� From ��� we derive that

� �

Z �
Pij

��

�xj
f � �rV

i f � �fHi

�
d�V

for all � � C�� ���� where H � �Hi� is the generalized mean curvature vector of
V � Moreover� a corresponding formula holds for � 
f for all Lipschitz functions
� � R � R� The proof of Theorem ��� in ���	 now carries over to this situation
almost word for word and provides the inequality

�Z
f

n
n�� d�V

�n��
n

�
�n
�

�
��n
n

Z
�jrV f j� f jHj� d�V �

In general� insert jf j
p�n���
n�p instead of f into this estimate and obtain

�Z
jf j

np
n�p d�V

�n��
n

�
�n
�

�
��n
n

Z �
p�n� ��

n� p
jf j

n�p���
n�p jrV f j� jf j

p�n���
n�p jHj

�
d�V

�
�n
�p�n� ��

�
��n
n �n� p�

�Z
jf j

np
n�p d�V

��� �
p
�Z

�jrV f jp � jf jpjHjp� d�V

� �
p

�

The claim follows immediately� �

To prove our version of Rellichs theorem� we need some preparations �rst� The
basic idea for the next lemma is due to Mantegazza �
	 �cf� also ��� �� �	��

Lemma ��� Let V � v�M� �� be an integral curvature n�varifold in � and
f � � � ������ weakly di
erentiable with respect to V � Consider the set
M � � M � ������ and the multiplicity function

���x� y� � j
�
l � f�� � � � � ��x�g � f�l��x� 	 y

�
j� x � �� y 	 ���

Set V � � v�M �� ���� Then V � is an integral curvature �n � ���varifold with
boundary in �� R� Its generalized curvature is

A�ijk�x� y�Q� �

�
Aijk�x� P �� if � � i� j� k � N and Q � P � R�
� � else�

��



where A � �Aijk� is the generalized curvature of V � Moreover� we have

j�V �j�Gn
���� R�� �






q
jrV f j� � � � �






L���V �

�

and for all � � C�
� ��� R��Z

��x� y� dk�V �
N
��x� y� P �k �

Z
� d��V � f 	�

Z
��x���� d�V �x�� ���

Proof� Obviously we have T�x�y�M
� � TxM � R for Hn
��almost every �x� y� �

M �� HenceZ
��x� y�Q� dV ��x� y�Q� �

Z Z f�x�

��

��x� y� P � R� dy dV �x� P �

for all � � C�
� �Gn
���� R��� Thus we computeZ �

Qij
��

�xj
�x� y�Q� �

��

�Qjk
�x� y�Q�A�ijk�x� y�Q�

���x� y�Q�A�jij �x� y�Q�
	
dV ��x� y�Q�

�

Z �
Pij

Z f�x�

��

��

�xj
�x� y� P � R� dy �

Z f�x�

��

��

�Pjk
�x� y� P � R� dy Aijk�x� P �

�

Z f�x�

��

��x� y� P � R� dy Ajij �x� P �

�
dV �x� P �

� �

Z
��x� f�x�� P � R�rV

i f�x� dV �x� P �

for i � �� � � � � N � owing to ���� As usual we sum all indices from � to N � even
in the �rst line� Note however that the corresponding terms for j � N � � or
k � N � � vanish�

Furthermore we haveZ
QN
��N
�

��

�y
�x� y�Q� dV ��x� y�Q�

�

Z Z f�x�

��

��

�y
�x� y� P � R� dy dV �x� P �

�

Z
���x� f�x�� P � R� � ��x���� P � R�� dV �x� P ��

All claims now follow easily from these formulae� �

Now we are ready to proof the main result of this section�

Theorem ��� Let � 
 p 
 n and np
np�n
p 
 q 
 �� Suppose that � is

bounded� and that Vk � v�Mk� �k� are integral curvature n�varifolds in � and
fk �W ��p�Vk�� such that we have the uniform boundsZ

