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Abstract

It is proven, that a single semilinear parabolic equation in an unbounded cylinder with
cubic-like source or boundary flux admit travelling waves. The problem is reformulated as a
constrained minimization problem, where the wave velocity is related to the infimum. This
characterization implies the monotone dependence of the velocity on the domain, the nonlin-
earity and the boundary conditions. Using rearrangement of the minimizer the monotonicity
of the wave profile is proven.

1 Introduction

Our starting point is the search for travelling wave solutions of a single semilinear parabolic equation
in infinite cylinders R x 2, where € is a bounded domain in R™ with C'* boundary and outer normal
v. The boundary 91 consists of two parts I';, I's corresponding to different boundary conditions.
'y or I'; may be empty. Using the notation £ € R, y € 2 we consider

du(t,&,y) = Au(t,&y)+ fut,éy)y), (Ey) eRT xR xQ,
doult,&y) = gu(t,&y),y), (t,&y) ERT xR x Ty (1.1)
U(t,f,y) = 07 (t,f,y) € R+ x R x FQ

Here A denotes the Laplacian w.r.t. (§,y) € R x Q. For different kinds of nonlinearities equation
(1.1) is used in some simplified biological models and in combustion in order to explain propagation
phenomena. The nonlinear boundary conditions have not been studied before in connection with
moving fronts. In [5] a model for the heater in boiling systems has been proposed. The heat flux
through the boundary is given by a cubic shaped function of the temperature. Heat fronts along the
surface of the heater separating the regimes of nucleate and film boiling have been observed. They
are often responsible for the damage of the heater due to the sudden increase of the temperature.
We will prove that such front solutions exist for the proposed model. The last chapter gives more
details about this model and some asymptotic results for thin heaters.

Let z = ¢(§ + ¢t € R) with ¢ # 0 as the unknown wave velocity. The scaling factor ¢ is introduced
in order to derive a variational problem. After a possible change of £ to —& we can assume ¢ > 0.
With A = 1/¢? a travelling wave solution u = u(x,y) of (1.1) satisfies

bu(z,y) = Oweu(z,y) + A(Ayu(z,y) + f(ulz,y),y)), (z,y) ERXQ
(wvy) = g(u(w,y),y), (way) €R x Fl (1 2)
u(z,y) = 0, (z,y) ER x T '
u(£o0,y) = vE(y), y e
where v* (y) solve
0 = Ayv(y) + f(v(y)ay)a y € Q
dv(y) = g9(v®),y), yel (1.3)
v(y) = 0, y €y



Replacing u by u — v~ and redefining the nonlinearities f and g we can assume
u(—oo,y) = vi(y) = 07

In the language of dynamical systems v* correspond to equilibria. But since (1.3) is an elliptic

equation it does not define a dynamical system and usual methods for detecting travelling waves
are difficult to apply.

We mention that the one-dimensional, i.e. y-independent, problem has been extensively studied,
e.g. [11], [6]. We review the well known results in the scalar case:

Ugzr — cuz + f(u) =0, f(0)= f(1)=0.

Three cases have to be distinguished:
1. KPP type:
f(0)>0, 0<f(u)y<l forO<u<l,

e.g. f(u) =u(l —u). In this case there exists

¢ > 2/T(0), (L4)

s.t. there are travelling waves u connecting 0 to 1 if and only if ¢ > ¢* and for fixed ¢ > ¢* the
solution u is unique. Equality holds in (1.4) for nonlinearities which satisfy

In this case the linearization implies for the solution with the minimal speed ¢ = ¢*

u*(m) -~ ec*m/2

near —oo. Therefor u(z) is not in the weighted space L>(R;e~¢ *). But this space will be essential
for the variational formulation, that will be described below. So we will discard such kind of
nonlinearities from our consideration.

2. Combustion type:

flu)=0 for0<u<h, f(u)>0 forf<u<l.
3. Bistable type:
f'(0) <0, there exists a unique 6§ € (0,1) with f(#) =0,

e.g. f(u)=u(u—0)(1—-u), p<1/2.

In the cases 2. and 3. there exists a unique velocity ¢ and a unique profile u connecting 0 to
1. Linearization at —oo shows now u € L?(R;e °*). We remark, that u connects two minima of
—F(u) and —F(1) < —F(0) holds. This means that v+ = 1 has smaller energy than v~ = 0. It is
precisely this result, that we will generalize to higher dimensions.

