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Abstract

We present a kind of construction for a class of special matrices with
at most two different eigenvalues, in terms of some interesting multi-
plicators which are very useful in calculating eigenvalue polynomials of
these matrices. This class of matrices defines a special kind of quan-
tum states — d-computable states. The entanglement of formation for
a large class of quantum mixed states is explicitly presented.

Quantum entangled states are playing an important role in quantum communication, in-
formation processing and quantum computing [1], especially in the investigation of quantum
teleportation [2, 3|, dense coding [5], decoherence in quantum computers and the evaluation
of quantum cryptographic schemes [6]. To quantify entanglement, a number of entangle-
ment measures such as the entanglement of formation and distillation [7, 8, 9], negativity
[10, 11], relative entropy [9, 12] have been proposed for bipartite states [6, 8] [11-13]. Most
of these measures of entanglement involve extremizations which are difficult to handle ana-
lytically. For instance the entanglement of formation [7] is intended to quantify the amount
of quantum communication required to create a given state. For the entanglement of a
pair of qubits, it has been shown that the entanglement of formation can be expressed as
a monotonically increasing function of the “concurrence”, which can be taken as a mea-
sure of entanglement in its own right [15]. From the expression of this concurrence, the
entanglement of formation for mixed states of a pair of qubits is calculated [15]. Although

entanglement of formation is defined for arbitrary dimension, so far no explicit analytic
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formulae for entanglement of formation have been found for systems larger than a pair of

qubits, except for some special symmetric states [18].

For a multipartite quantum system, the degree of entanglement will neither increase
nor decrease under local unitary transformations on a subquantum system. Therefore the
measure of entanglement must be an invariant of local unitary transformations. The entan-
glements have been studied in the view of this kind of invariants and a generalized formula
of concurrence for high dimensional bipartite and multipartite systems is derived from the
relations among these invariants [19]. The generalized concurrence can be used to deduce
necessary and sufficient separability conditions for some high dimensional mixed states [20].
However in general the generalized concurrence is not a suitable measure for N-dimensional
bipartite quantum pure states, except for N = 2. And it does not help in calculating the

entanglement of formation for bipartite mixed states.

Let H be an N-dimensional complex Hilbert space with orthonormal basis e;, 7 = 1, ..., N.

A general bipartite pure state on H ® H is of the form,

N
|1/) >= Z Qi €; (29 €, Qjj e (1)
,j=1
N
with normalization Z a;ja;; = 1. The entanglement of formation is given by
t,j=1

E(|¢ >) = =Tr(polog, po), (2)

where py is the partial trace of |t >< 1| over one of the subsystems. Let A denote the

matrix given by (A4);; = a;;, then py = AAT,

For a given density matrix of a pair of quantum systems on H ® H, consider all pos-
sible pure-state decompositions of p, i.e., all ensembles of states |¥;) of the form (1) with
probabilities p; > 0, z z

P:z;pi|1/)i><1/)i|> z;pizl
for some [ € IN. The entanglement of formation for the mixed state p is defined as the aver-

age entanglement of the pure states of the decomposition, minimized over all decompositions

of p, l
E(p) = min ;sz(Wz)) (3)



It is a challenge to calculate (3) for general N. Till now a general explicit formula of

E(p) is obtained only for the case N = 2. In this case (2) can be written as

1++v1-C2
2

E(|4))In=2 = h( );

where

h(z) = —zlogyx — (1 — x) logy(1 — ),

C is called concurrence [15]:

C(W)» = |<¢|1/~)>| = 2|a11a22 - CL126L21|;

where [¢) = o, ® 0,1*), [*) is the complex conjugate of |¢), o, is the Pauli matrix,
0 —1
=i 0
As F is a monotonically increasing function of C', C' can be also taken as a kind of measure

of entanglement. Calculating (3) is reduced to calculate the corresponding minimum of

C(p) = min M p;C(|¢);)), which simplifies the problems.

For N > 3, there is no such concurrence C' in general. The concurrences discussed in
[19] can be only used to judge whether a pure state is separable (or maximally entangled)
or not [20]. The entanglement of formation is no longer a monotonically increasing function
of these concurrences. Nevertheless, for a special class of quantum states such that AA" has
only two non-zero eigenvalues, we can find certain quantities (generalized concurrence) to

simplify the calculation of the corresponding entanglement of formation [21].