�jAkj
q � �� dVk � C��

��



where Ak is the generalized curvature of Vk� and

kfkkW ��p�Vk� � C��

Suppose further that supp fk b � for each k� Then for any r � ��� np
n�p �� there

exist a subsequence fk�g � N� an integral curvature n�varifold V � v�M� �� in
� with generalized curvature A� and a multiple�valued function f � � � R�

such that
��Vk� � fk��

Lr

� ��V � f� and �Vk� � Ak��
Lq

� �V�A��

If �Vk� � Ak� �
Lq

� �V�A�� then f � W ��p�V � and

��Vk� �r
Vk� fk��

Lp

� ��V �r
V f��

Proof� We may assume that the fk take only non�negative values� Otherwise we
consider the functions maxffk � �� �g and minffk � �� �g instead� If the result
holds for both of these sequences� then it holds also for fk�

Since we have a uniform bound on kfkkL�np���n�p���k� by Theorem ���� it is
easy to show that Z

Sj

jyjr d��k � fk	�x� y�� �

uniformly as j ��� where

Sj � f�x� y� � �� R � jyj 	 jg �

Let V �
k be the �n����varifolds associated to Vk and fk by Lemma ���� Then

the quantities

�V �
k
��� R� �

Z
jA�kj

t dV �
k � j�V �

k j�Gn
���� R��

are uniformly bounded for some t � �� Hence by Theorem ��� in �
	� we may pick
a subsequence �which we denote the same as the original sequence�� such that
V �
k � V � for an integral curvature �n� ���varifold V � with boundary in �� R�

We may also assume that Vk � V � where V � v�M� �� is an integral curvature

varifold in �� according to Theorem ����� in ��	� and that �Vk � Ak�
Lq

� �V�A� for
the generalized curvature A of V �

Note that for any � � C�
� ��� ������� with � 	 �� and for h 
 �� we haveZ

��x� y � h� d�V �
k
�x� y� �

Z
� d�V �

k
�

Therefore �V � must have the same property� It follows that V � is of the form
V � � v�M �� ���� whereM � � �M������� for an n�recti�able andHn�measurable
set �M � �� and ���x� y� is decreasing in y� Hence there is a multiple�valued
function f � �M � R� such that

���x� y� � j
�
l � N � f�l��x� 	 y

�
j

for Hn
��almost every �x� y� � M �� From ��� we see that �M � M and that
��Vk � fk	� ��V � f 	�

��



Now assume that �Vk� � Ak��
Lq

� �V�A�� Choose � � C�
� ��� R � R

N�N �� By

Proposition ���� we have ��Vk � �fk�x�� TxMk��
Lr

� ��V � �f�x�� TxM��� HenceZ
Pij

��

�xj
�x� f�x�� P � dV �x� P � � lim

k��

Z
Pij

��

�xj
�x� fk�x�� P � dVk�x� P ��

Moreover we see that for any � � C�
� �� � R � RN�N � and for any t 
 ��

the functions �fk�x� � �k�x�
��
P�k�x�

l�� ��x� �fk��l��x�� TxMk� satisfy ��Vk �
�fk�

Lt

�

��V � �f�� where �f�x� � ��x���
P��x�

l�� ��x� f�l��x�� TxM�� ThusZ
��

�Pjm
�x� f�x�� P �Aijm�x� P � dV �x� P �

� lim
k��

Z
��

�Pjm
�x� fk�x�� P ��Ak�ijm�x� P � dVk�x� P ��Z

��x� f�x�� P� �Ajij �x� P � dV �x� P �

� lim
k��

Z
��x� fk�x�� P ��Ak�jij �x� P � dVk�x� P �

by Proposition ���� Owing to Proposition ���� there exists a multiple�valued

function g � �� �RN �� such that ��Vk �r
Vkfk�

Lp

� ��V � g� andZ
��

�y
�x� f�x�� P �gi�x� dV �x� P � � lim

k��

Z
��

�y
�x� fk�x�� P �rVk

i fk�x� dVk�x� P ��

Therefore f and g satisfy ���� Moreover�

kgkLp��V � � k jAj jf j kLp��V � � lim inf
k��

kfkW ��p�V � 
��

and we conclude that f �W ��p�V � and rV f � g� �

� Minimizers of curvature integrals

In the following we sketch a possible application of the results obtained so far�
For simplicity we restrict the class of varifolds that we work with� Namely�

we assume now that N � n � �� i� e� that we have co�dimension �� Moreover�
we want the varifolds to possess a weakly di�erentiable normal vector�

De�nition ��� Let V � v�M� �� be an integral curvature n�varifold in �� If
there exists a function � � �� �Sn�� which is weakly di
erentiable with respect
to V � such that ��l��x�  TxM for �V �almost every x � � and l � �� � � � � ��x��
then such a � is called a di
erentiable normal vector of V �

Proposition ��� Let V be an integral curvature n�varifold in � with gener�
alized second fundamental form B � �Bk

ij� and di
erentiable normal vector ��
Then

Bk
ij � ��krV

i �
j

�V �almost everywhere� In particular� jBj � jrV �j�

��



Proof� We have �V �almost everywhere

� � rV
i �Pjk�

k� � Aijk�
k � Pjkr

V
i �

k ���

and
� � rV

i j�j
� � ��jrV

i �
j �

From the second identity we conclude that

rV
i �

j � Pjkr
V
i �

k �

Hence
Bk
ij�

k � PrjAikr�
k � �Prjr

V
i �

r � �rV
i �

j �

Here the properties �i� and �iv� of Sect� � and ��� have been used� Since Bk
ij �

�k�rBr
ij by Lemma ���� the proof is �nished� �

De�nition ��� Let Vk� k � N� and V be integral curvature n�varifolds in � with
generalized second fundamental form Bk and B� respectively� Let � 
 p 
 ��
We say that Vk converges to V weakly �strongly� in the W ��p�sense� and write

Vk
W ��p

� V �Vk
W ��p

� V �� if

�Vk�Bk�
Lp

� �V�B� ��Vk �Bk�
Lp

� �V�B���

For any L � �� let W��p
L ��� denote the set of all weak limits in the W ��p�

sense of sequences Vk � v�Mk� ��� where Mk are oriented C��submanifolds of �
satisfying Z

Mk

�jBkj
p � �� dHn � L�

for their second fundamental forms Bk� Moreover� de�ne

W��p��� �
�
L��

W��p
L ����

Lemma ��� The sets W��p
L ��� are sequentially compact with respect to weak

convergence in the W ��p�sense�

Proof� Let Vk � W��p
L ��� be the weak limits in the W ��p�sense of Vkm �

v�Mkm� ��� where Mkm have the properties required in the de�nition above�
According to Theorem ����� in ��	� there exist a subsequence �also denoted by

Vk� and an integral curvature n�varifold V in � such that Vk
W ��p

� V � We have
to prove that V � W��p

L ����
Since C�

� �Gn��� is separable� we can easily construct a subsequence of the
Vkm that converges to V in the varifold sense� Again by Theorem ����� in ��	�
this convergence also holds in the weak W ��p�sense� Hence V � W��p

L ���� �

Lemma ��� Any V � W��p��� has a di
erentiable normal vector�

Proof� The condition that V has a di�erentiable normal vector is equivalent to
requiring that V is an oriented integral varifold �cf� ��	� which satis�es ��� in
the sense of oriented varifolds� The claim therefore follows from the arguments
of ��	� �

��



Lemma ��� For V � W��p��� with di
erentiable normal vector � we have

�

�xi
��Vx�

j��
�

�xj
��Vx�

i� � �� � � i� j � n� �� ���

in the distribution sense�

Proof� If V corresponds to a C��submanifold M of �� then this follows from the
fact that �Vx� represents locally the distributional derivative of the character�
istic function of a set having M as part of its boundary� The set of varifolds in
W��p��� satisfying ��� is clearly closed with respect to weak convergence in the
W ��p�sense� and the claim follows� �

Now consider the functional

Fp�V � �

Z
jBjp dV

for V � W��p���� where B denotes the generalized second fundamental form of
V �

If E �� � is a sequentially closed subset of W��p��� such that there exist
numbers C�� C� � � satisfying

�V ��� � C�

for any V � E with Fp�V � � C�� and if C� � infE Fp� then we may apply
Theorem ��� in ��	 and �nd a V 	 � E with the property

Fp�V
	� � inf

E
Fp�

Example� Suppose � b R
n
� and � 
 p 
 n� Let V� be an integral curvature

n�varifold in Rn
� with compact support� and setW � V�xGn�R
n
�n��� Let E

be the set of all V � W��p��� such that V �W is an integral curvature varifold
in Rn
� � As in ��	� we �nd that

�V ���
n��
n � �V
W �Rn
� �

n��
n � c

�Z
jBjp d�V �W �

�n��
n�p

���

for a constant c � c�n� p�� where B is the generalized second fundamental form
of V �W � Therefore if E contains an element such that the right hand side of
��� is �nite� then there is a minimizer of Fp in E �

Next we want to compute the Euler�Lagrange equation for such a minimizing
varifold of F � or at least the leading term of it�

Choose a C��di�eomorphism � � � � � such that supp �� � id� b � with
inverse map � � ���� Then for any integral n�varifold V � v�M� �� in �� the
varifold ��V � v���M�� �
�� is also an integral n�varifold in �� As a measure
in Gn���� the transformation readsZ

� d���V � �

Z
����x�� D��x�P �j�nD��x�j dV �x� P ��

��



Here �nD��x� is the map �nR
n
� � �nR

n
� induced by D��x�� The notation
D��x�P refers to P as an n�dimensional subspace of Rn
� � not the correspond�
ing projection�

If V is generated by an orientable C��submanifold M with second funda�
mental form B� then we can compute the second fundamental form of ��M� as
follows� Let G��n��� n� be the manifold of all oriented n�subspaces of Rn
� and
T � G��n� �� n� � Sn one of the two smooth maps assigning to every element
of G��n� �� n� one of its normal vectors� De�ne S � Sn�Gl�n� ��R� � Sn by

S��� Z� � T �ZT�������

Furthermore let Q��� Z� be the orthogonal projection along S��� Z�� If � is a
di�erentiable normal vector of M � then �� de�ned by

�����x�� � S���x�� D��x��

is a di�erentiable normal vector for �M � ��M�� Hence the second fundamental
form of �M has the components

�Bk
ij���x�� �

Sk���x�� D��x��Qia���x�� D��x��

�

�
�Sj

��b
���x�� D��x���c�x�Bc

bd�x��
�Sj

�Zrs
���x�� D��x��

���r�x�

�xs�xd

�
��d���x��

�xa
�

�
�
In particular Z

�M

j �Bjp dHn � C

Z
M

�jBjp � �� dHn

for a constant C � C�n� p� k�kC��� We see immediately that �� maps W��p���
onto itself� By approximation with C��submanifolds we also see that formula
�
� holds in general for varifolds in W��p����

Suppose now that we have a family of C��di�eomorphisms �t�x� � x�tX�x�
for X � C�

� ���R
n
� � and �� 
 t 
 �� If V � W��p��� is a minimizer of Fp in

some set that is mapped onto itself by such di�eomorphisms� then we compute
from the condition

d

dt

����
t��

Fp���t��V � � ��

thatZ
jBjp��Bk

ij

�
�kPia

�Sj

�Zrs
��� id�

��Xr

�xs�xa
� �ijk���DX�B�

�
d�V � � ����

for functions �ijk depending smoothly on � and linearly on DX and B� �We are
not going to compute these functions�� Note that we have the representation