Results in higher space dimension have been obtained in the papers [2], [3], [4]. There problem
(1.1) is treated including a drift term with zero Neumann boundary conditions. Existence of
fronts is obtained by degree theory and an approximation on bounded domains. In [7] the case
of a cubic nonlinearity with Dirichlet boundary conditions is treated in an infinite strip using the
Conley index for discretized problems. This method is very involved. This was extended in [13]
to higher dimensions and more general nonlinearities. All these existence results rely heavily on
the use of the maximum principle and give no formulas for the wave speed. Our result generalizes
the result in [7] and [13] to nonlinear boundary conditions. Also our method does not require
the a priori knowledge of all rest states, i.e. z-independent solutions of (1.2), which is in general
not available. But more important is our variational characterization of the wave velocity given



by a constrained minimization problem. In [8], [9] variational principles for the speed based on
the maximum principle are given for multidimensional waves. Since these formulas are of saddle
point type, they give only limited information about the speed. Also the front itself cannot be
obtained from this variational formulas. The minimization problem which we will develop here
gives the speed and the profile of the front. It also allows to derive some qualitative properties
of the wave velocity. Using rearrangement arguments we will prove the monotonicity of the wave.
This can also be done in a more complicated way using the moving hyperplane method as in [4].
We also obtain monotone dependence of the wave velocity on the nonlinearity, the domain and the
boundary conditions. Furthermore for I'y = ) and 9, f(u,y) = 0 we show, that the wave velocity
is largest for a ball compared to all domains 2 with the same volume.

2 Variational Formulation
For the nonlinearities f(u,y),g(u,y) we require the conditions: There exist constants m < M s.t.

fECI(RXQ), f(O,y):O,
uf(u,y) <0 for Ju| > M and |u| < m,y € Q,

g€ C' R xTy), ¢(0,y) =0,
ug(u,y) <0 for [u] > M and |u] <m,y € Iy

(2.5)

The maximum principle implies that all solutions of (1.2) are bounded by M in L*°. The assump-
tions in (2.5) on the behavior of the nonlinearities near u = 0 correspond to the combustion or
bistable case.

Define the Hilbert space X consisting of functions in the weighted space H'(R x Q,e~%) which
vanish on I';. On X we define the following two functionals

I =5 [ 10t pPe do dy (2.6)
RXxQ

s = [ (5ol - Fuwm)) e dedy— [ Guta)me doar,, 21)
RXxQ R x0Ty

u u

where F(u,y):/ f(s,y)ds, G(u,y):/ g(s,y)ds.

0 0
Consider the following minimization problem

inf I(u). 2.8

{ueX|J(u)=b} ( ) ( )

It is easy to check that (1.2) is precisely the variational equation corresponding to (2.8) with A as
the Lagrange multiplier. Testing the Euler-Lagrange equation (1.2) with d,ue™% we deduce easily

I(u) + AJ(u) = 0.

Since we want A = 1/¢> > 0 and I(u) > 0, we have to require J(u) < 0. Hence after a suitable
shift in z it is enough to consider b = —1 in (2.8). This also shows, that the Lagrange multiplier

satisfies L
c {ueX|J(u)=—1}

I(u), (2.9)

which is a variational characterization of the wave speed. The problem (2.9) is unusual in two
aspects. At first both functionals I'(u) and J(u) involve some part of the gradient. Thus the
gradient term in the constraint is only lower semicontinuous. Second, due to the unbounded
domain, also the other terms in J(u) are not continuous with respect to weak convergence in H*.
In theorem 2.4 we show the existence of a minimizer for the problem (2.9).



At first we have to ensure that there are functions w satisfying the constraint. In lemma 2.1 we
give conditions for this to be the case.

We give conditions, s.t. the constraint J(u) in (2.9) is satisfied for some function v € X. Let ¥
be the space of H'(Q) functions which vanish on T'y. For v € Y define the functional

K@ = [ (3I¥00P - Fow.) dy~ [ 6w ar, (2.10)
Q 1

Lemma 2.1 A necessary and sufficient condition for the existence of a function in v € X with
J(u)y= -1 is ingK(v) < 0.
veE

Proof. The functional K (v) is weakly lower semicontinuous and bounded from below on Y. Thus
the infimum K is attained for some function v € Y. Since f and g are dissipative, we have
[v]oo < M. We define u(z,y) = (z)v(y), where

0 ifez<0
P(x) =< z/0 f0<z<4é
1 ifx>0

Clearly wu is in the space X.

