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Abstract

We suggest an alternative approach to electronic structure calculations based on numerical

methods from multiscale analysis� By this we are aiming to achieve a better description of

the various length� and energy�scales inherently connected with di�erent types of electron

correlations� Taking a product ansatz for the wavefunction � 
 F�� where � corresponds

to a given mean��eld solution like Hartree�Fock or a linear combination of Slater determi�

nants� we approximate the symmetric correlation factor F in terms of hyperbolic wavelets�

Such kind of wavelets are especially adapted to high dimensional problems and allow for

local re�nement in the region of the electron�electron cusp� The variational treatment of

the ansatz leads to a generalized eigenvalue problem for the coe�cients of the wavelet

expansion of F � Several new numerical features arise from the calculation of the matrix

elements� This includes the appearance of products of wavelets� which are not closed under

multiplication� We present an approximation scheme for the accurate numerical treatment

of these products� Furthermore the calculation of one� and two�electron integrals� involv�

ing the nonstandard representation of Coulomb matrix elements� is discussed in detail�

No use has been made of speci�c analytic expressions for the wavelets� instead we employ

exclusively the wavelet �lter coe�cients� which makes our method applicable to a wide

class of di�erent wavelet schemes� In order to illustrate the various features of the method�

we present some preliminary results for the helium atom�

� Introduction

��� Wavelets and electronic structure calculations

The fundamental di�culties of accurate electronic structure calculations are inherently con�
nected with a simultaneous description of various physical processes on energy� and length�
scales extending over several orders of magnitude ���� Typical examples� ranging from high
�short� to low �large� energy� �length�� scales� are processes inside atomic cores� chemical
bonding varying from covalent bonding to van der Waals �	� and ionic interactions� collective
excitations �
�� and magnetic couplings ���� Synergetic e�ects� caused by couplings between
di�erent scales� often prevent their separate treatment� Due to a lack of a priori knowledge
on the strength of these couplings� it is important to perform the calculations ab initio� which
means without a priori assumptions on speci
c system dependent quantities�

The development of ab initio methods is still one of the major tasks in quantum chemistry
���� Currently there are two di�erent lines of progress� based on the one side on density

�



functional theory ��� �DFT� and on the other side on wavefunction methods ���� In DFT
the many�particle problem is mapped onto a system of noninteracting particles� resulting in a
signi
cant computational simpli
cation� The fundamental problem of this approach is that the
mapping can be done only approximately and systematic ways for improvement are presently
not known� Alternatively one can try to solve the original many�particle Schr�odinger equation
and calculate approximate eigenfunctions of the nonrelativistic Hamiltonian

�H � ��
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where Za� Ra are charges and positions of the nuclei� respectively� Atomic units have been
used throughout this paper�

Common to all conventional wavefunction methods �for a review of these methods see e�g�
Ref� ���� is that one 
rst has to determine an appropriate mean�
eld solution from Hartree�
Fock �HF� or a generalized mean�
eld solution from multicon
gurational self�consistent 
eld
�MCSCF� type of equations� within a given 
nite single�particle basis set� The solution consists
of a 
nite set of orbitals� which can be used to construct an orthogonal many�particle basis in
terms of Slater determinants� Obviously� orbitals are just some kind of orthogonalization of
the original single�particle basis set and can be subdivided into occupied and virtual orbitals�
respectively� depending on whether or not they are included in the Slater determinant�s� which
represent the �generalized� mean�
eld solution� Starting from the reference space spanned by
the �generalized� mean�
eld solution� it is possible to construct a hierarchical decomposition
of the many�particle space into subspaces characterized by the number of virtual orbitals
contained in the Slater determinants belonging to it� This provides a natural setting for
con
guration�interaction �CI� and coupled�cluster �CC� methods� These methods are �exact�
in a sense that they provide a hierarchy of approximate solutions� de
ned on these subspaces�
which converge to the �exact� solution in the many�particle space de
ned with respect to the

nite set of orbitals� Convergence to the exact eigenfunction of the Hamiltonian ��� requires
in addition completeness with respect to the single�particle basis set�

Contrary to the large diversity of methods to approximate the high dimensional space of
Slater determinants� essentially all of their realizations in quantum chemistry are based on
single�particle basis sets constructed from atomic centred basis functions� Originally such kind
of approach has been motivated by interpreting molecular orbitals as perturbed superpositions
of atomic orbitals� Using Gaussian functions for the radial part of these atomic centred
basis functions� the resulting so called Gaussian�type�orbitals �GTO� ��� have almost optimal
approximation properties for mean�
eld solutions like HF ����� In the context of many�particle
theory� this corresponds to a partial�wave expansion of the wavefunction in the vicinity of a
nucleus� A detailed analysis shows that partial�wave expansions are incapable to describe
the wavefunction in those regions of con
guration space where electrons are close together
����� leading to inferior convergence in the space of Slater determinants ��	� �
�� Actually
coalescence points of electrons are one of the rare cases where the analytic behavior of the
wavefunction is known explicitly and became widely known as Kato�s cusp condition ���� ���
���� The natural framework for the representation of the behavior of the wavefunction � near
the electron�electron cusp is a product decomposition ����

� �r�� r�� � � � � rN � � F �r�� r�� � � � � rN �� �r�� r�� � � � � rN � �	�

where the symmetric part F � usually called Jastrow factor� corrects for inadequacies of the
antisymmetric mean�
eld solution � near the cusp� Jastrow factors are quite common in con�
densed matter and nuclear physics ����� In this connection one has to mention the Gutzwiller
wavefunction ���� Fermi hypernetted chain �FHNC� methods ���� ��� 	�� 	�� 		�� and correlated

	



basis functions �CBF� �	
�� For molecules� Jastrow factors have been used almost exclusively
in combination with quantum Monte Carlo methods �	��� Within the framework of these
methods� Jastrow factors depend explicitly on the interelectronic distances� hereby it becomes
possible to meet Kato�s cusp condition� Since interelectronic distances as coordinates are not
compatible with the tensor product structure of the Slater determinants� their incorporation
into conventional methods cause severe technical di�culties� which to overcome require con�
siderable technical e�orts �	��� Our approach di�ers in such a way that we avoid the use
of explicit interelectronic coordinates� instead we use basis sets which are �exible enough to
provide local adaptive re
nements near the cusp�

Recently wavelets became a powerful tool in multiresolution analysis for solving partial
di�erential equations �PDE� �	�� 	��� Starting from a mother wavelet� a hierarchical basis
set can be constructed using the operations of translation and dilation� Wavelet bases with
a large variety of useful properties including compact support� �bi�orthogonality� and vanish�
ing moments have been reported in the literature �	��� Not surprisingly wavelets attracted
considerable attention in electronic structure theory �	�� 
�� 
�� 
	� 

� 
�� 
�� 
�� 
��� Nev�
ertheless all of these applications have been done in the context of DFT� where a coupled
system of nonlinear three�dimensional PDEs has to be solved� We want address to the ques�
tion whether wavelets can be advantageous for approximating many�particle wavefunctions of
atoms� molecules and solids� An immediate objection against such kind of approach is the
high dimensionality of the systems� So far wavelets have been mainly used for low dimen�
sional problems �
��� However� due to the hierarchical structure of a wavelet basis it becomes
possible to apply sparse grids techniques �
�� ��� ���� keeping the size of the many�particle
basis set within acceptable limits� It has been demonstrated that the resulting so called hy�
perbolic wavelets ��	� have excellent approximation properties in high dimensional spaces� In
the following we want to discuss some of the basic numerical algorithms� which are required
for such kind of approach� With these algorithms at hand� we can attempt to tackle more fun�
damental problems of many�body theory� The product ansatz �	� seems to be an appropriate
starting point� since it allows a uni
ed view on apparently di�erent methods like CC� FHNC
and CBF ��
�� The central topic for future research are approximation properties of wavelets
with respect to the di�erent energy� and length�scales of physical processes discussed above�
Within the present work we want to give a preliminary discussion with respect to short�range
correlations�

��� Multiresolution analysis in one dimension

The solution of Schr�odinger�s equation for many�particle systems is an intrinsically high dimen�
sional problem� There are two principle approaches to construct wavelets in several dimensions
�multivariate wavelets�� In the 
rst approach one tries to construct wavelets depending gen�
uinly on several variables� whereas in the second approach one takes the tensor product of
wavelets which depend on one variable �univariate wavelets� only� Traditionally most of the
applications of wavelets appeared in signal and image processing �	�� 
��� where one has to
deal with one� or two�dimensional problems� We decided to take the tensor product ansatz�
where we start from a one�dimensional wavelet basis and construct successively higher dimen�
sional basis functions� An obvious advantage of this approach is that we can bene
t from
the large variety of univariate wavelet constructions reported in the literature� Another more
subtle point is that we have used tensor products to factorize some of the most expensive
computational steps into one�dimensional subproblems� which will be discussed in more detail
below�

In one dimension� multiresolution analysis provides a partition of the space of square
integrable functions on the real line L� into an in
nite sequence of ascending subspaces � � � �






Vj�� � Vj � Vj�� � � � �� where the index j runs over all integers� The union of these subspacesS
j Vj is dense in L�� There exists a scaling function ��x� which provides a basis set for Vj

using the operations of dilation and translation� To be more explicit� the functions

�j�a �� 	j����	jx� a� �
�

span Vj where the dyadic dilation factor 	j is kept 
xed and a runs over all integers� The
dilation factor scales the size of the basis functions �j�k� which means that with increasing j�
the �j�k provide a 
ner resolution in L�� By de
nition� the scaling function ��x� has to ful
l
the re
nement relation

��x� � 	
X
b

hb ��	x� b�� ���

which provides an explicit embedding of Vj into the larger space Vj��� The scaling function
also provides a resolution of the identity

� �
X
a

��x� a�� ���

As a consequence� the constant function can be exactly represented on each level j� For scaling
functions with compact support the number of nonvanishing 
lter coe�cients ha in Eq� ���
remains 
nite� It should be emphasized that the choice of the 
lter coe�cients uniquely
speci
es the scaling function ��x�� which means that in principle no further information is
required beyond these coe�cients� In the present work� we follow this principle by avoiding
any reference to analytic expressions� which in general might be quite implicit �	��� Therefore
our approach becomes rather �exible with respect to the kind of wavelet construction to be
employed in actual calculations� In view of the fact that it is presently not clear at all which
kind of wavelets are the most appropriate for electronic structure calculations� this aspect has
to be taken into account seriously�

Wavelets are introduced by taking a complement of Vj in Vj��� which de
nes the wavelet
space Wj � The corresponding wavelet basis for Wj is generated from a mother wavelet ��x�
analogous the Eq� �
�

�j�a � 	j����	jx� a�� ���

A re
nement relation similar to Eq� ���

��x� � 	
X
b

gb ��	x� b�� ���

relates the mother wavelet to the scaling functions on the next 
ner level� From Eq� ��� we
obtain an explicit embedding of Wj into Vj��� Subdivisions Vj�� � Wj

L
Vj can be further

extended in both directions of the sequence of spaces Vj using the reconstruction relation

��	x � a� �
X
b

�cab ��x� b� � dab ��x� b�� ���

leading to a decomposition of L� �
L

�W� into wavelet subspaces W� �	��� We do not want
to enter into a discussion concerning the relations between the 
lter coe�cients ha� ga in Eqs�
���� ��� and the coe�cients cab� dab in Eq� ���� instead we refer to the literature �	���

So far we have outlined some formal aspects of wavelet spaces� As we have already men�
tioned above� there exists a large variety of explicit wavelet constructions� which provide
wavelet basis sets with di�erent properties depending on the speci
c applications� There is
a special class of wavelets forming biorthogonal basis sets� which seems to be especially ap�
propriate for solving PDEs �	��� In a biorthogonal basis there exists a dual scaling function

�



 ��x�� which generates a sequence of spaces  Vj �  Wj�� where the corresponding scaling functions
 �j�a �� 	j��  ��	jx� a� and wavelets  �j�a �� 	j��  ��	jx� a� satisfy the equationsZ

dx �j�a�x�  �j�b�x� � �a�b� ���Z
dx �j�a�x�  ���b�x� � � � � j�Z
dx �j�a�x�  ���b�x� � � j � ��Z
dx �j�a�x�  ���b�x� � �j�� �a�b�

This corresponds to the subspace relations  Wj � Vj and  Vj �Wj� Given an arbitrary function
f�x� � L�� we can take a wavelet decomposition of the Hilbert space L� � Vj�

L
j�j� Wj and

expand f in terms of the wavelet basis

f�x� �
X
a

uj��a �j��a�x� �
�X

j�j�

X
a

vj�a �j�a�x�� ����

where the coe�cients are given by

uj��a �

Z
dx f�x�  �j��a�x�� ����

vj�a �

Z
dx f�x�  �j�a�x�� ��	�

according to Eqs� ���� It should be mentioned that an appropriate choice of j� is essential
for an e�cient expansion in ����� since the number of coe�cients with absolute value above
a certain threshold depends on it� Another property which is of great importance for wavelet
expansions of smooth functions� is the number of vanishing moments n of the waveletZ

dx x� ��x� � � for � � �� � � � � n� �� ��
�

This property is closely related to the size of the wavelet �	��� Roughly speaking for wavelets
with compact support the diameter � 	n��� Therefore any speci
c choice of a wavelet basis
for a particular application represents a compromise between the desired local character and
the number of vanishing moments� In the following we will use vanishing moments to obtain
sparse representations of certain matrices� Also closely related to the size is the regularity of
the wavelet �	��� We bene
t in certain steps of our method from a su�ciently high regularity
of the wavelet basis�

For further reference we de
ne the approximation error of the wavelet expansion ���� of a
function f up to level � in the L� norm

E
���
L� �f � �

�
��Z dx

�
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j��

X
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�
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��
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Alternatively we can use the� from a computational point of view� more convenient expression
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which is equivalent �C�E
���
L� � !E

���
L� � C�E

���
L� � to the E

���
L� error for a biorthogonal wavelet

basis �	���
In order to substantiate the following more formal discussions� we want to illustrate our

method for a speci
c wavelet basis� We have taken a biorthogonal symmetric wavelet basis
with compact support and six vanishing moments from Sweldens ����� These wavelets are
based on the interpolating scaling function of Deslauriers and Dubuc ����� where the dual
basis with the same number of vanishing moments has been generated from a lifting scheme
����� Scaling functions ��  � and wavelets ��  � together with their Fourier transforms

����� �

Z �

��
dx exp��i�x���x�� ����

are shown in Fig� �� Additionally� the interpolating scaling function � satis
es the vanishing
moment property ���� ��� Z

dx x� ��x� � �� for � � �� � � � � �� ����

analogous to Eqs� ��
� for the wavelet�

��� Multivariate wavelets and sparse grids

In order to pass from univariate to multivariate wavelets� we have employed two di�erent
construction schemes� Within the 
rst approach� the multivariate wavelets belong to well
de
ned levels j� This can be achieved by taking mixed tensor products of �j�a and �j�a which
corresponds in three dimensions to scaling functions

�j�a�r� � �j�ax�x� �j�ay�y� �j�az�z� ����

and seven di�erent types of wavelets

�
���
j�a�r� � �j�ax�x� �j�ay�y� �j�az�z�� ����

���

�
���
j�a�r� � �j�ax�x� �j�ay�y� �j�az�z��

���

�
���
j�a�r� � �j�ax�x� �j�ay�y� �j�az�z��

It is convenient to group the wavelets ���� into three classes� depending on the number of
univariate wavelets in the tensor product�

Obviously such kind of construction scheme becomes impracticable for high dimensional
problems� just because the number of basis functions increases too fast with dimension� In the
following we will make use of it to de
ne one�particle basis sets and as a basis for the evaluation
of one� and two�electron integrals� Analogously to the univariate case� scaling functions and
wavelets satisfy re
nement relations

�j�a�r� � 		��
X
b

Hb��a �j���b�r�� �	��

�
�p�
j�a �r� � 		��

X
b

G
�p�
b��a �j���b�r�� �	��

where the multivariate 
lter coe�cients are simple products of the univariate coe�cients e�g�

Ha � haxhayhaz � G
���
a � gaxhayhaz �
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Figure �� Biorthogonal wavelets with six vanishing moments from Sweldens ���� based on the
interpolating scaling function of Deslauriers and Dubuc ����� a� Scaling function ��x�� b�
wavelet ��x� and their Fourier transforms c� ������ d� j �����j� together with the corresponding
pictures of the e� dual scaling function  ��x�� f� dual wavelet  ��x� and their Fourier transforms
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For the many�particle basis sets� we have taken tensor products just within this three�
dimensional wavelet basis� The tensor product basis functions of general form

