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Abstract
We study the variational problem

1* sup{/F(u) : /|Vu|2§s2, u=0 on 89},
€ Q Q

in possibly unbounded domains Q@ C R", where n > 3, 2* = 22 and F satisfies 0 < F(t) < alt|”
and is upper semicontinuous. Extending earlier results for bounded domains we show that (almost)
maximizers of S () concentrate at a harmonic center, i.e. a minimum point of the Robin function
7o (the regular part of the Green function restricted to the diagonal). Moreover we obtain the
asymptotic expansion

SI(Q) =

s = sF <1 S wZ, min 7o €% + 0(62)>
n—2 a

where ST and we, depend only on F but not on Q and can be computed from radial maximizers
of the corresponding problem in R". The crucial point is to find a suitable definition of 7o (co).
Interestingly the correct definition may be different from the lower semicontinuous extension of
TQ|5\{OO} to oo, at least for n > 5.
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1 Introduction

Let Q be a domain in R™, n > 3. Consider the variational problem

(1) sup{%/ F(u) : / [Vul> <e®, u=0 on 80} ,
et Ja Q

where the integrand is supposed to satisfy the growth condition
0 < F(t) < altf”

for some a > 0 and 2* := % denotes the critical Sobolev exponent. For smooth integrands every
solution of (1) satisfies the Euler Lagrange equation

(2) —Au = Af(u) in Q,
u = 0 on 09

with f = F' and a large Lagrange multiplier A. In [7] Flucher and Miiller studied the asymptotic
behaviour of the solutions u. of (1) as € — 0 and they proved (at least for domains of finite volume)
that a suitably rescaled sequence of (almost) maximizers u. always concentrates at a single point xg
of Q (after possible extraction of a subsequence). More precisely

|Vue|? N F(u) N

. Sts,
g? g2 0

3)

0zo and

1
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where S* is a constant depending only on F.

For applications such as Bernoulli free-boundary problem or the plasma problem it is important
to know the location of the concentration point. For bounded domains it was shown in [6] that
concentration occurs at a harmonic center, i.e. at a minimum point of the Robin function 7o (the
regular part of the Green function of ) restricted to the diagonal). Moreover the supremum S'(€2) in
(1) has the asymptotic expansion

SE@Q) = s* <1 - ngo min 7q e + 0(52)> .
n—2 Q

In this paper we extend these results to unbounded domains (see Theorems 17 and 24 below).
The crucial point is that in this case concentration may occur at oo. Thus we need to define 7q
also at oo. This is done in Definition 6 below. The definition ensures that 7o : @ — R U {+oo} is
lower semicontinuous (here and in the following we consider the closure of 2 in R™ U {c0}, the one
point compactification of R™). Interestingly 7q(co) may, however, be strictly lower than the lower
semicontinuous extension of TQ|§\ {oo} 1000 (see Example 7).

The relevance of the critical points of the Robin function for Dirichlet problems that involve the
critical Sobolev exponent was first pointed out by Schoen [12] and Bahri [1]. Rey [11] and Han [9]
showed that as p — 2* the maximum points of the positive solutions of

Au+uP™t = 0 in Q,
u = 0 on 0N

accumulate at a critical point of the Robin function. This has been conjectured by Brézis and
Peletier [4]. The simpler proof of [8] applies to all dimensions and shows that the concentration
point is a minimum point of the Robin function. Similar results for the Ginzburg-Landau functional
have been obtained by Bethuel, Brézis and Hélein [3]. For further discussions on concentration effects
and the relevant literature see also [5].

To minimize technicalities we consider mostly the Bernoulli free boundary value problem, i.e. the
maximization of volume for given (small) capacity. This corresponds to the integrand F'() = x{;>1}-

The main technical difficulty for general integrands is that one essentially has to work with the
level sets of the maximizer u, of problem

@ st s { [ F s Ivale <1

Rr
rather then those of the Green function.

Since us approaches the Green function of R™ as |z| — oo the arguments are similar but technically
more involved.

The tools to overcome these technical difficulties, however, are essentially the same as for the bounded
domains [6] and we review them briefly in the appendix.

Another subtlety arises in unbounded domains if F'(t) has critical growth near the origin. Then
maximizing sequences for problem (4) become arbitrarly flat. In this case we need to impose the
condition 7q(00) > 0 to assure that maximizing sequences for (1) still concentrate at a single point,
after suitable translation. The condition 7q(co) > 0 requires, roughly speaking, that R™ \ Q is not
to small at co and holds e.g. for cylinders like domains Q = {(z/,z,) € R" : || < f(z,)} with f
continuous and liminf:_, 1 o f(t) < 400 (but possibly limsup;_, ;. f(t) = +00).

Equivalent conditions and their consequences are also discussed in the appendix.

2 Hypotheses, generalized Sobolev inequality and concentra-
tion

Let Q be an open subset of R", n > 3. By 2 we denote the closure of 2 in R U {oc}. In particular

the closure of an unbounded domain contains the point oco.

The natural function space for variational problems of the form (1) is the space D¥2(f) defined
as the closure of C¢°(Q) with respect to the norm

1/2
Vel = (/ |w|2> -
Q
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We shall study the behaviour, as € — 0, of following variational problem
1
(5) SY(Q) = 2+ SUP {|A] : A open subset of Q, capyA <e*},
where capgA denote the harmonic capacity of A with respect to (2, i.e.
(6) capgA = inf{/ |Vul?dz : uw € D**(Q), u>1a.e. in A} .
Q
Thus problem (5) can be equivalently written as
1 .
SY(Q) = = sup {|{u >1}| : uw € D"*(Q), ||Vull> < e},
so that it can be seen as a particular case of problem (1), when F(t) = xg>1}-
We require the following very weak assumption for the domain 2
(7) Q2 is a domain in R"™ of dimension n > 3 with 2 # R” in the sense that capg. (R™\ ) > 0.
Define the generalized Sobolev constant by
sV = SYRM).