J(u) = / <%¢2|Vyv|2 - F(¢v,y)) e ¥ dx dy — / G(ypv,y)e” * dz dT,

(0,00) X2 (0,00)xT'q

= K/We*ﬂ” dz + / (V*F(v,y) — F(v,y)) e * dx dy
0 (0,6)x$2

+ [ Gy - Ge) e dody
(0,6)xI"y

_K+2<IQI sup |F(uy)|+IT1|  sup |G(u,y>|)<1—e-5>.
0<u<M,yeQ O<u<M,yely

This is negative for § sufficiently small, since K is negative by assumption. After a suitable shift
in  we can now achieve J(u) = —1.
For the reverse implication let J(u) = —1 and use the representation

= () = /K(u(m, e~ da.
R

Next we give a condition for 12{/ K(v) < 0. It is clear from the definition of K(v), that the
v

nonlinearities F'(v,y) and G(v,y) have to be positive on a large enough set. We formulate a result
for the special case of Dirichlet boundary conditions, i.e. I';y = (). Similar results can be obtained

in the general case. In the last chapter we will treat the nonlinear Neumann condition. We replace
F(u,y) by pF(u,y) in K(v).

Lemma 2.2 Assume that f(v,y) satisfies (2.5) and F(a,y) > n > 0 for some a > 0. If p is
sufficiently large, then K (v) has a negative infimum.

Proof. For simplicity let a = 1. It suffices to show K (v) < 0 for some v € H} (). Define

Qs = {y € Q|dist(y, ) < §} and v(y) = min {1,1/§ dist(y,00)} .



Then we calculate

K(w) = [ (519008 + o(F (L 0) = Floa) ) dy = [ oL dy <
Qs Q
C(69)

<p( s (P~ Foa)Isl - o) + <G
0<v<1l,yeQ

Now choose d small, but fixed, s.t. the term in brackets is negative and then choose p sufficiently
large. This gives K (v) < 0, completing the proof.

The next lemma is a substitute for the lack of compactness of the embedding H' into L? in

unbounded domains.

Lemma 2.3 Assume that the nonlinearities f and g satisfy (2.5). Let u; be a bounded sequence
in X NL®MR x Q) with J(u;) = —1 Then there is a subsequence, still labeled u; which converges
weakly in X to some u € X with J(u) < —1.

Proof. Let |u;|x < My and let |u;|p~ < M. We may assume, that u; converges weakly in X to

u € X. Since / |V, uil*e ™ dx dy is lower semicontinuous on X we concentrate on the other two

RxQ
terms in J(u;).
Let Xg be the space of restrictions to (—R, —oc) X € of functions from X. The embedding

XpNL®((=R,00) x Q) = L*((—R, 00) x Q,e ")

and the trace map
XrNL®((—R,00) x Q) = L*((—R, 00) x 8Q,e™%)

are compact for all R < co. Hence we have for a subsequence, still labeled u;, and for all R

lim / F(u;,y)e *dx dy = / F(u,y)e * dz dy. (2.11)
11— 00
(—R,00)xQ (—R,00)xQ
lim / G(us,y)e “ de dTy = / G(u,y)e”* dx dT,,. (2.12)
11— 00
(—R7OO)><F1 (—R7OO)><F1

For the part of the integral near —oo we only consider F'(u,y) since the boundary integral is treated
similarly.
The assumption (2.5) implies F(u,y) < 0, for 0 < |u| < m. This gives for the positive part F'* of
F, for |u| <M

F*(u,y) < My max(|u| —m,0).

Let
Ai = {(Z‘,y)|l’ < _Ray € Qa |Ul(l',y)| > m}

We will show, that A; has a small measure uniformly in i. We estimate

/e_’” < 1/m? / ule™™ < M7 /m? (2.13)
A; RxQ
and
|A;] < 1/m e_R/u?e_“ < M} /m*e . (2.14)
A;



Now calculate using (2.13), (2.14) and the Poincare inequality with the constant M3|Ai|n+r1

1/2
/ Flus, )™ < / FH(uiy)e < Mo / (lui] - m)?e™ /
(—o0,—R)xQ A; i A;
1/2
My Ms M.
< L2 gy (A/ IV ((Jus]| — m)e=*/2)?
m
1/2
M,y My Ms . (Jui| — m|)? M\ TR n
= B e | [ovup - e )< (ST s,

Now choose R, s.t. the last expression is less than € and s.t.

