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Abstract

We suggest an alternative approach to electronic structure calculations based on numerical
methods from multiscale analysis. By this we are aiming to achieve a better description of
the various length- and energy-scales inherently connected with different types of electron
correlations. Taking a product ansatz for the wavefunction ¥ = F®, where ® corresponds
to a given mean-field solution like Hartree-Fock or a linear combination of Slater determi-
nants, we approximate the symmetric correlation factor F in terms of hyperbolic wavelets.
Such kind of wavelets are especially adapted to high dimensional problems and allow for
local refinement in the region of the electron-electron cusp. The variational treatment of
the ansatz leads to a generalized eigenvalue problem for the coefficients of the wavelet
expansion of F. Several new numerical features arise from the calculation of the matrix
elements. This includes the appearance of products of wavelets, which are not closed under
multiplication. We present an approximation scheme for the accurate numerical treatment
of these products. Furthermore the calculation of one- and two-electron integrals, involv-
ing the nonstandard representation of Coulomb matrix elements, is discussed in detail.
No use has been made of specific analytic expressions for the wavelets, instead we employ
exclusively the wavelet filter coefficients, which makes our method applicable to a wide
class of different wavelet schemes. In order to illustrate the various features of the method,
we present some preliminary results for the helium atom.

1 Introduction

1.1 Wavelets and electronic structure calculations

The fundamental difficulties of accurate electronic structure calculations are inherently con-
nected with a simultaneous description of various physical processes on energy- and length-
scales extending over several orders of magnitude [1]. Typical examples, ranging from high
(short) to low (large) energy- (length-) scales, are processes inside atomic cores, chemical
bonding varying from covalent bonding to van der Waals [2] and ionic interactions, collective
excitations [3], and magnetic couplings [4]. Synergetic effects, caused by couplings between
different scales, often prevent their separate treatment. Due to a lack of a priori knowledge
on the strength of these couplings, it is important to perform the calculations ab initio, which
means without a priori assumptions on specific system dependent quantities.

The development of ab initio methods is still one of the major tasks in quantum chemistry
[6]. Currently there are two different lines of progress, based on the one side on density



functional theory [6] (DFT) and on the other side on wavefunction methods [7]. In DFT
the many-particle problem is mapped onto a system of noninteracting particles, resulting in a
significant computational simplification. The fundamental problem of this approach is that the
mapping can be done only approximately and systematic ways for improvement are presently
not known. Alternatively one can try to solve the original many-particle Schrédinger equation
and calculate approximate eigenfunctions of the nonrelativistic Hamiltonian
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where Z,, R, are charges and positions of the nuclei, respectively. Atomic units have been
used throughout this paper.

Common to all conventional wavefunction methods (for a review of these methods see e.g.
Ref. [8]) is that one first has to determine an appropriate mean-field solution from Hartree-
Fock (HF) or a generalized mean-field solution from multiconfigurational self-consistent field
(MCSCF) type of equations, within a given finite single-particle basis set. The solution consists
of a finite set of orbitals, which can be used to construct an orthogonal many-particle basis in
terms of Slater determinants. Obviously, orbitals are just some kind of orthogonalization of
the original single-particle basis set and can be subdivided into occupied and virtual orbitals,
respectively, depending on whether or not they are included in the Slater determinant(s) which
represent the (generalized) mean-field solution. Starting from the reference space spanned by
the (generalized) mean-field solution, it is possible to construct a hierarchical decomposition
of the many-particle space into subspaces characterized by the number of virtual orbitals
contained in the Slater determinants belonging to it. This provides a natural setting for
configuration-interaction (CI) and coupled-cluster (CC) methods. These methods are “exact”
in a sense that they provide a hierarchy of approximate solutions, defined on these subspaces,
which converge to the “exact” solution in the many-particle space defined with respect to the
finite set of orbitals. Convergence to the exact eigenfunction of the Hamiltonian (1) requires
in addition completeness with respect to the single-particle basis set.

Contrary to the large diversity of methods to approximate the high dimensional space of
Slater determinants, essentially all of their realizations in quantum chemistry are based on
single-particle basis sets constructed from atomic centred basis functions. Originally such kind
of approach has been motivated by interpreting molecular orbitals as perturbed superpositions
of atomic orbitals. Using Gaussian functions for the radial part of these atomic centred
basis functions, the resulting so called Gaussian-type-orbitals (GTO) [9] have almost optimal
approximation properties for mean-field solutions like HF [10]. In the context of many-particle
theory, this corresponds to a partial-wave expansion of the wavefunction in the vicinity of a
nucleus. A detailed analysis shows that partial-wave expansions are incapable to describe
the wavefunction in those regions of configuration space where electrons are close together
[11], leading to inferior convergence in the space of Slater determinants [12, 13]. Actually
coalescence points of electrons are one of the rare cases where the analytic behavior of the
wavefunction is known explicitly and became widely known as Kato’s cusp condition [14, 15,
16]. The natural framework for the representation of the behavior of the wavefunction ¥ near
the electron-electron cusp is a product decomposition [16]

U (ry,re,...,ry) = F (r1,ro,...,ry) ®(r1,re,...,rN) (2)

where the symmetric part F, usually called Jastrow factor, corrects for inadequacies of the
antisymmetric mean-field solution ® near the cusp. Jastrow factors are quite common in con-
densed matter and nuclear physics [17]. In this connection one has to mention the Gutzwiller
wavefunction [1], Fermi hypernetted chain (FHNC) methods [18, 19, 20, 21, 22], and correlated



basis functions (CBF) [23]. For molecules, Jastrow factors have been used almost exclusively
in combination with quantum Monte Carlo methods [24]. Within the framework of these
methods, Jastrow factors depend explicitly on the interelectronic distances, hereby it becomes
possible to meet Kato’s cusp condition. Since interelectronic distances as coordinates are not
compatible with the tensor product structure of the Slater determinants, their incorporation
into conventional methods cause severe technical difficulties, which to overcome require con-
siderable technical efforts [25]. Our approach differs in such a way that we avoid the use
of explicit interelectronic coordinates, instead we use basis sets which are flexible enough to
provide local adaptive refinements near the cusp.