By taking into account that the capacity of a ball of radius 7 is given by capg. B, = (n—2)[S™ |r" 2
we easily compute SY = ((n — 2)|S"~1)" (=", Since capg.(pA) = p" *capg.A and capg. A <
capn A we have SY (Q) < SV. A simple scaling argument leads to the isoperimetric inequality for the
capacity

®) 1Al < SV (capgd)”/?

Moreover SY (€2) — SV as e — 0 (see e.g. [7]). By this fact together with the generalized concentration
compactness alternative proved in the same paper, one can easily deduce the following concentration
result.

Theorem 1 Let A. be a sequence of extremals for problem (5), i.e. capg(A.) = €% and |A.| — SV as

e — 0, and let u. be the corresponding capacitary potential with respect to Q). Then there exists xg € )

such that

|Vu5|2 N
o)

XA * \%
5900: &_T: = S 6290

(9)
in the sense of measures.

Note that in order to obtain the concentration result it is enough to require that {2 satisfy
capg~ (R™\ ©) > 0. This assumption essentially excludes only the case 2 = R".

Remark 2 In the result above the concentration at oo has to be understood as

Vu,|? A\ B

/ #—u and #%SV VR >0.
Q\Br 9 9

This convergence does not assure a priori that the sets A. concentrate at a single point, up a suitable

translation. We will see in the sequel (see Proposition 4) that for the volume functional this result is

always true. In the general case of problem (1) a further assumption on the set {2 has to be made (see

Appendix).

As a consequence of the concentration compactness alternative we have the following lemma.

Lemma 3 ([6], Lemma 13) Let Ay be a sequence of compact sets such that |Ax| = |B}| and capgn (Ax)
converges to capg. (By) as k — 0o. Then, up to a subsequence, there exists a sequence {xy} such that
the characteristic function of Ay — xy converges to the characteristic function of B} in L'. Moreover

if up, and u denote the capacitary potential of Ay and B respectively, then ug(xy + ) converges to u
strongly in DY2(R™).
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Proposition 4 If cappn(de) _y GV 4nq |Ac| — 0, then there exist z. and v. — O such that

[Ae| 7
|A: \ B(ze, )|
|Ac|

Proof. This result can be obtained as a direct consequence of Lemma 3, arguing by contradiction. ()

Remark 5 If {A.} is a sequence of extremals, then it satisfies (9), and therefore satisfies the assump-
tion of Proposition 4. In particular if (9) holds with o = oo, then there exists a sequence z. — o0
such that

|Vue (- — $5)|2 N

= do, Mzrd s gV,

gz

(10)

3 Robin function and for unbounded domains

In this section 2 will be an arbitrary open subset of R™ with n > 3, which satisfies (7). The concen-
tration point z¢ of Theorem 1 will be identified in terms of the Robin function of 2, i.e. the diagonal
of the regular part of the Green function of the Dirichlet problem in 2 for the Laplace operator. This
function has been considered in the context of concentration phenomena in [2] for domains with regu-
lar boundary. In [6] this definition has been extended to any domain, possibly with irregular boundary,
and its main properties have been studied in the case of bounded domains.

In this section we shall summarize the definitions and the results given in [6] and we will extend
them to the case of unbounded domains. In particular, since the concentration point, for some domains,
could be at co we need a good definition of the Robin function at co and a accurate study of its
behaviour near co.

Let us denote by K, (y) = K(|z—y|), for every z,y € R", the fundamental solution for the negative
Laplacian, i.e. K(r) = ¢,r>™", with ¢,, = ((n—2)|S™!|)~!. For every point # € Q\ {oc}, let us define
the regular part of the Green function, Hq(z, ), as the solution in the sense of Perron-Wiener-Brelot
(PWB) of the following Dirichlet problem

AyHo(z,y) =0 in €,
(11)
HQ(SU,@/) = K-Z‘(y) on 697

i.e., Ho(x,-) is the infimum of all superharmonic functions u such that

liminf w(z) > K;(y)
zy
z €0

for every y € 09 (see [10]). If  is an external domain, then we require in addition that

liminf w(z) >0.
z — o0
z€0Q

Note that the notion of PWB solution is stable under increasing sequences of admissible boundary
data. Thus the function Hqo(z,y) is well defined also if x € 0Q \ {oo}. The Green function of the
Dirichlet problem for the Laplacian is defined by

G:(y) = Ku(y)— Hao(z,y).

The Green function is symmetric in  x Q (see [10], Theorem 5.24); hence Hq(x,y) = Hq(y, ) for
every (z,y) € Q x Q.
If z € Q then the function Hg(z, -) coincides with the weak solution of (11) in the sense of D!:2(Q).
For every x € QU 00 \ {00}, let us extend the function Hq(z,-) to a superharmonic function
Hg(z,-) defined on all R", as follows: for every y € 8\ {oo} we set

(12) Ho(z,y) = liminf Hq(z, 2)
z=y
z €
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and Hg(z,y) = K,(y) for every y € R™\ Q (see [10], Theorem 7.7). Finally let us extend Hg(z,y) to
R"™xR" by setting Hg (z,y) = K,(y) for every x € R™\Q. It has been proved in [6], Proposition 8, that
for every y € R"™ the function z — fNIQ(ac, y) is superharmonic in R™ and, moreover, (z,y) — Hg (z,9)
is lower semicontinuous in R"™ x R".

