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Abstract

Micromagnetics is a nonlocal� nonconvex variational problem� Its
minimizer represents the ground state magnetization pattern of a fer�

romagnetic body under a speci�ed external �eld� This paper identi�es

a physically relevant thin �lm limit� and shows that the limiting be�

havior is described by a certain �reduced� variational problem� Our

main result is the ��convergence of suitably scaled �D micromagnetic

problems to a 	D reduced problem
 this implies� in particular� conver�

gence of minimizers for any value of the external �eld� The reduced

problem is degenerate but convex
 as a result it determines some �but

not all� features of the ground state magnetization pattern in the as�

sociated thin �lm limit�
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� Introduction

The micromagnetic variational principle is a nonconvex variational prob

lem whose local minima represent the stable magnetization patterns of a
ferromagnetic body� Applied in various ways� it captures the remarkable
multiscale complexity of magnetic materials ����

One widely�explored theme is the analysis of global minimizers� i�e� ground
state magnetization patterns� The motivation is not that a ferromagnet
easily reaches its ground state� but rather that the most robust features of
the ground state may be shared by all physically accessible local minima ����

It is natural to address the problem by considering its limiting behavior
in various asymptotic regimes� Restricting our attention to �lms� i�e� thin
cylinder�shaped bodies� such regimes are de�ned by special relations between

t � the thickness of the �lm�

� � the length scale of the cross�section� and

d � a characteristic length scale of the magnetic material

�see Section � for a careful de�nition of d�� Several regimes are well�understood�
including�

�a� The large body limit� in which d�� � � while t�� stays �xed� The
asymptotic variational problem for this case is nonlocal but convex ��
�see also ���� ��� ��� ��� ����

�b� The small aspect ratio limit� in which t�� � � while d�� stays �xed�
The asymptotic variational problem for this case predicts a uniform
magnetization when the external �eld is constant ����

The present paper considers a di�erent limit� which mixes the properties of
�a� and �b�� Our �lms are large in the sense that d���t� �� but thin in the
sense that t��� �� The resulting asymptotic variational problem is convex
as in �a�� but two�dimensional as in �b��

Our regime is of interest because it is readily accessible experimentally but
quite inaccessible numerically� Indeed� our regime is appropriate for the
analysis of permalloy �lms tens of microns in diameter � whose magnetiza

tions under moderate external �elds are certainly not constant ���� Numer

ical simulation� by contrast� is generally restricted to submicron�size �lms�
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whose behavior is very di�erent� The proper mathematical framework for the
analysis of asymptotic variational problems is the notion of ��convergence
��� �� Our main result is thus the ��convergence of appropriately scaled
�D micromagnetic problems in our thin �lm limit to a �D reduced problem�
It follows �using basic properties of ��convergence� that for any external
�eld� an asymptotically�energy�minimizing sequence of magnetization pat

terns converges in the thin �lm limit to a minimizer of the reduced problem�
This implies convergence of minimizers� and much more� Let e��� be the en

ergy of the ground state at thickness t���� cross�section length scale ����� and
magnetic length scale d���� and suppose � � � corresponds to our regime�
Then ��convergence implies the convergence of all magnetization patterns
whose energies �e��� satisfy lim��� �e

��� � lim��� e���� Under our scaling� the
wall energies will be higher�order terms� Therefore our asymptotic problem
describes not just the limits of ground states� but also the limits of patterns
that di�er from the ground state mainly by having di�erent wall patterns�

Besides ��convergence� we also prove a weak regularity result for the asymp

totic variational problem� It is a constrained� convex optimization� whose
physical interpretation lies mainly in the associated Euler�Lagrange equa

tion� Our regularity result� though probably far from optimal� permits rigor

ous discussion of the Euler�Lagrange equation� It is crucial for understanding
which features of the magnetization are uniquely determined by the reduced
problem� Not surprisingly� these features are also the experimentally robust
ones�

Mathematically speaking� our main results are ��convergence and regularity�
But physically speaking� even the choice of problem represents a signi�cant
contribution� We have� in essence� identi�ed an asymptotic thin �lm regime
appropriate for materials like permalloy� and we delimit the region of pa

rameter space where it applies� The physical consequences of our model are
discussed further in ���� ��� those papers also include a numerical treatment
of the reduced problem and direct comparison to experimental data�

The preceding discussion of our accomplishments is of course somewhat
vague� To make it precise� we begin in Section � by brie�y reviewing the
variational problem of micromagnetics� Then in Section � we give the full
statement of our ��convergence result� and a more complete discussion of its
mathematical context� Section � continues to lay necessary groundwork� ex

plaining our choice of scaling by considering the energies of basic structures
such as N	eel walls and vortices� Our discussion emphasizes the fact that these
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structures are related to critical Sobolev embeddings� Sections �� �� and �
form the mathematical heart of the paper� They are virtually independent
of one another� Section � gives our regularity result for the reduced prob

lem� Section � gives the �upper bound� half of the ��convergence argument�
Section � gives the �lower bound� half of the ��convergence argument� and
proves that certain features of the magnetization are uniquely determined by
the reduced problem�

� The model

The micromagnetic model states that the experimentally observed ground
state for the magnetization m and for the magnetostatic potential U of the
stray �eld is the minimizer of a variational problem�

��� The admissibility set

The open set � � IR� denotes the ferromagnetic sample� The set of admis

sible vector �elds�potentials �m� � � IR�� U � IR� � IR� is constrained by a
unity spontaneous magnetization

jmj� � � in �� ���

and the static Maxwell equations� which we formulate variationallyZ
IR�
rU � r� dx �

Z
�
m � r� dx for all � � C�

� �IR
��� ���

For the classical version of ���� see Subsection ����

��� The functional

The micromagnetic energy is given by

E �� d�
Z
�
jrmj� dx  Q

Z
�
m�

�  m�
� dx

 
Z
IR�
jrU j� dx � �

Z
�
Hext �mdx� ���

Let us now explain and comment on these four terms�
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� The �rst term is the so�called exchange energy� it penalizes spatial
variations of m through the Dirichlet integral of m�

� The second term is the anisotropy energy� Crystalline anisotropy favors
certain magnetization axes� Here we assume that the material is uni

axial� i� e� it favors a single axis� which we label as the �rst coordinate
axis m��

� Hstr � �rU � IR� � IR� is the so�called stray �eld� The third term is
the energy of the stray �eld� which we call the magnetostatic energy�

� Hext� IR
� � IR� denotes the external �eld� The corresponding term in

��� favors alignment of the magnetization with the external �eld� we
call it the external �eld energy�

��� Nonconvexity and nonlocality

The functional ��� is the sum of a quadratic and a linear part� It is the
constraint ��� which makes the variational problem a nonconvex one� The
magnetostatic energy in ��� makes it a nonlocal variational problem in m�
since the energy density depends in a nonlocal way on the order parameter
m� namely through the equation ��� which determines the potential U �

In view of ��� and the Dirichlet integral in ���� one might think of our vari

ational problem as a perturbation of the harmonic mapping problem� since
the remaining terms in ��� are order zero terms and thus form a compact
perturbation� As we shall see� due to the multiscale nature of the problem�
this perspective is misleading in the regime we will consider�

��� Units and material parameters

This model is already partially non�dimensionalized� The magnetization m�
the �elds Hext and Hstr � �rU � and the energy density are dimensionless�
So is the �quality factor� Q� a material parameter measuring the relative
strength of anisotropy with respect to magnetostatic energy�

However� length is still dimensional� As can be inferred from ���� there are
two length scales� which are material parameters�

d and d�Q
�
� �
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d measures the relative strength of exchange energy with respect to the mag

netostatic energy� d�Q

�
� measures the relative strength of exchange energy

with respect to anisotropy�

��� Geometry

We now specify the geometry we are interested in�

� We consider � a cylindrical domain of thickness t with cross section ��

� � �� � ��� t��
Here and in the sequel� the prime denotes the projection on the �rst
two components �the �in�plane� components� of a three�dimensional
object�

� The anisotropy favors the �rst axis� which is in�plane�
� The external �eld is assumed to be in�plane and constant in x� �the
�thickness direction��� that is�

Hext � �H �
ext� �� and Hext � Hext�x

���

��� Length scales

Let � denote the diameter of the cross�section ��� We have four length
scales� The two intrinsic scales �i� e� only depending on the material� and
two extrinsic scales �i� e� only depending on the sample geometry�

intrinsic scales� d and d�Q
�
�

extrinsic scales� t and �
���

This multiscale nature of the variational problem� together with its noncon

vexity and nonlocality� leads to a rich behavior and pattern formation on
intermediate scales�

� The main result

The goal of this paper is to rigorously derive a reduced theory for the case
of a �lm� that is� a cylinder of small aspect ratio

t 	 �� ���
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Depending on the further relation among the scales ���� there are many
possible reduced theories� We aim at recovering a reduced theory which
reproduces the following gross features of experimental observations

� m does not depend on the thickness direction x��

� m has no out�of�plane component m��

� m is divergence�free in the absence of an external �eld�

At the same time� we seek a

� reduced theory with single length scale�
We aim at identifying the parameter regime of validity of the reduced theory�
Under which asymptotic assumptions on the various parameters �the length
scales ���� the strength of the external �eld� ���� is the reduced problem a
good approximation to the full problem! Further comments concerning our
choice of regime� and its relation to prior work� will be given in Subsection
���� but �rst we now give careful statements of our main results�

��� Rigorous statements

In order to formulate the rigorous statement� we non�dimensionalize length
by measuring it in units of the diameter � of the cross section ��

�� �
�

�
���

De	nition � Let �� � IR� be open� bounded with smooth boundary� Let
h�ext � L��IR��� and q 
 ��

i� By the reduced variational problem we understand the following�
The set of admissible �m���� � IR�� u� IR� � IR� is given by all

jm�j� � � in �� ���

and Z
IR�
ru � r� dx �

Z
��
m� � r�� dx� for all � � C�

� �IR
��� ���

for a classical version of ���� see Subsection ����
The functional e� is given by

e� � q
Z
��
m�

� dx
�  

Z
IR�
jruj� dx� �

Z
��
h�ext �m� dx�� ���
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ii� Let d� t � � and set

� �� �� � ��� t�� Q � t q� Hext � t

�
h�ext
�

�
� ���

By the full variational problem we understand the following�
The set of admissible �m�� � IR�� U � IR� � IR� is given by

jmj� � � in �� ����

and Z
IR�
rU � r� dx �

Z
�
m � r� dx for all � � C�

� �IR
��� ����

The functional e is given by

t� e � d�
Z
�
jrmj� dx  Q

Z
�
m�

�  m�
� dx

 
Z
IR�
jrU j� dx � �

Z
�
Hext �mdx� ����

iii� We introduce the following notion of convergence� Consider a sequence
ft���g��� of positive numbers converging to zero� An admissible se�
quence f�m���� U ����g��� for the full problem converges to an admissible
�m�� u� for the reduced problem if

�

t���

Z t���

�
m������ x�� dx� w

�

�
m�

�

�
in L�������

�

t���
rU ��� w

� ru in L��IR����

The nonlocal term of our reduced problem is
R
IR� jruj� dx with u de�ned by

���� We shall explain its origin and meaning in Section �� But we remark

here that it amounts to the squared H� �
� Sobolev norm of r� �m��Z

IR�
jruj� dx �

�

�
kr� �m�k�

H�
�
� �IR��

�
�

�
k�r���

�
� �r� �m�� k�L��IR���

The main result of this paper is a rigorous connection between the full three�
dimensional model and the reduced two�dimensional model�
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Theorem � Let ft���g��� and fd���g��� be sequences of positive numbers
such that

t��� � � and �d�����
log �

t���

t���
� �� ����

Then the reduced variational problem �De	nition � i�� is the �
limit of the
full variational problem �De	nition � ii�� under the convergence stated in
De	nition � iii�� This means

i� Lower semicontinuity� Let f�m���� U ����g��� be an admissible sequence
for the full problem such that fe�m���� U ����g��� is bounded� Then�
there exists an �m�� u� admissible for the reduced problem� and a subse�
quence such that we have convergence as in De	nition � iii�� For any
of these possible limits �m�� u� we have

e��m�� u� � lim inf
���

e�m���� U �����

ii� Construction� Let �m�� u� be admissible for the reduced variational prob�
lem� Then there exists an admissible sequence f�m���� U ����g��� for the
full problem� which converges to �m�� u� in the sense of De	nition � iii�
and which satis	es

e��m�� u� 
 lim sup
���

e�m���� U �����

We notice that the reduced variational problem is convex� It is even strictly
convex in the potential u and the m��component of the magnetization �pro

vided� the reduced quality factor q is positive�� Consequently� u and q m�

are unique� On the other hand� if q � �� the reduced variational problem is
highly degenerate in m�� for constant external �eld h�ext � const� e� depends
onm� only through its in�plane divergence r��m�� Nevertheless� there is some
more hidden strict convexity� since the pointwise constraint ��� on m��x�� is
strictly convex� which we shall elucidate now� For su"ciently small exter

nal �elds� however� the constraint ��� is not active and the Euler�Lagrange
equation for the reduced variational problem is given by

q

�
�

m�

�
 r�u h�ext � � on ��� ����

Think of q � � for a moment� In this case� ���� states that the stray �eld
hstr � �ru compensates the external �eld within the sample �in our thin�
�lm framework�� This is analogous to electrostatics� where charges on 	�

��



arrange themselves to shield the interior � of the conductor from an external
�eld� Two reduced models have been proposed in the physics literature� both
are based on ����� which is heuristically derived by this electrostatic analogy�
The �rst model ��� considers the case of no external �eld �next to q � ���
which in view of ���� predicts that the stray �eld and thus r� �m� vanishes
���ux closure��� Also the second model ��� which allows for an external �eld�
determines r�u and thus r� �m� from �����

But the constraint ��� on the magnetization limits the �charges�� unlike the
case in electrostatics � we will explain the concept of magnetic charges in the
Subsection ���� Hence stronger external �elds �penetrate� into the sample�

h�pen �� q

�
�

m�

�
 r�u h�ext �� ��

Therefore� our model extends the one in ��� As we shall state in Corollary
�� m� is unique on the penetrated region

��pen �� f x� � �� j h�pen�x�� �� � g� ����

which itself is unique� since it only depends on the uniquely determined u
and q m�� In order to properly de�ne �

�
pen� we need some regularity of u�

which is stated in the next proposition�

Proposition � Assume in addition that �� is simply connected and that
h�ext has all partial derivatives up to second order in L��IR��� i� e� h�ext �
H����IR���� Then any minimizer �m�� u� of the reduced problem satis	es

r�u � L�
loc��

��� ����

As a consequence of the ��convergence stated in Theorem � and the above
mentioned partial strict convexity� we will obtain the following corollary�

Corollary � Under the assumptions of Theorem � and Proposition � we
have

i� Let �m�� u� and � �m�� �u� be two minimizers of the reduced variational
problem� Then we have

jm�j� � � a� e� on ��pen� ����

q m� � q �m� and ru � r�u a� e� on IR�� ����

m� � �m� a� e� on ��pen� ����

where ��pen is de	ned in �����

��



ii� Let the sequences ft���g��� and fd���g��� be as in Theorem �� Let
�m���� U ���� be admissible for the full problem with energy close to the
minimal energy inf e��� in the sense of

lim sup
���

e�m���� U ���� � lim sup
���

inf e���� ����

Then we have for any minimizer �m�� u� of the reduced variational prob�
lem

�

t���

Z
��pen����t

����

�����m��� �
�
m�

�

������
�

dx � �� ����

q

t���

Z
�
�m

���
� �m��

� dx  
Z
IR�

���� �t��� rU ��� �ru
����� dx � �� ����

e�m���� U ����� e��m�� u� � �� ����

Informal statements of Theorem � and Corollary � were given in our pa

pers ���� ��� which mainly addressed the physical meaning of these results�
We note� however� that the version of Theorem � presented here is slightly
stronger than the one stated in ���� ��� Indeed� those papers e�ectively
imposed a lower bound as well as an upper bound on d� Here� by contrast�
condition ���� imposes only an upper bound�

��� Mathematical context

Our thin �lm regime is very di�erent from the one considered in ���� That
paper studied the case t�� � �� d��  �� obtaining an asymptotic problem
in which

�a� the magnetostatic term survives only as an anisotropy term favoring
m� � �� while

�b� the exchange term survives intact� favoring rm � ��

This limit is very rigid� because it is dominated by the exchange energy�
The asymptotic variational problem is insensitive to the shape of the cross�
section� because the part of the magnetostatic term favoring r� �m� � � has
been lost� The energy�minimizing magnetization is constant whenever the
external �eld is constant�
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Our regime has t�� � � and d�

�t
log���t� � �� The resulting theory is much

less rigid� because it is dominated by the magnetostatic term rather than the
exchange energy� Indeed� in our limit

�a#� the magnetostatic energy imposes m� � � as a constraint� and intro

duces a nonlocal term favoring r� � m� � � in �� and m� � � � � � at
	���

�b#� the exchange term disappears� and the nonconvex �D constraint jmj� �
� gets relaxed to the convex �D constraint jm�j� � ��

A key advantage of our regime is its broad applicability� it requires only that a
�lm be large enough �in the sense that �t log�����t�� d�� and that the aspect
ratio be small enough� The corresponding disadvantage is the degeneracy of
the reduced problem� Such degeneracy � and loss of the constraint jmj� � �
� is directly linked to the disappearance of the exchange energy� This e�ect
is familiar from work on the large�body limit ��� One might ask whether
there isn#t a limit in which both the magnetostatically�induced shape e�ects
and the exchange energy survive at principal order� The answer appears
to be no� To explain why� let us consider the �D micromagnetic energy
restricted to magnetizationsm that are independent of x�� We may ignore the
anisotropy and external �eld terms � they can always be made to interact
with the surviving terms by scaling Q and Hext appropriately� As usual
we use the scaled spatial variables in which the cross�section of the �lm is
�� � ����� with diameter �� With no further simpli�cation� the exchange
energy becomes d�t

R
�� jr�mj�� The magnetostatic energy� being nonlocal� is

more complicated� but we can approximate it by

�

�
t� � k�r���

�
� �r� �m�� k�L��IR��  �� t

Z
��
m�

� dx
� �

�This approximation is valid if the typical length scale over which m varies
is large compared to the �lm thickness t� see Section ���� With the possible
exceptions of N	eel walls in thick �lms� this approximation is valid in our
regime�� With this approximation� the sum of exchange plus magnetostatic
energy scales as

�� t

�
d�

��

Z
��
jr�mj� dx�  t

� �
k�r���

�
� �r� �m�� k�L��IR��  

Z
��
m�

� dx
�

�
�

��



Our regime has d�

��
	 t

�
	 � so the exchange term is negligible and the m�

�

term becomes a constraint� To capture both exchange and magnetostatic
shape e�ects at principal order in a thin �lm limit it seems necessary to
consider the regime

d�

��
 t

�
	 ��

But an asymptotic theory for this regime would apparently impose m� � �
and jm�j� � � in ��� m� � � � � at 	��� and R�� jr�mj� 
�� There is no such
function m�

We conclude� at least heuristically� that the degeneracy of our reduced prob

lem cannot be �xed by considering a di�erent scaling� Rather� the exchange
energy �and hence the wall energy� must remain a higher�order term � a
singular perturbation that breaks the degeneracy of our reduced problem� It
would be interesting to understand the e�ect of this perturbation� by some

how identifying the energy�minimizing wall structures and locations� In fact�
di�erent wall structures are expected for di�erent ranges of thicknesses within
the parameter regime for which our theory is valid� Thus� we anticipate that
several distinct higher�order corrections can emerge� each speci�c to a wall
type and to a restricted range of �lm thicknesses�

It would be interesting to identify these higher�order terms and to under

stand their e�ect� This appears to be a very di"cult problem� for which
the appropriate mathematical tools are not yet available� There has� how

ever� been considerable progress on several closely related problems ��� ���
���� ���� A related� but more qualitative and simpler question is whether
the constraint jmj� � � is preserved in the limit �which is to be expected
only for q � ��� This question can be rephrased as an issue of compactness�
it has been settled a"rmatively for several singularly perturbed variational
problems mimicking micromagnetism ��� ���� ���� ���� ����

Our focus is energy minimization� but the dynamics and switching of soft
thin��lm ferromagnets is also an important topic� The paper ��� proposes
a �D reduction of the Landau�Lifshitz�Gilbert equations of micromagnetic
dynamics� and demonstrates its validity through asymptotic analysis and
direct comparison with �D numerical simulations�

Our �lms are small in just one dimension� but it is also of interest to consider
bodies that are small in every dimension� The paper �� studies this small

��



particle limit and the corresponding local minima using ��convergence� and
�� takes a di�erent approach using an implicit function theorem�

� Interpretation� heuristics and optimality

Our main result� which we stated in the previous section� can be paraphrased
as follows� Suppose that ��� holds �which is encoded in the �rst limit of �����
and that the sample is not too small in the sense of

d� 	 � t log��
�

t
� ����

which is encoded in the second limit of ����� Suppose further that the
anisotropy and the external �eld are su"ciently weak in the sense of

Q � O�
t

�
� and Hext � O�

t

�
�� ����

conditions which are encoded in ���� Then ���� states that to leading order�
the minimal energy behaves as

min
�m�U� satis�es �����

E�m� � � t� min
�m��u� satis�es ���	�

e��m��� ����

Notice the relaxation ��� of the nonconvex constraint ���� This relaxation is
quite intuitive once one understands why one may drop the exchange energy
term in ��� �observe that there is no gradient term in ����� The main insight
of our result is that ���� is what is needed for the exchange term to become
negligible to leading order in the scaling of the minimal energy �����

Over the next subsections� we will give a heuristic argument why ���� is
natural� At the same time� this will also motivate ����� The proof of Theorem
� is inspired by these arguments� In this heuristic part� we restrict ourselves
to the regime of so�called �thin� �lms� i� e�

t 	 d� ����

This means that in view of ���� ���� and ����� t is the smallest of the four
length scales in ���� Our result also holds in a regime when ���� is violated
�so�called thick �lms�� but the proof of Theorem � is motivated by �����

��



Also observe that ��� and ���� imply the following ordering of three of these
length scales

t 	 d 	 �� ����

As a �rst consequence of ����� it is safe to assume that m does not depend
on the thickness variable x�

m�x� � m�x��� ����

��� The magnetostatic energy

The magnetostatic part of the energy ��� is crucial � it makes our varia

tional problem qualitatively di�erent from the harmonic mapping problem�
Therefore� a few remarks are in order�

We start by observing that the classical formulation of ��� is

r�U �

� r �m in �

� in IR���

�
�U  � � and

h
�U
��

i
� � �m on 	�

������� � ����

where �� denotes the jump of quantity � across the boundary 	� with normal
�� In view of ����� it is clear that there are two sources of stray �eld Hstr �
�rU � By the electrostatic analogy� they are called magnetic volume charges
and magnetic surface charges�

volume charge density� r �m in ��
surface charge density� � �m on 	��

����

Under the assumption ����� the volume charge density is the in�plane diver

gence r� �m�� whereas the out�of�plane component m� is a surface charge�
A simple calculation reveals that the magnetostatic energy splits into two
parts� which penalize the in�plane divergence and the out�of�plane compo

nent separately�Z

IR�
jrU j� dx

� t
Z
IR�

f�
t

�
j��j�

����� �
�

j��j � F�m
��

�����
�

d��  t
Z
IR�

g�
t

�
j��j� jF�m��j� d��� ����

��



where F�m������ and F�m����
�� denote the Fourier transforms of m��x�� resp�

m��x
��� when extended trivially on IR�� Here the Fourier multipliers are given

by

g�z� �
sinh�z�

jzj exp�z� and f�z� � �� g�z�

and thus display a cross�over at wavenumbers of O��
t
� resp� length scales of

O�t�� Since ���� implies that the intrinsic length scales d� d�Q
�
� are much

larger than t� we expect that ���� is approximated as follows

Z
IR�
jrU j� dx � t�

�

Z
IR�

�

j��j j�
� � F�m��j� d��  t

Z
IR�
jF�m��j� d�� ����

� t�
Z
IR�
jruj� dx t

Z
��
m�

� dx
��

where u is de�ned as in ��� �with the normalized �� replaced by ����

Notice that u is the single layer potential of the volume charge density r� �m��
Classically� ��� turns into

r�u � � in IR� � ��� � f�g�
�u � � and

h
�u
�x�

i
� r� �m� on �� � f�g

�
� ����

where �� denotes the jump of a quantity � across the plane IR� � f�g� This
characterization of u implicitly contains the assumption that the normal
component of m� does not jump across a possible discontinuity line of m�� in
particular

m� � � � � � on 	��� ����

where � � denotes the normal to the boundary 	�� of the cross section ���
more on this in Subsection ����

��� A dimensional argument

At this stage� we can already give a simple dimensional argument which
shows that ���� is optimal up to the logarithmic term� Indeed� here is the
�formal� scaling of the four terms in ����

d�
Z
�
jrmj� dx ��
�

� d� t
Z
��
jr�mj� dx�

� O�d� t��

��



Q
Z
�
m�

�  m�
� dx

��
�
� Q t

Z
��
m�

�  m�
� dx

�

� O�Q�� t��Z
IR�
jrU j� dx ����� t�

Z
IR�
jruj� dx t

Z
��
m�

� dx
�

� O�� t��  O��� t�Z
�
Hext �mdx

��
�
� t

Z
��
Hext �mdx�

� O�jHextj �� t�� ����

As a �rst conclusion� we observe that in our regime ���� the larger of the two
magnetostatic terms is the cost of the out�of�plane componentm�� Therefore
we expect m� � �� Together with ����� this shows that m should essentially
be a two�dimensional vector �eld as assumed in the reduced variational prob

lem�

We also observe that ���� is chosen so that the cost of the volume charge
generated by the in�plane divergence r� � m� is of the same order as the
anisotropy energy and the external �eld energy� namely O�� t��� which is
the predicted scaling of the minimal energy ����� We �nally notice that the
condition

d� 	 � t ����

seems indeed to ensure that the exchange energy is of higher order�

We now will show� in the next several subsections� that the logarithmic factor
in ���� is also natural� In order to achieve the relaxation ���� we will have to
construct sequences which oscillate on a scale smaller than � without a�ect

ing the leading order O�� t���terms of the energy� Experiments show that in
general� the way magnetization oscillates on a scale smaller than the sample
size is by forming regions in which the magnetization varies smoothly� sepa

rated by transition layers� which have a typical width much smaller than the
typical size of these regions� The regions are called domains� the transition
layers are called walls� Under the assumption ����� the domains are two�
dimensional objects and the walls are essentially one�dimensional objects�
In the following� we will look at a typical type of wall in thin �lms �����

��� N�eel walls

The N	eel wall is the favored wall type when t 	 d� i� e� ����� The reason
is simple� A N	eel wall avoids surface charges �which are penalized like �� t�

��



t �
�
�
�

Figure �

t + −

Figure �

see ����� at the expense of volume charges �which are only penalized at the
lower level � t��� A N	eel wall achieves this by an entirely in�plane rotation of
the magnetization� Figure � and � show a sketch of the magnetization and
the volume charge within a N	eel wall�

The prototype of a N	eel wall separating two domains of diameter O��� has
thus the following form

m �

�
m�

�

�
� m � m�x���

�
m��x� � �� � ��
m��x� � �� � �

�
� ����

This prototype connects the magnetizations
	

�
��



and

	
�
�



by a one�dimensional

pro�le over the distance �� and is thus called a ���o N	eel wall� As we shall
see� the assumption that the rotation takes place over the 	nite length � is
important� Since m� � �� there are no surface charges� On the other hand�
the constraint jm�j� � jmj� � � together with the boundary conditions in
���� implies that m� � �� somewhere in ��� ��� Hence r� �m� � �m�

�x�
�� � and

thus there are volume charges�

Our goal now is to infer the scaling of the speci�c energy �i� e� the energy per
length in the tangential x��direction� of such a prototypical N	eel wall� This
means that we wish to deduce the scaling of the minimum of

ENeel �� d� t
Z �

�
jdm

�

dx�
j� dx�  t�

Z �

��
j��j jF�m������j� d�� ����

among allm satisfying ����� Here� we have used the thin��lm approximation
���� of the magnetostatic energy generated by volume charges� Also� we
have neglected the contribution of anisotropy and external �eld� This seems
justi�ed� since in view of ����� these terms are of leading order only as �two�
dimensional� bulk terms and not via their contribution in �essentially one�
dimensional� walls� It is convenient to non�dimensionalize speci�c energy

��



and length as follows

ENeel � t� $ENeel� x� � � $x��

Then ���� and ���� turn into

$ENeel ��
d�

� t

Z �

�
jdm

�

d$x�
j� d$x�  

Z �

��
j$��j jF�m���$���j� d$�� ����

resp�

m �

�
m�

�

�
� m � m�$x���

�
m��$x� � �� � ��
m��$x� � �� � �

�
� ����

The exchange energy term in ���� is a singular perturbation� Only this term
enforces continuity of m� If it were not there� we could choose

m �

��
	

�
��



for $x� 
 �

�	
�
�



for $x� � �

�

��� �

in particular m� � �� so that there is no magnetostatic contribution in �����
Thus we expect

min $ENeel �� � as
d�

� t
�� �� ����

Hence even in the weaker regime ����� the energy of N	eel walls of a total
length O��� scales as o�� t�� and thus is of higher order�

In fact� ���� is a bit subtle� Continuity of m�� the constraint jm�j� � �� and
the boundary conditions in ���� enforce

km�kL��IR� � sup
�x�

jm��$x��j � ��

On the other hand� we notice that the magnetostatic energy is the square of
the homogeneous H

�
� �IR��norm� i� e�

k
�

d

dx�

� �
�

m�kL��IR� �
�Z �

��
j$��j jF�m���$���j� d$��

� �
�

�

and that the embedding H
�
� �IR� � L��IR� is critical and barely fails� This

suggests that ���� is logarithmically slow� Indeed� one can show

min $ENeel  log��
� t

d�
� ����

��



We will use the construction leading to the upper bound in ���� implicitly
in our rigorous analysis in Subsection ����

Summing up� we have argued that the energetic cost of N	eel walls of total
length of O��� is O�� t� log�� � t

d�
��

��� Soft boundary condition

If ����� that is�
m� � � � � � on 	��

is violated� r� � m� has a distributional component �since we have to think
of m� as being extended by zero on IR��� Even if it is true that m� varies on
scales at least of O�d� in the interior of ��� a violation of ���� means that
the trivially extended m� varies on a much smaller scale at 	��� Hence the
approximation which led from ���� to ���� is not valid if we want to measure
how much a violation of ���� is penalized�

Our goal is to infer the scaling of the speci�c energy �i� e� the energy per unit
length in tangential direction� of m� � � � � O���� For this purpose� it su"ces
to consider the prototypical situation

m� �

� 	
�
�



for x� � ��� ��

� else

�
�

and the related magnetostatic energy �per length�

Ebc � t
Z �

��
f�

t

�
j��j� jF�m��j� d��

���� t�

�

Z
ft j��j��g

j��j jF�m��j� d��  t
Z
ft j��j��g

jF�m��j� d���

Since

jF�m��j 
�

� for � j��j � �
�
j��j

for � j��j 
 �
�
�

we obtain a logarithmic divergence

Ebc  t� log
�

t
�

which re�ects the fact that a step function barely fails to be in H
�
� �IR��

To conclude� we have argued that an O��� normal component m� � � � over an
O��� length of 	�� costs O�� t� log �

t
��

��



��� Bloch lines

In the previous section we made the point that the cost of an O��� normal
component m� �� � over a substantial part 	�� of the boundary is O�� t� log �

t
�

and thus beats the leading order energy scaling O�� t�� by a logarithmic
factor� Loosely speaking� this enforces

m� � � � � � on 	���

This would impose a topological constraint on a continuous m�� m� must
vanish somewhere in ��� hence m� � � � jm�j� � � somewhere in ��� This
is not quite true� The penalization of m� � � � is only in L��	���� and� on the
other hand� control of

R jr�m�j� dx� fails to give a good control of the modulus
of continuity of m�j���� Hence it is conceivable that the penalization of m� �� �
is compatible with a topological degree zero of m�j���� We will not pursue
this possibility of a �vortex just outside ��� here�

Experiments suggest that the magnetization accommodates such topological
constraints by so�called Bloch lines� A Bloch line is a regularization of a
vortex

m��x�� �
x��

r
� ����

where � denote the in�plane rotation by ��o and r � jx�j� Away from the
core of the Bloch line� the magnetization looks like such a vortex� When ap

proaching the core of the Bloch line� the magnetization avoids the singularity
by turning out�of�plane� it is completely normal to the plane in the center
of the Bloch line� This out�of�plane component is a surface charge� hence
the magnetostatic energy keeps vortices localized� while the exchange energy
wants to spread them� In our two�dimensional setting ����� a Bloch line is
really an essentially zero�dimensional object� Figure � and � show a sketch
of the magnetization and the surface charge within a Bloch line

A prototype of a Bloch line in a sample of diameter � is of the following form

r� �m� � � and m�x�� �
�

�
x�
�
for r �� jx�j � �� ����

Our goal is to infer the scaling of the minimum of

EBloch � d� t
Z
fr��g

jr�mj� dx�  t
Z
fr��g

m�
� dx

� ����

��
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among all m satisfying ����� Here� we have used the approximation ����
of the magnetostatic energy coming from surface charges m�� As for N	eel
walls� we have neglected the contribution of anisotropy and external �eld�
This seems justi�ed� since in view of ����� these terms are of leading order
only as �two�dimensional� bulk terms and not via their contribution in �zero�
dimensional� Bloch lines�

It is convenient to non�dimensionalize energy and length as follows

EBloch � d� t $EBloch� x� � � $x��

Then ���� and ���� turn into

$EBloch �
Z
f�r��g

j $r�mj� d $x�  
�
�

d

�� Z
f�r��g

m�
� d $x

�

resp�
$r� �m� � � and m� $x�� � $x�

�
for $r � �� ����

There is no two�dimensional vector �eld m� on f$r 
 �g which satis�es the
boundary condition in ����� which is of unit length� i� e� jm�j� � �� and which
has �nite Dirichlet integral� Hence we expect

min $EBloch �  � as
�

d
� ��

On the other hand� the vortex ����� which satis�es ���� and is of unit length�
barely fails to have �nite Dirichlet integral� it is only logarithmically divergent�
In fact� one can show

min $EBloch  log
�

d
� ����

We will use the construction leading to the upper bound in ���� implicitly
in our rigorous analysis in Subsection ����

Summing up� we have argued that an O��� number of Bloch lines in � con

tribute O�d� t log �

d
� to the energy�

��



��� Separation of energy scales

The conclusion of this section are summarized in the table

out�of�plane component m� �� t

non�tangential component m� � � � � t� log �
t

in�plane divergence r� �m� � t�

external �eld Hext jHextj �� t

anisotropy Q Q�� t

N	eel wall � t� log�� � t
d�

Bloch line d� t log �
d

Let us now argue that the regime ���� ���� % ���� is just what is needed to
ensure clearly separated energy scales� as indicated in the table� The upper
tier scales� � t�� the middle tier scales as � t� and the lower tier scales	 � t��

First of all� ��� ensures that the �rst tier of the table� that is

� the penalization of an out�of�plane component over an O����fraction
of the sample#s cross�section and

� a non�tangential component over an O����fraction of the boundary of
the sample#s cross section

is stronger than � t�� Hence the penalization in the full model turns into a
constraint in the reduced model�

As already pointed out in Subsection ���� ���� makes sure that the terms in
the middle tier of the table� that is�

� the energy contributions of the in�plane divergence�

��



� the external �eld and
� the anisotropy

are all of the same order� namely � t�� Hence we expect that the leading
order energy scaling is determined by a competition of penalization of in�
plane divergence with the energy contributions from the external �eld and
anisotropy� as expressed in the reduced model�

Finally� ���� just ensures that

� the cost of N	eel walls of a total length of the order of the sample
diameter and

� the cost of an O��� number of Bloch�lines
are much less than � t�� Indeed� ��� and ���� in particular imply

� t

d�
� �� ����

so that the cost of N	eel walls is always small

� t� log��
� t

d�
	 � t��

Furthermore� we observe that�
�

d

��
��
�� �

t

���� ��

so that the argument of the logarithm which appears in the Bloch line energy
is indeed large� The cost of a Bloch line is higher order if and only if

d� t log
�

d
	 � t��

which is equivalent to �
d

�

��

log
�

d
	 t

�
� ����

��



Since both d
�
and t

�
are small� ���� is equivalent� to

�
d

�

��

	 t

�
log��

�

t
� ����

which is just a reformulation of �����

� Some regularity

This section establishes a basic regularity result for the reduced variational
problem� The methods used here are quite di�erent from those in the rest of
the paper� Hence this section may be skipped in a �rst reading�

Proof of Proposition �� We start with a remark on the choice of our
method� Our reduced variational problem can be reformulated as saddle
point problem in �m�� u� for the functional

q
Z
��
m�

� dx
� �

Z
IR�
jruj� dx� �

Z
��
�h�ext �r�u� �m� dx�

This functional has to be minimized among all m� with ��� and k�r���
�
�r� �

m�kL��IR�� 
� and maximized among all u with
R
IR� jruj� dx 
�� Hence u

minimizes Z
IR�

�

�
jruj� dx 

Z
��
H��h�ext �r�u� dx��

�In fact� the equivalence of ���	 and ��
	 reduces to the fact that for x� y � ��

y � x
� log

�

x
���	

implies

x
� � y log�� �

y
� ��	

Indeed� ���	 in particular yields
x
� � y � x

�
�

so that

log
�

y
� log

�

x
�

which implies ��	�

��



where H� is the Legendre transform of

H�m�� ��

��
q
�
m�

� if jm�j� � �
 � else

��� �

This is the �dual problem�� If the anisotropy is negligible� i� e� q � �� we
have

H��p�� � jp�j�
In this case� fairly standard local elliptic regularity theory �di�erentiate the
Euler�Lagrange equation in direction of xi� i � �� � and test with �� �u

�xi
�

would yield Proposition ��

However� in case of q �� �� H� is irregular not just in p� � �� At the same
time� it is not homogeneous� There seems to be no simple �x of the standard
argument in this case� Therefore� we take a di�erent approach and work
directly on the primal problem�

In general terms� the strategy will be to construct several �to be more
precise� three� smooth one�parameter groups of di�eomorphisms f&�i�

� g��IR
�i � �� �� �� of IR� with the following two properties

� The transformed potentials u�i�� � i� e�

u�i�� � &�i�
� � u� ����

satisfy Z
IR�
jr�u�i�� � u�j� dx � O� ��� ����

Here� the di�eomorphisms are naturally extended to IR��

� The generating vector �elds� i� e�

��
�i�
��

	&�i�

	

�����
��

�

satisfy n
��
�i�
�x��

o
i�����

span IR� in every x� � ��� ����

��



By the standard di�erence quotient argument� this implies

rr�u � L�
loc��

� � IR��

which in turn yields ���� by the embedding H
�
� �IR�� � L��IR���

Our Ansatz is to use one�parameter subgroups of the group of conformal
di�eomorphisms of �� onto �� �automorphisms�� We recall the following
results from complex variable calculus

� Since �� is simply connected� there exist three one�parameter subgroups
f&�i�

� g��IR� i � �� �� �� with ����� Recall that f&�i�
� g��IR is the �ow

generated by ��i��

� Since �� has a smooth boundary� IR � �� � �� x�� �� &�i�
� �x

�� � �� is

smooth up to the boundary� In particular� ���i���� � IR� is smooth up
to the boundary� Hence we can smoothly extend ���i� to a ���i�� IR� �
IR� s� t�

��
�i�
�x�� � � for jx�j 
 R

for some R 
 �� This extends the �ow f&�i�
� g��IR smoothly to di�eo


morphisms of IR� with

&�i��x�� � id for jx�j 
 R�

We will use these one�parameter groups of di�eomorphisms to de�ne the
following variations fm��i�

� g��IR of m�

q
detD&

�i�
� �D&�i�

� �
�� �m��i�

� � &�i�
� � � m�� ����

Since &�i�
� maps �� onto ��� this indeed de�nes an m��i�

� ��
� � IR�� Since &�i�

�

is conformal� we have q
detD&

�i�
� �D&�i�

� �
�� � SO���

and thus
jm��i�

� � &�i�
� j� � jm�j� � ��

We de�ne v�i�� to satisfy ���� i� e�Z
IR�
rv�i�� � r� dx �

Z
��
m�i�

� � r�� dx� for all � � C�
��IR

��� ����

��



By construction� �m�i�
� � v�i�� � is admissible�

Since the reduced variational problem is convex� its solution is characterized
by the variational inequality

q
Z
��
m� �m� � �m�� dx

� �
Z
��
h�ext � �m� � �m�� dx�

 
Z
IR�
ru � �ru�r�u� dx � � for all admissible � �m�� �u��

We use this variational inequality for � �m�� �u� � �m��i�
� � v�i�� � and � �m

�� �u� �

�m��i�
�� � v

�i�
�� �� We add both resulting inequalities and will prove the following

estimates for the individual energy contributions�
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where u�i�� is de�ned in ����� This evidently implies �����

A little remark before proving ����������� Our choice of variations has the
following advantages

� The variations are of the form
detD&�i�

� �D&
�i�
� �

�� �m��i�
� � &�i�

� � � a�i�� m

with a smooth scalar �eld a�i�� �

so that the divergence transforms nicely� More precisely� r� � m��i�
�

depends on Dm��i�
� only via r� �m��
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� �r� �m��i�

� � � &�i�
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This is important for �����

� The smooth scalar �eld a�i�� enforces
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� Each family f&�i�
� g��IR of di�eomorphisms has the group�morphism

property
&
�i�
��� � &�i�

� � &�i�
� �

� At the same time� the three families f&�i�
� g��IR� i � �� �� �� are just rich

enough in the sense of �����

We shall now establish ����������� To simplify notation�we drop the super

scripts �i�� We start with the term ���� coming from the external �eld� It is
convenient to introduce the following transformation of vector �eldsq

detD&� �h
�
ext�� � &� � � D&��� h�ext� ����

related to the transformation ���� of the magnetizations in the following
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since m� � L����� and ���� de�nes a smooth variation fh�ext��g��IR of h�ext �
H�������� �Recall that h�ext � H������� means that all partial derivatives up
to the second order are in L�������

We now consider the term ���� coming from anisotropy� It is convenient to
slightly generalize ���� toZ
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where B is a positive semi�de�nite � � ��matrix� The transformation of
tensor �elds
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Here� the star � in the exponent indicates the transpose and �� denotes the
transpose of the inverse� We thus haveZ
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since m� � L����� and ���� de�nes a smooth variation fB�g��IR of the con

stant tensor B�

We �nally consider the term ���� coming from the magnetostatic energy� It
is helpful to introduce � �m� � �v� � via
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We start with ����� We recall the transformation ���� of scalar �elds on IR�
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We introduce the tensor �eld fA�g��IR of �� ��matrices
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Now ���� follows fromZ
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the latter being true because the tensor �eld ���� is a smooth variation of
the constant identity matrix and since

R
IR� jruj� dx 
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We �nally address ����� For ease of notation� we introduce
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so that the relation between m�
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� �which follows from the de�nitions
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We now make use of the following embedding resp� interpolation estimate
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�the �rst inequality is standard� we will give the short argument for the
second one at the end of the proof of this proposition� which we combine
into����Z

IR�
�r�v �m� dx�

���� �
����Z
IR�

� vr� �m� dx�
���� ����Z

IR�
r�� �m� v dx�

����
� k�r��

�
� �� v�kL��IR��k�r���

�
�r� �m�kL��IR��

 kr��k
L

�
� �IR��

km�kL��IR�� kvkL��IR��

� C
n
k�k

�
�

L��IR��
kr��k

�
�

L��IR��
k�r���

�
�r� �m�kL��IR��

 kr��k
L

�
� �IR��

km�kL��IR��

o
k�r��

�
� vkL��IR��� ����
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In the case of T��
� � �� a� � a��

is of second order in  �
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We close by establishing ����� For any extension '� of � into IR� we have
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Indeed� let 'v denote the harmonic extension of v into IR�� i� e� the extension
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Our Ansatz is the following� We select an ��� ��valued � � C�
� �IR� with

��$x� � �� � � and set
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Optimizing in the decay length � yields �����

Since the extension ���� does not increase the supremum� the estimate ����
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� Convexity and lower semicontinuity

This section combines the soft analysis parts of Theorem � and Corollary ��
By �soft analysis�� we understand methods involving compactness� convexity
and lower semicontinuity arguments�

Proof of Theorem � i�� Our starting point is an admissible sequence
f�m���� U ����g��� for the full problem with bounded energy� i� e�

fe�m���� U ����g��� is bounded� ����

According to ��� and ����� the linear part in the energy ���� is always
bounded �����
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Together with ����� we deduce that the remaining three positive quadratic
terms in ���� are bounded� In particular���
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for a subsequence� From elementary lower semicontinuity arguments� it is
obvious that under ������� we have
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where m� denotes the in�plane components of m� It is also standard that
under ����� the nonconvex constraint ���� for m��� deteriorates into
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On the other hand� the linear relation ���� for �m���� U ���� is preserved under
�������� More precisely� it simpli�es toZ

IR�
ru � r� dx �

Z
��
m � r� dx� for all � � C�

� �IR
��� ����

It thus remains to argue that

m� � �� ����

so that we can identify ���� with ����

Fix an � � C�
� �IR� with

�j�x�� � � and
d�

d$x�

�����
�x��

� �� ����

Let � � C�
� �IR

�� and  � � be arbitrary and consider

��x� �  ��
x�

���x��

in ����� Since

r��x� �
�
 ��x�

�
�r���x��

d�
d�x�
�x�
�
���x��

�
�

we obtain thanks to ��������Z
��
m� � dx�

����
�

����Z
IR�
ru � r� dx

����
�

�
 �
Z
IR
�� d$x�

Z
IR�
jr��j� dx�  

Z
IR
j d�
d$x�

j� d$x�
Z
IR�
j�j� dx�

� �
�

�
�Z

IR�
jruj� dx

� �
�

�

Since  � � was arbitrary� we obtainZ
��
m� � dx� � ��

Since � � C�
� �IR

�� was arbitrary� this shows �����

��



Proof of Corollary �� We start with ����� Since our reduced varia

tional problem is convex� its minimizers are characterized by the variational
inequality
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Thanks to the additional regularity stated in Proposition �� we may integrate
by parts in the magnetostatic term and obtainZ

��

�
q

�
�

m�

�
 r�u� h�ext

�
� �m� � �m�� dx� � � ����

for all �m� with ��� and supp� �m� �m�� � ���

Indeed� since �m�� u� and � �m�� �u� are admissible� we haveZ
IR�
�ru�r�u� � r� dx �

Z
��
�m� � �m�� � r�� dx� for all � � C�

� �IR
���

Since ru�r�u � L��IR��� m�� �m� � L����� and since m�� �m� is compactly
supported in ��� i� e� supp�m�� �m�� � ��� this variational formulation is valid
for a larger class of test functions�Z

IR�
�ru�r�u� � r� dx �

Z
��
�m� � �m�� � r�� dx� ����

for all � � L��IR�� with r� � L��IR�� and r�� � L�
loc��

���

According to Proposition � and the Sobolev embedding� we may choose

� � u�

in ����� Hence ���� yields ����� ���� in turn implies

h�pen �� q

�
�

m�

�
 r�u� h�ext � � a� e� on fjm�j� 
 �g�

which is just a reformulation of �����

The convexity of the constraint ��� implies that also the pair ��
�
�m �m�� �

�
�u 

�u�� is admissible� Now the convexity of e� implies

e���
�

�
�m  �m��

�

�
�u �u�� � �

�
�e��m�� u�  e�� �m�� �u��� � inf e� ����

��



with equality if and only if
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In particular� fe�m���� U ����g��� is bounded� According to Theorem � i�� we
conclude that there exists an admissible �m�� u� such that
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Thus �m�� u� is a minimizer of the reduced variational problem and
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By standard lower semicontinuity arguments� we obtain for the quadratic
parts of the energy
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Z
IR�
jruj� dx

we have

lim
���

Z
IR�

���� �t��� rU ��� �ru
����� dx

�
	�������
�

Z
IR�
jruj� dx� �

Z
IR�
ru � ru dx 

Z
IR�
jruj� dx � ��

��



The argument for q m� is similar�

q

t���

Z t���

�

Z
��
jm���

� �x
�� x���m��x

��j� dx� dx�

�
q

t���

Z
�
�m

���
� �

� dx� � q
Z
��

�
�

t���

Z t���

�
m

���
� �x

�� x�� dx�

�
m��x

�� dx�

 q
Z
��
m�

� dx�

and thus

lim
���

q

t���

Z t���

�

Z
��
jm���

� �x
�� x���m��x

��j� dx� dx�
�
��������
� q

Z
��
m�

� dx
� � � q

Z
��
m�m� dx

�  q
Z
��
m�

� dx
� � ��

This establishes ����� Also the argument for ���� is not very di�erent� Since

�

t���

Z t���

�

Z
��pen

�����m����x�� x���
�
m��x��

�

������
�

dx� dx�

�
�

t���

Z t���

�

Z
��pen

jm����x�� x��j� dx� dx�

��
Z
��pen

�
�

t���

Z t���

�
m����x�� x�� dx�

�
�
�
m��x��

�

�
dx�

 
Z
��pen

jm��x��j� dx�

���
� � � �

Z
��pen

�
�

t���

Z t���

�
m����x�� x�� dx�

�
�
�
m��x��

�

�
dx�

 
Z
��pen

jm��x��j� dx��

we obtain

lim
���

�

t���

Z t���

�

Z
��pen

�����m����x�� x���
�
m��x��

�

������
�

dx� dx�

�
��
� �� �

Z
��pen

m� �m� dx�  
Z
��pen

jm�j� dx� ��	�
� ��

��



� The construction

This section deals with the construction of appropriate magnetizations� The
mathematical construction is motivated by the physical intuition outlined in
Subsections ���� ��� and ���� which we suggest to read beforehand�

Proof of Theorem � ii�� The sequence fm���g��� we construct will con

sist of magnetizations m which do not depend on the thickness variable

m � m�x���

In this case� the full energy ���� simpli�es to

e �
d�

t

Z
��
jr�mj� dx�  q

Z
��
�m�

�  m�
�� dx

�

 
�

t�

Z
IR�
jrU j� dx� �

Z
��
h�ext �m� dx��

We now consider the Fourier representation ���� of
R
IR� jrU j� dx� Since the

Fourier multipliers satisfy the inequalities

f�z� � z and g�z� � ��

we actually have

Z
IR�
jrU j� dx � t�

�

Z
IR�
j��j

����� �
�

j��j � F�m
��

�����
�

d��  t
Z
IR�
jF�m��j� d��

� t�
Z
IR�
jruj� dx t

Z
��
m�

� dx
�� �����

where u and m� are related via ���� Hence the two energies from De�nition
��� are related by

e � e�  
d�

t

Z
��
jr�mj� dx�  ��

t
 q�

Z
��
m�

� dx
� �� �e� �����

In the sequel� it is more suggestive to express
R
IR� jruj� in terms of m�� We

write

e��m�� � q
Z
��
m�

� dx
� 
�

�

Z
IR�
j�r��

� �
� r� �m�j� dx�� �

Z
��
h�ext �m� dx� �����

��



with the notation

k�r��

vk�L��IR�� �

Z
IR�
j�r��


vj� dx� �

Z
IR�
j��j� jF�v�j� d���

For ����� and in the sequel� we think of m� as trivially extended on all of IR��
so that a non�vanishing normal component m� �� � would appear as a singular
contribution to r� �m� on 	���

In view of ����� and ������ it is su"cient to prove the following proposition�

Proposition � � Let m���� � IR� satisfy

jm�j� � � in ���

Let the sequences ft���g��� and fd���g��� satisfy ����� Then there exists a
sequence fm������ � IR�g��� with

jm���j� � � in ���

and such that

m��� w
�

�
m�

�

�
in L�������

lim sup
���

�e�m���� � e�m���

This construction will be carried through in three steps� each corresponding
to one of the lemmas below� In Lemma �� an appropriate domain pattern is
constructed� In Lemma �� the line singularities are replaced by N	eel walls�
In Lemma �� the point singularities are replaced by Bloch lines�

Lemma � � Given an m� as in Proposition  and an � � �� there exists anfm���� � IR� with the following four properties

� jfm�j� � � in ���

� fm� is smooth apart from points in a 	nite union of smooth curves�

� these curves only intersect in their end points and they do so in a
transversal way�

��



� fm� is smooth up to these curves and the normal component does not
jump� whereas the magnitude of the jump of the tangential component
is bounded from below�

such that

k�r��
��
�fm� �m��kL��IR�� 
 � and e��fm�� 
 e��m��  �� �����

Lemma � � Given an m� as constructed in Lemma � and an � � �� there
exists an fm���� � IR� with the following properties

� jfm�j� � � in ���

� fm� is Lipschitz on �� apart from a 	nite number of points�

� if x�� is such a point� the blow
up of the derivative of fm� is controlled
as follows

jr�fm��x��j � C
�

jx� � x��j
�

such that

k�r��
��
�fm� �m��kL��IR�� 
 � and e��fm�� 
 e��m��  ��

Lemma � � Let m� be as constructed in Lemma � Let the sequences
ft���g��� and fd���g��� satisfy ����� Then there exists fm������ � IR�g���
with

jm���j� � � in ���

such that

m��� w
�

�
m�

�

�
in L�������

lim sup
���

�e�m���� � e��m���

��



��� Domain pattern

Proof of Lemma �� Since this construction is entirely two�dimensional�
we drop all primes� We start by arguing that we may assume the following
additional regularity properties for the given m

sup jmj� 
 � in IR�� �����

m has compact support in �� �����

m is smooth in IR�� �����

����� is easy to achieve� Replace m by �m � �����m� This a�ects the energy
e�� which consists of three homogeneous terms of degree � resp� �� by O����

e�� �m� � e��m�  O���� �����

For ������ we choose a di�eomorphism & of IR� with &��� �� � such that
& is �at least� C��close to the identity

k&� idkC��IR�� � O���� �����

Replace m by �m de�ned through

detD& D&�� � �m �&� � m� �����

which satis�es ����� by construction� For �	 �� ����� is not destroyed� The
transformation ����� has the advantage that

detD& �r � �m� �& � r �m�

so that by �����

kr� �
�r � �mkL��IR�� � kr� �

�r �mkL��IR��  O����

Furthermore� ����� and ����� also imply k �m�mkL��IR�� � O���� so that �����
holds�

����� is standard� Set

���x� �
�

��
��

x

�
��

where � is a smooth non�negative function of unit integral with support in
the unit disk� Consider the convolution

�m � �� �m�

��



which yields a smooth �m� This does not a�ect ����� and� provided � 	 ��
does not destroy ������ Also here� we have ������ This establishes ������
����� % ������

We now come to the main part of the construction� The Ansatz for Lemma
� is fm �� m  r��� �����

where � solves the Hamilton�Jacobi equation

jr�� �mj� � � in � �����

with homogeneous boundary conditions

� � � on 	�� �����

Here � denotes the rotation of a two�dimensional vector by ��o� The Ansatz
����� does not a�ect the divergence of the magnetization� and ����� ensures
that the normal component is not altered at the boundary� Both make sure
that the delicate stray��eld energy� that is� kr� �

�r�mkL��IR��� is unchanged�
On the other hand� ����� enforces unit length for �m�

It is well�known that the boundary value problem ����� for the Hamilton�
Jacobi equation ����� does not admit a smooth solution �think for instance
of m � �� in which case ����� turns into the eikonal equation�� We will
construct a �piecewise smooth� �� which we extend by zero on all of IR�� By
piecewise smooth� we understand the following� There exist pairwise open
disjoint sets ���� � � � � ��K � IR� and curves ���� � � � � ��L � IR� � Sk ��k such that
IR� �

S
k ��k �

S
� ��� with

� � is smooth up to the boundary of each open set�

� the curves are smooth up to their end points�
We also include the following non�degeneracy conditions in our notion of
�piecewise smooth��

� The magnitude of the jump of r� along each curve is bounded from
below�

� the curves only intersect in their end points and do so in a transversal
way�

��



These properties ensure that the �m de�ned in ����� meets the regularity
and non�degeneracy requirements listed in Lemma �� In addition� given our
small �� we construct � such that it additionally satis�es

sup
IR�

j�j � O���� �����Z
IR�
j	��j� dx � O���� �����

which obviously yields ����� for �m de�ned as in ������

Figure �

In order to construct this � we will subdivide � into subdomains �� �see Figure
�� which will be explained below� and use local constructions ��� We need
a few preparations� For notational convenience� we introduce the following
class C of smooth curves � in IR� endowed with a unit normal �

C � fstraight lines� 	� with inner normalg �

We also introduce a class D of domains �� in IR�� For r� � � to be �xed later�
we say that an open �� belongs to D if

	�� �
SN
i� ��i where ��i is a closed segment of a �i � C� �����

�� � fy  r �i�y� j y � �i� � 
 r 
 r� g for i� � � � � N� �����

f �y� �i�y�� j y � �i g � i � �� � � � � N� are pairwise disjoint� �����

��



For any such �� � D� we will construct a piecewise smooth �in the above
sense� function �� on �� with

jr �� �m�j� � � a� e� in ��� �����
�� � � on 	��� �� 
 � in ��� �����

Introduce the Hamiltonian

H�x� p� �� jp�m�x��j��
Consider the �ow f&s � �&

�
s�&

�
s�gs�IR on the phase space �x� p� � IR� � IR�

generated by the corresponding Hamiltonian system� i� e�

(x � Hp�x� p�� (p � �Hx�x� p��

According to ����� we have

inf
n
� �Hp�x� �� �

��� � � IR�� j�j� � � and x � IR�
o
� �� �����

Now let a curve ��� �� � C be given� According to ������ there exist s�� r� � �
such that n

&�
s�y� ��y��

��� y � �� � 
 s 
 s�
o

�
n
y  r ��y�

��� y � �� � 
 r 
 r�
o
�� ��

and such that the projection is one�to�one� so that

��&�
s�y� ��y��� � s� y � �� � 
 s 
 s� �����

de�nes a smooth function � on ��� It obviously satis�es

� � � on �� � 
 � in ��� �����

and it is well�known and easy to check that � also ful�lls

r��&�
s�y� ��y��� � &�

s�y� ��y�� for all y � �� � 
 s 
 s�� �����

H�x�r��x�� � � for all x � ��� �����

Now let �� be of class D and ��� � � � � �N like in ������ Like above� we construct
a �i for every �i� Thanks to ������

�� �� minf��� � � � � �Ng �����

��



de�nes a Lipschitz function �� on all of ��� By hypothesis ������ ����� yields

�� � � on 	��� �� 
 � in ���

Furthermore� ����� turns into

H�x�r ���x�� � � for a� e� x � ���

It remains to show that �� is piecewise smooth� This amounts to the following
statement� For any i �� j and any x � ��� we have

�i�x� � �j�x� �� jr�i�x��r�j�x�j 
 �

C
�

Indeed� set s �� �i�x� � �j�x� � ��� s��� By de�nition ����� of �i� �j� there
exist yi � �i� yj � �j such that