Recently wavelets became a powerful tool in multiresolution analysis for solving partial
differential equations (PDE) [26, 27]. Starting from a mother wavelet, a hierarchical basis
set can be constructed using the operations of translation and dilation. Wavelet bases with
a large variety of useful properties including compact support, (bi)orthogonality, and vanish-
ing moments have been reported in the literature [28]. Not surprisingly wavelets attracted
considerable attention in electronic structure theory [29, 30, 31, 32, 33, 34, 35, 36, 37]. Nev-
ertheless all of these applications have been done in the context of DFT, where a coupled
system of nonlinear three-dimensional PDEs has to be solved. We want address to the ques-
tion whether wavelets can be advantageous for approximating many-particle wavefunctions of
atoms, molecules and solids. An immediate objection against such kind of approach is the
high dimensionality of the systems. So far wavelets have been mainly used for low dimen-
sional problems [38]. However, due to the hierarchical structure of a wavelet basis it becomes
possible to apply sparse grids techniques [39, 40, 41], keeping the size of the many-particle
basis set within acceptable limits. It has been demonstrated that the resulting so called hy-
perbolic wavelets [42] have excellent approximation properties in high dimensional spaces. In
the following we want to discuss some of the basic numerical algorithms, which are required
for such kind of approach. With these algorithms at hand, we can attempt to tackle more fun-
damental problems of many-body theory. The product ansatz (2) seems to be an appropriate
starting point, since it allows a unified view on apparently different methods like CC, FHNC
and CBF [43]. The central topic for future research are approximation properties of wavelets
with respect to the different energy- and length-scales of physical processes discussed above.
Within the present work we want to give a preliminary discussion with respect to short-range
correlations.

1.2 Multiresolution analysis in one dimension

The solution of Schrodinger’s equation for many-particle systems is an intrinsically high dimen-
sional problem. There are two principle approaches to construct wavelets in several dimensions
(multivariate wavelets). In the first approach one tries to construct wavelets depending gen-
uinly on several variables, whereas in the second approach one takes the tensor product of
wavelets which depend on one variable (univariate wavelets) only. Traditionally most of the
applications of wavelets appeared in signal and image processing [28, 38|, where one has to
deal with one- or two-dimensional problems. We decided to take the tensor product ansatz,
where we start from a one-dimensional wavelet basis and construct successively higher dimen-
sional basis functions. An obvious advantage of this approach is that we can benefit from
the large variety of univariate wavelet constructions reported in the literature. Another more
subtle point is that we have used tensor products to factorize some of the most expensive
computational steps into one-dimensional subproblems, which will be discussed in more detail
below.

In one dimension, multiresolution analysis provides a partition of the space of square
integrable functions on the real line L? into an infinite sequence of ascending subspaces - - - C



Vj_1 CV; C Vj41 C -+, where the index j runs over all integers. The union of these subspaces
U; Vj is dense in L?. There exists a scaling function ¢(z) which provides a basis set for V;
using the operations of dilation and translation. To be more explicit, the functions

Pja =202z — a) (3)

span V; where the dyadic dilation factor 27 is kept fixed and a runs over all integers. The
dilation factor scales the size of the basis functions ¢; ;, which means that with increasing j,
the ¢; 5 provide a finer resolution in L?. By definition, the scaling function ¢(z) has to fulfil
the refinement relation

o(x) =2 hy p(2z = b), (4)
b

which provides an explicit embedding of V; into the larger space Vj;1. The scaling function
also provides a resolution of the identity

122(,0(:1:—a). (5)

As a consequence, the constant function can be exactly represented on each level j. For scaling
functions with compact support the number of nonvanishing filter coefficients h, in Eq. (4)
remains finite. It should be emphasized that the choice of the filter coefficients uniquely
specifies the scaling function ¢(z), which means that in principle no further information is
required beyond these coefficients. In the present work, we follow this principle by avoiding
any reference to analytic expressions, which in general might be quite implicit [26]. Therefore
our approach becomes rather flexible with respect to the kind of wavelet construction to be
employed in actual calculations. In view of the fact that it is presently not clear at all which
kind of wavelets are the most appropriate for electronic structure calculations, this aspect has
to be taken into account seriously.

Wavelets are introduced by taking a complement of V; in V;4q, which defines the wavelet
space W;. The corresponding wavelet basis for W; is generated from a mother wavelet 1)(x)
analogous the Eq. (3)

Pja=22p(2z — a). (6)
A refinement relation similar to Eq. (4)
b(x) =23 gp p(22 — D), (7)
b

relates the mother wavelet to the scaling functions on the next finer level. From Eq. (7) we
obtain an explicit embedding of W) into Vj;. Subdivisions V11 = W; @ V; can be further
extended in both directions of the sequence of spaces V; using the reconstruction relation

@2z —a) =Y [cap p(x — b) + dgp 1b(z — b)] (8)
b

leading to a decomposition of L? = @, W, into wavelet subspaces W, [28]. We do not want
to enter into a discussion concerning the relations between the filter coefficients h,, g, in Egs.
(4), (7) and the coefficients cqp, dgp in Eq. (8), instead we refer to the literature [26].

So far we have outlined some formal aspects of wavelet spaces. As we have already men-
tioned above, there exists a large variety of explicit wavelet constructions, which provide
wavelet basis sets with different properties depending on the specific applications. There is
a special class of wavelets forming biorthogonal basis sets, which seems to be especially ap-
propriate for solving PDEs [26]. In a biorthogonal basis there exists a dual scaling function



&(x), which generates a sequence of spaces V] (W{J), where the corresponding scaling functions
Gia = 2/2G(Px — a) and wavelets 1; , := 27/%)(2/x — a) satisfy the equations

/de ©ja(®)Pjp(x) = Oap, (9)
/ dr 9ja(@)fes(®) = 0 0>,
/ dz 1 o(2)rp(z) = 0 i>t

/ dz pja(@)hep(x) = 850 0ap.