Sj��� Z� �
�i�Z���ijsX
k

��i�Z���ik�
�

for S and can thus compute

�Sj

�Zrs
��� id�Zrs � �Zrj�

r � Zrs�
r�s�j �

��



Let now p � �� We want to use the results from the previous section to gener�
alize a well�known method for certain variational methods to our situation and
prove a regularity result for minimizers of F�� We need however some additional
assumptions� namely generalizations of the Poincar e inequality and of a reverse
Poincar e inequality �Caccioppoli inequality� for the normal vectors of minimiz�
ing solutions of ����� The former is a well�known result for the usual Sobolev
spaces� but it is not clear if it holds for pairs of curvature varifolds and weakly
di�erentiable functions in general� The latter can be proved for a variety of
variational problems� but it is more di!cult for the case that we consider here�
We are not able to prove either of these inequalities in general� For n � � and
if the varifold we consider is the strong limit in the W ����sense of smooth man�
ifolds� then both can be proved using the graphical decomposition lemma from
���	� but in that case there are easier methods to prove regularity than those we
will use� We will prove the Poincar e and the reverse Poincar e inequality for the
normal vectors of varifolds corresponding to Lipschitz graphs however�

Notation� Let Br�x�� denote the ball in Rn
� with center x� and radius r�

De�nition ��� Let �� � � and C� � �n be given� where �n is the volume of the
unit ball in Rn � For V � W������ and Br�x�� � �� let C�V�Br�x���R

s � be the
set of all multiple�valued functions f� � Br�x�� � �Rs �� such that �f�x� P � �
f�x� agrees VxGn�Br�x����almost everywhere with a locally constant function
on suppV � Let f � � � �Rs �� be weakly di
erentiable with respect to V � We
say that �V� f� satis�es the ���� C���Poincar�e inequality with constant C� if for
any ball Br�x�� � � satisfying �V �Br�x��� � C�r

n andZ
Br�x��

jBj� d�V � ���r
n���

where B is the generalized second fundamental form of V � the inequality

inf
f��C�V�Br�x���Rs�

kf � f�kL���V xBr���x���

� Cr�krV fkL���V xBr�x��� � k jBj jf j kL���V xBr�x����

holds� We say that the reverse ���� C���Poincar�e inequality is satis�ed with
constant C� if under the conditions above� we always have

krV fkL���V xBr���x��� � Cr�� inf
f��C�V�Br�x���Rs�

kf � f�kL���V xBr�x����

Lemma ��� Let V � W������ with generalized second fundamental form B and
di
erentiable normal vector � be a solution of �	� for p � �� Suppose there
exist constants ��� C� � � and C� � ��n� ��n�� such that �V� �� satis�es the
���� C���Poincar�e inequality and the reverse ���� C���Poincar�e inequality� both
with constant C�� Then there exist numbers � � � and � � ��� ��� both depending
only on n� ��� C�� and C�� such that for any ball Br�x�� � �� the conditions

�V �Br�x��� � C�r
n� �V �B��r�x��� � C����r�

n�

and Z
Br�x��

jBj� d�V � ��rn��

�




imply

��r���n
Z
B�r�x��

jBj� d�V �
�

�
r��n

Z
Br�x��

jBj� d�V �

Proof� It su!ces to consider the case Br�x�� � B����� for we may rescale
everything otherwise� We argue by contradiction� If the lemma is false� then for
any �xed � � ��� �	 �� there exist integral curvature n�varifolds Vk � v�Mk� �k�
in B���� � Rn
� with second fundamental forms Bk and di�erentiable normal
vectors �k� which are solutions of ���� and which satisfy the ���� C���Poincar e
inequality and the reverse ���� C���Poincar e inequality with constant C� and

