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PATHOLOGIES IN ALEKSANDROV SPACES OF
CURVATURE BOUNDED ABOVE

V.N. BERESTOVSKII

ABSTRACT. We construct in the paper two examples of Aleksan-
drov spaces A with curvature bounded above, which possess a
pathological properties. In the first we give a C AT (—1)-space A,
which is homeomorphic to R”?,n > 5, while its hyperbolic bound-
ary in Gromov sense is not topological manifold. This construc-
tion is much simpler than in corresponding example of Davies-
Januszkiewicz. In the second A has curvature < 0 and entropy
dimension (around some point) strongly more than (equal) topo-
logical and Hausdorff dimensions.

1. INTRODUCTION AND MAIN RESULTS.

In this paper we prove the part of results on A.D.Aleksandrov spaces
of the curvature < K (see [1],[3],[5], [6]) announced earlier in the paper
[7]. Let us give necessary definitions and notations.

The distance between two points x, y of a metric space M is denoted
by xy. (Locally) inner (or (locally) interior or (locally) length) metric
space is a metric space in which (locally) any two points z,y can be
joined by a path with the length arbitrary close to xy. A path joining
a points z,y in M is called shortest arc or segment (with the ends z, y)
if its length is equal to xy. (Locally) geodesic space is a metric space
in which (locally) any two points can be joined by shortest arc.

A point y lies between a points x, 2z if vz = xy+yz and y # x,y # 2;
the notation is (zyz). An open (closed) ball in M of the radius r and
the center z is denoted by U(x,r) (respectively B(z,7)); Sk denotes
complete simply connected three-dimensional Riemannian manifold of
constant sectional curvature K.

We define excess of ordered triple (a,b,¢) in M to be the number
e(b; a,c) == ab+ be — ac.
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2 V.N. BERESTOVSKII

For a point p of a metric space M, we will denote by Q,(A) the
space of all directions to M at point p and by w,(M) the subspace of
directions to M at the point p, defined by shortest arcs starting at p
(see[1], [3] or [6]). The distance between two directions is defined to be
the upper angle between corresponding curves (respectively, shortest
arcs, see [1] or [3]). The corresponding 0-cones M, = Cp€2,(M) and
my, = Cow, (M) (see [3]) as well as their Hausdorff completions we will
call the tangent spaces to M at point p.

We construct some examples of a spaces with curvature < K pos-
sessing pathological properties.Using some constructions from [8], the
author proved earlier in [9] that any n-dimensional sphere S™,n > 5,
admits geodesic inner metric d of curvature < 1 (even C'AT'(1)-metric,
see [6]) such that at some points x € S™, the space of direction §2,(S™, d)
is not a manifold and hence is not homeomorphic to S" . This exam-
ple gives the negative answer to the question of A.D.Aleksandrov and
the author whether at every point of a n-dimensional manifold with
curvature bounded above the space of directions is homeomorphic to
Sn=1 (see [2]). Let’s remark that on the other hand, the tangent space
T,(S™, d) at any point x € S™ for constructed metric d is homeomorphic
to R™. As a modification of this construction we prove the following
theorem.

Theorem 1.1. Every n-dimensional ariphmetic space R™,n > 5, ad-
mits (compatible with the topology) complete inner metric d of the cur-
vature < —1 (even CAT(—1)-metric) such that the hyperbolic Gromov
boundary [17] hb(R", d) is not a topological manifold hence is not home-
omorphic to S™™' (but it is a triangulable (n—1)-dimensional space with
the homologies of S™~1).

For this aim we take arbitrary triangulated (n — 2)-dimensional non-
simply connected closed manifold N with homologies of S" 2. Then
supply N by an inner metric § of 1-region (see [8], [3] or [6]). The
required space M is C_1C1(N,¢), where Cy denotes the construction
of the cone with curvature k over given space [3]. It follows from [§]
that (M, d) is CAT(—1)-space. The space M is homeomorphic to R"
by R.D.Edwards theorem on double suspension [15]. We will prove
that hb(R"™,d) is homeomorphic to the space of directions to M at the
vertex of cone C_y, i.e. to Cy(NV,d) what is not a manifold (see [15]).