This corresponds to the subspace relations Wj L Vjand V] L W;. Given an arbitrary function
f(x) € L?, we can take a wavelet decomposition of the Hilbert space L? = Vio @;>,, Wj and
expand f in terms of the wavelet basis

f(z) = Zujo,a ‘Pjo,a(x) + Z Zvj,a ¢j,a(x)a (10)

Jj=jo @

where the coefficients are given by

tina = [ dn £(2) Giala). (1)

Vja = /dw F(@) ) a(z), (12)

according to Eqgs. (9). It should be mentioned that an appropriate choice of jj is essential
for an efficient expansion in (10), since the number of coefficients with absolute value above
a certain threshold depends on it. Another property which is of great importance for wavelet
expansions of smooth functions, is the number of vanishing moments n of the wavelet

/dwxél/)(w)zo for £=0,...,n—1. (13)

This property is closely related to the size of the wavelet [28]. Roughly speaking for wavelets
with compact support the diameter =~ 2n 4 1. Therefore any specific choice of a wavelet basis
for a particular application represents a compromise between the desired local character and
the number of vanishing moments. In the following we will use vanishing moments to obtain
sparse representations of certain matrices. Also closely related to the size is the regularity of
the wavelet [28]. We benefit in certain steps of our method from a sufficiently high regularity
of the wavelet basis.

For further reference we define the approximation error of the wavelet expansion (10) of a
function f up to level £ in the L? norm

272
14
B = [ar [ E X vatia@ ] | - (14)

>0 a
Alternatively we can use the, from a computational point of view, more convenient expression

B = (ZZ |vj,a|2) (15)

j>L a



which is equivalent (C Eé@ < Eé@ < Oy Eé@ ) to the E(Lzz) error for a biorthogonal wavelet
basis [28].

In order to substantiate the following more formal discussions, we want to illustrate our
method for a specific wavelet basis. We have taken a biorthogonal symmetric wavelet basis
with compact support and six vanishing moments from Sweldens [44]. These wavelets are
based on the interpolating scaling function of Deslauriers and Dubuc [45], where the dual
basis with the same number of vanishing moments has been generated from a lifting scheme
[44]. Scaling functions ¢, @ and wavelets 1), 1) together with their Fourier transforms

o) = [ Z dz exp(—iwn)p(z), (16)

are shown in Fig. 1. Additionally, the interpolating scaling function ¢ satisfies the vanishing
moment property [44, 45]

/dxmégo(x)zég for £=0,...,5, (17)
analogous to Eqs. (13) for the wavelet.

1.3 Multivariate wavelets and sparse grids

In order to pass from univariate to multivariate wavelets, we have employed two different
construction schemes. Within the first approach, the multivariate wavelets belong to well
defined levels j. This can be achieved by taking mixed tensor products of ¢; , and 1); , which
corresponds in three dimensions to scaling functions

Bia(r) = ©j.a. (%) Pja,(y) Pja.(2) (18)

and seven different types of wavelets

YR = 0. (@) 0oy (1) Pra. (2), (19)
@0 | |
’Yj,a (I‘) - 1/)],111 (:L‘) wj,ay (y) Pj,a- (Z),

@) = (@) Yia, 4) Yia. (2).

It is convenient to group the wavelets (19) into three classes, depending on the number of
univariate wavelets in the tensor product.

Obviously such kind of construction scheme becomes impracticable for high dimensional
problems, just because the number of basis functions increases too fast with dimension. In the
following we will make use of it to define one-particle basis sets and as a basis for the evaluation
of one- and two-electron integrals. Analogously to the univariate case, scaling functions and
wavelets satisfy refinement relations

Bialr) = 223" Hy_sa Bis1,p(r), (20)
b

1) =223 G, B p (), (21)
b

where the multivariate filter coefficients are simple products of the univariate coefficients e.g.
1
Ha = hayhayha s GS = gayhay ha. -
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Figure 1: Biorthogonal wavelets with six vanishing moments from Sweldens [44] based on the
interpolating scaling function of Deslauriers and Dubuc [45]. a) Scaling function ¢(z), b)
wavelet 1h(2) and their Fourier transforms ¢) ¢(w), d) |[)(w)|, together with the corresponding
pictures of the e) dual scaling function @(z), f) dual wavelet () and their Fourier transforms

g) $(w), h) [P(w)].



For the many-particle basis sets, we have taken tensor products just within this three-
dimensional wavelet basis. The tensor product basis functions of general form

) (ey) (22)

A ) 1)

V1,2 Ve
mix wavelets from different scales ¢;. Based on the fact that the wavelets (19) form a hi-
erarchical basis, the sparse grids approximation [39, 40, 41] on the tensor products becomes
applicable. In the wavelet literature, the resulting multivariate wavelet basis is known as hy-
perbolic wavelets [42]. The basic idea is to select a subset of the tensor products (22) which
fulfils the additional requirement Eij\il £; < @ for a given integer ). This reduces the number
of basis functions in the N particle case from O(L") to O(Llog(L)V~') where L ~ 23? is the
number of single-particle basis functions. The actual loss of accuracy depends on the degree
of regularity of the function to be approximated. For smooth functions there is almost no loss
of accuracy compared to the full basis [42].

2 Hyperbolic wavelet approximation of the Jastrow factor

Fermionic wavefunctions have to meet Pauli’s principle, which means that we have to impose
a symmetry restriction on the tensor products by applying a symmetrization operator

S = > P(iy,ig, ... iN) (23)

(i1,i2,...,iN)€SN

acting on the electron coordinates r;, where the sum runs over all permutations (i1,%2,...,inx)
of the symmetric group Sy. Symmetrized wavelet tensor products

Fya(rrra,..,ry) = S () /P2 (1) - A BY) (ry) (24)

=X ) ) e )

(il,iz,...,iN)ESN

serve as a basis for our expansion of the Jastrow factor, where J = (p1,J1,P2,52:---, PN, JN)
and A = (a;,ay,...,ay) are multi-indices specifying the types p;, levels j; and centers a; of
the wavelets involved in the product.

