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BUSEMANN SPACES OF ALEKSANDROV
CURVATURE BOUNDED ABOVE

V.N. BERESTOVSKII

ABSTRACT. In this paper we prove the following main result:every
Busemann G-space with Aleksandrov curvature locally bounded
from above is Riemannian C°-manifold (with C!-atlas in which
the components of metric tensor are continuous). Previously we
find a necessary and sufficient conditions for isometricity of a met-
ric space to (finite- or infinitedimensional) Euclidean space or unit
sphere in Euclidean space. Also we prove that for locally compact
geodesically complete inner metric space M of Aleksandrov curva-
ture locally bounded from above, the tangent space M, defined as
O-cone over space of directions to M at any point = € M, is iso-
metric to Gromov tangent cone T, M, defined as Gromov-Hausdorff
limit of scaled space M with the base point .

1. INTRODUCTION AND MAIN RESULTS.

In this paper we prove the part of results on A.D.Aleksandrov spaces
of the curvature < K (see [1],[2],[3], [4]) announced earlier in the paper
[5]. Let us give necessary definitions and notations.

The distance between two points x, y of a metric space M is denoted
by zy. (Locally) inner (or (locally) interior or (locally) length) metric
space is a metric space in which (locally) any two points z,y can be
joined by a path with the length arbitrary close to xy. A path joining a
points =,y in M is called shortest arc or segment (with the ends z, y) if
its length is equal to zy; the notation is [zy]. (Locally) geodesic space is
a metric space in which (locally) any two points can be joined by short-
est arc. By Cohn-Vossen theorem [10], every complete locally compact
inner metric space is a geodesic space. Also we will consider in this
paper a metric spaces without local compactness (or even separability)
condition.
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A point y lies between a points x, 2z if vz = xy+yz and y # x,y # 2;
the notation is (zyz).

An open (closed) ball in M of the radius r and the center z is denoted
by U(z,r) (respectively B(z,7)); the corresponding sphere is denoted
by S(z,r). By Sk we denote the simply connected two-dimensional Rie-
mannian manifold of constant sectional curvature K. For any ordered
triple of points (x,y, z) in M, we will denote by ~x(xyz) the angle in
the triangle AX in Sk with the sides of the lengths xy, x2z and yz, lying
opposite to the side with the length zz.

For a point p of a metric space M, we will denote by Q,(A) the
space of all directions to M at point p and by w,(M) the subspace of
directions to M at the point p, defined by shortest arcs starting at p
('see[1], [2] or [4]). The distance between two directions is defined to be
the upper angle o between corresponding curves (respectively, shortest
arcs, see [1] or [2]). The corresponding 0-cones M, = Cp€2,(M) and
my, = Cow, (M) (see [2]) as well as their Hausdorff completions we will
call the tangent spaces to M at point p.

On the ground of I.G.Nikolaev theorem [13] (or theorem 10.1 in [2]),
some additional propositions about (completed) tangent and direction
spaces, in particular, the isometricity M, and Gromov tangent cone
T,M (see [12]) and checking of the inequality (4) in [6], we prove the
following generalization of the main result in [6].

Theorem 1.1. Every Busemann G-space [9] with Aleksandrov curva-
ture, locally bounded from above, is a Riemannian C°-manifold (with
C'-atlas of distance coordinate charts in which the components of met-
ric tensor are continuous).

Remark 1.2. The author proved in [8] with the help of the paper [14]
that for Busemann G-space with curvature bounded below, the com-
ponents of metric tensor are C''/?-functions in distance coordinates.
It’s unknown for this moment whether this statements is true also un-
der conditions of theorem 1.1 or whether this statement can be even
improved in some other coordinates.

2. ABOUT (COMPLETED) TANGENT AND DIRECTIONS SPACES.

The main goal of this section are simple necessary and sufficient
conditions for isometricity of completed tangent (directions) space to
Aleksandrov space of curvature bounded above at its point to (not nec-
essarily separable) Hilbert (Euclidean) space (or unit sphere in Hilbert
(Euclidean) space). For this we prove the following general theorem.
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Theorem 2.1. A metric space W is isometric to unit sphere in an

FEuclidean or (complete not necessarily separable) Hilbert space H if

and only if W possess the following properties:

1) W is a CAT(1)-space;

2) W is complete;

3) for any two points x,y € W, xy < 7;

4) for any point x € W there is unique (opposite) point x' such
that xx' = 7;

(5) for any two points x,y € W with a distance xy < m there is a
point z such that (zyz).