Remark 1.2. The result from theorem 1.1 have been proved previously
in the paper [16] for n = 5 and stated for all n > 5 with the help of
more complicated techniques of hyperbolization of polyhedra, based on
Gromov’s idea. M.Davies and T.Januskiewicz hyperbolize the double
suspension of N above and then take the universal cover of resulting
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space. We metrize directly the double suspension of N without one
point, i.e the cone over suspension of N. With connection to this sub-
ject, note also that the statement on the page 266 in [6] that one can
use a theorem of Rolfsen in [18] to show that hyperbolic boundary of
a complete CAT'(0) 3-manifold M is homeomorphic to a 2-sphere and
M is a 3-ball, requires an additional arguments.

Remark 1.3. In the same manner one could prove

Theorem 1.4. Fvery compact simply connected 2-dimensional mani-
fold 333 is homeomorphic to a space of directions at some point T in a
C AT (1)-space, homeomorphic to S, or to Gromouv hyperbolic boundary
of a CAT(—1)- space, homeomorphic to R*.

To prove this theorem one could endow any triangulation 7" of X3
by inner metric d of 1-region from the papers [8] or [3]; all simplices of
the first barycentric subdivision of T" gives all-right spherical complex
relative to metric d in the sense of [14] or [6]. Then one takes C (%2, d)
for the first statement and C'_;(X?,d) for the second statement of the
theorem. One could use also in the proof of this theorem the recent
known topological result that the suspension S(X?) is homeomorphic to
S4. The author knew this result in the conversation with R.J.Daverman
at 1994 but doesn’t know the exact reference to its proof. Let us note
also that the same construction from [8] was used in the proof of the
main result in [4] which states that the interior of any contractible
compact n-manifold (n > 5) with boundary admits C'AT'(0)-metric.
Remark 1.5. Tt follows from the previous remark that if 3 is not nec-
essarily homeomorphic to S*® (i.e. the famous Poincare conjecture is
false) then the answer to the question in [2], mentioned above, is also
negative in dimension 4. In other words, the positive answer to this
question would imply the positive answer to Poincare conjecture.

In the paper [10] by Burago, Gromov and Perel’'man it was proved
that for locally compact A.D.Aleksandrov spaces with inner metric of
curvature bounded from below in the case of finite Hausdorff dimension:
1)any sufficiently small neighborhood U has equal topological, Haus-
dorff and entropy (there called rough) dimensions dim;U, dimyU, and
dimyU; 2)the dimensions of sufficiently small neighborhoods of any
two different points coincide.

Both these statements can fail for spaces of curvature bounded above.

Theorem 1.6. There is compact space M with inner metric of curva-
ture < 0 such that

(1) at some point x € M, for any its neighborhood U,
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where 3 can be any real number more than 2 and even +00;
(2) on the other hand, there are other points, where all these di-
mensions are equal to 2.

With this aim we can take a subspace
(1.1) M= {(a,t),a € R,0<t < f(a)}

in CyR (see [3]) with the induced inner metric. Here R is real line with
usual metric; for a finite number 3 or 400 one needs take the function

(1.2) fl@) =1 +a]) 5,2 < B.
(1.3) F(@) = (1 + |af)” TVETRD,

Remark 1.7. Probably, this is the first known example of this kind even
in the context of inner metric spaces. Bakhtin’s example in [11] with
nonequal Hausdorff and entropy dimensions is countable.

Remark 1.8. Gromov told to the author at ICM’94 that similar ex-
amples can be constructed for R-trees (see [19]). In this case we will
have topological and Hausdorff dimensions equal to one. Then we can
use the direct multiplication with the real line to get an example of
topological dimension two. This is true, but we think that some other
features of constructed spaces deserve an attention.

2. PROOFs

In this section we prove the theorems from introduction providing
pathological examples of Aleksandrov spaces with curvature bounded
above.

Proof. of theorem 1.1. The construction of metric d was given in in-
troduction. So we need only prove the following proposition because
of discussion in the introduction. 0

Proposition 2.1. The space M := C_,S, where S is any CAT(1)-
space, has the hyperbolic boundary homeomorphic to S.