Depending on the physical problem under consideration, electron correlations have typical
length- and energy-scales, which have their correspondence in a certain range of dilation
parameters j of the wavelet basis. The long-range behavior of the Jastrow factor is determined
by its cluster property [17], which means that for those regions of configuration space, where
the electron coordinates can be subdivided into two subsets A and B with | ry — 1, |>
Leorr Y 1rg € A, 1y € B, the Jastrow factor factors into a product

F(ri,ro,...,rn) =Fa(re, s Tays---) FB(To,Toyy---) (25)

of Jastrow factors F4 and Fp for the two subsets. Here we have introduced a characteristic
length-scale £, for electron correlations, which specifies the spatial range of the correlations
to be described by the Jastrow factor. Obviously ... depends on the system and the physical
properties under consideration. Depending on their level j, wavelet subspaces W) resolve
different length- and energy-scales. We can therefore introduce a coarsest level jy in the
wavelet expansion of L? = Vio EBQ jo Wy corresponding to the characteristic length-scale £eopy,
where we take from Vj; the constant function only. We formally define a “wavelet” standing
for 7yj,—1,0 := 1 on the next coarser level jo — 1, which represents the subspace spanned by the

)

constant function in Vj;. Furthermore we introduce an index p in the tensor products F. }p Al



where p specifies the number of wavelets in the product on levels j > jg. In the following we
obmit 7y, 1,0 in our formulas. From this we obtain an additional hierarchy for the symmetrized
tensor products (24) with respect to the index p

FO (ry,r0,...,rn) = 1, (26)
‘7:](11,)a1 (1‘1, r2,... arN) = 7](;],121 (rl) + 7]('11,1521 (r2) +o 7]('11,1:21 (rN)a
Fya (i oen) = Al () 22 (62) ot (o) 22, (o),

which resembles to single, double and higher excitations of the standard CI expansion.
We can apply the hyperbolic wavelet approximation to the expansion of the Jastrow factor

N
f(rl,TQ,---,rN):Z Z Z f‘g?) f.g?};(rlar%---arN) (27)
=0 fi<q A

(p)

with variational parameters f_gﬁ, where only those Fj ) are admissible for which |J| :=

Z-]\Ll Ji < Q. As already mentioned above, such kind of approach is most efficient for smooth
functions, where it achieves almost the same quality of approximation as a full tensor product
basis. The many-electron wavefunction is smooth except at the electron-electron cusp [15].
Therefore, the hyperbolic wavelet approximation requires some modifications in the cusp re-
gion. Adaptive refinement schemes of the hyperbolic wavelet basis in the cusp region, based on
analytic properties of many-electron wavefunctions, will be discussed below in further detail.

The question arises whether an ansatz of the form (27) satisfies a size-extensivity condition.
This would require that the Jastrow factor factorizes according to the cluster property (25),

given a system (A, B) composed of the noninteracting subsystems A and B. Applying the

hyperbolic wavelet approximation with parameter @ to (A, B) produces terms Fg,)A for A

with | Q |= @, where all wavelets are located in A and vice versa for B. In order to factorize

properly, this would require products of the type .7-"8) )A .7-"81)13, which are not admissible within

our approximation. Concerning size-extensivity, hyperbolic wavelets introduce some kind of
ambiguity into the calculations. There are some similarities to truncated CI expansions,
which also show such kind of behavior. In order to fully overcome this problem, we have
to abandon the linear ansatz (27) and replace it by an exponential ansatz. This has been
accomplished by the FHNC method [18, 19, 20, 21, 22], which provides a hierarchical system
of equations in order to determine an optimal Jastrow factor and the corresponding energy.
Due to the computational complexity of the exponential ansatz, it is necessary to introduce
further approximations. The FHNC method just as the CC method is not strictly variational
any more. In the present work we are primarily interested in numerical aspects of wavelet
expansions of correlated wavefunctions, which are mostly independent of the many-particle
method employed. Therefore, we restrict ourself to the linear ansatz (27), which enables
a strictly variational treatment without any uncontrolled approximations, at least for small
systems.
The Rayleigh-Ritz variational principal applied to the expectation value of the energy

(FO|H|F)
EF)= —v-—— 28
7] (FO|Fo) (28)
yields a generalized eigenvalue problem of the form
Hf=FEM{, (29)



with matrix elements

Hyananm = [ drie..dry 7A@ 7 Flpo (30)
Mpsarars) = [ d'ri....dry Fr0 Fipo. (31)

Hyperbolic wavelets keep the growth of dimension of the generalized eigenvalue problem (29),
for an increasing number of electrons, within reasonable limits. However the computation of

the matrix elements (30) and (31) becomes rather involved for large N. This difficulty is less

severe due to the fact that for small (), the products F }?ACIJ partially preserve the orthogonality

relations between the orbitals. A more detailed analysis for the matrices M [46] reveals that for
fixed Q and N >> @ the computational complexity is of O(N?). In principle, the algorithm
can be generalized for matrices H, at the expense of an increasing order of complexity. It
should be mentioned however, that for large systems the wavelet approach introduces some
sparsity into H and M matrices. At the present state of the project, it seems to be premature
to enter into a detailed discussion of this subject.