�
�p��
���a

�r�� �
�p��
���b

�r�� � � � ��pN �
�N �c �rN � �		�

mix wavelets from di�erent scales �i� Based on the fact that the wavelets ���� form a hi�
erarchical basis� the sparse grids approximation �
�� ��� ��� on the tensor products becomes
applicable� In the wavelet literature� the resulting multivariate wavelet basis is known as hy�
perbolic wavelets ��	�� The basic idea is to select a subset of the tensor products �		� which
ful
ls the additional requirement

PN
i�� �i � Q for a given integer Q� This reduces the number

of basis functions in the N particle case from O�LN � to O�L log�L�N��� where L � 		Q is the
number of single�particle basis functions� The actual loss of accuracy depends on the degree
of regularity of the function to be approximated� For smooth functions there is almost no loss
of accuracy compared to the full basis ��	��

� Hyperbolic wavelet approximation of the Jastrow factor

Fermionic wavefunctions have to meet Pauli�s principle� which means that we have to impose
a symmetry restriction on the tensor products by applying a symmetrization operator

�S �
X

�i��i������iN ��SN

�P �i�� i�� � � � � iN � �	
�

acting on the electron coordinates ri� where the sum runs over all permutations �i�� i�� � � � � iN �
of the symmetric group SN � Symmetrized wavelet tensor products

FJ�A �r�� r�� � � � � rN � � �S �
�p��
j��a�

�r�� �
�p��
j��a�

�r�� � � � ��pN �
jN �aN

�rN � �	��

�
X

�i��i������iN ��SN

�
�p��
j��a�

�ri�� �
�p��
j��a�

�ri�� � � � ��pN �
jN �aN

�riN �

serve as a basis for our expansion of the Jastrow factor� where J � �p�� j�� p�� j�� � � � � pN � jN �
and A � �a��a�� � � � �aN � are multi�indices specifying the types pi� levels ji and centers ai of
the wavelets involved in the product�

Depending on the physical problem under consideration� electron correlations have typical
length� and energy�scales� which have their correspondence in a certain range of dilation
parameters j of the wavelet basis� The long�range behavior of the Jastrow factor is determined
by its cluster property ����� which means that for those regions of con
guration space� where
the electron coordinates can be subdivided into two subsets A and B with j ra � rb j	
�corr 	 ra � A� rb � B� the Jastrow factor factors into a product

F �r�� r�� � � � � rN � � FA �ra� � ra� � � � �� FB �rb� � rb� � � � �� �	��

of Jastrow factors FA and FB for the two subsets� Here we have introduced a characteristic
length�scale �corr for electron correlations� which speci
es the spatial range of the correlations
to be described by the Jastrow factor� Obviously �corr depends on the system and the physical
properties under consideration� Depending on their level j� wavelet subspaces Wj resolve
di�erent length� and energy�scales� We can therefore introduce a coarsest level j� in the
wavelet expansion of L� � Vj�

L
��j� W� corresponding to the characteristic length�scale �corr�

where we take from Vj� the constant function only� We formally de
ne a �wavelet� standing
for �j����� �� � on the next coarser level j�� �� which represents the subspace spanned by the

constant function in Vj� � Furthermore we introduce an index p in the tensor products F �p�
J�A�

�



where p speci
es the number of wavelets in the product on levels j � j�� In the following we
obmit �j����� in our formulas� From this we obtain an additional hierarchy for the symmetrized
tensor products �	�� with respect to the index p

F ��� �r�� r�� � � � � rN � � �� �	��

F ���
j��a�

�r�� r�� � � � � rN � � �
�q��
j��a�

�r�� � �
�q��
j��a�

�r�� � � � �� �
�q��
j��a�

�rN ��

F ���
J�A �r�� r�� � � � � rN � � �

�q��
j��a�

�r�� �
�q��
j��a�

�r�� � � � �� �
�q��
j��a�

�rN��� �
�q��
j��a�

�rN ��

���

which resembles to single� double and higher excitations of the standard CI expansion�
We can apply the hyperbolic wavelet approximation to the expansion of the Jastrow factor

F �r�� r�� � � � � rN � �
NX
p��

X
jJj�Q

X
A

f
�p�
J�A F �p�

J�A �r�� r�� � � � � rN � �	��

with variational parameters f
�p�
J�A� where only those F �p�

J�A are admissible for which jJj ��PN
i�� ji � Q� As already mentioned above� such kind of approach is most e�cient for smooth

functions� where it achieves almost the same quality of approximation as a full tensor product
basis� The many�electron wavefunction is smooth except at the electron�electron cusp �����
Therefore� the hyperbolic wavelet approximation requires some modi
cations in the cusp re�
gion� Adaptive re
nement schemes of the hyperbolic wavelet basis in the cusp region� based on
analytic properties of many�electron wavefunctions� will be discussed below in further detail�

The question arises whether an ansatz of the form �	�� satis
es a size�extensivity condition�
This would require that the Jastrow factor factorizes according to the cluster property �	���
given a system �A�B� composed of the noninteracting subsystems A and B� Applying the

hyperbolic wavelet approximation with parameter Q to �A�B� produces terms F �p�
Q�A for A

with j Q j� Q� where all wavelets are located in A and vice versa for B� In order to factorize

properly� this would require products of the type F �p�
Q�AF �q�

Q�B� which are not admissible within
our approximation� Concerning size�extensivity� hyperbolic wavelets introduce some kind of
ambiguity into the calculations� There are some similarities to truncated CI expansions�
which also show such kind of behavior� In order to fully overcome this problem� we have
to abandon the linear ansatz �	�� and replace it by an exponential ansatz� This has been
accomplished by the FHNC method ���� ��� 	�� 	�� 		�� which provides a hierarchical system
of equations in order to determine an optimal Jastrow factor and the corresponding energy�
Due to the computational complexity of the exponential ansatz� it is necessary to introduce
further approximations� The FHNC method just as the CC method is not strictly variational
any more� In the present work we are primarily interested in numerical aspects of wavelet
expansions of correlated wavefunctions� which are mostly independent of the many�particle
method employed� Therefore� we restrict ourself to the linear ansatz �	��� which enables
a strictly variational treatment without any uncontrolled approximations� at least for small
systems�

The Rayleigh�Ritz variational principal applied to the expectation value of the energy

E�F � �
hF�j �HjF�i
hF�jF�i �	��

yields a generalized eigenvalue problem of the form

H f � E M f � �	��

�



with matrix elements

H�p�J�A��q�L�B� �

Z
d	r�� � � � � d

	rN F �p�
J�A�

�H F �q�
L�B� �
��

M�p�J�A��q�L�B� �

Z
d	r�� � � � � d

	rN F �p�
J�A� F �q�

L�B�� �
��

Hyperbolic wavelets keep the growth of dimension of the generalized eigenvalue problem �	���
for an increasing number of electrons� within reasonable limits� However the computation of
the matrix elements �
�� and �
�� becomes rather involved for large N� This di�culty is less

severe due to the fact that for smallQ� the products F �q�
J�A� partially preserve the orthogonality

relations between the orbitals� A more detailed analysis for the matricesM ���� reveals that for

xed Q and N 		 Q the computational complexity is of O�N	�� In principle� the algorithm
can be generalized for matrices H� at the expense of an increasing order of complexity� It
should be mentioned however� that for large systems the wavelet approach introduces some
sparsity into H andM matrices� At the present state of the project� it seems to be premature
to enter into a detailed discussion of this subject�

��� Elementary considerations for the homogeneous electron gas

In order to get an estimate for the convergence behavior of our expansion� we consider the
homogeneous electron gas at various densities 
� For a cubic volume element "� with peri�
odic boundary conditions� containing N � 
" electrons� we can formulate a many�electron
wavefunction