Proof. Since (M,d) is CAT(—1)-space by [3], it is hyperbolic in the
sense of the paper [17], so the hyperbolic boundary hb(M) is defined
(see [17]).The hyperbolic boundary hb(M) is defined in [17] as follows.
First M.Gromov defines the "scalar product” for points =,y € M with
respect to some fixed basis point p:

1 1
(z.y) := g(m +py —xy) = 56(19; z,y).
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Then a sequence x, € M is called convergent at infinity, if (xg.x;) — oo
when k,l — oo. The latter notion is independent on the choice of a
point p (see [17]). Since (M, d) is hyperbolic, the equality
lim k’lglfw(xk.yl) = 0

is an equivalence relation on the set of a sequences, converging to oc.
The hyperbolic boundary hb(M) is by definition the set of all equiv-
alence classes induced by this equivalence relation. If a sequence xy
is contained in a class a € hb(M), we write z, — « for k — oc.
M.Gromov defines the natural topology on M U hb(M) such that M
is dense in M U hb(M). More exactly, it’s defined as follows. For a
sequences T = (xy) and § = (y,) define

(Z.g) = lim klg_foo(xk.yk).
For a points z,y € M U hb(M) set

(x.y) := inf(Z.7),
with & = (xy) converging to x and § = (yx) converging to y. In partic-
ular, (z.z) = oo, if x € hb(M); (x.y) < oo, if x,y € hb(M),x # y. The
initial topology on M coincides with induced one from M U hb(M),
while a base of neighborhoods for a point € hb(M) consists of a sets

Ny :={y € MURb(M) : (x.y) > u},

where u is some nonnegative real number (see [13]).

In our case any point x € M has a form (a,t), where a € S, t is
nonnegative number and all the points of the form (a,0) are identified
with the vertex p € M of cone C_;.

Calculate at first (z.y) for x = (a,t),y = (b,s) € M and v := ab. If
v >, then (z.y) = 0. If v = 0, then (x.y) = min(¢, s).

If 0 < v < m, then by cosine theorem of hyperbolic geometry we
have

cosh xy = cosh t cosh s — cosysinh ¢ sinh s =

cosh ¢ cosh s(1 — cosytanh ¢ tanh s),
le.

et —2x
7(1 +e y) =
e'e’ —2t ~2s
55(1 — cosytanhttanh s)(1+e =) (1 +e %)
and

et+s—xy 1 + e—Qxy

2 (1+e2)(1+e2)(1 — cosytanhttanhs)
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Thus
1 2(1 + e~22v)
(z-y) = 2 log (1+e2)(1+e2)(1 — cosytanhttanhs)
If v — Y0,0 < 7o < 55,1 — 00, we get in the limit
(2.1) (oooe) = 5 log ﬁ
because xy — oco. In general case we get an upper bound
1 4
(w.9) < 2 log 1 — cos~ytanhttanhs’
If
DTk, PYk —> OO,
then
lim inf (xp.y) = llog#,
k,l—+o00 2 1 —cosv
where v, = lim sup ab;.
Thus liminf(zg.y;) = oo if and only if limsup axb, = 0, i.e. ay,b

converge to one and the same limit point @ = b in S. In particular, this
is true for (x;) which is equivalent to (y;). Thus we get the bijection
between hb(M) and S. Under this it follows from the formula 2.1 that

Yoo = arccos(1 — 2e~ 2@eeve)),
Hence for o, € hb(M),
Nxoo,u m hb(M) = {yoo 6 hb(M) . a(.roo)b(yoo) < aI“CCOS(l _ 26—2u)}.

So, the topology in hb(M) coincides with the topology in S. The propo-
sition is proved. U

Remark 2.2. When M is a finitely compact ([12]) (in other terminol-
ogy, proper) C AT (0)-space, there exist the other possibilities to define
hb(M) and the same topology in M U hb(M) (see [6]).

Informally the entropy dimension dimg(M,d) of a metric compact
(M,d) is defined as follows. Let ¢,,M be the number of elements in
a minimal rg-net in (M, d) (i.e. with a minimal number of elements)
for a real number 9 > 0. Then dimg(M, d) is defined as a nonnegative
real number (3 such that c¢,,M has the same order as (ry)™", when
ro — 0. This (in general, nonexact) definition will work quite well in
our later considerations. For us it will be more convenient to use in
this definition instead of ¢,,M the maximal number N, M of points in
a subset W C M such that every distance between different points in
W is no less than 2ry. Note that for inner metric space M, the number
N,,M 1is equal to a greatest number of pairwise disjoint open balls of
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radiuse ry in M. We need to show that the numbers ¢, M and N, M
have equal orders when rq — 0.