We are now in a position to recall the definition of the Robin function, the harmonic radius and
the harmonic center given in [6] and to extend it to co.

Definition 6 (Robin function, harmonic radius, harmonic center) For every z € Q U 00\
{o0} the leading term of the regular part of the Green function

To(z) = Hq (z,x)

is called Robin function of Q0 at the point x. The harmonic radius of ) at = is defined by the relation
K(r(z)) = mq(z). The Robin function at infinity is defined as
(13) 1q(00) 1= lim lim_ m,ylréfR" Ho(z,y)

A minimum point of the Robin function on Q is called a harmonic center of ().

In this way 7o : @ C R" U {00} — R becomes a lower semicontinuous function. Nonetheless 7 (oc)
may be strictly below the largest lower semicontinuous extension of 7q, at least for n > 5 as shown
by the example below. A similar phenomenon can arise at other boundary points.

Example 7 We will construct an unbounded domain 2 such that 7q(c0) < liminf, o mq(x). It will
also provide an example of a set for which the extremals concentrate at co. The set 2 will be given
by taking the whole space R™ and subtracting a sequence of small balls that accumulate at co. First
make a partition of R™ by considering the annuli Cy, = By« (0) \ Bor—1(0). In each annulus we consider
small balls of radius rj, with centers (zi) in a lattice of side dy. We will choose later two suitable
sequences {dy} and {r} such that dy,r;, — 0 and ry << dj.

Set @ = R"\ Uy Ui ¢, Br, (z%). Let us denote by u}, the capacitary potential of the ball B, (z%).
Thus u(z) = K(|z — mk|)/K(rk) Let us now take any sequence z; — 0. To estimate 7o (xy) from
below we may assume that zy € C} and that for any k the distance between x;, and the closest ball is
of order d. Then in particular the Robin function of €2 in the point z; can be estimated from below
by the capacitary potential of such a ball scaled by K (d}), namely

K2 (dy,) ~ it

(14) o (zr) = Ho(xk, ox) > K(dy)ul(xr) Kr) @t
k

Finally let us fix 0 < p < 1 and let us estimate from above the infimum of Hg (xy, y) for |z —y| = p.
We will estimate ﬁg(xk, y) by considering separately the contribution of the balls contained in each
annulus C}, for h # k, that of the balls in the annulus Cy \ B,(xy) and finally the contribution of the
balls in B,(zx). Now the capacity of the balls contained in each annulus Cy, is of order rji =2 /d}
(i.e., the capacity of a ball times the number of balls). Then the contribution of C}, is given by the
total capacity of the balls contained in it multiplied by the fundamental solution computed on the
distance between z; and C} that we very roughly estimate with 1. Similarly we deal with the balls in
C \ B, (z). The contribution of the balls in B,(x) can be estimated first considering the contribution
of the balls in B,/»(y) which gives a term of the form

: /W K(s)s" '
0

S
n
da

K(p/2)ry~

and then the contribution of the balls in B,(x) \ B,/2(y) which similarly can be estimated by

P 1
K(p/2)ry /K ar ds.

Then
n—2

: hn k:nk T
(15) inf  Ho(zk,y) <C Y2 +CK()2 e +CpK()dZ

|z —y|=p htk k
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Choosing dy, = 27°%, r;, = 276 and n > 4 we easily find values 8 > a > 0 such that 7q(oc) < oo
while lim inf, o, T (x) = +00. Actually, this construction provides also an example of a set where the
concentration occurs at co. Indeed a more accurate estimate in (15) shows that under the condition
re << 27FdR we have 7g(c0) = 0.

If € Q, the Green function can be expanded near the singularity as:
(16) Ge(y) = K(ly—=z|) —malz) +O(y — ).
It has the following properties.
Proposition 8 ([2, 6, 8]) For fized x € Q the Dirichlet Green’s function G, satisfies:

1. For every t > 0 one has

/ VG, = t
{G=<t}

2. Ast — oo we have By~ C {G, >t} C By with ro = r £ O(r™) and r defined by t =
K(r) — ().

3. For every v € Q\ {oo}, with To(x) < oo, we have

Gz >t} 2 {K >t + 70(2)}]

Proof. The proof of Part 1 and 2 are recalled in [6], Proposition 12, while Part 3 is proved in [6],
Remark 11 as a consequence of Proposition 10. O

The proposition above implies that for z € () the capacity of a small ball is asymptotically given
by
1
K(r) — mq(x) + O(r)

as r — 0. In the radial case we have

(18) capgr(By) = m

= caprn(Bj) + capg. (Bp) (ta(z) + O(r))

(17) capg(B;)

The key point is that an asymptotic expansion similar to (17) holds for arbitrary small sets which
concentrate at single point. The following estimate for the capacity has been proved in [6], Lemma 16.

Lemma 9 (Asymptotic expansion of capacity) Let xg € QUOIN\ {00} and let Ay, be a sequence
of subsets of Q@ such that |Ay| > 0 and

1 *
—— XA, — gy
|Ak| Ag 0

Then

1
(19) lim inf

— > .
L e (AD)  capg(Ar) = 20

An important tool in the proof of this result is Proposition 10 below. It provides an approximation
of 7q with a sequence of Robin functions obtained approximating (2 with larger domains, and permits
to restrict the analysis in Lemma 9 only to interior points.

Fix zg € 0Q \ {oo}. Let us denote by Q,(zo) the set QU B . For any fixed z € QU 9N\ {oo} let
Hq,(z0)(z,") be the PWB solution of the problem

AyHQ,,(xo) ($7y) =0 in Qp(-TO);
(20)
HQp(mo)(may) = Kx(y) on aﬂp(iIJo)

and let 7, (z,)(z) the corresponding Robin function.
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Proposition 10 ([6], Proposition 7) Let zo € 9Q\ {oco}. Then, for every z,y € R", Hg, (2,)(,y)
converges increasingly to Ho(x,y) as p decreases to 0.