Let A; (resp. Az) be the two non-zero eigenvalues of AAT with degeneracy n (resp. m),

n+m < N, and the maximal non-zero diagonal determinant D,
D = X'\ (4)
;From the normalization of |1), one has Tr(AA") =1, i.e.,

A1 (resp. Ag) takes values (0,+) (resp. (0,-)). In this case the entanglement of formation

of [¢) is given by
E([)) = —nAilogy At — mAz logy As . (6)
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According to (4) and (5) we get
OE  mAT" L-n 7" 1-nh 0
0D_1—n/\1—m/\1 2 ’

which is positive for A; € (0, ~). Therefore E(|t)) is a monotonically increasing function of

m)\1 m)\1

D. D is a generalized concurrence and can be taken as a kind of measure of entanglement
in this case. Here we have assumed that A;, Ay # 0. In fact the right hand side of (7) keeps
positive even when \; (or equivalently \y) goes to zero. Hence E(|¢))) is a monotonically
increasing function of D for Ay € [0, 1] (resp. Xy € [0, L]) satisfying the relation (5).
Nevertheless if Ay = 0 (or Ay = 0), from (4) one gets D = 0, which does not necessarily mean
that the corresponding state |¢) is separable. As E(|i)) is just a monotonically increasing

function of D, D only characterizes the relative degree of the entanglement among the class

of these states.

The quantum states with the measure of entanglement characterized by D are generally
entangled. They are separable when n =1, Ay =1 (Aa = 0)or m =1, Ay = 1 (A; — 0).

For the case n = m > 1, all the pure states in this class are non-separable. In this case, we

have
B(1)) = n (—wlogyz — (- — ) logy(- — 1))
n n
where
1/(1 1
T=3 (ﬁ+ ﬁ(l—d2)>
and

d = 2nD2 = 2n\/ A1 e (8)

We define d to be the generalized concurrence in this case. Instead of calculating E(p)
directly, one may calculate the minimum decomposition of D(p) or d(p) to simplify the

calculations.

In [21] a class of pure states (1) with the matrix A given by

0 b a1 b1

. -b 0 (&1 d1
A= a ¢ 0 —e |’ (9)

b1 d1 € 0

ai,bi,c1,di,b,e € C, is considered. The matrix AA" has two eigenvalues with degeneracy
two, i.e., n =m = 2.

|AAT| = |biey — ard,y + be|*. (10)
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The generalized concurrence is given by

d:4|b101 —a1d1 +b€| (11)

Let p be a 16 x 16 matrix with only non-zero entries p; 16 = p215 = —DP3,14 = Pa,10 =

Ps512 = Pe,11 — Pr,13 — —P8g — —P99 — P1o,4 — P16 — P12,5 = P13,7 — —P14,3 — P152 = P16,1 —
1. din (11) can be written as

d = [(@lpy*)| = [, (12)

where ((|¢)) = (¢|py).

Let ¥ denote the set of pure states (1) with A given as the form of (9). Consider all

mixed states with density matrix p such that its decompositions are of the form

M M
p=> pili) (Wi, Y _pi=1, | €. (13)
i=1 i=1

The minimum decomposition of the generalized concurrence is [21]

16
dp) = A = A, (14)

i=2
where A;, in decreasing order, are the square roots of the eigenvalues of the Hermitian matrix
R= \/W, or, alternatively, the square roots of the eigenvalues of the non-Hermitian
matrix ppp*p. Similar to the case N = 2, there are decompositions such that the generalized
concurrence of each individual state is equal to d(p). Therefore the average entanglement is
E(d(p)). Different from the case N = 2, the entanglement of formation of density matrices
(13) can not be zero in general. As every individual pure state in the decompositions is

generally an entangled one, this class of mixed states are not separable.