Lemma 2.3. For any metric compact (M,d) and any real number
ro > 0, one has the inequality

NTQM S CroM S NTTOM

Proof. Indeed, let V be a rg-net in M and W be a set mentioned
above.Then any element w of W is contained in rg-neighborhood of
some choosen element g(w) of V. Then g(w;) # g(ws), if wy # wo.
In opposite case we would have d(wy, ws) < 2ry by triangle inequality,
which is impossible by definition of W. It follows from here the first
inequality of the lemma.

On the other hand, if W above is taken for number %}, then it must

be a rg-net in M because of maximality, so we get the second inequality.
O

The cone P := CyR, where R is real line with usual inner metric,
supplies an example of (noncompact) C AT(0)-space whose direction
space (2o P at vertex O has diameter 7 and is locally isometric to R. So
Qo P is not inner metric space. Moreover an angle of ”shortest cone of
directions” joining two given directions (see [1]) maybe arbitrary large.
The desired (for theorem 1.6) space M C P with induced (inner) metric
was described in introduction by formulas (1.1) and (1.2). First we need
to find when M, defined by formula (1.1) for a positive continuous
even function f(a) with condition f(a) — 0, when @ — oo, will be a
(metrically) convex subspace of P.

For this consider an Euclidean triangle AOAB with angle ZAOB =
a,0 < a <, and sides OA =r; > 0,0B = ry, > 0; C be a point on
side [AB] such that ZAOC = «;,ZBOC = «ay, where a1 + as = a.
Then direct calculation shows that OC = r is given by formulas

(2.2) - ' 7179 Sin Oé' 7 1 _ isi.n Qo N lsi'n al‘
risina; +resinas’ v 7y sina 1y sina
Now M, defined by formula (1.1), is convex if and only if M together
with a points («aq,71), (g, r2), where 0 < ay — oy < 7, contains the all
shortest arc in P, joining these two points. As a corollary of formulas
(1.1) and (2.2), M is metrically convex if and only if the function

¢(r) == 7oy satisfies the inequality
(2.3) (o + bas) < d(a) 0102 = 1) sinty(ag — o)

Y

sin(ag — ) + ¢las)

(where t; +t5 = 1,0 < #; < 1 and «; have other sense than in (2.2)),
i.e. function ¢ is ”sinus-convex”. The used term is connected with the

sin(a — )
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fact that after removing ”"sin” in the formula (2.3) we get the convex-
ity condition for the function ¢. It is geometrically evident that the
function g(x) := ®>% is strongly decreasing on interval 0 < z < 7. It

follows from here that

sinty(ay — ay)

: >tk =1,2.
sin(ag — )

Then every (positive continuous) convex function is sinus-convex. The
opposite statement is also true.Its proof is more difficult even uses only
standard tools from real analysis.The main steps of the proof are that a
sinus-convex function is ”infinitesimally convex” and then locally and
globally convex.We omit this proof as well as the proof of the last
statement in the proposition 2.4 below. As a corollary of (2.3) and
discussion above we get the following proposition.

Proposition 2.4. (1) Every positive continuous real function is
stnus-convex if and only if it s convex.
(2) The space M, defined by formula (1.1), is metrically conver if
and only if the function ¢(a) := ﬁ is conver.
(3) If f(«) is any positive continuous even real function such that
f(a) = 0 when o — oo, then M, defined by formula (1.1) und
equipped with induced inner metric from P, is compact.

It is well known that for a general compact metric space M we have
the inequalities dimyM < dimyM < dimgM. One can prove that in
the case of metrically convex subspace M C P from proposition 2.4
the extreme dimensions above coincide, hence all these dimensions are
equal. So we need consider noncovex M C P equipped with induced
inner metric. But then arose the problem to find a connection of in-
duced inner metric d in M with old metric p and to prove that (M, d)
is CAT(0)-space. We suppose that every space (M, d) with conditions,
as in the last statement of proposition 2.4, is C AT (0)-space. More gen-
erally, it is very similar that we can suggest the following conjecture.