In particular 7o, (4,)(x) converges increasingly to To(x) as p — 0, for any x € QU IN \ {oo} and
Tq 1s lower semicontinuous in U 0N\ {oo}.

Our next goal is to establish that a similar approximation result can be proved for 7 (00).
Proposition 11 The following equality holds

ma(c0) = lim lim  inf 7oup, @) (2)-

In order to prove Proposition 11 we need the following lemma.
Lemma 12 Let z € R", a € (0,3), p € (0,1) and r = 2p°. If
(21) TuB, (2) (@) < 22 "K(1)p "2 = K(r)
then

(22) inf  Hq(y,2) < Tous (@) (@) + K(1)42np1-20)(n=2)
y,2€Ba, () 4

Proof. Let T = 1quB, () (7). By assumption fIguBP(m)(m,m) =T < K(r), with r = 2p®. Thus by the
superharmonicity of Hq, B, («)(T,") we get

(23) ][ Houp, (@) (2,2) dz < Houp, (o) (z,2) =T
OB, (z)
Hence there exists a subset S of 0B, (x) such that S has positive (n — 1)-dimensional measure and
such that
(24) f[gqu(z) (,2) <T YV z€S.

If z € 0B, (x) \ QU B,(x), then by (21) ﬁguBF(m)(.fL',Z) = K(|xz — z|) = K(r) > T. This is also true if
z € 00 N OB, (z) is a regular boundary point of 2 in the sense of Wiener. Since the set of irregular
points of the boundary of an n-dimensional domain has zero capacity, and in particular zero (n — 1)-
dimensional measure, we infer that S N € has positive (n — 1)-dimensional measure. In particular we
may fix z € QN OB, (z) such that (24) holds.

Again by the superharmonicity of Hqoup, (») We have that
@)} Hous,(2)dy < Hoos,(2,2) < T
63% (.Z‘)

Thus, as above, we may find y € 2 N JBg(z) such that

(26) ﬁQUBF(w) (y,2) <T

Now let M = max, 5 ) K(lz —¢]) < K(5) = K(1)(p*)* ™" and consider the function

2—n
€)= ﬁQqu(w)(§7Z) +M <¥>

then f is superharmonic in R" and harmonic in €\ B. Moreover f(¢) > K(|€ — z]) if £ € 3(Q2\ B).
Hence HQ\E(é,z) < f(&) for every € € Q\ B. Since y € 2\ B we may take { =y and we obtain

2—n
~ y—z
Holy,9) < Hog(e0) < Fous,o.2) + 01 (22)
S T + K(1)427np(172a)(n72) 7

which concludes the proof. O
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Proof of Proposition 11. Let us first prove that

lm L inf < _
o0 Rsoo \zl\nZRTQUB”(z)(x) < ma(c0)

Let 7(R,p) = inf,>ginf,_y<, Ho(z,y), and 7(p) = limp_eo 7(R,p). By definition 7o (c0) =
lim, o 7(p). By the harmonicity of Houp, () (7,y) We have

Houp,(2) (7, ) dy S]é ( )HQ(w,y) dy .

@ s = f

o (@)

Since Hg(z,y) > (R, V/p) for every |z —y| < \/p and |z| > R, by the Harnack inequality applied to
~ R

Hg(z,y) — 7( p) in connection with (27) we get

o, (o) (@) sT<R,m+c( min fm,y)—T(R,ﬁ)) .

yeB, (z)

By taking the infimum on |z| > R we obtain

lelanfR TQUBp(w)('r) < T(R7 \/ﬁ) +C (T(Rv p) - T(Rv \/ﬁ)) :

and we conclude taking the limit as R — oo and then p — 0.
Conversely, let 7(0c0) = lim, ¢ limg e inf||> g TouB, (2) (). Assume that 7(co) < co. Then there
exist pr — 0 and xp — oo such that

LILIEO TQUB,, (zx) (Tk) = T(00) .

In particular assumption (21) in Lemma 12 holds for & sufficiently large. Thus, by Lemma 12, there
exist ry = 2pf = 0 and 2z, yr — 00, with |z — yx| < 2, = 0, such that

lim sup Hq (yk, z) < 7(00)

k—o00
and then in particular we have
/1)13(1) ngnoo . ylréfR” Hq(z,y) <7(0).

|| > R, |z —y| <p
Thus 7 (c0) < 7(00), which concludes the proof. O
As an immediate consequence of Proposition 11 we obtain the following result.

Corollary 13 For any sequence {py}, with pr > 0 and pr — 0 as k — oo, there ezists a sequence
{z} in R™ with ), — oo such that

klgglo TQUB,, (zx) (Tk) = Ta(00) .

We now establish a more precise comparison between Hq and 7q(00).

Corollary 14 For any sequence {py}, with p;, > 0 and pr — 0 as k — oo, let {x}} be a sequence in
R"™ with x;, — oo such that B
lim inf  Hq(zg,y) = m0(00).

k=00 |2k —y|<pr

Then we also have
klggo TQUB,, (zk)(xk) = Tg(00) .