In the following we call an N-dimensional pure state (1) d-computable if A satisfies the
following relations:
|AAT = ([A]LA])2,
[AAT = Mdy| = (A — [|A]IX + [A][A])M2, )
where [A] and ||A|| are quadratic forms of a;;, Idy is the N x N identity matrix. We denote
A the set of matrices satisfying (15), which implies that for A € A, AAT has at most two

different eigenvalues and each one has order N/2. Formula (14) can be generalized to general

N2 x N? density matrices with decompositions on N-dimensional d-computable pure states.
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We first present a kind of construction for a class of N-dimensional, N = 2%, 2 < k € IN,

d-computable states. Set

where a,c,d € €. For any b;,¢; € €, a 4 X 4 matrix Ay € A can be constructed in the

following way,

B, A b 0 ¢ d "
Ay = - , 16
—4; G —a —c 0 —¢
¢c —d ¢ 0
where
0 1
By=bidy, Cy=cady, h=| o |

A, satisfies the relations in (15):
444 = [(bre1 + ad + ) (brer + ad + )2 = ([A4[Ad])2,
| A4 A} = Mda| = (A2 = (bib] + 1] + aa* + 2cc* + dd*) \
+ (biey + ad + ¢?)(bicy + ad + ¢?)*)?
= (A2 = [[A4]|A + [A4)[A4]7)?,
where

[A4] = (blcl + ad + CZ), ||A4|| = blbi + 016{ + aa* + 2¢c” + dd*. (17)

Ag € A can be obtained from Ay,

B4 A4
where
0 0 01
0 0O 1 0
B, = b2J4, 04 = 02J4, Jy = , bz, Cy € C. (19)
0O -1 00
-1 0 00

For general construction of high dimensional matrices Ay € A, 2 < k € IN, we have

ng Agk bk;JQk Agk
A2k+1: 1 = 1 s (20)
(DT G ) DT AL ol
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0 JQk
Jor+1 = (_1)(k+1><k+z> Jt 0 ) (21)
where b, ¢, € €, Box = bpJor, Cor = ¢ Jor. We call Jyr+1 multipliers. Before proving that
Aok € A, we first give the following lemma.

[Lemma 1]. Age+r and Jowtr satisfy the following relations:

J§k+1 J2k+1 - J2k+1 J$k+1 - Id2k+1,

(22)
J2k+1J k+1 — J2k+1 J2k+1 — (_1)(k+1)(k+2) Id2k+1
(k1) (k)
J;rk+1 = $k+17 J5k+1 =(-1) Jort1, (23)
k(k+1) k(k+1)
A2k+1 = (-1) Ao, A;k+1 =(-1)"> ok+1-

[Proof]. One easily checks that relations in (22) hold for £ = 1. Suppose (22) hold for
general k. We have

0 (_1) (k+1)(k+2) Jt 0 Jzk

Jék-&-l J2k+1 — (k+1)(k+2)

(_1)(k+1)(k+2) J2k Jék 0

— 0 Jék J2k — Id2k+1
and
0 (_1) (k+1)(k+2) Jt 0 (_1) (k+1)(k+2) Jt
J 1 J 1 —
2 2+ J2k 0 J2k 0
(—1) 5 0
— _ (_1) (k+1)2(k+2) d2k+1
0 (_1) (k+ )(k+ )J J2k

Therefore the relations for Ji.,, Jor+1 and Jh . J%y, are valid also for £+ 1. The cases for
Jorr1Jhiiy and Jorer Jorsr can be similarly treated.

(k+1)(k+2)

The formula J%,, = (—1) Jor+1 in (23) is easily deduced from (22) and the fact

T gt
J2k+1 — Y9k+1-

The last two formulae in (23) are easily verified for £ = 1. If it holds for general k, we



have then,

k(k+1)
B;k (— ) Azk (_1) BZ’C (_ ) A2k k(k+1)

Ay = = i = (-7
Aék CQk Aék (_ ) C;k

k(k+1) k(k+1)

2k+1,

i.e., it holds also for k£ + 1. The last equality in (23) is obtained from the conjugate of the

formula above.
From Lemma 1 the following equations can be deduced:

[Lemma 2].
k(k+1) k(k+1)

B2k - (_1) B2k, C;k — (_ ) CQIC

k(k+1) " k(k+1)
B;k == (_1) BQk; C;k = (_ ) 2’“
B 1 1 1 1 1
BQ,i,_l = b2 B2k+1 = by b* B;rk-',-l; 02k+1 = gcékﬂ = k€ C;[’H‘l'