— / F(u,y)e ™ <e.

(—00,—R)xQ

Hence we have

/ Flus,y)e < / Flu,y)e ™ + 2.

(—00,—R) X2 (—00,—R) X2

Together with (2.11), (2.12) and since € > 0 was arbitrary, we have proved the lemma.

Theorem 2.4 Assume (2.5) and let 1I€1£K(v) < 0. Then problem (2.9) has a minimizer u € X.

The corresponding Lagrange multiplier X is positive and coincides with the infimum in (2.9). There
are at most two minimizers and they have constant sign. If there are two minimizers, they have
opposite sign. All minimizers are strictly monotone w.r.t. x. Minimizers are classical solution of
(1.2) with u(—oo,y) = 0. The limit u(co,y) = v (y) ewists and satisfies K(vT) < 0. The second
variation of K (v) at vt has a nonnegative spectrum.

Proof. Let u; be a minimizing sequence for I(u) under the constraint J(u) = —1:

Let
iii(, y) = max(— M, min(M, u;)) (7, ).

Since f and g are dissipative we get

With af(x,y) = @;(z + a,y) we have for some a <0 :

Therefor

I(ai) = e*I(a;) < I(u;)
and we can assume |u;|oo < M. We claim, that u; is uniformly bounded in X. Indeed I(u;) < C
implies, using Hardy’s inequality,

/ uie™® dr dy < 4 / |0, ui?e™ da dy < 8C. (2.15)
RxQ RxQ



The trace inequality applied to each cross section {£} x 2 implies

/ uje * drv dT, < € / |Vyuil’e ™ dr dy + C(e) / uie " dz dy. (2.16)
RxI'; RxQ RxQ
Now J(u;) = —1 gives

1 F
= / |Vyuil?e * de dy < —1+ ‘M‘ / uie " dzx dy + ‘M‘ / uie " dr dT,.
2 u? ¢ u? ’

RXQ FCRXQ CRxT,

(2.17)
Using (2.15), (2.16) and choosing € sufficiently small implies a uniform bound for the left hand side
in (2.17). Hence u; is uniformly bounded in X N L. Now take as u; the sequence given in lemma

2.3, with weak limit v and J(u) < —1. Since I is lower semicontinuous we also have I(u) < X. For
u®(z,y) = u(z + a,y) we have

J(u®) =e*J(u) and I(u®)=eI(u).
Now choose a <0 s.t. J(u®) = —1. Since A is the infimum of I we get
A< I(ug) =e*I(u) <e®A

Hence a = 0 and u is a minimizer of (2.9). It is standard to check, that u is a weak solution of
(1.2). Since f and g are C!, elliptic regularity theory implies that all derivatives of u up to order
three are bounded. In particular u(—oo,y) = 0 follows.
Next we show that minima have a constant sign. Multiply (1.2) by uze™®. After some manipula-
tions we arrive at
0<I(u)=—-AJ(u)=A.

This implies

I(w) + AJ(w) >0, (2.18)
for all w € X and equality only holds for w = 0 and for any shifted minimizer of (2.9). Let u™ be
the positive part of u and let v~ = u — u*. Then we have by (2.18)

0=1I(u)+XJ(u)=T(u")+AXJ(u™) +I(u")+AJ(u") > 0.
and therefor
I(u®) + A (u®) =0.

Thus u* and w~ are minimizers of I + AJ. The maximum principle implies, that one of them
vanishes identically and the vanishes nowhere. Hence u has a constant sign.

Uniqueness of minimizers with a fixed sign will be proven in theorem 3.1. Monotonicity of u is shown
in theorem 3.2. The monotonicity and the boundedness of u implies that yglgr;o u(z,y) = v (y)

exists and v™ (y) solves (1.3). From the equation (1.2) we conclude
d 1, 9
e Uz = AK (u(z,-) ) dy = [ ui dy > 0.
Q Q
Integration gives K (vt) < K(0) = 0.
Now let w(z) = / Oru(z,y)p(y)dy, where ¢ is the first eigenfunction with eigenvalue p of the
Q

second variation of K at vt:

Ay¢+auf(v+a')¢ = _/J/(ba in O
61/¢7 = aug(v+7 )(ba on I‘1
¢ = 0, on FQ



Let sign ¢ = sign d,u and suppose u < 0. We have

Wyy — Wy = /(uzzz - uzz)¢ - /(_Ayuz - auf(uay)uz)(b dy
Q

Q

= /(Buf(v+,y) — Ouf(u,y) + p) Pty dy/(aug(vﬁy) — dug(u,y))pu, dT, <0

Q 'y

for ¢ > x*, since u(z,y) — v (y), as z — oo. Integration over (z, 00) shows w, > w > 0 for large z
and w would grow exponentially. This contradicts the boundedness of w. Hence p is nonnegative,
There are two minimizers, if and only if the infimum in (2.9) is the same when restricted to positive
and negative functions respectively.

This proves all the assertions in the theorem.

Remarks:

1. Minimizing (2.9) over positive and negative functions respectively, we obtain two solutions of
(1.2), but possibly not for the same A.

2. Our solution connects a given relative Minimum of K (v) at —oco to another relative Minimum
with lower energy by a monotone travelling wave. If there are several possible such states, it would
be interesting to know which one is selected by our solution.

3. Find travelling waves between not necessarily relative minima of K (v). They cannot be found
by our variational approach, since they are not in the space X. This can be seen by linearization
at £oo.

4. One-dimensional examples show the possible existence of sign changing travelling waves between
relative minima of K (v). In these examples one can also prescribe the number of sign changes.
They correspond to higher critical points of our variational problem (2.9). It might be possible to
apply some version of the Liusterik-Schnirelmann category theory.

3 Uniqueness and Properties of Minimizers

One could use the sliding domain method as in [4] to prove uniqueness and monotonicity of travel-
ling waves. This would require precise information about the asymptotic behavior of the front for
large |z|. Instead we will use the variational formulation. Hence we can only prove uniqueness and
monotonicity for fronts lying in the weighted space X. This leaves open the possibility of solutions
which are not in X, e.g. having only an algebraic decay near —oo. Linearization at u = 0 shows
however that all possible fronts are in the space X, if v = 0 is a nondegenerate local minimum of
K (v). In this case it is enough to prove uniqueness in the space X.

We show at first the uniqueness of minimizers of (2.9).

Theorem 3.1 Minimizers of (2.9) with the same sign are unique.

Proof. For definiteness assume, that u;, and us are positive minimizers of (2.9). We claim the
existence of a* € R, (z*,y*) € R x Q, s.t. uy(z* 4+ a*,y*) = ua(z*,y*). Otherwise we can assume
w.l.o.g. ui(z + a,y) > ua(z,y) for all (a,z,y). This implies

et / ui(z,y)%e™" > /uQ(w,y)26_’”

RXxQ RXxQ

for all @ € R. Hence uy = 0, contradicting J(uz) = —1.
Now we define us(z,y) = ui(z + a*,y) and we claim that

u = min(us, u3) and & = max(us, us3)
are shifted minimizers of (2.9). We calculate using (2.18)

I(w) + AJ(u) + I(@) + AJ (@) = I(uz) + I(ug) + A(J(u2) + J(u3z)) =0



Using again (2.18) we conclude
I(u) + AJ(u) =0,

I(m)+ AJ(w) =0.

and u, @ are shifted minimizers of (2.9) and hence solutions of (1.2). Thus the difference w =T —u
satisfies,
Wey — Wy + A(Ayw — bw) =0

for some continuous function b. Since w > 0, w(z*,y*) = 0 the maximum principle now implies
w = 0 everywhere and uq(z,y) = uz(x,y) = ui(x + a*,y) holds. Now a* = 0 follows, since
J(’Uq) = J(U2) =—1.

Now we prove the monotonicity of the minimizer using a suitable rearrangement.

Theorem 3.2 Positive minimizers u of (2.9) are strictly increasing and negative minimizer strictly
decreasing.