&�
s�yi� �i�yi�� � x � &�

s�yj� �j�yj��� �����

By hypothesis ������ the closed sets in phase spacen
�y� �i�y��

��� y � �i
o
�
n
�y� �j�y��

��� y � �j
o

have positive distance�

Therefore� alson
&s�y� �i�y��

��� y � �i
o
�
n
&s�y� �j�y��

��� y � �j
o

have positive distance

uniformly in � 
 s 
 s�� In view of ������ this implies

j&�
s�yi� �i�yi��� &�

s�yj� �j�yj��j 

�

C
�

According to ����� and ������ this translates into

jr�i�x��r�j�x�j 
 �

C
�

This �nishes the construction of a piecewise smooth �� with ����� % ������

In order to treat the anisotropy term� we need an additional information on
our above construction� In case of

�� � �x�� � x
�
� �� �x�� � x�� � with �x� �� x�� � x�� 	 x�� � x�� �

��



we want to conclude Z
��
j	� ��j� dx � O���x��

��� �����

Indeed� consider the curves �
� � IR�fx
� g� �
� � fx
� g� IR� Let �

� � �



� be

constructed as above� Since �
� � ������� it follows from �����
r�


� � ������  O��x��� �����

Furthermore� we have on ��

�

� � O��x��� ��

� � O�x� � x�� �� ��
� � O�x�� � x��

and thus in view of �����

�� � minf��
� � �

�
� g for x� � x�� � x

�
� � x� � �x�� �����

Together with the L��bound on r ��� ����� and ����� imply ������
We now specify how to subdivide � into �� � D� Consider the cubic grid in
direction of the coordinate axis x�� x� of grid size �	 r�� By possibly shifting
the grid a bit� we can always achieve that the horizontal and vertical lines
forming the grid intersect 	� transversally� This grid cuts many domains ��
out of �� By construction� each �� satis�es ������ Our assumption � 	 r�
also ensures ������ The above mentioned transversality just means ������
Hence indeed �� � D� Those �� which lie entirely in � will be subdivided
further by horizontal lines of distance ��� as indicated in Figure �� Also the
resulting �� are in the class D� We can concatenate the above constructed ��
on each �� to obtain a piecewise smooth � on � with ������ Indeed� the sign
�� 
 � together with jmj� 
 � ensures that the various boundaries 	�� become
non�degenerate discontinuity lines� For the same reason the trivial extension
of � on IR� has a non�degenerate discontinuity line 	� and satis�es ������

For ������ we observe that since the diameter of all �� is of order � and the
Lipschitz constant of all �� is of order � �as a consequence of ������� the
boundary condition ����� implies that all �� are of order �� For ����� �nally
we notice that all �� which are entirely in � are rectangular with x��width �
and x��width �

�� Hence we conclude from �����Z
��
j	� ��j� dx � O���� � O���� �area of ����

On the other hand� the total area of those �� which cut into the boundary
of � is of order �� Together with the fact that r� is of order �� we obtain
������

��



��� N�eel walls

Proof of Lemma �� Since all vector �elds in this construction are in�plane�
we drop the primes on the vector �elds� However� we will consider functions
which depend on x � IR�� so that it is advisable to keep the primes on x� and
r�� Let m be as constructed in Lemma �� We consider a single discontinuity
curve � which connects two discontinuity points� We parameterize � by arc
length with parameter �S� � s � S�� The two geometric quantities

� the directed distance t to ��
� the parameter s of the closest point on ��

de�ne smooth coordinates �s� t� � ��S�� S� � ��T�� T� in a tubular neigh

borhood of � for T� 	 �� We denote by  and � the corresponding tangential
and normal vector �elds� We will now construct an fm with

fm � m on fjsj 
 S�� jtj � T �s�g�fm is smooth in fjsj 
 S�� jtj � T �s�g�
jr�fmj � O� �

jsj�S�
� in fjsj 
 S�� jtj � T �s�g�

����� �����

where the width T of the neighborhood fjsj 
 S�� jtj 
 T �s�g of � linearly
approaches zero toward the end points of ��

T �s� �� T�

�
�� � s

S�
��
�
�

see Figure �� which indicates the set fjsj 
 S�� jtj 
 T �s�g through shading�
The construction will depend on a parameter � 
 � 	 � and will be carried
out such that

k�r���
�
� r� � �fm�m�kL��IR�� � O�log�

�
� �
�
��

kfm�mkL��IR�� � O�log�
�
� �
�
��

��� �����

where we think offm�m as being trivially extended on IR�� This construction
is to be carried out for every curve� Since by assumption� the discontinuity
curves meet transversally �themselves and the boundary�� the constructions
can be concatenated� to yield the desired global fm�

��



Figure �

Since by assumption� the magnitude of the jump of the tangential component
m �  is bounded from below� the normal component � which does not jump
� must satisfy

jm � �j 
 � uniformly along ��

This allows us to make the following Ansatz

fm �� ��  ��� ��m � �� �  �m �   hencefm�m � � ���m � �� �  ��� ��m �  �
where � � ��� � and where � is de�ned as to meet the requirement jfmj� � ��
that is�

� ��
r

����������m����

���m����
�
q
��� �� ��  � ��m��

��m��
��

Before making an Ansatz for �� we derive the requirements on �� We observe
that expressions in � can be estimated against � with help of

j�� �j � C ��
j	�j � C �j	�j j	

p
�� �j��

�
�����

where � � s� t and C is a generic constant only depending on m� In order to
meet the regularity requirements ������ � should satisfy

� � � on fjsj 
 S�� jtj � T �s�g
� � � on fjsj 
 S�� t � �g

jr��j� jr�
p
�� �j � O� �

jsj�S�
� in fjsj 
 S�� jtj � T �s�g

����� � �����

Using r� �  � �� we observe that
r� � �fm�m� � r� � �� ���m � �� ��  	s� m �   ��� �� 	s�m � �� �����

��



We will use the embedding and interpolation estimates

k�r��
� �

�	�kL��IR�� � C k�r��
�
��kL��IR�� for � � �� �� �����

k�kL��IR�� � C k�r��
�
��kL��IR�� and thus �����

k�r��
� �

��kL��IR�� � C k�k
L

�
� �IR��

� �����

k�r��
�
� ����kL��IR�� � C k�k

�
�

L��IR��
kr��k

�
�

L��IR��
k�r��

�
��kL��IR��� �����

����� is obvious from the Fourier representation� ����� �and its dual� are
standard� we gave the argument for ���������� at the end of the proof of
Proposition �� In particular� we have the following obvious estimates for our
� with compact support

k�k
L

�
� �IR��

� C k�kL��IR�� � C k�kL��IR��

�����

� C k�r��
�
��kL��IR��� �����

From these� we now obtain

k�r���
�
�r� � �fm�m�kL��IR��

�����

� k�r��
� �

�r� � �� ���m � �� ��kL��IR��

 k�r��
� �

� �	s� m � �kL��IR��  k�r��
� �

� ���� �� 	s�m � ��kL��IR��

���
�����

� C
	
k�r��

�
� �� ���m � �� ��kL��IR��

 k	s� m � k
L

�
� �IR��

 k��� �� 	s�m � �k
L

�
� �IR��



�����

� C
�
k�r��

�
� �kL��IR��  k	s�kL �

� �IR��
 k�� �k

L
�
� �IR��

�
�����

� C
�
k�r��

�
� �kL��IR��  k	s�kL �

� �IR��
 k	s

q
�� �k

L
�
� �IR��

 k�k
L

�
� �IR��

�
�����

� C
�
k�r��

�
� �kL��IR��  k	s�kL �

� �IR��
 k	s

q
�� �k

L
�
� �IR��

�
�

In the third inequality� we have that ���m � �� � does not jump across the
discontinuity curve� so that it can be extended on IR� as a smooth function
�� In the third inequality� we have also used that m� is smooth in tangential
direction� Likewise� we obtain

kfm�mkL��IR�� � C
	
k�kL��IR��  k�� �kL��IR��



�����

� C k�kL��IR��

�����

� C k�r��
�
��kL��IR���

��



Hence we need

k�r��
�
� �kL��IR�� � O�log�

�
� �
�
� �����

k	s
q
�� �k

L
�
� �IR��

� O�log�
�
� �
�
� �����

k	s�k
L

�
� �IR��

� O�log�
�
� �
�
� �����

in order to meet the smallness requirements ������

Our Ansatz for � is

� �

������
log

	
� t
T �s�
��  ��



log����

for jtj � T �s�
p
�� �� and jsj 
 S�

� else

������� �

which obviously satis�es ������ We now argue that it also satis�es ������
����� % ������ For the �rst estimate� i� e� ������ we write � as the trace of a
suitable function � in IR�� since then we have
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The last estimate ����� �in a stronger version with O�log�� �
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the same lines�
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Proof of Lemma �� Let m� be as constructed in Lemma �� We consider a
single discontinuity point x��� x

�
� might be on the boundary of �

�� but there
is no other discontinuity point within a distance R � � of x��� According to
Lemma �� the blow�up of the gradient of m� within the ball B�
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�
�� of radius

R is controlled as follows
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