(
(
(
(

Moreover, CoW 1s isometric to H if and only if W possess the above
properties.

We need at first some lemmas.

Lemma 2.2. Under conditions (1)-(5) of the theorem 2.1, for any two
points x,y € W with a distance xy < 7, we have (zyz').

Proof. We will use without any references the conditions (1)-(5) of the-
orem 2.1. Evidently, the points x, y are joined in W by unique shortest
arc [zy]. There is a point z such that (xyz) and for every such point
z,xz < m; the shortest arc [yz] is also unique and [zy] U [yz] = [zz].
If vz < m, we can repeat this process. Since W is complete, every
increasing sequence of shortest arcs [zz,] in W is contained in shortest
arc [Tzo|, where z is the limit point of z, and [z is the union of
all [xz,] together with the point z.. Using these considerations, we
can assume the existence of a maximal (relative to inclusion) shortest
arc [zw]. Then we must have xw = 7w and w = ', which finishes proof
of the lemma. O

Lemma 2.3. Under conditions (1)-(5) of the theorem 2.1, for every
point p € W, the space W is isometric to Cy(w,W) and w,W is isomet-
ric to the sphere S(p, §) of radius 5 with the center p. Furthemore this
sphere S(p, 5) is m-convex in the sense that every shortest arc joining
a points x,y € S(p,m/2) with a distance xy < 7 is entirely contained
in S(p,%).

Proof. Let p be arbitrary point in W and pp’ = 7. By lemma 2.2,
pxr + xp’ = w for every point x € W. Let 0 < px; < m;0 = 1,2 for
some points z; € W and k; be (unique) shortest arc joining p and p/
and passing through ;. Then k;, ks constitute a digon with vertices p,
p' and angles 7, 7' at p, p’ respectively. Let suppose at first that both
angles 7, 7/ are less than m. We get the inequality v < +' if consider
ki, ko as shortest arcs with origin p and use 1-concavity condition (see
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[3]). We get the inequality 7' < 7 by interchanging the points p, p',
so 7' = ~. Let suppose now that v = 7 and consider ki, ky as shortest
arcs with origin p, parametrized by arclength. Then & (3)ks(5) = 7
by 1-concavity and (ki(5)p'k2(5)) by lemma 2.2. Hence o/ = 7 also.
So in all cases we proved that v = . It follows from this also that
the digon, considered above, is isometric to corresponding digon in S)
with angles . Then W is isometric to 1-cone C(w,W) over w,W (see
[3]). Hence w,W is isometric to the sphere S(p, 5), where a direction
[ € wp,W, defined by a shortest arc & with origin p, corresponds to the
point k(%) € S(p, 5). We proved the first statement of lemma. Now the
second statement follows from general fact that every geodesic space
M is naturally isometric to the m-convex subspace in C; M (see [7]) and
from the isometric correspondence between w,W and S(p, 5) indicated
above. OJ

Proof. of theorem 2.1. Evidently, the conditions (1) — (5) are neces-
sary.We will prove now that these conditions are also sufficient.

It’s possible that W contains only two elements: = and z’. Then W
is isometric to O-dimensional sphere of radius 1 while C1 W is isometric
to 1-dimensional Euclidean space. So we can assume that W has more
than two elements.

If vy < 7 for z,y € W then by lemma 2.2 [zy] U [ya'] = [z2/],
[zy'] U [y'2’] = [za'], [ya] U [2y'] = [yy'] and [y2’] U [2'y'] = [yy']. This
means that the union S, , := [zy]U[y2'|U[2'y'| U[y'z] is isometric to 1-
dimensional sphere and (.S, is isometric to 2-dimensional Euclidean
space. Hence the proof is finished if W = S, ,. In the opposite case
Sy, is m- convex subset in W (uniquely defined by z,y) and C,5,,, is
convex subset in C;W. Here the m-convexity of S, , means that any
two points in S, , with distance less than 7, can be joined by (unique)
shortest arc, lying in S, ,. Now the statements above garantee that one
can define correctly and uniquely the sum of any two elements in C; W
by parallelogramm rule. We would prove that CyW is Euclidean or
Hilbert vector space and hence that W is unit sphere in this space if
we will prove that any three noncomplanar elements x,y, z in W are
contained in unique 7—convex subset S, , . (in W) which is isometric
to S;. The word "noncomplanar” means that no point of x,y, z lies
between other two and all these points are pairwise different.