By i Byrrr = Boenn By = bildgrer, CliyiCorsr = Coprn Cliyy = il dgren,
Bl Byt = Byt Blyyy = bpbildgesr,  CliyiCopin = Cori Cliyy = crcildyrn.
For any A1 € A, k > 2, we define
[|Agrsr|| =i brby + crer + || Aak]],
[Agir1] =1 (=1)FEFD2h ¢ — [Age].
[Lemma 3]. For any k£ > 2, we have,
(AgerrJorsr) (Joerr Agerr)t = (Agets Jorsr ) (Jorsr Agisn)
= (=)=
(A;k+l J2k+1)(J2k+1A;k+1)t = (A;k-‘rl J2k+1)t(J2k+1A;k+1) = [Agr1]"Tdyrr.

k(k+1)

bkck - [AQk])Id2k+1 = [A2k+1]fd2k+1,

(24)

(25)

(26)

(27)

(28)

[Proof]. One can verify that Lemma 3 holds for £ = 2. Suppose it is valid for k, we have

(A2k+1 J2k+1 ) (J2k+1 A2k+1 )t

(k+1)(k+2)
(=)=

(=)=

€11 €12
- b
€21 €22

k(k+1)

(k+1)(k+2) k(k+1) (k+1)(k+2) (k+1)(k+2)

Ct Jé’" (_ ) A2k<]2k (_1) thBQk (—1)

AQkJQk szJQk (—1) 2 JzkA JQkCék

th Azk



where
€11

€12

€21

€22

Hence

(A2k+1 J2k+1)(J2k+1A2k+1)t = ((— )

k(k+1)

(k+1) (k+2)+k(k+1)
2

(=1)
(=1)
((=1)"=~
b Agi T4 + (—1)

Azk J;kAijék + ( ) bka.lko

(k+1) (k+2)+k(k—1) k(k+1)
2

(A2k Jgk)(JQkAék)t —+ (— ) bk;CkIko

k(k+1)

bkck - [A%])Idgk

(k+1)(k+2)+k(k+1)
2

bk;Aék JQk

(k+1) (k+2)+k(k—1)
2

bk;AQkJ%k(l + (—1) ) — 0,

1)(k+1)2(k+2) ckAzkjék + (—1)16(16;r )CkAszQk =0,
1)
1)

(=1)

k(k+1)

(k+1) (k+2)+k(k+1)
2

bka;Iko + ( 1) AngQkAngyc

k(k+1) (k4+1)(k+2)+k(k—1)
2

bkaIko + ( 1)

k(k+1)

(=
(=
(= (Agt Joe) (Jor Agr)*
( bcr — [Agt]) Idos.

k(k+1)

bkck - [AQk])Iko-H = [A2k+1])]d2k+l.

Similar calculations apply to (Agk+1Jok+1)"(Jort1 Agrr1). Therefore the Lemma holds for k+1.

The last equation can be deduced from the first one.

[Theorem 2]. Ay satisfies the following relation:

[Agers Alis| = ([Agen)[Agen])® = (=177

k(k+1) k(k+1)

brck — [Ap]) (1) "7 ey — [Apn]")*
(29)

k

[Proof]. By using Lemma 1-3, we have

|A2k+1|

sz AQk
()7 o

( Iko —AQk (C;k)il ) BQk AQk
0 Idn (~)TERAy o

B2k B (_ )k(k+l)A2k (Cék)_lAék 0
(_ )k(k+1)A C;k

k(k+1)
|bka;J2kJ§k — (—1) 2+ éAchQkA;kC;]J

k(k+1)

|bk0k1d2k — (— )

k(k+1)
(=1)

(AQk J2k)(J2kA2k)t|

k(k+1)

[Age]Idoe] = (—1) "2 breg — [An])®
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Therefore

k

Ao Afuas] = (g [Agee]")?

|
[Lemma 4]
(Agpor Tywsr) (s Agirn)T 4 (s Afs) (Jpeos Agin )’
= A2k+1A2k+1 + okt Ayt AL Jorer = || Agier || Tdogrra,
(Agiers Joerr) (Agera Joeir) + (Jprs Agern )T (Jorrs Agesa)
= A2k+1A2k+1 + b AL Al Jorr = || Agrer || Idgrrs.
It can be verified that the first formula holds for k£ = 2, if it holds for k, we have
(Agrsr Jyrsn) (Agerr Jpern) ' (orrs AGeg) (Jprrr Agraa)!