Proof. Let us denote Qj = QU B,, (x). By Proposition 11 we always have that

lim sup 7o, () > T (00)
k— o0
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On the other hand by the harmonicity of Ho, (zx,y) in B, (4,) we have

29 miw) = HoGoz)=f  Hoendy <[ Holoydy =
Bpk('rk) Bpk('rk)
= inf ﬁx, +][ <H Tk, Y) — inf fl:c,z)d.
|2k —y| <Pk Q( k y) By, (xk) Qk( k y) |2k —2]</Pr Q( k ) v

By the assumption and the definition of 7 (oc0) we have also that

inf  Ho(zr,y) = ma(00) + o(1).

lzx—y|</Pr
Thus applying the weak Harnack inequality to the function Hq, (zx,y) — ‘ ir‘lf Hg (zk, z), which
an—z|<v/pr
is superharmonic and positive on Bs,, (z1), we get
10, (Tr) < inf ﬁg Tk,
(o) < int  Hoay)
+ C inf  Hgq, (xg,y) — inf  Hq(zp,2) | = ma(c0) +o(1).
(L Hotorw)— i fa(or.)) = (o) + o(1)

O

We now prove the asymptotic formula for small sets concentrating at oco.

Lemma 15 Let Ay be a sequence of sets which concentrates at oo in the sense that |Agx| > 0 and
suppose that there exists a sequence x — oo, such that

XAp—zr  *
Al L NN 5
| Ak| °
Then
1

1
29 lim inf - 2 7(00) .
(29) k—oo capra(Af)  capq(Ar) ~ o)

Proof. We may assume 7q(00) > 0 since otherwise there is nothing to show. Note also that the
assumptions imply |Ag| — 0. Thus we may suppose that cap,A; — 0 since otherwise the left hand
side of (29) is co. We first assume that 7q(00) < +00. Let uy be the capacitary potential of Ay — zy,
and let

U = AukL{Q—xk}.

~ capg(Ay)
As in the proof of Lemma 16 in [6] we obtain uy — do and lpell mrm\B,) — 0 for every p > 0. We
will construct a superharmonic function wy which satisfies wy, > 1 on A — x and we will estimate
[|Awpg || am to estimate capgn (Ag).

Fix p > 0 and let uj = px LB, pi = px, — pp — 0 in M(R™). We have

uy(z) = capq (Ax) o Ga-u(z,y) dur(y),

and define

(@) = capo(4e) [ Glaca (@) dik(w).

vi.(z) = capg (Ar) L K@=y) dpi(y), i=1,2.

Since xy, — oo, the definition of 7 (c0) and the convergence of p imply that for every § > 0 there
exist po(d) > 0 and ko(6, p) such that for all p < po(d) and k > ko

1,1 _
(30) b uk) :/HQ(-TL'k +z,xr+Yy) duk > 1o(00) =6
Q

capgq (Ay,
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for every x such that |z| < 2p.
On the other hand since ||ux||amr = 1 we have

(31) up(z) < vi(2) < capg(Ar) K (|2] — p) < capg(4i) K (p)
if |2] > 2p. If ug(z) > 1 and |z| > 2p then

(32) ui(z) > 1= ug(z) > 1~ capg(Ar) K (p)

Let ap = (1q(00) — §)capg(Ag) and B = K(p)capg(Ax), and

Lo 1o 1 (! 1 )
1+Oékvk ].—,Bkvk_ ].-f-akvk _ﬁk 1+ak Yk

I\//'\

(33) WE =

1
From the first identity, in connection with (30) and (32) we see that wy > 1 on Ay — xy. Indeed this
follows immediately from (32) for |z| > 2p since v} > u3,. For |z| < 2p estimate (30) and the condition
ur > 1 on Ay — x, give

ut + ay, 1 1 1
wy > & + >1+ - ui>1.
k= 1+ ap l—ﬂk <l—ﬂk 1+ak> k=

Now the second identity in (33) (in connection with the minimality of the capacitary distribution)
yields

1 1 1
< (Ap) <A < - ; Ap) .
coprr (40) < 18wl < |5+ (12 = e ) Il coma(an)
Taking the limit as k — oo and p — 0 we easily deduce the assertion for 7q(00) < 0.
If 7 (00) = oo we replace in (30) the term 7 (c0) — 8 by 5 and proceed as before.

O

In connection with Lemma 9 and the lower semicontinuity of 7 in  we deduce immediately the
following corollary.

Corollary 16 Suppose that 7q(o0) > 0. Then infg g = ming o > 0 and for all sets Ay C 2, with
1

1
34 lim inf - > minTg .
(34) k—oo capgrn(Ay) capo(4x) T @ N

4 Localization of concentration points

The main result of this paper is the second order expansion of S with respect to e. It turns out that
the second nontrivial term depends on the value of the Robin function at the concentration point.
This allows us to identify the concentration point. We say that {A.} is a sequence of almost extremals
for (1) if A, is admissible for the definition of S (2) and

A,
|€2*| SY(Q) +o(e?) as € — 0.

Theorem 17 (Identification of concentration points) 1. If the sequence { A. } satisfies capg A =
€% and concentrates at x € Q in the sense of Theorem 1 then

|A.] < 28V <1— an(m)sQ—Fo(sQ))

as e — 0.

2. If {A.} is a sequence of almost extremals we have

|4 = 78V <1— n2m_in7'952+0(52)>.

n— Q
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3. In particular a sequence of almost extremals concentrates at a harmonic center, i.e.
7(zg) = minTg
Q

with xg as in Theorem 1.

Remark 18 If 7q(z) = oo the inequality in Part 1 is understood as

lim e 2 <| el SV> = —00.
e—0 [5

Proof gf Theorem 17. Let us first prove Part 1. In view of Proposition 4 we can apply Lemma 9
if € Q\ {oo} or Lemma 15 if z = oco. Taking into account that capg.A* = (|A.|/SV)*? and
capgA. = €% we deduce that

2

nminfi2 {(5%2*)2* —1} > 10(z)

e—=0 € |AE|

and this proves Part 1 since & = =2,
Since every maximizing sequence concentrates by Theorem 1, the assertion in Part 1 implies one
inequality in Part 2. If ming 7q is attained at © # oo, then the reverse inequality is an easy consequence

of Proposition 8, Parts 1 and 3. Indeed if A. = {G, > ¢ ?} then capgA. = €* and
1
35) A2 HE > 5 + @)

Thus computing the right hand side of (35) we get the required inequality.