Now, if z,y,z are any noncomplanar points in W, we denote by
k, (respectively k,) the unique shortest arc parametrized by arclength
which contains the points z,y, 2’ (respectively, z, z, 2" ). Then the set
S 1= Sk,(z).k.(z) is contained in S(z, §) by lemma 2.3. Now it follows
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from lemma 2.3 that we can define the above set S, . as the union of
all shortest arcs [zw] U [wz'], where w € S. O

We get immediately from theorems in [13] and 2.1 above the following

Corollary 2.4. The completed tangent space Mp at a point p of a space
M of curvature < K is isometric to Euclidean space or (complete not
necessarily separable) Hilbert space H if and only if W := wp—]\/[ POSSESS
the properties (4), (5) from theorem 2.1. Under this W is isometric to
unit sphere in H.

Proposition 2.5. The conditions of corollary 2.4 are satisfied if for
every element | € wyM there is an element " € w,M such that a(l,l") =
T and

(2.1) a1+ a(l';n) + a(n,l) = 2r

for any element n € w,M. Here a denotes the angle between two
directions.

Proof. 1t follows from equality (2.1) that if also «(l,!") = =, then
a(l',l") =0 and I',!" define one and the same element of w,M.

Clearly the equality (2.1) is satisfied also for any n € w,M. We state
also that all conditions of the proposition are satisfied in wp—M. Indeed,
let suppose that [, € w,M and [, — | € w,M. By condition there
is (unique) element [} € w,M such that a(lg,l}) = 7. It follows from
(2.1) and triangle inequality for « that

= a(ly, ) = a(ly,ls) + a(ls, 1),
T =a(l,l) = a(l, ) + a(l, ).

Hence «(l},1%) = a(ly,[s) and the sequence [}, is fundamental. Then
l, = I' € w,M and by continuity

m = ol 1) = o, 1),

what is required.

As earlier for w,M, it follows now that the condition (4) from theo-
rem 2.1 is satisfied for W := w, M. Since the conditions of the proposi-
tion are satisfied for W, the condition (5) from theorem 2.1 is satisfied
fore=Ly=m,z=1. O

The condition (4) of theorem 2.1 for W := w, M, where M is Aleksan-
drov space with curvature bounded above, splits into two parts which
follow from geometric properties of shortest arcs in M stated in the
next two propositions.
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Proposition 2.6. A (locally geodesic) space M of curvature locally
bounded from above has the property of local extendability of shortest
arcs (see [3]) if and only if for every point p € M and every element
l € w,M there is an element ' € wyM such that a(l',1) = .

Proof. Necessity is evident.Let us prove sufficiency. Let suppose that
K-concavity condition is satisfied in a neighborhood U(q) and [ is a
shortest arc in U(q), joining a different points ¢, ¢e. By condition,
there is a shortest arc I in U(q) with origin ¢; such that o(l',l) = 7.
Then v (zq2') , where € [,2' € I', is nondecreasing function on
¢q1x, 1’ because of K-concavity condition. Hence ' Ul is shortest arc.
Similarly, the shortest arc I'Ul can be extended to a shortest arc beyond
the point ¢s. O

Corollary 2.7. A locally geodesic space M of curvature locally bounded
from above has the property of local extendability of shortest arcs if and
only if it 1s geodesically complete.

Proposition 2.8. A (locally geodesic) space M of curvature locally
bounded from above has no bifurcating shortest arcs (see [3]) only if for
every point p € M and every element | € wy,M there is at most one
element ' € wyM such that a(l',1) = .

Proof. Let suppose that
all,l'y =7 =a(l,1")

for a shortest arcs [,1',1" € w,M. Then I'Ul, " Ul are shortest arcs (near

the point p) by proposition 2.6. Then ' =" near the point p because

M has no bifurcating shortest arcs. This means that I' =1" € w,M.
[

The following proposition is evident.

Proposition 2.9. The completed tangent space E to a (locally ge-
odesic) space M of curvature locally bounded from above at a point
p € M has the global property of extendability of shortest arcs if and
only if W := w,M satisfies the condition (5) of theorem 2.1.