2.1 Elementary considerations for the homogeneous electron gas

In order to get an estimate for the convergence behavior of our expansion, we consider the
homogeneous electron gas at various densities p. For a cubic volume element €2, with peri-
odic boundary conditions, containing N = pQ electrons, we can formulate a many-electron
wavefunction

N
v (I‘l, ro,... ,I‘N) = H h(|I‘Z - I‘j|) P (1‘1, ro,... ,I‘N) y (32)
1<)

where F is approximated by a product of electron-pair Jastrow factors h and @ is a Slater
determinant of Bloch orbitals. In the case of extended systems, we have to distinguish between
the approximation of isolated subsystems like electron-pairs and aggregations of subsystems.
The latter is of almost exclusively combinatorial character and will be treated separately. First
of all, we want to discuss the approximation of a single electron-pair described by the Jastrow
factor h(|r; — re|), which depends only on the interelectronic distance due to symmetry. The
shape of the Jastrow factor strongly depends on the electron density p. In Fig. 2 we have
plotted Jastrow factors h for various electron densities ranging from high density regions
inside atomic cores up to low densities close to the van Waals radius of atoms and molecules.
Electron densities are characterized by the dimensionless parameter ry = (%)1/ 3 /rp, where
rs corresponds to the average distance between the electrons expressed in units of Bohr's
radius . We have used a scaled interelectronic distance 719 = |r; —ra|/rs in Fig. 2, in order
to demonstrate that ry is an appropriate scaling parameter, characterizing the range of the
Jastrow factor. Furthermore it has been observed that the depth of the Jastrow factor at the
cusp is almost proportional to 75 [47]. Such kind of behavior can be partially transferred to
inhomogeneous systems [47]. For atoms, the density decreases exponentially with the distance
from the nucleus. Typically rs ranges over one to two orders of magnitude between core

regions and the van der Waals radius (rs = 5).
From a physical point of view, it is reasonable to assume that A is an analytic function with
respect to the interelectronic distance |r; —rg|. Therefore we can perform a Taylor expansion

o0

am, m
h(lry — o) = ) oo} lr1 — rof (33)

m=0 '

and consider the wavelet representation of each term separately. Obviously |r; — ro|™ is
smooth except at the cusp r; = ro. We can therefore limit our discussion, on the fine scales,
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Figure 2: Jatrow factors of an electron pair for the homogeneous electron gas at various
densities. h(|r; — rg|) is plotted versus the scaled interelectronic distance 719 = |r; — ra|/7s
(Bohr), where the dimensionless parameter rs corresponds to the average distance between
the electrons expressed in units of Bohr’s radius.

to tensor products (27) located on the diagonal a; = as. With respect to the levels ji, jo, it is
sufficient to consider the diagonal case j; = jo, since the coupling between different levels is
of 0(2*3”1*3'2'/ 2). A direct expansion in terms of a biorthogonal wavelet basis yields wavelet
coefficients

W agana = [ A o= o™ 3900 3% (c2) (34)
= 927 (m—+3)j /d3r1d o |I'1 —I'2| (() )(rl) ,3,(()‘1(2))(1.2)
= 27T R a0

for which we obtain a scaling factor 2-(m+3)J with respect to the levels j. The constant
term m = 0 of the expansion (33) vanishes due to the vanishing moments property (13) of
the wavelets, leaving us with the linear term m = 1 as the dominating contribution in the
asymptotic limit. We can estimate the approximation error of our expansion for the L? norm
(15) in the asymptotic limit

D=

() _ (1 2
EL2 [h] - Z Z Z |hj17q17a17j27Q27a2 (35)

max(j1,j2)>£ 41,42 a1,a2

11
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q1,92 j>L

where we have used in the last line of Eq. (35), the fact that the number of grid points on
level ¢ belonging to € increases with O(2%). The constant C = O(1) takes into account the
neglect of off-diagonal contributions in the second line of Eq. (35). Hence it appears that
E(Lzz) [h] = O(275¢/2). In order to estimate convergence with respect to the energy, we require
a stronger statement for the Sobolev space H' [48] concerning the approximation error of the
wavelet expansion. The Sobolev space H' takes in addition into account convergence with
respect to the first derivatives. This is necessary because of the dominance of the kinetic
energy [12] in the energy expectation value.

We can apply standard estimates for the finite element method in the case of piecewise
linear basis functions. Higher order regularity of the basis functions do not contribute to the
asymptotic convergence rate, due to the discontinous first derivatives of the exact wavefunction
at the cusp. It is not difficult to see that an ansatz of the form (33) leads to a wavefunction
which belongs to the Sobolev space H g_e(Q) for e > 0 [49]. Consequently we get the following
two estimates [48] with respect to the level /

EQR < C27 G | h ]| 5., (36)
EQR <02 G-I || h | 4., (37)

for the solution of the eigenvalue problem (29). Here || h ||H 3_. denotes the norm of / in

H 3*6(9) [48] and E%)l [h] is the approximation error with respect to the H! norm. For the
precise meaning of the various spaces and norms we refer to the literature [48], since these
technical details are not essential for the following discussion. The error in the L? norm
(36) agrees with the previous estimate (35) for the direct wavelet expansion, which has to
be expected from the assumed regularity of the electron-pair Jastrow factor h. According to
the estimate of the error in the H! norm (37) and taking into account that variation of the
energy expectation value leads to an error in the energy which is quadratic with respect to the
H' error of the wavefunction [48], we finally obtain an O(273) estimate for the convergence
of the energy. This has to be brought in relation to the computational effort required for
an adaptive refinement near the electron-electron cusp. For the homogeneous electron gas
this needs a uniform refinement of the tensor products diagonal with respect to a in the
domain Q. The number of such tensor products increases with O(23¢), which means that their
straightforward incorporation into the wavelet expansion leads to a constant ratio between
the number of degrees of freedom and the convergence rate. However due to translational
symmetry the actual number of degrees of freedom increases only with O(¥¢), as can be seen
from Eq. (34). Therefore it seems to be quite natural to use contracted tensor products on
the diagonal

F5 (1o, oew) = 32 [ ) 22 ) o) )] (38)

a

in the expansion (27). Here we have used equation (34) which shows that the wavelet expansion
coefficients do not depend on the location a of the wavelets for the homogeneous electron gas.
For inhomogeneous systems like molecules, we expect that the coefficients on the fine levels
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£ vary smoothly with respect to the density. Therefore it should be possible to describe the
variation of the coefficients by a small number of degrees of freedom, which is essentially
independent of the level £. It remains the problem to evaluate integrals with respect to
contracted tensor products efficiently. Such kind of considerations will be subject for a further
publication [49].