� �r�� r�� � � � � rN � �
NY
i�j

h�jri � rjj� � �r�� r�� � � � � rN � � �
	�

where F is approximated by a product of electron�pair Jastrow factors h and � is a Slater
determinant of Bloch orbitals� In the case of extended systems� we have to distinguish between
the approximation of isolated subsystems like electron�pairs and aggregations of subsystems�
The latter is of almost exclusively combinatorial character and will be treated separately� First
of all� we want to discuss the approximation of a single electron�pair described by the Jastrow
factor h�jr� � r�j�� which depends only on the interelectronic distance due to symmetry� The
shape of the Jastrow factor strongly depends on the electron density 
� In Fig� 	 we have
plotted Jastrow factors h for various electron densities ranging from high density regions
inside atomic cores up to low densities close to the van Waals radius of atoms and molecules�
Electron densities are characterized by the dimensionless parameter rs � � 	

��� �
��	�rB � where

rs corresponds to the average distance between the electrons expressed in units of Bohr�s
radius rB � We have used a scaled interelectronic distance !r�� � jr�� r�j�rs in Fig� 	� in order
to demonstrate that rs is an appropriate scaling parameter� characterizing the range of the
Jastrow factor� Furthermore it has been observed that the depth of the Jastrow factor at the
cusp is almost proportional to rs ����� Such kind of behavior can be partially transferred to
inhomogeneous systems ����� For atoms� the density decreases exponentially with the distance
from the nucleus� Typically rs ranges over one to two orders of magnitude between core
regions and the van der Waals radius �rs � ���

From a physical point of view� it is reasonable to assume that h is an analytic function with
respect to the interelectronic distance jr�� r�j� Therefore we can perform a Taylor expansion

h�jr� � r�j� �
�X

m��

am
m#

jr� � r�jm �

�

and consider the wavelet representation of each term separately� Obviously jr� � r�jm is
smooth except at the cusp r� � r�� We can therefore limit our discussion� on the 
ne scales�

��
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Figure 	� Jatrow factors of an electron pair for the homogeneous electron gas at various
densities� h�jr� � r�j� is plotted versus the scaled interelectronic distance !r�� � jr� � r�j�rs
�Bohr�� where the dimensionless parameter rs corresponds to the average distance between
the electrons expressed in units of Bohr�s radius�

to tensor products �	�� located on the diagonal a� � a�� With respect to the levels j�� j�� it is
su�cient to consider the diagonal case j� � j�� since the coupling between di�erent levels is
of O�	�	jj��j�j���� A direct expansion in terms of a biorthogonal wavelet basis yields wavelet
coe�cients

h
�m�
j�q��a�j�q��a

�

Z
d	r�d

	r� jr� � r�jm  �
�q��
j�a �r��  �

�q��
j�a �r�� �
��

� 	��m�	�j
Z
d	r�d

	r� jr� � r�jm  �
�q��
��� �r��  �

�q��
��� �r��

� 	��m�	�j h
�m�
��q������q���

�

for which we obtain a scaling factor 	��m�	�j with respect to the levels j� The constant
term m � � of the expansion �

� vanishes due to the vanishing moments property ��
� of
the wavelets� leaving us with the linear term m � � as the dominating contribution in the
asymptotic limit� We can estimate the approximation error of our expansion for the L� norm
���� in the asymptotic limit

!E
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�
� X
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where we have used in the last line of Eq� �
��� the fact that the number of grid points on
level � belonging to " increases with O�		��� The constant C � O��� takes into account the
neglect of o��diagonal contributions in the second line of Eq� �
��� Hence it appears that
!E
���
L� �h� � O�	�
����� In order to estimate convergence with respect to the energy� we require

a stronger statement for the Sobolev space H� ���� concerning the approximation error of the
wavelet expansion� The Sobolev space H� takes in addition into account convergence with
respect to the 
rst derivatives� This is necessary because of the dominance of the kinetic
energy ��	� in the energy expectation value�

We can apply standard estimates for the 
nite element method in the case of piecewise
linear basis functions� Higher order regularity of the basis functions do not contribute to the
asymptotic convergence rate� due to the discontinous 
rst derivatives of the exact wavefunction
at the cusp� It is not di�cult to see that an ansatz of the form �

� leads to a wavefunction

which belongs to the Sobolev space H
�

�
���"� for � 	 � ����� Consequently we get the following

two estimates ���� with respect to the level �

E
���
L� �h� � C 	���

�

�
��� k h k

H
�
�
�� � �
��

E
���
H� �h� � C 	���

�

�
��� k h k

H
�
�
�� � �
��

for the solution of the eigenvalue problem �	��� Here k h k
H

�
�
�� denotes the norm of h in

H
�

�
���"� ���� and E

���
H� �h� is the approximation error with respect to the H� norm� For the

precise meaning of the various spaces and norms we refer to the literature ����� since these
technical details are not essential for the following discussion� The error in the L� norm
�
�� agrees with the previous estimate �
�� for the direct wavelet expansion� which has to
be expected from the assumed regularity of the electron�pair Jastrow factor h� According to
the estimate of the error in the H� norm �
�� and taking into account that variation of the
energy expectation value leads to an error in the energy which is quadratic with respect to the
H� error of the wavefunction ����� we 
nally obtain an O�	�	�� estimate for the convergence
of the energy� This has to be brought in relation to the computational e�ort required for
an adaptive re
nement near the electron�electron cusp� For the homogeneous electron gas
this needs a uniform re
nement of the tensor products diagonal with respect to a in the
domain "� The number of such tensor products increases with O�		��� which means that their
straightforward incorporation into the wavelet expansion leads to a constant ratio between
the number of degrees of freedom and the convergence rate� However due to translational
symmetry the actual number of degrees of freedom increases only with O���� as can be seen
from Eq� �
��� Therefore it seems to be quite natural to use contracted tensor products on
the diagonal

F ���
J �r�� r�� � � � � rN � �

X
a

h
�
�q��
j�a �r�� �

�q��
j�a �r�� � � � �� �

�q��
j�a �rN��� �

�q��
j�a �rN �

i
�
��

in the expansion �	��� Here we have used equation �
�� which shows that the wavelet expansion
coe�cients do not depend on the location a of the wavelets for the homogeneous electron gas�
For inhomogeneous systems like molecules� we expect that the coe�cients on the 
ne levels

�	



� vary smoothly with respect to the density� Therefore it should be possible to describe the
variation of the coe�cients by a small number of degrees of freedom� which is essentially
independent of the level �� It remains the problem to evaluate integrals with respect to
contracted tensor products e�ciently� Such kind of considerations will be subject for a further
publication �����

��� Nonstandard calculation of Coulomb matrix elements

Due to the tensor product ansatz for the Jastrow factor F � the Coulomb interaction part of
the H matrix elements factor into the standard one�electron

h
Aj �
rC
i ��

Z
d	r


A�r�

j r�C j �
��

and two�electron Coulomb integrals

h
Aj �
r��

j
Bi ��
Z
d	r�d

	r� 
A�r��
�

j r� � r� j 
B�r��� ����

These integrals have to be calculated for all existing combinations of products


A�r� �

��

��

�i�r��j�r�

�i�r��j�r��
�p�
m�a�r�

�i�r��j�r��
�p�
m�a�r��

�q�
n�b�r�

� ����

where we have used capital letters to represent multi�indices A �� �i� j�m� n� p� q�a�b� for
convenience� A new numerical feature arises from the products of wavelets and orbitals which
appear in the integrals �
�� and ����� This makes an essential di�erence to most of the
previous application of wavelets to PDEs like Poisson�s equation and resembles to applications
to nonlinear problems ���� ���� The numerical treatment of these products is essential for an
e�cient calculation of these integrals�

Before we enter into a discussion of matrix element calculations� a few remarks are ap�
propriate� As it has been oulined above� wavelets constitute a complete basis in L�� For the
wavelet expansion �	�� of the Jastrow factor F we can chose an arbitrary subset according to
our numerical and physical demands� In the following we have made extensive use of wavelet
expansions for various kinds of functions� For that we have adopted the wavelet basis for
each speci
c function in such a way that we take into account all wavelet contributions above
a certain threshold� irrespective of our initial choice for the Jastrow factor� The threshold
in turn depends on the further use of the expansion and enables us to keep control on the
numerical accuracy of the matrix element calculations�

We made no attempt to solve the integrals �
�� and ���� analytically� First of all� these
integrals become rather complicated e�g� for wavelets given in terms of piecewise polynomial
functions and the sheer number of these integrals prohibits the evaluation of any complicated
analytic expressions� The same argument prevents the application of sophisticated numerical
integration schemes� Instead we have exploited speci
c wavelet properties to derive an e�cient
and computationally simple integration scheme� To begin with� we calculate projections of
the products ���� on the spaces Vj