Conjecture 1. Let M be a simply connected closed subset of a C AT (0)-
space P of topological dimension two, which admits (finite) inner metric

d, induced from P. Then (M,d) is also C AT (0)-space.

One can check that for the function f(«) in formula (1.2) or (1.3), the

function ¢(«) := ﬁ has positive first and negative second derivatives

for positive a. Hence by proposition 2.4, the formulas (1.1) and (1.2)
or (1.3) define a subspace M which is not metrically convex in P, so

we need the following lemma.
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Lemma 2.5. A subspace M C P, defined by formula (1.1) for the
function (1.2) or (1.3) and endowed with inner metric d induced from
P, is a compact CAT(0)-space.

Proof. One can easily see that every subset of a form
Miay 00 = {(@,t) € Mt an < @ < an},

where 0 < g — ay < 7, will be a metrically convex subset of (M, d)
and (Mq, a,], d) is isometric to a closed region D in Euclidean plane,
bounded by a curvilinear Euclidean triangle AOAB with a segments
[OA],[OB] and a concave arc AB and endowed with induced inner
metric 6. Evidently, the arc AB is a geodesic in (D,¢), which is a
shortest arc if and only if its (always finite!) length is less than OA +
OB = f(aq) + f(ag). The last condition is garanteed if ay — ay is
small enough (depending on «a; or as), so we can assume that this
condition is fulfilled. Then AOAB is a real triangle in (D, d) as well
as the corresponding bounding curve of My, q,]. Now one can prove
easily (directly or) with the help of Aleksandrov lemma (lemma 2.16
in [6]) and any version of limit in the corollary 3.10, [6], that (D,d)
(hence My, a,)) is CAT(0)-space. Since M can be obtained by gluing
of subspaces of the form M|, ., along shortest arcs in linear order, it
is C AT (0)-space by Reshetnyak theorem (Basic Gluing Theorem 11.1
in [6]). O

Lemma 2.6.
If f(«) is any positive continuous even real function such that f(«) is
decreasing, when o > 0, then on (M,d), defined by formula (1.1) and
equipped with induced inner metric d from (P, p), we have the inequal-
ities
p<d<2p.
So, the metrics d and p on M are bilipshitz homeomorphic.
Proof. The first inequality is evident.
Note that under mentioned conditions,
d((ala Tl); (062, TZ)) - p((ala Tl); (062, T?)))
if r1 =1y, Or @1 — g, or |ag = | > m. Let suppose that r < r5 and
0 < |oy — ag| < . Then by triangle inequality,
a = p((ala Tl); (042, T2)) S d((Oél, Tl)) (042, T2)) S
d((ala Tl); (042, Tl)) + d((a27 Tl); (062, T2)) -

p((a1,71), (a2, 71)) + p((az, 1), (2, 12)) =

|a1 —042|

27y sin +|r =l i =b+c.
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There exists an Euclidean triangle A with the sides a, b, c. The angle
a between the sides b, ¢ in A is evaluated as follows:

T—lag—ay] 7w |y —aw| _w
=N - — = — —_— = > .
“=n 2 2 2 —2

Thus
a> Vb2 + 2
If § := max(b, ¢), then

asz+§zézb;ﬂ

i.e.
d((ala Tl)) (042, T2)) S b +c S 2a = QP((Oéla Tl)) (042, T?)))
as required. O

Proof. of theorem 1.6. Onemore consider a space M as in the last
statement of proposition 2.4 and assume also that f(«) is decreasing
function when « is positive. By lemma 2.6, we can use the metric p
on M instead of metric d for calculation of dimg(M,d). We use this
possibility below.

Denote by M,,, where 0 < o < f(0), compact subset in M, defined
by formula

M,, ={(a,t) e M : 15 < f(a)}.
Suppose that f(ag) = 70,9 > 0, and denote ¥(r¢) := ag = f~(ro).
Then well-known formula for area in polar coordinates gives the ex-
pression

(2.4) o(M,,) = /0 " () da

for metric p in P.