2.2 Nonstandard calculation of Coulomb matrix elements

Due to the tensor product ansatz for the Jastrow factor F, the Coulomb interaction part of
the H matrix elements factor into the standard one-electron

nA| )= [ dn _‘;3 | (39)

and two-electron Coulomb integrals

(I lm) = [ Erid'ry na(e1) e mm(ea) (40)

|I‘1—I‘2

These integrals have to be calculated for all existing combinations of products

i(r)d;(r)
na(r) = 3 di(r)e;(r)ra(r) : (41)
3:(6) 5 (11 Ta(x) ) o)
where we have used capital letters to represent multi-indices A := (i,,m,n,p,q,a,b) for

convenience. A new numerical feature arises from the products of wavelets and orbitals which
appear in the integrals (39) and (40). This makes an essential difference to most of the
previous application of wavelets to PDEs like Poisson’s equation and resembles to applications
to nonlinear problems [50, 51]. The numerical treatment of these products is essential for an
efficient calculation of these integrals.

Before we enter into a discussion of matrix element calculations, a few remarks are ap-
propriate. As it has been oulined above, wavelets constitute a complete basis in L?. For the
wavelet expansion (27) of the Jastrow factor F we can chose an arbitrary subset according to
our numerical and physical demands. In the following we have made extensive use of wavelet
expansions for various kinds of functions. For that we have adopted the wavelet basis for
each specific function in such a way that we take into account all wavelet contributions above
a certain threshold, irrespective of our initial choice for the Jastrow factor. The threshold
in turn depends on the further use of the expansion and enables us to keep control on the
numerical accuracy of the matrix element calculations.

We made no attempt to solve the integrals (39) and (40) analytically. First of all, these
integrals become rather complicated e.g. for wavelets given in terms of piecewise polynomial
functions and the sheer number of these integrals prohibits the evaluation of any complicated
analytic expressions. The same argument prevents the application of sophisticated numerical
integration schemes. Instead we have exploited specific wavelet properties to derive an efficient
and computationally simple integration scheme. To begin with, we calculate projections of
the products (41) on the spaces V; @ W;

‘/J@WJnA ZZ fyjamA +Z /3]b|nA /ij( ) (42)

where PVJ_ QW defines a projection operator on the subspace V; @ W; according to Eq. (10).
It should be mentioned that those products (41) containing wavelets have compact support,
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which is typically of the size of the wavelet on the finest scale in the product. As a consequence,
the wavelet expansions (42) become rather compact and well localized. For extended systems
many of the na become zero due to vanishing overlap between the wavelets in the product.

The computational scheme we have used for the matrix elements (39) and (40) is based on
the nonstandard representation of operators [52, 53]. The basic advantage of this approach
is that it avoids couplings between different wavelet levels. For that we have to accept some
overhead owing to the fact that we require for each level j not only the wavelet coefficients
<’7](-f2|77A> but also the coefficients with respect to the scaling functions <Bj,b|77A>- In an inter-
mediate step we first expand the auxiliary function

)= [ s ﬁ 7 (r3) (43)

in terms of wavelets and scaling functions on various levels. We start at an appropriately
chosen finest level ¢, where we approximate (43) within the dual space Vi ) Wy

r) & Y S PR A () + Y (Ben R) Ben (r) (44)
p a b

inserting the wavelet expansion (42) with j = £ yields
77B>>

>3 (S0l
+ ZZ(Z(ng|@|ﬁz,b)(ﬁe,b|n3)> ég() (46)
Z(ZZ ma|—|fy§?3< Dl >) Bra(r) (47)

+ ) <Z<ﬂé,a|@W@,b)@&bﬁB)) Bra(r), (48)

a b

7 () (45)

R(r) DT

%

_l’_

where all the matrix elements and coefficients refer to the finest level £ only. In order to judge
the computational efficiency of the expansion, we have to discuss the convergence properties of
each of the sums separately. First of all, we notice that the wavelet Coulomb matrix elements
in (45) and the mixed wavelet scaling function Coulomb matrix elements in (46) and (47)
decay very fast with increasing distance |a —b|. The actual order of the decay depends on the
number of vanishing moments n and on the wavelet type p envolved. A general discussion,
including Coulomb interactions as a special case, can be found in Ref. [53]. We have shown
some typical examples in Fig 3. As a consequence, the sums over the grid points a, b in (45),
(46) and (47) converge fast due to the fast decay of the Coulomb matrix elements and the
typically local character of the products na. However, the sum with respect to a in (48)
converges rather slowly. This is due to the fact that for large distances |a — b|, the Coulomb
matrix elements for scaling functions represent essentially point charge Coulomb interactions
(Fig 3), which decay with O(Ja — b|™!). In order to circumvent this problem, we decompose
Vg = f/g,l ) Wg,l. Inserting the identity

S 1 BeadBral = 33 1A DO | 3 1 Beoi ) (Beip | (49)
a p a b

into the sum (48) yields

> <Z<B&a|%|ﬁé,b><gf,b nB

a b

>> Bé,a (I‘)
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)3 (Z ;wé’i’l,géwéi’l,mé%bmm) T o) (50)
+ ZZ (gw&,a%|ﬂe_1,b><ﬁe_1,b|n3>> 7P, () (51)

2 (Zgwe Ll P2 7
- 2 (S

where we obtained an expression which looks very much like the sums (45), (46), (47) and
(48), except that we have replaced ¢ by the next coarser level £ — 1. Again all the sums
converge fast except the persistent sum (53). However the number of grid points decreases
on the coarser levels exponentially, which means that we have at least achieved a reduction
in the computational effort. Performing further insertions of the form (49), we can shift the
persistent sum to a coarse level ¢y, where the number of scaling functions is sufficiently small
in order to perform the sum with acceptable computational effort. Such kind of telescopic
expansions are standard in wavelet methods and enable us to exploit the local character and
the regularity of the functions involved. Eventually we have obtained a mixed expansion

)) Bi-1,a(r) (52)

—1, ><B€1,b|nB>> /Bffl,a(r)a (53)

4

R(r)~ Y (ZZR’Y’pa%a +ZR bﬁ], ) (54)

j=to

in terms of wavelets and scaling functions on various levels j, where the coefficents are given

by
]7p7 Z Z ’Y], |7] b <7] b|77B + Z ’Y], |_|/BJ C></BJ C|77B> (55)

2 Zb<ﬂj,a|m|')’j,qb><’7j?b|77B> J > Lo,
RP - (56)

J,a ~
Z Eb<ﬁ£o,a|ru|’)’507 ><’YZO) 77B> +E </6€o,a|m2 |ﬂéo,c><ﬁéo,c|77B> J = to.