Let us finally consider the case that ming 7o is attained only at T = oc. In this case we may
not apply directly the transplantation argument, but we must apply it to the level sets of the Green
function of 2 with singularities in suitable points z. approaching co. We claim that it is possible to
choose x. — oo such that

(36) G > 51 > K > & +ma(o0) +o(1)}].

This will give us the result as above, taking A. = {G,, > 2}.
In order to prove (36) let p. > 0 be such that K(p.) = 1/ (i.e. p. = [K(1)?]"/("2)) and let
R. > 0 be such that R. << p?. By the definition of 7q(00) we may find a sequence x. — 0 such that

(37) inf  Hg(z.,y) = 1o(c0) + o(1)

|w57y\§R5
Let 7o, be the Robin function of the set 2. = QU Bpg_(z.). By Corollary 14 we have also
(38) lim 7q, (z.) = 7a(c0) .

By applying the usual transplantation argument (see Proposition 8, Part 3) to the Green function
of Q. we have

(39)  {Go.(eew) > ) 2 1K (2 — yl) > = +ma(00) + o(1)}]

Thus it remains to prove that
1 1 .
(40) HGalee,y) > S} 2 HGa.(ze,y) > 5 +o(1)}] +e? o(e?).

This will be done exploiting that far from z. the difference Hq (x.,y) — Ho, (z.,y) is small (see
estimate (41) below) while close to z. the difference between the level sets of Gq_ and the levels sets
of Gg is controlled by the set where Hg(x.,-) is very big, which is small (see (46)).

First we claim that there exists a constant C' > 0 such that

_ _ Rs n—2
(41) 0 < Ho(ze,y) — Ho, (ze,y) <C <—2>

g
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for every p? < |y — 7] < pe.
In order to to prove estimate (41) let r.(y) be the solution of the following problem

Ar.(y)=0 in (2°N Bpg,_(z:))°,
(42)
re(y) = K(|ze —y|) on d(Q°N Bg, (z:))° and r. — 0 as |y| — oc.

It is easy to check that

(43)  ry) < Ha(ae,y) < Ho, (22.y) +72(y).

Since 7. is harmonic outside the ball Bg_(z.), using a Poisson-type integral representation we get

1 |'735 —Z/|2 _Rz

re(y) = 5" 1R, re(z) dH" ' (2)

9Bp, (c.) |12 —yl"

for |y — zc| > R.. Thus by (43) we have

n—2
(44) ﬁg(wg,y) — ﬁQE (.Z'E,y) S C <R—26> ][ TE(Z) dr}_[nfl(z)
pe 9B, (a:)

R n—2 .
c (_) | e a i)
Pz OBRr,(zc)

for any p? < |y — x| < p.. Finally taking into account the superharmonicity of Hg(z.,-) and using
the weak Harnack inequality we obtain

IN

][ H(z.,2) dH" ' (2) S][ Ho(ze,2)dz < C inf  Hg(ze,y) < C(mq(c0) + o(1))
OBr, () Br. (z) |ze —y|<Re

which in view of (44) gives (41).
Since {Gq(z.,y) > 1/e?} C B,_(z.), as an immediate consequence of (41) we have that

1 1
(45) HGa(ee,y) > S3\ Bz(ee)l 2 {Ga. (2e,y) > 5 +o(D)}\ Bz (a:)].-
Finally it is easy to check that
1 1 x
(46)  HGalwey) > 51N B (a)] > HGa, (02,0) > 5} 0 By ()] + 2 o(e?)

Indeed this follows from the fact that, since K (|z. —y|) > 1/e* in B2 (x.), we have

1 1 ~ 1 1
{Gal@esy) > 5} N Ba(a) € (K (7. ) > 51\ Hawe9) > 5 = 5D N By(e.).
Since )
[{Ha(re,) > 55} 0 Byl <26 [ o < ety < 027+
2
we deduce

1 1 or o
{Galwey) > S0 By (a2)] > [{Ga, (22,0) > 55} 0 Bylae)| - O e+

Now estimate (40) follows from (45) and (46). Together with (39) this concludes the proof.

Appendix: General integrands

We finally consider the general problem

1 .
SEQ) = Esup{/QF(u) : u € DVA(Q), ||Vl Sz—:},
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where 0 < F(t) < alt|*, for some a > 0, and F is upper semicontinuous. In this general case

a further subtlety in unbounded domains may arise if the integrand F' has critical growth at the

origin, i.e. if F” = limsup,_,, I;(t) = gi (S* is defined in (4) and S* is the best Sobolev constant,

Le. [, |ull* < S*||[Vul|}). In this case the maximizers of the radial problem in R"™ may become
arbitrarily flat (think e.g. of the case F(t) = 555 t>", for t € [0,6]) and, to prove the concentration
without the assumption that || be finite, we also need an estimate for the capacity of large sets (see

Lemma 21 below). Hence, in this case we shall make the additional assumption

To(00) >0

which essentially says that R™ \  is not too small at infinity. An equivalent characterization is the
following.