Remark 2.10. Tt follows from [1] or [2] that w,M = Q,M = w,M if M
has a compact neighborhood of p, has the curvature locally bounded
from above and every shortest arc [px] can be extended to a shortest
arc [py] of some fixed length r > 0 which is independent on [pz]. In
particular, this is true for any finite-dimensional manifold with inner
metric of curvature locally bounded from above (see [1] or [2]). Later
in this section we will consider primarily a spaces with conditions men-
tioned in the first sentence of this remark. Our next aim is the proof



BUSEMANN SPACES OF ALEKSANDROV CURVATURE BOUNDED ABOVE 7

of isometricity of tangent space M, and Gromov tangent cone T, M
under these conditions. The author proved this result in his Dr.Sci.
dissertation earlier but did not publish it.

Let suppose that a closed ball B(p,r),r > 0, in metric space (M, p)

with properties as in previous remark is compact, has globally the
property of K-concavity and is convex. For the last property see [1]
or [2]. We define the family of semimetrics py,0 < A < 1, on B(p,r)
as follows (see also [2]). Every point x € B(p, ) is joined with point
p by unique shortest arc [pz] (see [1] or [2]).Let Az be the point on
[px] such that p(Az) = A(px). For any points z,y € B(p,r) we define
pa(z,y) = AL,
Proposition 2.11. The family of semimetrics py converges under A —
0 wuniformly on B(p,r) X B(p,r) to some continuous semimetric py.
Under this the metric space (3(r), po), induced on B(p,r) by semimetric
po, s wsometric to the closed ball of radius r in M, with the center at
1S oTigin.

We need the following lemma.

Lemma 2.12. Under conditions of proposition 2.11, we have inequality

pr < (1+CK7r?), K >0,

where C 1s positive constant depending only on K and r. Moreover,
C— % if K — 0 and
Px S P K S 0.
Proof. The case K < 0 is evident. Let K be a positive number.
Let a,b be a positive fixed constants and ¢(¢) be the length of the
third side in euclidean triangle with the sides a,b and angle 0 < ¢ <7
between them. By cosine theorem,

c(¢)* = a® + b* — 2abcos ¢.
Differentiating by ¢, we get

¢(¢) = ab

We used here the sine theorem for angle ¢, which is opposite to side
a. So we have for ¢9 > ¢y,

(2.2) c(d2) — c(¢1) < b(ga — ¢1).

Let now

sin ¢

= bsin ¢, < b.

T =pAB,T" = p" A¥B¥
be respectively a triangle in B(p,r) with sides
pA=a,pB =0, AB = ¢(¢)
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and corresponding comparison triangle in Sk, i.e.
pEAE =, p"BE = b, AKBX = AB.

Let AYX, B be the points on the sides p® AX p® BX of triangle T*
with conditions

pR ALY = Xa, p" BE = \b.
At the end let ¢ be the angle of euclidean triangle with sides Aa, Ab,
AKBE opposite to the third side. One get from definition of semimet-
ric p) and K-concavity property the inequality

pr < c(g).
Thus we only need prove the inequality
(2.3) c(d2) < (14 CKr?)e(¢).

It follows from 0-convexity of metric on Sk (see [1]) and Gauss-
Bonnet theorem that

(2.4) ¢y — 1 < KS(T) < KCoS(T°),

where Cj depends only on K and r, and converges to 1, if K — 0. Now
from (2.2) and (2.4) it follows the inequality

c(¢2) — (1) < BKCoS(T?) < SKCobac(sy).

Then we get for C := %CO,
c(¢2) < (1+CKab)e(py) < (1+CKr¥)e(ey),

as required. O

Proof. of proposition 2.11. 1t follows from remark 2.10 that w,M =
Q,M = w,M, hence ﬁp = C'pr—M = CowpM = M,. The last statement
of proposition and pointwise convergence py — po on B(p,r) X B(p,r)
follows easily from existence of angle between any two shortest arcs
with origin p (see [2] or [3]) and definition of A,. We only need to
prove that the convergence p) — py is uniform on B(p,r) x B(p,r). It
follows from lemma 2.12 that the family of semimetrics p),0 < A < 1,
on compact space B(p,r) x B(p,r) is equicontinuous. Now it follows
from Ascoli-Arzela theorem that the convergence above is uniform. [

Corollary 2.13. The map

(2.5) fo: (B(p,7), p) = (B(r), po),

induced by identity map of the ball B(p,r), is Lipshitz map of closed
ball B(p,r) in M onto closed ball (3(r), po) of radius r in M, with the
center at its origin.
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Theorem 2.14. Under conditions mentioned just before the proposi-
tion 2.11, there exists the Gromov tangent cone T,M and this cone is
wsometric to M.