In principle we can express the scaling functions in terms of wavelets in order to obtain a
standard wavelet espansion of R. Actually this is not necessary for the evaluation of the
two-electron Coulomb integrals (40)

(a | == lmm) = {ua | R) (57)

— Z(ZZ"A| ]pa+277A|/6j, )be>

Jj=to

The Coulomb integrals in the wavelet basis can be easily derived from the corresponding
integrals for the scaling functions using the refinement relations (20) and (21), where we get

e.g.

1
(7], |—|ﬁy b)=2") G Hd72b</8j+1,c|@|/8j+1,d>' (58)
c,d
Again these integrals satisfy a simple scaling relation
9 1
Bral=\w) = 2 5 {Goal— o) )

Y 1
= 27%(Bya bl—]B00),
12
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Figure 3: Sparse wavelet representation of Coulomb interactions. Matrix elements for three

(p)

different combinations of wavelets 75, and scaling functions fya have been selected: (e)

1 7 .
<ﬁOa|T12 1Bob), (%) </80,a|%|’7(()7[),>7 (o) <’70a|r12|7((),t)>>' Absolute values of the largest matrix
elements at distance |a—b| are plotted on a logarithmic scale. The three-dimensional wavelets

and scaling functions were generated from the univariate wavelet with six vanishing moments
of Sweldens [44] and the univariate scaling function of Deslauriers and Dubuc [45].

which relates Coulomb integrals on arbitrary levels j to level 0. In the second step of Eq. (59),
we have used the translational symmetry of the scaling functions. Therefore it is sufficient to
calculate Coulomb integrals for scaling functions at level j = 0, which are called elementary
integrals in the sequel, all the other integrals can be obtained from relations (58) and (59).
Furthermore it has to be mentioned that due to the compact supports of the scaling functions,
the weak singularity of the integrand vanishes for sufficiently large distances |a —b|. As a
consequence multipole expansions become applicable, which enable a simple and accurate
computation of the elementary integrals in this case. Obviously elementary integrals do not
depend on the specific system under consideration. Therefore we have to calculate these
integrals only once for a certain type of scaling function and keep them, up to a given distance,
in a library. Methods how to actually calculate elementary integrals are discussed in Appendix
A.

Computation of the one-electron Coulomb integrals (39) follows the same line. We start
with an expansion

nAI ZZ wal— (nal3) + Z(

NESVNIS (60)
C
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on the finest level £ and perform a telescopic expansion analogous to Eqs. (45-48) until a
sufficiently coarse level has been reached on which the persistent sum can be performed with
acceptable effort.

2.3 Tensor product representation

The functions na, we have to deal within the integral evaluation, require three-dimensional
grids for their representation. To avoid extensive calculations on three-dimensional grids, we
use tensor product expansions of these functions. For this, we just take the orbitals ¢; from a
standard quantum chemistry program, where orbitals are represented as linear combinations
of “Cartesian Gaussian” functions

¢i(r) = Z dig (z — C’a,z)é“ (y = Cay)™ (2 — Caz)" exp[—aq(r — C.)?. (61)

Such kind of expansion perfectly fits our requirements. The product formation can be per-
formed in three consecutive steps, where in the first step all of the required one-dimensional
“Cartesian Gaussian” functions have been expanded in the wavelet basis

xa(z) = (z— C)z expE—a(x — C)Z] (62)
= D (xalvja) ¥ial@) + D (XAl Bjes) @jos()-
j>jo @ b

In the case of interpolating scaling functions like those of Deslauriers and Dubuc [45], the
determination of expansion coefficients (xa |¥;p), (XA|Pjop) is fairly straightforward. On a
sufficiently fine level j, we simply take

(xal$ja) =277*xa (27 0) (63)

and use the refinement relations (4) and (7) to get the coefficients on coarser levels. We want to
refer to Appendix A.2 for the discussion of a method, which does not rely on the interpolation
property.

From this point on, all the calculations are based exclusively on the wavelet expansions
(62) of the Gaussians. In a second step, we generate all the required products of “Cartesian
Gaussian” functions with univariate wavelets

xB(z) = xa(z)e(z) (64)
= Z Z<XA|1/;j,a> 1/)j,a ($)1/)é,b($) + Z<XA|¢]'0,C> (pjo,c(x)z/)é,b(]:)

J>jo o
= DD (xBliw) ¥is(@) + D (XBIGjo.c) Pjoc(®)

J>jo b ¢
and scaling functions ¢, ,, respectively, where A, B represent appropriately chosen multi-
indices in order to characterize the functions (62) and (64). The numerical evaluation of
expansion coefficients of products <XB|T/~)j,b>, (xB|@jp) is discussed in Section 3. Finally we
have to form products xa = xBXxc, which are required for the functions na. In Fig. 4 we have
shown wavelet expansions of a Gaussian exp(—z?) and its wavelet product exp(—=2) 11 1(z).
As expected, the largest contribution to the product expansion comes from level 5 = 1 and
neighboring levels, where the coefficients of the finer levels decay rapidly.