Proof. Let u(z,y) be the positive minimizer obtained in theorem 2.4. The proof of the mono-
tonicity uses monotone rearrangement, but not in x. Instead we introduce z = —e~*. Observe
that monotonicity in z implies monotonicity in z. In this new coordinate the functionals I(u) and
J(u) can be written as

1
I(u) = 3 / 22u.|* dz dy
(—00,0)xQ2
1
J(u) = / <§|Vyu|2 — F(u,y) dz dy> + / G(u,y) dz dT,.
(—00,0) xQ2 (—00,0)xI'y

Let u* be the monotone increasing rearrangement of u. In the proof of theorem 4.1 in [1] it is
shown that I(u) and the first term in J(w) do not increase under this rearrangement, while the
terms involving F and G is preserved. Hence there is a shift a < 0 s.t. for v*(z,y) = u*(z + a,y)

and
I(u}) =eI(u*) < e*I(u)

@

holds. Since u is the minimizer we get a = 0 and u* coincides with « by uniqueness of the
minimizer. This implies u, > 0. Differentiate (1.2) w.r.t. x and apply the maximum principle to
u, and conclude u, > 0.

Now we will prove some qualitative properties of the minimal value A = 1/¢? of the variational
problem. Since A is a Lagrange multiplier of a minimization problem, it depends monotonically on
F(u,y), Q and the boundary conditions. Using ¢> = 1/\ this implies the corresponding properties
for the wave velocity.

Theorem 3.3 Let u(—o00,y) =0 and assume, that all minimization problems occuring below have
nontrivial solutions.

1. Fi(u,y) < Fy(u,y) implies A\1 > A2.
G1(u,y) < Ga(u,y) implies A\ > \a.

Assume Ty =0 and 0y f(u,y) = 0. Then Qi C Qo implies A1 > Xs.

With the same assumptions as in 3, \ is smallest for the ball compared to all domains Q with
the same volume.



Proof. For proving claim 1 let w be a minimizer of (2.9) corresponding to Fy. Then —1 = J; (u) >
Jo(u) and there is a shift a <0, s.t. uy(z,y) = u(x + a,y) satisfies

Jo(ug) = € Ja(u) = —1 and I(u,) = e®I(u) < Ap.

This implies A2 < A;. The proof for claim 2 is identical. The third assertion follows byextending
the minimizer in ©Q; by 0 to Q5. Then one and concludes as above. The proof for claim 4 uses
spherical rearrangement in the coordinate y. It is well known [10], that this process decreases the
functional and J(u) and preserves I(u). After a suitable shift we have proved the claim.

4 Applications

In this chapter we consider equation (1.2) with f(u,y) identically zero and 'y = 0. This describes
the heat distribution in a heater, where some part of the heater is in contact with a boiling liquid.
On this part the heat flux, the so called boiling curve, —g(u,y) > 0 has a cubic like shape. At
lower temperatures almost all of the surfaces of the heater is in contact with the fluid and the heat
flux grows with the temperature. At higher temperatures more and more vapor bubbles occur and
these lower the heat flux due to their lower heat conductivity. For even higher temperatures a film
of vapor covers the heater and the flux increases again. For further details we refer to [5].

At first we will derive the formal asymptotics of a front as the cross section shrinks to a point.
In the limit we will recover the one dimensional front with an averaged nonlinearity. This shows,
that the one dimensional problem is a good approximation of an electrically heated wire in a
surrounding liquid.

Consider the travelling wave equation in the unscaled moving frame coordinate x = £ + xt. In the
small cross section /€Q correct scaling demands that the boundary flux is rescaled by +/e.

cOpu(z,y) = Oneu(z,y) + Ayu(z,y), (z,y) ERx /O 410
doulzy) = Veglulz,y), L), (2,y) € R x v/ 00 (4.19)
In the rescaled variable z = % we get
cOu(z,z) = Opu(w,2)+ 1Au(z,2), (z,y) ERxQ (4.20)
Lou(z,z) = glu(z,2),2), (x,2) € R x ON. )

We assume that for each € we have a front as in theorem 2.4. We postulate a formal expansion of
the fronts in the form
u=1uy+eu+---, c=cpt+ecg+---.

If we use this ansatz in (4.20) and equate powers of € we get at the order of ¢!
A,ug =0, 0Oyug=0,
which implies V,ug = 0. Order € gives
co0zug = Ozztio + Azur,  Gyur = g(uo, 2). (4.21)

Averaging over ) results in
coOpug = Oppug + E(UO) (422)

1
with g(s) := 9] /g(s,z) dT,. From (4.21) and (4.22) we have
o)

Azur =G(uo), Ovur = g(uo, 2) (4.23)

(4.22) gives the averaged one dimensional front. The influence of a heater with a finite thickness
is seen in the next higher order problem.