Proof. By proposition 2.11, metric space (8(r)a, o), induced by semi-
metric p,, is isometric to closed ball of radius r with the center p in the
space (M, §). Let us define continuous functions on B(p,r) by formulas

F0)(y) == pay,b) — paly, p),

fo(0)(y) := po(y, ) — po(y, p),

where b,y € B(p,r). Let C(B(p,r)) be the Banach space of continuous
functions on the compact B(p,r) with Chebyshev norm

|| f]] :== max{|f(z)[,z € B(p,7)}
and distance

n(f,9) = IIf —gll-

The images
I(B(p.r)), fo(B(p,r)) C C(B(p,7))
of the mappings

frib€ B(p,r) = falb), fo: b€ B(p,r) — fo(b)

are isometric to the spaces

(ﬂ(T)/\, p_/\)a (ﬂ(T)OJ m)

Then the Gromov-Hausdorff distance between these metric spaces ad-
mits the following upper evaluation

distqu((B(1)x, Px), (B(r)o, Po)) <
Hespr (A(Bp,7)), fo(B(p,7))) <

sup{|p,\(y, b) - pO(yJ b)|> Y, b S B(pa 7“)},

what converges on the ground of proposition 2.11 to zero, if A —
0.Here H¢(p(p,r)) denotes the Hausdorff distance between a subsets in
C(B(p,r))-

This means that there exists the Gromov tangent cone T, and the
closed balls of radius r in M, and 7, M with the centers at correspond-
ing points (vertices) are isometric. Evidently, the spaces M, and T,M
admit the homotheties with any coefficient p, u > 0, and the centers
at vertices. Furthemore these spaces are finitely compact (every closed
bounded subset is compact) on the ground of corollary 2.13. Then the
spaces M, and T,M are isometric.The theorem is proved. U
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3. BUSEMANN (G-SPACES OF CURVATURE BOUNDED ABOVE.

A Busemann space [9] can be described as locally compact complete
inner metric space without bifurcating shortest arcs and with the prop-
erty of local extendability of shortest arcs.

The following proposition immediately follows from the corollary 2.7.

Proposition 3.1. Under presence of (Aleksandrov) curvature locally
bounded from above, one can change the last condition in the above de-
scription of Busemann G-space by (weaker) condition of geodesic com-
pleteness.

Theorem 3.2. Every Busemann G-space (M, p) with curvature locally
bounded from above is topological manifold of some finite dimension
n. Moreover, for every point p € M, the tangent space M, = T,M 1is
isometric to n-dimensional Euclidean space and direction space w,M =
wpM is isometric to (n—1)-dimensional unit sphere (in this Euclidean
space).

Proof. By condition M has the property of local extendability of short-
est arcs. Then it follows from remark 2.10 that wp—M = QM = w,M,
hence ﬁp = Cowp—M = CowpM = M,. We will prove at first the last
statement. Since M is locally compact, in the light of corollaries 2.13,
2.4, propositions 2.6, 2.8, 2.9 and theorem 2.14, we must prove for this
only the global property of extendability of shortest arcs in M, for ev-
ery p € M. (The coincidence of n for different p will follow from other
statements in the proof.)

We may suppose that every shortest arc [xy] with x,y € B(p,r/4)
can be extended to (unique) shortest arc [zy;] where

(3.1) (xyy1), xyr = 2zy.

and r satisfies the conditions mentioned before the proposition 2.11.
The same condition is satisfied in the space (M, %) when ry = T, 0 <
A < 1. By definition,

T,M = GH lim (M. §)=
where the abbreviation GH lim means Gromov-Hausdorff limit (see
[12]) and p is the basis point.

As a corollary of the propositions 2.6 and 2.8, any two shortest arcs
of length r with origin p coincide if the angle between them is zero. Also
all shortest arcs [px] are unique if x € B(p,r). Thus the Lipshitz map
fo from the corollary 2.13, which maps the compact ball B(p,r) onto
closed ball of radius r in tangent space M, with the center O (which
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contains p as its representative) is a bijection and hence a homeomor-
phism. Also it follows from this that all semimetrics py,0 < A < 1, are
really a metrics.

Let xg,yo be any points in M, and

po(ﬁUo;O)apo(yo;O);Po(ﬂvoayo) < s.

Let assume that A < - and Gromov-Hausdorff distance (see [12])
dist ((B(p, 4)s), §)= Br (0, 45)) < €.