(_1)(k+1)(k+2) Ape T, By Jye (—1)w<]2k1412-k (_1)(k+1)(k+z) Iy
= (_1)<k+1>(k+2)ct T (1 )k(k+1)A2kJ2k JékB;k (-1 )k<k+1> T4 A5,
X (-1 )k(k+1) JQkA JQkCTk (-1 )k(k+1)A2ka (_1)(k+1)(k+z) Bl Jy

(_1)(k+1><k+z> J4 B, (_1)(k+1><k+z> T4 AL Cye L, (_1)(k+1)<k+z>A Ty

( S S )
Jar [
where, by using Lemma 1 and 2,
fir=foo = Ap Al + Jp Al A JL + BBt + JC1C T
k(k+1) k(k+1)

= Ay Al + T (1) 77 AL (-1)
= ([|Agr|| + brbf + ckci) I dar = || Agerr||Ldyt,

AL TL 4 (b}, + cecp) Ty

k(k+1) (k+1)(k+2)

by AL+ (=1) 2 cp Al T

k(k+1)+(k+1)(k+2)
2

fiz = ApCy+(=1)72

k(k+1)
= (1) =
k(k—1)+(k+1)(k+2)

FARC 4 (1) T A O = 0,

k(k+1)

BQkAQk + ( 1)

k(k—1)+(k+1)(k+2)
2

(B2kA ( 1) BQkA;k)

k(k+1)+(k+1)(k+2) (k+1) (k+2)
2

fo = CLAL +(-1)"=—

= (-1)
k(k—1)+(k+1)(k+2)

Hence the first formula holds also for k + 1. The second formula can be verified similarly. m

AL B + (—1) b Agi Il + (1) co Tl AL,

k(k+1) k(k— 1)+(k+1)(k+2)

(b ALy Jh + (—1) by Abe T
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[Lemma 5].

k(k+1) k(k+1)

((—1) szA T Asz;k)((— ) sz + C;kAQk) = F(A2k+1)]d2k,

where
k(k+1)

FAgsr) = ¢2[Ap] + B2 [An]" + (—1) 5 bpet|| Agt -

[Proof]. By using Lemma 3 and 4, we have

((—1) BZkA2/s: + A2kc )(( ) A* B2k + C;kA2k)t
= bk(J2kA;k)( *kJQk) +CZ2(A2kJ2k)(J2kA2k)t

k(k+1) k(k+1)

k(k+ )

+ (_ ) bkck[(Asz2k)(A2kJ2k) (JzkAék)(JzkAzk)t]

k(k+1)

= ([ Age] + B2[Age]* + (1) 52 bt || Age ) Idor = F(Agess)Idos.

[Lemma 6].

||A2k||J2kA;kAng§k — [AQk][AQk]*Iko + JQkA;kAgkA;kAgkjgk.

[Proof]. From (30) we have the following relation:
F(Agerr) Jor A AL T2,

= (=D

+((=1)

k(k+1)
= (1)

k(k+1) k(k+1)

BQkA2k + AQkCQk)( ) bk(A2k J2k) J2kA2kA2k J2k

k(k+1)

BZkAQk + A2kc2k)ck(J2kA2k) J2kA2kA2k J2k

br((=1)

k(k+1)

+cz[<—1>’““““)BzchQk(JQkAQk) Jop Ay Al Thy + Ak O (Jor Ao ) Toe Ay Al T
= (_ )k(k+1) bk(( )k(k+1)ka2kA2k [AZk]AQk J2k + CkA2kJ2k [A2k] A J )
+CZ[(_ )k(k+1)bk‘]2’“‘4 AékA;kAék Jék + ¢ [AQk]J%A;kAék Jék]

k(k+1)

= b [Agn]* Jox A AL I3 + (—1)
+(=1)
== (bz + Cz)[AQk]JQkAQkAék Jék + ( )

+(=1)

bkck [Azk] [AQk] Iko)

k(k+1)

k(k+1)

bk Ck ( [AQk] _ld2k

k(k+1)