Proposition 19 The condition Tq(co) > 0 is equivalent to requiring that there exists a constant
Co > 0 such that

(47) Hq(z,y) > Comin{l, |z — y|2*”}

Proof. Clearly, by the definition of 7q(co), we have that (47) implies 7q(c0) > 0. To prove the
opposite implication we first remark that to have (47) satisfied it is enough to know that there exist
po > 0 and Cy > 0 such that

(48) Ho(z,y)>Co Y|z —y| <po-

Indeed for any = € Q the function CoK,(-)/K (po) is harmonic in Q \ B, (z) smaller than H(z,-) on
0B,,(x). Thus by the comparison principle H(z,y) > CoK,(y)/K(po) for any y € Q\ B,,(x), which,
together with (48), gives (47). Finally we have that 7o(c0) > 0 implies (48). Indeed by the definition
of 7q(00) we may find py > 0 and Ry > pg such that

Hq(z,y) > Cy Vie—y|<po and |z| > Rp.

Thus the conclusion follows from the fact that a superharmonic non negative function either is zero
or is strictly positive. This implies Hq(x,y) has a strictly positive minimum in Bg, X Bg, and thus
(48) (after possibly adjusting the value of Cp). O

Remark 20 The condition 7q(c0) > 0 implies ming 7o > 0. Indeed by definition 7q(c0) > 0 implies
ming|,|> g} 7 > Tq(00)/2 for some R > 0 and then, arguing as above we also have ming o > 0.

We now use the assumption 7g(c0) > 0 to prove the counterpart of Lemma 9 for large sets.
Lemma 21 Assume 1q(o0) > 0. Then for any p > 0 there ezists a constant C, > 0 such that
capg(A) — capgra (A7) > Cpcapga (47)
for every subset A of Q such that |A| > |By|.

Proof. By a scaling argument we may assume that p = 1. Moreover we may reduce to the case
|A| = |Bi]|- Indeed for R > 1 we have

Hyq(w,y) = R"*Ho(Re, Ry) > Comin{R"™?, |z — y[*™"} > Comin{L, & — y[*"},

thus if Q satisfies (47) also the rescaled set %Q, with R > 1, does.

We now proceed by contradiction. Let Ar C € be a sequence such that |Ax| = |Bi| and
capq, Ar — capr.B1, with Qy satisfying (47).

Since capgrn B1 < capga Ay, < capg, Ak, we also have that capg. Ay — capg. B1. Thus by Lemma 3
we have that after a translation (note that (47) is translation invariant) the characteristic function of
Ay, converges to the characteristic function of B;. Let uj be the capacitary potential of Ay in Q. In
particular

—Aug = pup >0 in Q
U = 0 on aﬂk,

where py, is the capacitary distribution, ka dpy = capg, Ag and supp py C Ay
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By Lemma 3 we also have that the sequence uy converges strongly in DY2(R™) to the capacitary
potential w of By in R™ and that u converges weakly in the sense of measures to the corresponding
capacitary distribution p, with supp p C dB; and fRn dp = capgr~ Bi.

Since, using the Green function of (1, we have

uk(m) = GQk (-T,y) d#k = Kz(y) dp/k - HQk (-T,y) d#k <
R» R» R»
/ Ko (y) dpe — Co/ min{1, |z — y[*~"} duy, ,
R» R»
taking x € By and passing to the limit as £k — oo we get
u(x) < | Ko(y)dp—C [  dp=u(z) - Ccapga B
R 0B1

which is a contradiction. O

In the following St := S¥'(R™) will denote the generalized Sobolev constant, i.e.

*

=
F(u)dz < S* (/ |Vu|2dm>
R" R"
for every u € D2,

Using the previous Lemma we can prove the concentration result without any further assumption,
except T (oo) > 0.

Theorem 22 Assume 17q(00) > 0. Let {u.} be a sequence of mazimizing sequence for problem (1),
ie. e72 [ F(u.)dz — S and ||Vu.|]s <e. Then

1. the sequence {u.} concentrates at a single point zo € Q in the following sense

|Vu.[? N

F(ue)
g2 '

9%

e2

(49) Oz

2. If kg = o0, then there exists a sequence xe — oo such that us(- — x:) concentrates at 0 in the
sense of Part 1.

Sketch of proof. As for the analogous theorem proved in [7] (Theorem 3) (under additional assump-
tions either on F or on 1), the proof of Part 1 follows by the generalized concentration-compactness
alternative proved in [7] (Theorem 12), applied to the sequence v. = u./e. By this result we know
that either v, is compact or it concentrates at a single point in the sense of (49). To exclude the com-
pactness assume for a contradiction that v. — vg # 0 and for any ¢t > 0 denote A.; = {ve > t}. Let
U be the harmonic extension of v outside A’ ,, where v} denote the radial decreasing rearrangement

e,tr

of ve and AZ, = {v? > t}. It is easy to check that
(50) / Vo> > 1 - ctz(capQA57t — caprn AL ;) .

Thus the proof is exactly the same of the one given in [7] in the case || finite, upon noticing that
since vg # 0, for t small enough, liminf._,¢ |Ac ¢| > |[{vo > t}| > ¢ > 0 and then by Lemma 21

capgAet — capra Az, > C >0

The proof of Part 2 can be also obtained by contradiction. We shall give a sketch of it.
If Part 2 does not hold then there exists p. > ¢ > 0 such that

1

1
= VurPde =0 [ Vel
& Rn\Bpa 13 R»

where u? is the radial symmetrization of u.. Let 6. — 0 be such that

6§:SF_5%/ |V |* dz .
Q
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By the decay estimate for radial maximizing sequences given in [6] (Lemma 22), there exists a constant
Ue, 00 such that
r _ 2
ul(r) & Ue 0o K(r) if 1<—<6."?
Pe
where L

n—2
—1 — —
Co EPe 2 < Ue,c0 S CoEPe 2

Choose 7. and t. such that p /r. = 0, with 7. /p. << ¢ 2/(n=2) ;and t. = ue oo K (rz). Thenre > ¢ >0
and [{u} > t.}| = |B;.| > C > 0. Let @. be the harmonic extension of u} outside of the set {u} > t.}.