L
Wj

PVj
L

Wj

A�r� �

X
p

X
a

h ��p�j�a j
Ai ��p�j�a �r� �
X
b

h �j�bj
Ai�j�b�r�� ��	�

where PVj
L

Wj
de
nes a projection operator on the subspace Vj

L
Wj according to Eq� �����

It should be mentioned that those products ���� containing wavelets have compact support�

�




which is typically of the size of the wavelet on the 
nest scale in the product� As a consequence�
the wavelet expansions ��	� become rather compact and well localized� For extended systems
many of the 
A become zero due to vanishing overlap between the wavelets in the product�

The computational scheme we have used for the matrix elements �
�� and ���� is based on
the nonstandard representation of operators ��	� �
�� The basic advantage of this approach
is that it avoids couplings between di�erent wavelet levels� For that we have to accept some
overhead owing to the fact that we require for each level j not only the wavelet coe�cients

h ��p�j�bj
Ai but also the coe�cients with respect to the scaling functions h �j�bj
Ai� In an inter�
mediate step we 
rst expand the auxiliary function

R�r�� ��

Z
d	r�

�

j r� � r� j 
B�r�� ��
�

in terms of wavelets and scaling functions on various levels� We start at an appropriately
chosen 
nest level �� where we approximate ��
� within the dual space  V�

L  W�

R�r� �
X
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X
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h��p���a jRi  ��p���a �r� �
X
b

h���bjRi  ���b�r� ����

inserting the wavelet expansion ��	� with j � � yields
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where all the matrix elements and coe�cients refer to the 
nest level � only� In order to judge
the computational e�ciency of the expansion� we have to discuss the convergence properties of
each of the sums separately� First of all� we notice that the wavelet Coulomb matrix elements
in ���� and the mixed wavelet scaling function Coulomb matrix elements in ���� and ����
decay very fast with increasing distance ja�bj� The actual order of the decay depends on the
number of vanishing moments n and on the wavelet type p envolved� A general discussion�
including Coulomb interactions as a special case� can be found in Ref� ��
�� We have shown
some typical examples in Fig 
� As a consequence� the sums over the grid points a�b in �����
���� and ���� converge fast due to the fast decay of the Coulomb matrix elements and the
typically local character of the products 
A� However� the sum with respect to a in ����
converges rather slowly� This is due to the fact that for large distances ja� bj� the Coulomb
matrix elements for scaling functions represent essentially point charge Coulomb interactions
�Fig 
�� which decay with O�ja � bj���� In order to circumvent this problem� we decompose
 V� �  V���
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where we obtained an expression which looks very much like the sums ����� ����� ���� and
����� except that we have replaced � by the next coarser level � � �� Again all the sums
converge fast except the persistent sum ��
�� However the number of grid points decreases
on the coarser levels exponentially� which means that we have at least achieved a reduction
in the computational e�ort� Performing further insertions of the form ����� we can shift the
persistent sum to a coarse level ��� where the number of scaling functions is su�ciently small
in order to perform the sum with acceptable computational e�ort� Such kind of telescopic
expansions are standard in wavelet methods and enable us to exploit the local character and
the regularity of the functions involved� Eventually we have obtained a mixed expansion
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in terms of wavelets and scaling functions on various levels j� where the coe�cents are given
by
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In principle we can express the scaling functions in terms of wavelets in order to obtain a
standard wavelet espansion of R� Actually this is not necessary for the evaluation of the
two�electron Coulomb integrals ����
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The Coulomb integrals in the wavelet basis can be easily derived from the corresponding
integrals for the scaling functions using the re
nement relations �	�� and �	��� where we get
e�g�
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Again these integrals satisfy a simple scaling relation
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Figure 
� Sparse wavelet representation of Coulomb interactions� Matrix elements for three

di�erent combinations of wavelets �
�p�
��a and scaling functions ���a have been selected� �
�

h���aj �
r��
j���bi� ��� h���aj �

r��
j������bi� ��� h������aj �

r��
j������bi� Absolute values of the largest matrix

elements at distance ja�bj are plotted on a logarithmic scale� The three�dimensional wavelets
and scaling functions were generated from the univariate wavelet with six vanishing moments
of Sweldens ���� and the univariate scaling function of Deslauriers and Dubuc �����

which relates Coulomb integrals on arbitrary levels j to level �� In the second step of Eq� �����
we have used the translational symmetry of the scaling functions� Therefore it is su�cient to
calculate Coulomb integrals for scaling functions at level j � �� which are called elementary
integrals in the sequel� all the other integrals can be obtained from relations ���� and �����
Furthermore it has to be mentioned that due to the compact supports of the scaling functions�
the weak singularity of the integrand vanishes for su�ciently large distances ja� bj� As a
consequence multipole expansions become applicable� which enable a simple and accurate
computation of the elementary integrals in this case� Obviously elementary integrals do not
depend on the speci
c system under consideration� Therefore we have to calculate these
integrals only once for a certain type of scaling function and keep them� up to a given distance�
in a library� Methods how to actually calculate elementary integrals are discussed in Appendix
A�

Computation of the one�electron Coulomb integrals �
�� follows the same line� We start
with an expansion
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on the 
nest level � and perform a telescopic expansion analogous to Eqs� ������� until a
su�ciently coarse level has been reached on which the persistent sum can be performed with
acceptable e�ort�

��� Tensor product representation

The functions 
A� we have to deal within the integral evaluation� require three�dimensional
grids for their representation� To avoid extensive calculations on three�dimensional grids� we
use tensor product expansions of these functions� For this� we just take the orbitals �i from a
standard quantum chemistry program� where orbitals are represented as linear combinations
of �Cartesian Gaussian� functions

�i�r� �
X
a

di�a �x� Ca�x�
�a�y �Ca�y�

ma�z � Ca�z�
na exp���a�r�Ca�

��� ����

Such kind of expansion perfectly 
ts our requirements� The product formation can be per�
formed in three consecutive steps� where in the 
rst step all of the required one�dimensional
�Cartesian Gaussian� functions have been expanded in the wavelet basis

�A�x� �� �x� C�� exp����x� C��� ��	�

�
X
j�j�

X
a

h�Aj  �j�ai�j�a�x� �
X
b

h�Aj  �j��bi�j��b�x��

In the case of interpolating scaling functions like those of Deslauriers and Dubuc ����� the
determination of expansion coe�cients h�Aj  �j�bi� h�Aj  �j��bi is fairly straightforward� On a
su�ciently 
ne level j� we simply take

h�Aj  �j�ai � 	�j���A�	
�ja� ��
�

and use the re
nement relations ��� and ��� to get the coe�cients on coarser levels� We want to
refer to Appendix A�	 for the discussion of a method� which does not rely on the interpolation
property�

From this point on� all the calculations are based exclusively on the wavelet expansions
��	� of the Gaussians� In a second step� we generate all the required products of �Cartesian
Gaussian� functions with univariate wavelets

�B�x� � �A�x����b�x� ����

�
X
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X
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X
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X
c

h�Bj  �j��ci�j��c�x�

and scaling functions �j�a� respectively� where A�B represent appropriately chosen multi�
indices in order to characterize the functions ��	� and ����� The numerical evaluation of
expansion coe�cients of products h�Bj  �j�bi� h�Bj  �j�bi is discussed in Section 
� Finally we
have to form products �A � �B�C� which are required for the functions 
A� In Fig� � we have
shown wavelet expansions of a Gaussian exp��x�� and its wavelet product exp��x�������x��
As expected� the largest contribution to the product expansion comes from level j � � and
neighboring levels� where the coe�cients of the 
ner levels decay rapidly�

In order to represent the functions 
A�r� on a three�dimensional grid it is convenient to
store the expansion coe�cients of the functions �A in the nonstandard representation� which
means that for each function not only the wavelet but also the scaling function coe�cients on
each level j have to be stored� Although these are redundant informations� it is convenient