Then there are a points z,y € B(p, As) and y; € B(p,4As) such that
the condition (3.1) is satisfied and for some point y§ € Bz, (O, 4s) the
maximum of the following numbers

() ) = owol. (5, v1) — o,

I(g)(y,yl) — Yoy

is less than 3e.
Hence

(3.2) ToYo + YoYp < Toyy + 92, [ToYo — Yoys| < be.

Using finite compactness of 7, M, one can choose a sequence of points
Yo", where g, — 0, converging to a point yo1 € T,M. On the ground of
(3.2),

ZToYo + Yo¥Yo,1 = ToYo,1; ToYo = YoYo,1-
So shortest arcs in M), are globally extandable, as required.

Hence the mentioned map fy maps closed (or open) ball B(p,r) (or
U(p, r)) homeomorphically onto closed (open) r—ball in euclidean space
of some finite dimension n (because B(p,r) is compact). The space M
is connected. Thus it follows from above results and Brower theorem
on invariance of dimension of a region that n one and the same for all
p.Hence M is a topological n-dimensional manifold. O

The proof of theorem 1.1 needs some preliminary statements.

Proposition 3.3. If in Rx (see [2]) a shortest arcs ly, my with an
origins pg converge (in induced Hausdorff distance) to a shortest arcs
[, m with origin p when k — oo, then

a(l,m) > limsup a(lg, my).

Proof. Let z,y be arbitrary points on shortest arcs [, m different from
p. Then on shortest arcs Iy, m; there exist a points xy,y, different
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from pj such that z, — z and y, — y (evidently, p, — p). Clearly,
Vi (@kprye) — V& (@py). Under this a(lk, mi) < vk (@kprye)- Thus
Vi (zpy) > limsup a(ly, my).
Then under conditions x,y — p and k£ — oo,
a(l,m) = limyx (zpy) > limsup a(ly, my),
what is required.

O

Proposition 3.4. In a region Rg of Busemann G-space under the
same conditions as in proposition 3.3, we have

a(l,m) = klggl(3 a(lg, my).

Proof. By propositions 2.6, 2.8, the shortest arcs [, [, has unique oppo-
site shortest arcs I, [}, with origins p, py. Then I} — I', if we suppose for
definiteness that all shortest arcs have length r > 0. In opposite case
one could choose a subsequence k, such that [, — [", where s — oo
and [" # I'. Then it would follow from proposition 3.3 that a(l,!") = =,
which is impossible by proposition 2.8.

It follows from proposition 3.3 that

(3.3) a(l';m) > limsup a(ly, my).

On the ground of theorem 3.2,

(3.4) a(l',m) =n —a(l,m), a(l,,m) =7 — a(ly, mg).
It follows from (3.3) and (3.4) that
a(l,m) =7 — a(l'ym) < —limsup a(l}, my) =
7w — (m — liminf a(ly, mg)) = lminf a(lg, my).
This inequality together with proposition 3.3 gives the required state-

ment. ]

Proposition 3.5. Let B(p,r) be a convex region Ry in Busemann G-
space, px = 1. Then for every e > 0 there is a number r1,0 < ry < r,
such that for any two different points x,, xo with condition px; < ry;j =
1,2,

la([x1z], [1122]) — Vi (T2129)| < €.

Proof. We will have by K-concavity for corresponding ry,xq,xs the
inequality
a([zyz], [T122]) < Vr(T122) + €.
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Let suppose that proposition is false. Then for any number r; :=
there are a points x§ # x% such that pz¥ < £;7 = 1,2, while

)

=

(3.5) a[zfa], [2f23]) < Y (2fes) —e.

The shortest arcs [z¥2%] can be extended to a shortest arcs [z¥y¥] of

fixed positive length.Let choose a subsequence (which we will denote
simply by y*) of the sequence y* , converging to a point y. The shortest
arcs [z¥x], [2%y,] converge respectively to the shortest arcs [pz], [py] (see
[1] or [2]). It follows from proposition 3.4, K-concavity of metric and
(3.5) that for any point 9 # p on [py],

(3.6) a([pz], [py]) < v (wpz2) — €

But from the existence of the angle in strong sense (see [1] or [2]) in
Ry we get the equality

a(lpz]; [py]) = lim v (zpzs),
where x5 — p. This contradicts to inequality (3.6). O

Proof. of theorem 1.1. We can prove this theorem in the same way as
the theorem 5 in [8]. We have only note that the inequality (4) in [6],
which we need for introducing the distance coordinate system, follows
immediately from proposition 3.5. The components of metric tensor in
distance coordinates are continuous by proposition 3.4. The theorem
is proved. U
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