Using Lemma 21, we have

1

1 ; n—2
5 |V |*de < 1— c—t “(capq{ue > t.} —capgn{ul >t.}) <1-c¢ ('0 ) .
9 R»

Te

Again by the decay estimates in [6] (Lemma 22, formula (31)) we get

1 5
5 / Fu)de <C <p_> .
€ {uz<t:} Te

Thus by the generalized Sobolev inequality

n—2
-2+ 88 < 51* F(u?)dz + 5%/ Fu)dr < S —C <p—6> +C <p—6>
RTL *

and then

which is a contradiction.

O

Remark 23 Iflimsup,_,, F(t)/|t|* = F;” < S¥/S*, where S* denotes the best Sobolev constant, the
concentration result stated in Theorem 22 is proved in [7], Theorem 3, without any further assumption
on the domain (2.

Now for general integrands the concentration point can be identified as in [6] by means of an
asymptotic expansion of S¥(Q) for any domain which satisfies 7 (c0) > 0.
Let BY be the class of all radial maximizing sequences for St and define

s 2n-1), . F(wg) F
Woo = — o inf th_1>1£f W KO {wr} € B

Theorem 24 Suppose that 0 < we, < 00 and Tq(o0) > 0 or Fy” < ST/S*.

1. If the sequence {u.} C DY2(Q) satisfies | V.|| < & and concentrates at x € Q in the sense of
Theorem 22 then

/QF(ﬂs) < & s” (1 - %U@OT(:E) e? + 0(52)>

as e — 0.

2. For any T € Q) there exist u. € D%*(Q) such that |Vu||2 = ¢ and

(51)  liminf — [ / F(u.) — S (1 - sz T(:c)s2>] >0.

e—0 62

3. In particular a sequence of almost extremals concentrates at a harmonic center, i.e.

T(xg) = mﬁinm

with o as in Theorem 22.
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Sketch of proof. The proof of Part 1, that in the case of volume functional (Theorem 17) follows
directly from the asymptotic formula for the capacity of small sets, in this case is the most complicated.
Nevertheless it is exactly the same proof given in [6], Theorem 17 Part 1, for bounded domains, using
Lemma 15 instead of Lemma 9, if the concentration occurs at oo. Similarly, if T # oo Part 2 can be
proved using harmonic transplantation exactly as in the case of bounded domains (see [6], Theorem 17
Part 1).

Thus we will only consider Part 2 in the case T = oo.

Also in this case the main idea is to use transplantation. As for the case of the volume functional
the main difficulty is that we must consider a sequence {z.} approaching infinity, but in this general
case this must be done very carefully. Indeed an additional difficulty lies in the fact that we must
estimate all the level sets of the Green function, not only that corresponding to 1.

We will just summarize of the main steps of the proof without any detail.

For any given sequence x. we will denote by G, the Green function of Q with singularity at .,
while for any given sequence p, will denote by G,_ ;. the Green function of the domain QU B,_(z.)
with singularity at ..

We fix a (radial) maximizer w of S¥" in R", with optimal decay, i.e., w(r) = woo K (r)(1+ o(r)) for
r > Rgy. We write w = po K and define w. (z) = (QDOK)(&:*%QC) = (p: o K)(z), where ¢.(t) = p(e2t).
Then ||[Vw.||2 = € and fR" F(p. o K) = S¥. The candidate for u. is u. = . o G, for a suitable
choice of z..

The usual transplantation arguments give

30 [Pz [ e (=¥ G, > i}|)_

where C), is the isoperimetric constant.
The main idea, as in the proof of Theorem 17, is to substitute the Green function G. with G,_ ..
for a suitable choice of p. and z. which permit to approach 7q(oc0). To this end fix 6 > 0 and denote

_ HGpowe > 5+ 3\ {Ga. > 7}
{Ga. > 5}
Using a comparison argument as in the proof of Theorem 17, formula (40), we may estimate w.. In

particular it is possible to prove that for any sequence t. — oo we can find a sequence of radii p. — 0
such that

(53) we (1)

we (t)

54 lim sup
(54) e=0¢ecl0t.] €

=0.
Now let us fix ¢, such that
1
(55) lim—Q/ F(poK)=0
{K>t.}

then there exists a sequence p. such that (54) holds. Corresponding to this p., by Proposition 11, we
may find a sequence z. such that 7qup,, (z,)(7:) < Tq(00) + 6. Thus by Part 3 of Proposition 8 we
have

t t
(56) WG > 55 +0H 2 K > 5 + ra(o0) + 20

Then using that G,_ .. < K we obtain by explicit computation

(57) (522*|{st > é}l> 72K > 14 ra(o0) + 200} - OHE > 1) ).

Finally, let B. be the ball of center 0 and radius R. such that K(R.) = (7o (c0) + 24), and let
Gp, = K — K(R.) be the corresponding Green function with pole in 0. By an explicit computation,
by changing variables in the integral and taking into account the definition of w,, we get

(58) / FlpoGr,) =551~ <2 (ra(c0) + 20)e%) +ofc?).

€
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Moreover by the radial symmetry of Gp, and by (52) and (57) we have

(59) Eé(i/gﬂug)—/& FlpoGn)) 25" sup 240 -0 FlpoK).

2 2 2
€ te[o,t.] €= € J{K>t.}

The conclusion follows taking the limit as ¢ — 0 and using (54), (55) and (58), and the arbitrariness
of 6.

O
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