�Vk�B����� � C�� �Vk �B�� ���� � C�����
n�Z

B����

jBkj
� d�Vk �� ��k � � �k ����

but

���n
Z
B� ���

jBkj
� d�Vk �

�

�
��k� ����

Choose ��k � C�Vk� B�����R
n
� � such that

k�k � ��kkL���VkxB������� � � inf
f��C�Vk�B�����Rn���

k�k � f�kL���VkxB��������

We may assume that �k � �� for all k and thus

k�k � ��kkL���VkxB������� � �C��k

by the Poincar e inequality�
Choose � � C�� �B������� with � � � in B��	��� and jr�j � �� De�ne

fk �
�

�k
���k � ��k��

These functions are weakly di�erentiable with respect to Vk with

rVk
i fk�x� �

�

�k

�
�TxMk�ij

���x�

�xj
��k�x�� ��k�x�� � ��x�rVk

i �k�x�

�
�

Thus
kfkkW ����Vk� � ��C� � ��

By Theorem ���� we may assume that ��Vk � fk�
L�

� ��V � f� and ��Vk �r
Vkfk�

L�

�
��V �r

V f� for an integral curvature varifold V � v�M� �� with generalized cur�
vature A � � and a function f � B����� �Rn
� �� which is weakly di�erentiable
with respect to V � The results of ��	 imply that V is a union of hyper�planes�
Moreover� we have �V �B����� � C� 
 ��n� and we can therefore choose � so
small that at most one of these hyper�planes intersects B�� ����

Let � � C�� �B��	����� We computeZ
��

�xi
�j�k d�Vk �

Z
�k � r� �

i
k�

j
�k d�Vk �

Z
��j�kHki d�Vk

�

Z
�k � r� �

i
k��

j
�k � �jk� d�Vk �

Z
�k � r� �

i
k�

j
k d�Vk

�

Z
���j�k � �jk�Hki d�Vk �

Z
��ik�

j
kjHkj d�Vk �

��



where Hk � �Hki� is the generalized mean curvature vector of Vk� Thus by
Lemma ����Z �

��

�xi
f jk �

��

�xj
f ik

�
d�Vk

�
�

�k

�Z
�k � r� ��

i
k��

j
�k � �jk�� �jk��

i
�k � �ik�� d�Vk ����

�

Z
����j�k � �jk�Hki � ��i�k � �ik�Hkj� d�Vk

�
�

We estimate���� ��k
Z
����j�k � �jk�Hki d�Vk

���� �
�

sup
B������

j�j

�
kfkkL���Vk �

kBkkL���Vk �
� �

as k � �� and the same with i and j interchanged� Assume now that supp�
intersects only one of the hyper�planes generating V � and that � �r� � �� where
� is the di�erentiable normal vector of V � ThenZ

j�k � r�j
� d�Vk �

n
�X
i��

Z ������ij � Pij�
��

�xj

����
�

dVk � ��

and therefore the whole right�hand side of ���� converges to �� Assuming that
the hyper�plane in question is P� � x���Rn �f�g� for some x� � B����� we see

immediately that fn
� is locally constant and �fj

�xi �
�f i

�xj � � in the distribution

sense for i� j ranging from � to n� on M� � �P� � B��	����n�MnP��� Knowing
however that the derivative of f exists in the weak sense� we conclude that in
fact the function f� �� f jM�

satis�es

� fn
�
� is constant�

� �f�� � � � � f
n
� � � � �u�x� � � � � �

�u
�xn � for some function u � M� � R�

From ���� we derive the partial di�erential equation "�u � �� where "
denotes the Laplace operator on M�� using the fact that the �ijk���DX�B� are
linear in B and observing the remark following ����� Since

k"ukL��M��
� n lim inf

k��
krVkfkkL���VkxB������� � ���C� � ��n

and thus
k"ukL��M�
B�������

� �n���C� � ��n

by the mean value theorem� there is a constant C � C�n�C�� such that

inf
��Rn��

kf � �kL���V xB�� ���� � C�
n��
� �

Hence
inf

��Rn��
k�k � ��k � �kL���VkxB�� ���� � �C�

n��
� �k

for all su!ciently large k� Now the reverse Poincar e inequality implies

krVk�kkL���VkxB� ���� � CC��
n
� �k�

��



Choose � � ��CC��
��� then we have a contradiction to ����� The lemma is

therefore proved� �

We want to apply Lemma ��� inductively in order to obtain a decay of the
L��norm of B of the formZ