2 CkkaQkAQkA2kA2kA2k J2k)

11
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Using (31) we have

||A2k||J2kA;kAng§k — [AQk][AQk]*Iko + JQkA;kAgkA;kAgkjgk

]
[Theorem 3]. The eigenvalue polynom of Ayt A;kﬂ satisfies the following relations:
|Agesr Ay — Mdgrsr | = (A2 — || Agest [|A 4 [Agess [[Agesn ), 3
| AL Agirr — Mldgrss| = (A2 — || Agist [|A + [Agesr ] [Agess])
[Proof]. Let
* t * k(k'H) * 1—1
A = —[(erck — A Idar + Ay Ap][(—1) Boe A + Age O]
1) T By Al + Ap Gl (biblh — A)Idoe + Agi Al
; 2 k 2
Ak+1A — M\d k41| = 1
2 9k+1 2 (Ckc;; _ /\)Id2k 4 Aék ;k (_ )k(k+ )A k + C;kA;k
k(k+1) N i
Id2k 0 (—1) BQkAQk + A2kc (bk;b - )\)Iko + AZkAQk
I\ A Tdy (cxcp — Ndye + AL Ay (—1)7F ALB + Ch Al
k(k+1) * T
(—1) BQkAQk + Azkczk (bkbk - /\)]d2k + AzkA k
0 — Agl(bb; — M Tdye + A AL ] + (—1)"52 AL B, + ¢t AL
= |I+ 11
where

k(k+1) k(k+ )

r- ey
= (_1) [Age]* Idor + (—1) "2

and, by using Lemma 5,

II = —((_1)k<k+1>szA + A C3) AR (bebf — N Idgs + Ay Al
= [(ereg = O((=1) =
[(bkbf, — A)((=1)

= (bebk — A)(ercy — M dor + (bpbj, — A)((=1) "=

szAQk + A G5 ((=1)

k(k+1) +1)

sz A2k + AQk 02/9)

byl Ag) I dor + by Jor AL AL, JL + cpep A AL,

k(k+1) k(k+1)

szA2k + AQkC ) ((_1) BZkAZk + AQkC )AékA;k]

k(k+1) k(k+1)

B2Is:A2k + AQkC;k)i ((—1) B2Is:A2k + AQkC;k) 1A2kA;k:|

k(k+1)

B2kA2k
k(k+1)

FARC) A Ay (1)

+((=1)"=
= (bpbt — M) (cxch — A)Idor + (ckc; — M\ Ay Al

Bayr A%y + A Ch) ™+ (excy — \) A AL,

k(k+1) k(k+1)

szAzk + AQkCQk) LA AL

bkb -
+1)

AIIT +

T —IITAy A,
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where

Ir = ((-

k(k+1) k(k+1)

BZkAQk + A2kC )AtkA*k((— ) A2kB2/s: + C A2k)t

k(k+1)

BQkAzk + AQk C;k)AQk J2k J2k AQk(( ) A2k sz + CQkAZk)

bk(JQkA )(JQkA2k)t -+ C;;(A2k JQk)(JQkAQk)t]

2 D (Jon A ) (Adi Jon)' + cf (Jok A ) (Jok Aok )']

bk(JQkA2k)(J2kA2k) + CZ[AQk]Idzk]‘

k(k+1)

[(=1)
= (B3[Ao]* + cf2[Age]) Jor A Al Jb + (1) 2

br[Agr]* Idoe + i (Jor A3e) (Jor Agr)']

k(k+ )

bkaJQkA2kA ;kA;k Jék

k(k+1)

+(_ ) bkck[AQk][AQk] Idzk
JFrom Lemma 6, we get

IIT = (B2[Ag]* + [ Ag]) Jor Af AL JE, + (—1)75
— F(AQk«kl)JQkA;kAng;k

t gt
Azk Jzk

JFrom Lemma 3 we also have
IITAp AL, = 1ITAwJuJi AL,
— F(A2k+1 ) J2k A;k (J2k A2k )t(A2k J2k) (A;k J2k )t — F(A2k+l ) [Azk] [AQk]*Iko .