��
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Figure �� Wavelet expansions of a Gaussian exp��x�� and its wavelet product
exp��x�������x�� The wavelet with six vanishing moments has been taken from Sweldens
����� Absolute values of the wavelet coe�cients for the product at various levels j are plotted
on a logarithmic scale� Dashed lines indicate the distribution of the wavelet coe�cients for
the Gaussian function alone� For comparison both functions are shown on the inlay�

in view of the tensor product structure of the wavelet basis ����� We can calculate the
wavelet coe�cients of simple products ��r� � �A�x��B�y��C�z� using the coe�cients of the
nonstandard representations of their factors�
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�
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� ����

From this we easily get the expansion coe�cients of the functions 
A by summing over the
expansion coe�cients of the orbitals ����� It should be emphasized that the storage require�
ments for the three�dimensional coe�cients on the left side of Eq� ���� are of O�M	�� where
M is the number of coe�cients in the expansions ��	�� Consequently� we calculate the three�
dimensional coe�cients from Eq� ���� just when they are needed in the course of the evaluation
of the one� and two�electron Coulomb integrals as outlined above�

��



��� Kinetic energy and overlap integrals

It is evident from the tensor product representation ���� that the remaining integrals for the
functions

�A�r� �

�
�i�r�

�i�r��
�p�
m�a�r�

� ����

with respect to the one�body operators �O � �� �

h�Aj �Oj�Bi ��
Z
d	r �A�r� �O �B�r� ����

can be expressed in terms of one�dimensional integrals� These integrals can be obtained from
the elementary integrals

h���aj����i �
Z
dx ��x� a���x�� ����

h���aj�j����i �
Z
dx ��x� a����x�� ����

using the re
nement relations ���� ��� and scaling relations analogous to Eq� �����

� Products of wavelets

Evaluation of the integrals �
�� and ���� requires wavelet expansions of products of wavelets
with orbitals� We have outlined in Section 	�
 how to factorize the products with respect to
x� y� z� This considerably simpli
es the wavelet expansion of products� due to the restriction
to products of univariate functions� As a starting point� we consider the product f�x� g�x� of
two arbitrary functions f�x� �

P
j�a vj�a�j�a�x�� g�x� �

P
j�awj�a�j�a�x� both represented in

terms of their pure wavelet expansions� We have chosen a pure wavelet expansion for f� g in
order to simplify our notation� In actual applications� we have used expansions of the form
����� where scaling functions represent contributions from coarse levels below j�� Except of the
appearance of some additional terms� where wavelets have to be replaced by scaling functions�
this does not a�ect the method outlined below� Obviously such kind of products can be traced
back to products of wavelets

�j�a�x����b�x� �
X
m

X
c

Z
dt �j�a�t����b�t�  �m�c�t� �m�c�x�� ����

which themselve can be expressed in terms of the wavelet basis� We introduce the wavelet
coupling coe�cients 	

j � m
a b c



��

Z
dt �j�a�t����b�t�  �m�c�t�� ����

which represent the basic quantities for the product evaluation� The coupling coe�cients can
be easily calculated using the method of Beylkin� Dahmen and Micchelli outlined in Appendix
A� Due to translation and dilation symmetry� the storage of only a small number of coupling
coe�cients is required� For example in the case j � ��m we have the simple relation	

j � m
a b c



� 	j��

	
� �� j m� j
� b� 	��ja c� 	m�ja



� ��	�

which shows that we only have to deal with coupling elements of the form	
� � m
� b c



�j���m�

�

	
j � �
a b �



�j���m�

� ��
�

��



The coupling coe�cients ��
� for wavelets with compact support di�er from zero only for a

nite number of grid points b� c and a� b� respectively� Depending on the speci
c choice of
the wavelet basis� the coupling coe�cients show a characteristic decay for j � � �� m and
� 		 j�m� respectively� A su�ciently fast decay with respect to the level m is essential for
an e�cient approximation of products�

The product expansion

f�x�g�x� �
X
m

X
c

�
�X
j��

X
a�b

	
j � m
a b c



vj�aw��b

�
�

� �z �
�um�c

�m�c�x�� ����

resembles to the coupling of angular momenta� where we couple two wavelet levels j� � to a level
m� However� contrary to angular momenta� the range of m is not strictly 
nite� In Appendix
B we derive a rigorous upper bound for the coupling coe�cients ����� The following useful
estimate

kumk� � Cm
j�� kvjk� kw�k� ����

with

Cm
j�� � 	j�� max

c�f�������m�j��g

�

�X

a�b

�����
	

� �� j m� j
� b� 	��ja c� 	m�ja


�����
��
� ����

based on the maximum norm kvjk� �� maxa fjvj�ajg gives an upper bound on jum�cj� We
show the constants Cm

j�� for the case j � ��m in Fig� ��

� Some preliminary results for the helium atom

We want to demonstrate the feasibility of our method by applying it to the helium atom� Actu�
ally this is a standard model for electron correlations� which already shows many characteristic
features of large systems� By means of the helium atom� we can study the approximation prop�
erties of hyperbolic wavelets and develop strategies for adaptive re
nements in the cusp region�
Aggregates of noninteracting helium atoms can serve as a basis to study the size�extensivity
error� These topics will be the subject of a forthcoming publication ����� In the present
work we focus on more elementary features of our method and want to demonstrate that the
techniques discussed in the preceding sections are feasible for realistic applications�

Taking a multivariate wavelet basis �
�p�
j�a for the wavelet expansion of F � we have generated

all possible symmetric one�body factors F ���
j�a as well as two�body factors F ���

J�A� irrespective
of the sparse grids condition� The mean�
eld part � corresponds to the closed shell HF
wavefunction� where the �s orbitals have been expanded by Gaussian�s with exponents taken
from Dunnings VQZ basis set ����� In order to get a su�ciently accurate description near the
electron�nuclear cusp� exponents are ranging up to � � �	���� which requires wavelets up to
level j � � in the expansion ��	��

Our results listed in Table � are only of preliminary character due to the incompleteness

of our multivariate wavelet basis �
�p�
j�a in the subspaces Wj under consideration� On each level

j� only the nearest neighbor wavelets of each type p� with respect to the nucleus� have been
taken into account� The contributions to the energy of type p wavelets decrease on all levels
in the order p � ��� 	� 
� 		 ��� �� �� 	 �� This has to be expected due to the di�erent
number of univariate wavelets in the tensor products ����� It can be seen that the dominant
contribution comes from the level j � �	� which allready recovers �
$ of the correlation
energy� Compared with it� the contribution of the next coarser level j � �
 is almost negligible
�� ���� Hatree�� clearly demonstrating that the assumption of a lower bound on the coarse
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Figure �� Constants Cm
j�� of upper bounds for the wavelet coe�cients of products� Dotted

lines connect the cases where the levels j� � are kept 
xed� The constants refer to Sweldens
biorthogonal wavelet basis ���� with six vanishing moments for � and  ��

levels in the expansion �	�� is reasonable� In the direction of 
ner scales� contributions to
the correlation energy decrease quite fast� A de
nite statement concerning the asymptotic
convergence behavior� however� cannot be drawn from our results� Nevertheless our results
show that rather accurate energies can be achieved already with a rather small number of
wavelets� This is encouraging in view of the fact that we have used regular Cartesian grids�
which were not especially adopted to atomic symmetries� except that we have placed the
nucleus in the origin�

� Conclusions

We have outlined a wavelet based method for the description of electron correlations within
the many�electron Schr�odinger equation� Such kind of approach enables a multiscale treat�
ment of electron correlations� which means that the speci
c length� and energy�scales of the
various underlying physical processes can be explicitly represented by the wavelet basis� The
high dimensionality of many�electron problems can be dealt with by means of the hyperbolic
wavelet approximation� For an accurate description of short�range correlations� however� local
re
nements in the inter�electronic cusp regions are required�

Apart from physical aspects of our method� we have discussed various technical pecu�
liarities� This includes the e�cient calculation of one� and two�electron integrals� where we
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Table �� Full tensor product wavelet expansion of F for the helium atom� Wavelets in the
expansion �	�� range from the coarsest level j� � �	 up to the 
nest level jmax� No restriction
on the tensor products has been imposed �Q � 	jmax�� An analytic evaluation of the integrals
in the Gaussian basis set yields a Hartree�Fock reference energy of �	������� Hartree� Three�
dimensional wavelets were generated from the univariate wavelet with six vanishing moments
of Sweldens ���� and the univariate scaling function of Deslauriers and Dubuc �����

Wavelet type p
jmax �a 	 
 � � � � nb Energy �Hartree�

� � � � � � � � � �	�����	�

�	 	 	 	 � � � � 	� �	����	
	
�� 	 	 	 � � � � �� �	�����
�
� 	 	 	 � � � � ��� �	������


�	 	 	 	 � � � � ��� �	�����
�
�� 	 	 	 � � � � ��
 �	�������
� 	 	 	 � � � � ���� �	���	�
�
� 	 	 	 � � � � 	��� �	���
���

�	 	 	 	 � � � � 
�� �	�����	

�� 	 	 	 � � � � ��
� �	����	��

exact �	���
�	�

a Number of three�dimensional wavelets of type p ���� on each level j� � j � jmax�
b Number of symmetrized tensor products�

have used the sparsity of Coulomb integrals within the nonstandard representation� in order
to get an e�cient scheme for the calculation of more complicated integrals� Moreover we
have discussed the numerical calculation of elementary Coulomb integrals solely based on the
knowledge of the 
lter coe�cients� We also presented a detailed treatment of products of
wavelets� Their appearance represents a key feature of our method�

To ilustrate the feasibility of our approach we applied it to the helium atom� Our results
indicate that already with a comparatively small number of wavelets reasonable accuracies
can be achieved�

Appendices

A Elementary integrals for scaling functions

We have seen in Section 	�	 that all the required integrals can be reduced to elementary
integrals involving scaling functions ���a only� In this Appendix we want to discuss methods
how to actually calculate these integrals� In principle there are two di�erent ways to tackle
this problem� One possible approach would be to use an analytic representation for the scaling

		



function e�g� in terms of piecewise polynomials and to calculate integrals analytically or by
convenient quadrature formulas� However� closed analytic expressions are not always available
for scaling functions and an approximate treatment seems to be problematic in view of their
occasionally rather complicated structure� Another approach is to avoid any reference to
analytic expressions for wavelets at all and to use 
lter coe�cients only� We follow the latter
approach� which makes our method more �exible with respect to the choice of the wavelet
basis� The general procedure to compute integrals along this line depends on whether or not
the integrals satisfy scaling relations of the form ���� with respect to the levels j� If this is the
case we can use the very elegant and simple method of Beylkin ��	�� Dahmen and Micchelli
����� Otherwise we have used the Gaussian transform method discussed below� which requires
the Fourier transform of the scaling function� The Fourier transform can be easily calculated
from the 
lter coe�cients using a product formula�

A�� Integral calculation according to Beylkin� Dahmen and Micchelli

The basic idea is to use a scaling relation of the form ����� which relates an integral for scaling
functions on level j�� to the same type of integral for scaling functions on level j� To illustrate
this method� we want to discuss the simple case of overlap integrals in some detail� Inserting
the re
nement relation of the scaling functions ��� into the overlap integral

h���aj����i �

Z
dx ��x� a���x�

� 	�
X
b�c

hbhc

Z
dx ��	x � 	a� b���	x � c�

� 	
X
b�c

hbhc

Z
dx ��x� 	a� b� c���x�

� 	
X
b

	X
c

hchb��a�c



h���bj����i� ����

we end up with a linear system of equations for these integrals� Alternatively� Eq� ���� can
be viewed as an eigenvalue problem for the eigenvalue �� Eqs� ���� do not completely specify
the overlap integrals� the additional condition ��	�X

a

h���aj����i � � ����

is required in order to get a unique solution of Eqs� ����� which corresponds to the overlap
integrals� The condition ���� is a simple consequence of Eq� ��� and the normalization property
� �

R
dx��x��

An iterative scheme can be applied for solving Eqs� ���� ��	� ���� For this we have to 
nd
an initial guess for the integrals h���aj����i��� which satis
es condition ���� e�g�

h���aj����i��� � ���a� ����

From this initial guess we obtain applying Eqs� ���� in a 
rst iteration

h���aj����i��� � 	
X
b

	X
c

hchb��a�c



h���bj����i���� ����

This process continues until convergence has been achieved� Due to the structure of Eqs� �����
condition ���� is preserved in each iteration�

	




The wavelet coupling coe�cients ���� can be traced back to integrals

h���a���bj  ����i ��
Z
dx ��x� a���x� b�  ��x� ����

using the re
nement relations ��� and ���� Analogous to the previous case� these integrals can
be related to a linear system of equations

h���a���bj  ����i � 	�
X
c�d

	X
e

 hehc��a�ehd��b�e



h���c���dj  ����i� ��	�

supplemented by the additional conditionX
a�b

h���a���bj  ����i � �� ��
�

Together� Eqs� ��	� and ��
� uniquely specify the integrals �����
The same technique applies to the kinetic energy integrals as well� The system of equations

h���aj�j����i � 		
X
b

	X
c

hchb��a�c



h���bj�j����i ����

has to be completed by the condition ��	�X
a

a�h���aj�j����i � 	 ����

in order to get the kinetic energy integrals� For the Deslauriers and Dubuc interpolating
scaling functions� Eq� ���� is a simple consequence of x� �

P
a a

���x�a�� which can be easily
derived from Eqs� ��� and �����

A slight modi
cation of this method can be applied to elementary two�electron Coulomb
integrals ����� This just requires the values of the integrals at large distances greater than the
diameter L of the scaling function� where the supports of the scaling functions do not overlap
any more� In such a case numerical quadrature formulas for wavelets ���� become applicable�
which greatly simpli
es the computation of these integrals� The scaling function of Deslauriers
and Dubuc ���� ��� satis
es the vanishing moment property ����� For our present purposes
it was therefore already su�cient to use the point charge approximation for the Coulomb
integrals

h���aj �
r��

j����i � �

jaj ����

at large distances jaj 	 L� Keeping the integrals for jaj 	 L 
xed� we have used equation

h���aj �
r��

j����i � 	
X
b

	X
c

HcHb��a�c



h���bj �

r��
j����i ����

to calculate the integrals for jaj � L iteratively� No additional condition is required in this case�
For our initial guess of the integrals jaj � L� we simply used the point charge approximation�
except at the origin� where some 
nite value has to be chosen� The accuracy of this scheme
is just limited by the numerical error inherent to the integrals at large distances� which are
kept 
xed� We observed a fast convergence rate of O�	��k� with respect to the number of
iterations k�

Iterative schemes cannot be applied to one�electron Coulomb integrals �
�� for arbitrary
positions C of the nucleus� However it is possible for the special case� where a nucleus is
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located on a grid point� First we want to consider the case C � �� Obviously these integrals
satisfy the equation

h���aj�
r
i � 	

X
b

Hb��a h���bj�
r
i� ����

which means that we can apply the same technique as for the two�electron Coulomb integrals�
In order to make the method applicable for general molecules� we notice that C can be
approximated with arbitrary accuracy by an expansion of the form C �

Pm
i�� 	

�ibi� where
the bi are vectors with integer components� Using such kind of expansion� we can express an
integral for a scaling function on level j by applying the multivariate re
nement relation �	��
n times �Hn

p �
P
bH

n��
b Hp��b�

h�j�aj �
rC
i � 		�n�j���

X
p

Hn
p

Z
d	r

��	j�nr� 	na� p�

j r�C j ����

� 		�n�j���
X
p

Hn
p

Z
d	r

��	j�nr�
Pm

i�� 	
j�n�ibi � 	na� p�

j r j

� 		n��
X
p

Hn
p��na�

Pm

i��
�j�n�ibi

h�j�n�pj�
r
i

in terms of integrals of scaling functions with C � � on level j�n� with j�n � m� Although
such kind of procedure is always possible� it might become rather troublesome for large n�
Therefore it seems to be reasonble to consider a di�erent approach which avoids expansions
over a large number of levels�

A�� Gaussian transform method for Coulomb integrals

Typically quantum chemistry requires the computation of three� and six�dimensional integrals�
where the integrands can be factorized except of functions depending on jrj and jr� � r�j�
respectively� In some cases it is possible to apply the Gaussian transform method� which has
been introduced into quantum chemistry by Boys and Shavitt ����� The Coulomb potential
can be expressed in terms of an integral over a Gaussian function