Br�x��

jBj� d�V � rn��
���

for some � � �� But for this we need to control the area contained in the balls
Br�x��� This is done by the following lemma� which is an adaption of a result
of Hutchinson ��	�

Lemma ��� Let � 
 p 
 �� Suppose V is a curvature varifold in � with
generalized curvature A satisfyingZ

Gn�B��x���

jAjp d�V � �n�p
��p

for all � � �r�� r�	� where Br��x�� � Br��x�� � � and � � �� Let � � C��RN�N �
satisfy � � � � � and jr�j � �� for a constant � � �� Then�
r�n�

Z
Gn�Br� �x���

� dV

� �
p

�

�
r�n�

Z
Gn�Br� �x���

� dV

� �
p

������
p

�
�r
��p
� �r

��p
� ���

Proof� We proceed as in ��	� Choose � � �r�� r�	� For i � f�� � � � � n � �g let
�i�x� P � � ��r�xi��P �� where r � jxj and � � C��R� with ��t� � � for t 	 ��
��t� � � for t � 	

� � and �
� � �� Inserting �i as test function in ��� and summing

over i yields

� �

Z �
Pij�

��r�xjxir��� � Pij��r��ij� �Aijk��r�x
i ��

�Pjk
�Ajij��r�x

i�

�
dV

�

Z �
���r�jPxj�r��� � n��r�� �Aijk��r�x

i ��

�Pjk
�Ajij��r�x

i�

�
dV�

Hence Z
�n��r� � r���r��� dV � �� � ��

Z
jAj��r�r� dV�

Now let  � C��R� such that �t� � � for t � �
� � �t� � � for t 	 �� and � � ��

Set ��r� � �r���� Then

d

d�

�
��n

Z


�
r

�

�
� dV

�

� ���n��
Z
�n��r� � r���r��� dV

	 ��� � ����n��
Z
jAj��r�r� dV

	 ��� � ����n

�Z
Gn�B��x���

jAjp dV

� �
p �Z



�
r

�

�
� dV

��� �
p

	 ��� � �����p���

�
��n

Z


�
r

�

�
� dV

��� �
p

�

��



Therefore
d

d�

��
��n

Z


�
r

�

�
� dV

� �
p


	 ��� � ������p���

Approximating the characteristic function of the interval ���� �	 by  and in�
tegrating over �r�� r�	 �nally proves the lemma� �

Proposition ��� Let V � W������ be a solution of �	� for p � �� Let B be
the generalized second fundamental form and � a di
erentiable normal vector
of V � Suppose there exist constants ��� C� � � and C� � ��n� ��n� such that
�V� �� satis�es for p � � the ���� C���Poincar�e inequality and the reverse ���� C���
Poincar�e inequality� both with constant C�� Then for any c� 
 C�� there exist
numbers �� �� C � �� depending only on n� ��� c�� C�� and C�� such that for any
ball Br�x�� � � satisfying �V �Br�x��� � c�r

n andZ
Br�x��

jBj� d�V � rn����� ����

we have Z
B��x��

jBj� d�V � Crn��
���� ����

Proof� This follows by applying Lemma ��� inductively� Note that Lemma ���
with � � � provides the right bounds for the area at each step� provided that �
is chosen su!ciently small� �

Theorem ��� Under the conditions of Proposition ���� the number � can be
chosen such that there exists a number � � � with the property that supp�V �
B
�x�� decomposes into a �nite collection of smooth manifolds� provided that
�V �Br�x��� � c�r

n and �	�� hold�

Proof� We may assume that the conditions of Proposition ��� hold with x�
replaced by any x � B
�x��� if � is small enough� Therefore we obtain ����
around any such point� Then C����regularity can be proved with the same
arguments as in ��	� replacing the monotonicity formula ��� in that paper by
Lemma ��� and making the obvious adaptions� Higher regularity follows as in
Lemma ��� and the following arguments of ���	� �The proofs in ��	 and in ���	
are rather involved� which is why we do not repeat the arguments here�� �

� Lipschitz graphs

The purpose of this section is to show that the Poincar e and the reverse Poincar e
inequality can be proved in a special situation�

We assume that � � �� � R � Rn
� and that V � v�M� �� � W��� for the
graph

M � f�x� u�x�� � x � ��g �

where u � �� � R is a Lipschitz function with Lipschitz constant bounded by
L � �� Suppose that V is a minimizer of F� in the following sense� For any
ball Br�x�� b �� and for any Lipschitz function �u � Br�x�� � R such that the
#combined$ graph

�M � �Mn�Br�x��� R�� � f�x� �u�x�� � x � Br�x��g

��



de�nes an integral curvature varifold �V � v� �M� �� � W������� we have F��V � �
F�� �V ��

Lemma ��� For any �� � � and any C� � �n� and for any f � W ����V �� the
pair �V� f� satis�es the ���� C���Poincar�e inequality for a constant depending
only on n and L�

Proof� This follows easily from the fact that M is a Lipschitz manifold� �

Lemma ��� Under the conditions above� the pair �V� �� satis�es the reverse
���� C���Poincar�e inequality for any �� � � and any C� � �n for a constant
depending only on n and L� where � is the normal vector of V given by

�i �
�u
�xip

� � jruj�
� i � �� � � � � n� �n
� �

�p
� � jruj�

�

Proof� We prove that for any � � �� the inequalityZ
Br���x��

jr�uj� dx � �

Z
Br�x��

jr�uj� dx� C�r
��

Z
Br�x��

jru� 	j� dx ����

holds for any ball Br�x�� � �� and for a constant C� � C��n�L� ��� where

	 �
�

�nrn

Z
Br�x��

ru dx�

Then by a standard argument �see e� g� Lemma ����� in ���	� we can get rid
of the �rst term on the right�hand side� provided that we choose � su!ciently
small� and the reverse Poincar e inequality follows�

Fix Br�x�� � �� and � � ��� �	 	� and choose a radius � � � r� � r��r	 such thatZ
B�������x��nB��x��

jr�uj� dx � C�

Z
Br�x��

jr�uj� dx� ����

Here and subsequently C denotes indiscriminately several constants depending
only on n and L� Choose � � C�� �B	��
���x��� satisfying � � � in B	�x���
� � � � �� and jr�j� � jr��j � C������� We may assume thatZ

Br�x��

u dx � ��

so that Z
Br�x��

ju�x�� a � xj� dx � Cr�
Z
Br�x��

jru� aj� dx ����

for all a � Rn by the �ordinary� Poincar e inequality� Otherwise we add a
constant to u� Set

v�x� � ��x�	 � x� ��� ��x��u�x�� x � ���

We have

jrv�x�j � j��x�	 � ��� ��x��ru�x� �r��x��	 � x� u�x��j � C������

��



and

jr�v�x�j � ��� ��x��jr�u�x�j� �jr��x�jjru�x� � 	j� jr���x�jju�x� � 	 � xj�

HenceZ
B�������x��

jr�vj� dx � C�

Z
Br�x��

jr�uj� dx� Cr����	
Z
Br�x��

jru� 	j� dx

by ���� and ����� The minimality of F��V � implies the same inequality withR
B�������x��

jr�uj� dx on the left�hand side �and with a di�erent constant� still

depending only on n and L however�� Replacing � by C���� we �nd that ����
holds true� �

Combining this with Theorem ���� we �nd that we can prove C��regularity for
minimizers of F� under certain conditions if we already have Lipschitz regularity�
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