Clazuo + Coazul = azzul + Azu27 a,,’LL2 = Bug(uo, Z)ul'
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1
Let w (z) = 0] /u1 (z,2) dz and average:
Q

1
c10,up + CoO0rU1 = Oppuy + ﬁ /Bug(u(),z)ul dT,
o0

or
1
azzﬂl — Coamﬂl + Buy(uo)ﬂl = Claz’LLo — ﬁ /aug(uo,z)(ul — ﬂl) dZ
oQ

The right hand side has to be orthogonal to the kernel of the adjoint of the linear operator on the
left. The kernel of the adjoint is spanned by 9, upe™°?. Denoting v = w1 —u; and v~ (z) = v(—00, 2)
we obtain

1 1
c1/ |0pug|Pe % dx = —//(%g(uo,z)amuov e % dy = — //Bmg(uo,z)v e % (.
R € 1€
90 R QR
(4.24)
Differentiating (4.23) with respect to z gives
A0, (v—v") =0,9(up), 0,0:(v—v")=0:9(ug,z2).

Multiply by (v — v~ )e™%? and integrate

% /61|VZ(U —v7)Pe % dz dr = /Bzg(uo,z)(v —v e % dz d,
Q Gle!

since v — v~ has mean value zero. Multiply by e™“? and integrate over R:

1
%0 / |V.(v —v)Pe % dz dx = 3 / 0:|V.(v — v )|Pe " dz dx
RXxQ RxQ

1
= ] / 0r9(ug,2)(v—v )e " dz = o] / 02 9(ug, z)ve “°F dz.
R x0Q R x0Q

In the last equality we used
/azg(uo)e—cow dx = ¢ /y(uo)e_c” dx = —/Bz (Oruge™ ") dx =0
R R R
Plug this into (4.24) gives the final result for ¢;:
01/ |0z ug>e 0" dx = 0 / V. (v —v7)Pe % dz dz.
R 2|10
RXxQ

Since ¢y is positive this implies an increase of the speed for thin heaters compared to the one
dimensional problem.
The expression for ¢; can be simplified for the following special class of nonlinearities

g(u, z) = a(z)h(u) + b(2).

This kind of nonlinearities occurs in the model for the heater, where a constant heat flux is supplied
on some part of the boundary and another part is in contact with the fluid. Averaging gives

g(u) =a@h(u) +b, and 0=ah(uy)+b.

11



v can be written in the following form:

v(e, 2) = x(2)h(uo(z)) +1(2), v~ (2) = x(2)h(ug ) + n(2)

with
Azxzazﬁ a, Oyx=a, /XZO
a0 Q
A== [0 am=0, [n=0
9] /

If the cross section is a one dimensional interval this can be calculated explicitly:
Q=(0,1),a(1) =1,a(0)=0,a=1,b(1) =0, b(0) =8, b= 5

201 1, 1
X=5 "5 W—ﬂ(iz —Z+§>

J19-00 =0 d= = gatu0)?
Q

—1
Ce =Co + 0 /y(uo)%_com dx </ |0y ug|2e 0% da:) + o(e)
6/92| R
R
Also the rest states can be computed explicitly for all e:
ui(z) = a; + €8(1 — 2)

where a; are the solutions of —3 = h(a). Since h(u) has a cubic shape we assume that there are
exactly three solutions a; < as < a3. Their energy is easily calculated:

K(u;) = %/|62ui|2 dz — eG(u;(1),1) — eG(u;(0),0) = €5 _ eH(a;) — ef(ef + o),
0

2

where H(u) =

Ot—z

h(s) ds. The second variation is

/|azw|2 dz — edyg(ui(1), 1)w(1)? — edug(us(0), 0)w(0)? = /|azw|2 dz — edyh(as)w(1)2.

The stable solutions correspond to 9, h(a;) < 0. We assume this for i = 1,3. The energy difference

18
asg

K(us) ~ K(ur) =~ [ h(s) ds ~ eB(a - )
¢35
If K(u1) > K(ug) then all assumptions of the existence theorem are satisfied and there exists a

front v with v~ = u; and u™ = w3, since uy,u3 are the only stable states. If K(uz) > K (u;) then
- _ + _
U =usz, U =uj.

In the applications the stability and the domain of attraction of these fronts is an important

problem in order to control the heater. It is conceivable that this could investigated by the
methods developed in [12] for a related problem.
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