�

jr�Cj �
	p
�

Z �

�
dt exp��jr�Cj�t��� ����

which enables a factorization of the three�dimensional integral

h���aj �
rC
i �

Z
d	r

��x� ax���y � ay���z � az�

j r�C j ����

�
�

�	���

Z �

�
dtG�ax� t� Cx�G�ay� t� Cy�G�az� t� Cz� ��	�

into a product of one�dimensional integrals �

G�a� t� C� � 	����
Z �

��
dx exp���x� a� C��t����x�� ��
�

at the expense of calculating an additional integral with respect to the auxiliary variable
t� The function G�a� t� C� is smooth with respect to t� due to the compact support of the
scaling function �� Provided that G�a� t� C� shows a well behaved asymptotic behavior for

�We want to mention that such kind of integrals for dual scaling functions also appear in the wavelet
expansion coe�cients of Gaussians ����� As a byproduct� the method outlined below can be used for the
calculation of these coe�cients�
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lim t 
 � we can calculate the integral ��	� numerically� For this we have determined
Chebyshev approximations ���� for each G�a� t� C� on a sequence of 
nite intervals� until it
has approached its asymptotic expansion with given accuracy� This requires the evaluation of
G�a� t� C� for a certain number of grid points as well as the determination of the coe�cients of
the asymptotic expansion� both can be done rather e�ciently by using the inverse fast Fourier
transform �FFT�� To see how this works� we insert the inverse Fourier transform of the scaling
function ��x� � �	����

R
d� exp�i�x� ����� into Eq� ��
�

G�a� t� C� � �����
Z �

��
dx exp���x� a� C��t��

Z �

��
d� ����� exp�i�x� ����

� t��
Z �

��
d� exp��w����t��� exp�i��a �C�� �����

and use the fact that the Fourier transform of a Gaussian is a Gaussian again�
The function G�a� t� C� depends on the Fourier transform of the scaling function ��� which

can be obtained from the product formula �	��

����� �
�Y
j��

h�	�j��� ����

where h��� �
P
hk exp��ik�� is a 
nite Fourier series with respect to the 
lter coe�cients

hk� An advantage of this approach is that it does not require any speci
c knowledge of the
scaling function � beyond its 
lter coe�cients� which characterize � uniquely �	���

For the numerical treatment of the function G�a� t� C�� we 
rst have to discuss its behavior
with respect to small and large t values� It immediately follows from ��
� that in the lim t
 �
the function G�a� t� C� approaches the value

G�a� �� C� � 	
p
� ������ ����

irrespective of the values of the parameters a�C� Within the intermediate regime of not
too large values of t� the integrand ���� is dominated by the Gaussian� which guarantees an
exponential slope� However� in the asymptotic regime� the slope of the Fourier transform of
the scaling function becomes essential� We performed a Taylor expansion of the Gaussian
function in order to obtain the asymptotic expansion in powers of t�n��

lim
t��

G�a� t� C� �
X
n��

Gn�a�C�

t�n��
����

Gn�a�C� �
����n
�nn#

Z �

��
d� exp�i��a� C����n ������ ����

The leading order constant becomes

G��a�C� � 	���a� C�� ����

which gives for C � � and interpolating scaling functions G��a� �� � 	����a� At this point the
regularity of the scaling function enters� which has to be su�ciently large in order to guarantee
existence of at least the leading order term of the asymptotic expansion �����

In order to use the inverse FFT for the calculation of the function G�a� t� C�� we replace
the unbounded integral ���� by an integral over the interval ��� 	��

G�a� t� C� � ����a
Z ��

�
d� exp�ia�� g��� t� C�� �����
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For this we have to perform a resummation of the integrand in terms of the complex valued
function

g��� t� C� �
X
��odd

t�� exp���� � �������t��� ���� � ��� exp�i�� � ���C�� �����

which is periodic on intervals of length 	� with respect to � and satis
es the symmetry relation

g�� � �� t� C� � g���� � �� t� C� ���	�

on the interval ��� 	��� For not too large values of t this sum converges fast due to the Gaussian
factor and we can apply the inverse FFT to the integrals ���� in order to determine G�a� t� C�
for all required a simultaneously� The function G�a� t� �� for the interpolating scaling function
of Deslauriers and Dubuc ���� is shown in Fig� � for various values a� A di�ering asymptotic
behavior for a � � and a �� � can be clearly recognized� Correspondingly� we can calculate
the asymptotic coe�cients

Gn�a�C� � ����a�n
�nn#

Z ��

�
d� exp�ia�� gn���C� ���
�

with integrand
gn���C� �

X
��odd

�� � ����n ���� � ��� exp�i�� � ���C�� �����

where the convergence of the sum strongly depends on the regularity of the scaling function�
A su�ciently high regularity of the scaling function is therefore desirable� in order to keep
control on the asymptotic behavior of the integrand in Eq� ��	��

The Gaussian transform method can also be applied to two�electron Coulomb integrals�
It requires only some slight modi
cations with respect to the one�electron Coulomb integrals�
For this we have used an identity analogous to ���� and obtained

h���aj �
r��

j����i � �

�	���

Z �

�
dtG�ax� t�G�ay� t�G�az � t� �����

where G�a� t� is now given by

G�a� t� � 	����
Z �

��
dx�dx� exp���x� � x��

�t����x� � a���x�� �����

� t��
Z �

��
d� exp��w����t��� exp�i�a� j �����j�

which corresponds to ���� except that we have to replace the Fourier transform �� by j ��j��
Consequently� the numerical treatment of G�a� t� can be done in the same way as for the
one�electron Coulomb integrals�

B Rigorous estimates for wavelet coupling coe�cients

We want to start our considerations of wavelet coupling coe�cients with a convenient de
nition
of the regularity of wavelets ����� Instead of using pointwise regularity� it is favorable to use
a de
nition based on Sobolev spaces Hs with real coe�cients s� A univariate wavelet �j�a
belongs to the Sobolev spaces Hs if and only if the integral

k �j�a k�s��
Z �

��
d�

�
� � ��

�s ��� ��j�a������� �����
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Figure �� Function G�a� t� �� of the interpolating scaling function � of Deslauriers and Dubuc
���� for various values a�

exists� The regularity t of the wavelet is de
ned by the least upper bound on the set of
parameters s for which the integral ����� exists

t �� supfs � �j�a � Hsg� �����

In the following we asume that the regularity  t of dual wavelets  �j�a satisfy � t � t� Actually
this is a rather mild assumption on the regularity of dual wavelets and is e�g� satis
ed for our
choice of the wavelet basis�

In order to derive upper bounds on wavelet coupling coe�cients� we have to refer to
several estimates on wavelet norms� The 
rst estimate concerns the L� norm� For continuous
wavelets with compact support this norm corresponds to k �j�a kL�� supxfj�j�a�x�jg� The
estimate

k �j�a kL�� c 	j��� �����

is an immediate consequence of the de
nition ���� Here and in the following c refers to un�
speci
ed constants� The approximation property of wavelets gives the following two estimates
for � � s � minft� ng

k  �m�c k�s� c 	�sm �����

k �j�a ks� c 	sj �����

where n corresponds to the number of vanishing moments of the wavelet� We refer to the
literature ���� ��� for further details�
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With these etimates at hand� we can derive upper bounds� We assume that j� � � m and
apply the Cauchy�Schwarz inequality to the wavelet coupling coe�cients ���������

	
j � m
a b c


����� �k  �m�c k�s k �j�a���b ks � ���	�

In a second step we use Moser�s estimate ��	� for the wavelet product

k �j�a���b ks� c �k �j�a ks k ���b kL� � k �j�a kL� k ���b ks� � ���
�

again we refer to the literature for further details� Together with the estimates ������ �����
and ����� this yields an upper bound in terms of the wavelet levels j� ��m�����

	
j � m
a b c


����� � c 	�sm
�
	sj���� � 	s��j��

�
� �����

For an e�cient approximation of products� it is essential that wavelet coupling coe�cients
show a su�ciently fast decay with respect to m for j� � �� m� According to the estimate
����� we get a decay rate of O�	�tm� with respect to m� This again shows the peculiar role
of the regularity of wavelets in our method�

It is in general a non trivial task to determine the regularity of a wavelet due to the lack of
closed analytic expressions� We have tried to determine the regularity by means of a numerical
evaluation of the integral ���
�� In the case of Sweldens wavelet with six vanishing moments
���� we obtained the bound 
 � t � � on its regularity� This is in agreement with Fig� ��
where we observed a decay corresponding to t � ��

	�
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