Evaluate below the number N, M from lemma 2.3.Denote by m the
maximal nonnegative integer number such that 2mr, < f(0). Evi-
dently, the distance between the points [y, 2kr] and [aw, 2krg] in M
will be no less than 2rg, if [a; — as| > 2arcsin(5;). The maximal num-
ber of points in M, satisfying pairwise this condition under fixed k, will

be no less than
200(2kro)  Y(2kro)

1 1
2 arcsin % arcsin 5

Thus by taking all £ = 0,1, ..., m, we get at least

Z 71?(2]?7"0) = np M
k=1

O |
arcsin 5%
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points in M with pairwise distances between them no less than 2r.
Under this for any k& > 1, by the inequality mentioned above

sin arcsin &= S sin arcsin %

2k
arcsin ﬁ arcsin %
- 1 garesini 7 2
arcsm% < %T = 6_k < 3_k
Thus
(2.5) N,y M > n,,M > §Z 2kap(2krq) > §2;@(27«0).
4k:1 4

For the function (1.2) (respectively, (1.3)), we get
Y(r) =71 =07 = L (0(r) = f7H(r) = p- Vs ),

It follows from the last equalities in both cases and formula (2.5) that
B (respectively +oc) will be the entropy dimension of M, if an upper
bound of N,,M in the first case has the same order relative to 2ry as
the last term in (2.5), i.e. as ¥(2ry) = (2ry)~? — 1 when r, — 0.0f
course, in the second case we need no upper bound for N, , M.

By triangle inequality in M, there is at most one point («, ) in the
set W C M above with r < ry. Thus all maybe but one points in W
are contained in M, and have a form («,r),r > 7. So we can suppose
that all points in W have the last two properties. It follows from lemma
(2.5) that the set M,, is canonically closed subset in M (i.e.it is the
closure of open subset in M), bounded by four geodesics in (M, d)
(1), namely shortest arcs [OA], [OC] and geodesic arcs AB, BC, where
A =[-ag,ro], B =[0,1], A = [, ro]- Since f(0) =1, f'(0) = —%; it’s
clear that the angle between the arcs BA, BC' at the point B is equal
to 7 := 2arctan 3. Then vy > § because 3 > 2. Since f’(a) < 0, when
a > 0, the inner angles of M, at points A, C' are also more than right
angle. At the end the plane inner angle of M, at vertex O is equal
to 2ag. Since we are interested in the case rp — 0, when ay — 00, we
also can suppose that the last angle is more than right angle. Using the
mentioned properties of sets W and M, and the fact that arcs AB, BC
are concave (geodesics) in M,,, one can easily see that the intersection
of every open ball in P of radius ry and center at a point in W has an
area more than =) (relative to metric in P), if 7, is small enough.
Evidently, all these balls are mutually disjoint, while area

B—2
7(y) = 5250+ )T~ 1) = 22 (g - )
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as a corollary of formula (2.4), applied to the function (1.2).
Using the above considerations, we get for N, M the following upper
bound v A
N < 2 AP
w(ro) W(ﬁ _ 2)

4
i.e. the quantity of desired order.

On the other hand, the space P can be represented as the countable
union of sets

P[km(lﬁ_l)ﬁ] = {(Oé,t) eP:krn<a< (/{Z + 1)7T},

where k is any integer number. Every such set is isometric to Eu-
clidean semiplane, hence has Hausdorff dimension 2. Then the space
P also has Hausdorff dimension 2 by known property of Hausdorff di-
mension.Hence the same is true for M C P. Evidently, M has the
topological dimension two.The theorem is proved. O

(T0)7ﬂ7

Remark 2.7. In the paper [7] instead of the function (1.3) it was erro-

neously taken the function f(«) = (1+|a|)” ™l. The space M, defined
by (1.1) and this function, is noncompact.

Question 1. Does there exist a compact inner metric space M (maybe,
with curvature bounded above) with inequality dimpM < dimyM?

Question 2. In constructed example M possess the property that ev-
ery but one point in M has a neighborhood where all three dimensions
coincide. Is it possible to construct an example of (inner metric) space
M with curvature bounded above such that every neighborhood of any
point in a dense subset V. C M has different entropy and Hausdorff
dimensions?
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