Therefore,

\AWA;M — Mdysi| = |1 + 11|

k(k+1)

= | — AN2Tdgx + Mbib}, + crcp + [|Age||) Idor — (bebicrc — (—1) bici[Agr]
= (1) bperl Ane ] + [ A ][ Ao ) T

= (N2 = | Agesr |[A + [Agen][Agers )%,
where the first formula in Lemma 4 is used. The second formula in Theorem 3 is obtained
from the fact that Ak A;M and A;k+1A2k+1 have the same eigenvalue set. [ |

iFrom Theorem 2 and 3 the states given by (20) are d-computable. In terms of (8) the

generalized concurrence for these states is given by
d2k+1 = 2k+1|[A2k+1]| = 2k+1|bk0k + bkflckfl + ...+ b101 + ad + C2|.
Let por+1 be a symmetric anti-diagonal 22+2 x 2%+2 matrix with all the anti-diagonal
elements 1 except for those at rows 281 — 1 + 5(26+2 — 2) 2FF1 4 g(2k+2 _ 9) 2k+2 1 4
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5(2FF2 — 2), 2FH2 4 5(2F2 — 2) 5 =0,..., 281 — 1 which are —1. dyr+1 can then be written

as
doyesr = (Pt [Porsr hgian)| = [((Darrr [Paesn)) ], (34)
where
2k+1
|’(,D2k+1> = Z (A2k+l)ij €; Q e;. (35)
ig—1

For a 2242 x 22642 density matrix por+2 with decompositions on pure states of the form
(35), its entanglement of formation, by using a similar caculation in obtaining formula (14)

[21], is given by E(dgk+1(pg2e+2)), where

92k+2
d2k+1 (p22k+2) = Ql - Z Qi, (36)
i=2
and €);, in decreasing order, are the the square roots of the eigenvalues of the matrix
Po2i+2Pok+1 Pyok2 Pok+1.
Therefore from high dimensional d-computable states Ayr+1 in (20), 2 < k£ < N, the

entanglement of formation for a class of density matrices whose decompositions lie in these

d-computable quantum states can be obtained analytically.

Remarks Besides the d-computable states constructed above, from (16) we can also
construct another class of high dimensional d-computable states given by 2¥+1 x 2641 matrices

Aok, 2 < k € IN,

Bk Ak bk;IQk AQk ( )
A2k+1 == = 5 37
—A; G —AL el
where bk, Cr € C, I4 = J4,
0 I2k
Lui=| _p (38)
for k + 2 mode 4 = 0,
0 I2k
12k+1 — (39)
_IQk 0
for k + 2 mode 4 =1,
0 0 0 Iy
0 0 —Iy-1 O
Lyess = (40)
0 ILes: 0 0
—Iy-i 0 0 0



for k + 2 mode 4 = 2, and

0 0 0 0 0 0 R
0 0 0 0 0 0  —Ip= O
0 0 0 0 0 —Iyos O 0
0 0 0 0 Iy-> O 0
Lyerr = (41)
0 0 0 —Iy=: O 0 0
0 0 Iy> O 0 0 0 0
0 Iy O 0 0 0 0 0
x> 0 0 0 0 0 0 0

for k + 2 mode 4 = 3.

One can prove that the matrices in (37) also give rise to d-computable states:

k k
Agiri Al | = [+ ad — 3 bie) (@ + ad — 3 bier) ]2

i=1 =1
k k
|Agesi ALy — Mdgen| = [N = (aa™ + 2c¢" +dd* + Y bib} + 3 cich) A
i=1 i=1

k k
+(? +ad = bici) (¢ +ad =) bici)*]2k-
i=1 =1

The entanglement of formation for a density matrix with decompositions in these states is

also given by a formula of the form (36).

In addition, the results obtained above may be used to solve linear equation systems,
e.g., in the analysis of data bank, described by Ax = y, where A is a 2% x 2% matrix, k € IV,
x and y are 2*-dimensional column vectors. When the dimension 2* is large, the standard
methods such as Gauss elimination to solve Ax =y could be not efficient. From our Lemma
3, if the matrix A is of one of the following forms: Ay, Bor Ao, AL, or AL, Bl the solution
x can be obtained easily by applying the matrix multiplicators. For example, Asxx =y is
solved by

1

X = @(AQIC Jzk)tJQky.

The solution to Byr Aykx =y is given by

1
= ——(Ag Jor) Ty
X bk[AQk]( ok Jor )" Jory

15



We have presented a kind of construction for a class of special matrices with at most
two different eigenvalues. This class of matrices defines a special kind of d-computable
states. The entanglement of formation for these d-computable states is a monotonically
increasing function of a the generalized concurrence. From this generalized concurrence the
entanglement of formation for a large class of density matrices whose decompositions lie in
these d-computable quantum states is obtained analytically. Besides the relations to the
quantum entanglement, the construction of d-computable states has its own mathematical

interests.
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