In order to represent the functions 7a (r) on a three-dimensional grid it is convenient to
store the expansion coefficients of the functions ya in the nonstandard representation, which
means that for each function not only the wavelet but also the scaling function coefficients on
each level 5 have to be stored. Although these are redundant informations, it is convenient
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Figure 4: Wavelet expansions of a Gaussian exp(—z2) and its wavelet product
exp(—z?) 11,1(z). The wavelet with six vanishing moments has been taken from Sweldens
[44]. Absolute values of the wavelet coefficients for the product at various levels j are plotted
on a logarithmic scale. Dashed lines indicate the distribution of the wavelet coefficients for
the Gaussian function alone. For comparison both functions are shown on the inlay.

in view of the tensor product structure of the wavelet basis (19). We can calculate the
wavelet coefficients of simple products k(r) = xa(z)xB(y)xc(z) using the coefficients of the
nonstandard representations of their factors

(k1 77 < (xa | V) ) y < (XB | Pja,) ) y < (xc | Pja.) )
(vl Bra) | =] \ (xal @) B | Bia) (xc | @ia) ) |- (63)
B | L e Bie) X (8 | Bia) X (x| o)

From this we easily get the expansion coefficients of the functions s by summing over the
expansion coefficients of the orbitals (61). It should be emphasized that the storage require-
ments for the three-dimensional coefficients on the left side of Eq. (65) are of O(M?), where
M is the number of coefficients in the expansions (62). Consequently, we calculate the three-
dimensional coefficients from Eq. (65) just when they are needed in the course of the evaluation
of the one- and two-electron Coulomb integrals as outlined above.
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2.4 Kinetic energy and overlap integrals

It is evident from the tensor product representation (65) that the remaining integrals for the
functions

¢i(r)
) 66
= 40 e o0

with respect to the one-body operators O =1, A
(alOlGa) i= [ dr ¢a(x) O Ca(r) (67)

can be expressed in terms of one-dimensional integrals. These integrals can be obtained from
the elementary integrals

(poalpoo) = [ do olw = a)i(a), (65)

(PoalBleno) = [ do oo - a)Ae(a) (69)

using the refinement relations (4), (7) and scaling relations analogous to Eq. (59).

3 Products of wavelets

Evaluation of the integrals (39) and (40) requires wavelet expansions of products of wavelets
with orbitals. We have outlined in Section 2.3 how to factorize the products with respect to
x,y, 2. This considerably simplifies the wavelet expansion of products, due to the restriction
to products of univariate functions. As a starting point, we consider the product f(z)g(z) of
two arbitrary functions f(z) = 3, , vja¥ja(z), 9(x) = 3, s wjaja(z) both represented in
terms of their pure wavelet expansions. We have chosen a pure wavelet expansion for f,g in
order to simplify our notation. In actual applications, we have used expansions of the form
(10), where scaling functions represent contributions from coarse levels below jj. Except of the
appearance of some additional terms, where wavelets have to be replaced by scaling functions,
this does not affect the method outlined below. Obviously such kind of products can be traced
back to products of wavelets

(@) Yep(z Zz/dt%, ) e (t) Prmc(t) Ymela), (70)

which themselve can be expressed in terms of the wavelet basis. We introduce the wavelet
coupling coefficients

C

< Zz [l; " > = /dt ¢j,a(t) ¢Z,b(t) @Zm,c(t), (71)

which represent the basic quantities for the product evaluation. The coupling coefficients can
be easily calculated using the method of Beylkin, Dahmen and Micchelli outlined in Appendix
A. Due to translation and dilation symmetry, the storage of only a small number of coupling
coefficients is required. For example in the case 7 < /,m we have the simple relation

J £ m /2 -3 m—j
<a b ¢ >_2 <0 b—2t0g ¢c—2mig |7 (72)

which shows that we only have to deal with coupling elements of the form

0 ¢ m i ¢ 0
<0bc>, ’<abO>. ' (73)
(<Lm) (4,£>m)
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The coupling coefficients (73) for wavelets with compact support differ from zero only for a
finite number of grid points b,c and a,b, respectively. Depending on the specific choice of
the wavelet basis, the coupling coefficients show a characteristic decay for j < ¢ << m and
£ >> j.m, respectively. A sufficiently fast decay with respect to the level m is essential for
an efficient approximation of products.

The product expansion

f($)g($) = ;Z {Z - ( ‘ZL (l; TZ ) 'Uj,awé,b} Tl)m,c(]:)' (74)

¢ Ll q
& - >

=Um,c

resembles to the coupling of angular momenta, where we couple two wavelet levels 7, £ to a level
m. However, contrary to angular momenta, the range of m is not strictly finite. In Appendix
B we derive a rigorous upper bound for the coupling coefficients (71). The following useful
estimate

i < G35 V51l Iwell @
with
om — 9i/2 max > 0 £—j m—j (76)
gt c€{0,...2m=i -1} |~ 0 b—2dg ¢—2mig
based on the maximum norm |[|v;|ls := max, {|vj.|} gives an upper bound on |u,, .. We

show the constants C’j% for the case 5 < ¢,m in Fig. 5.

4 Some preliminary results for the helium atom

We want to demonstrate the feasibility of our method by applying it to the helium atom. Actu-
ally this is a standard model for electron correlations, which already shows many characteristic
features of large systems. By means of the helium atom, we can study the approximation prop-
erties of hyperbolic wavelets and develop strategies for adaptive refinements in the cusp region.
Aggregates of noninteracting helium atoms can serve as a basis to study the size-extensivity
error. These topics will be the subject of a forthcoming publication [49]. In the present
work we focus on more elementary features of our method and want to demonstrate that the
techniques discussed in the preceding sections are feasible for realistic applications.

Taking a multivariate wavelet basis ,Y](Q for the wavelet expansion of F, we have generated
all possible symmetric one-body factors ]—'1(2 as well as two-body factors ]—'}?A, irrespective
of the sparse grids condition. The mean-field part ® corresponds to the closed shell HF
wavefunction, where the 1s orbitals have been expanded by Gaussian’s with exponents taken
from Dunnings VQZ basis set [54]. In order to get a sufficiently accurate description near the
electron-nuclear cusp, exponents are ranging up to a = 528.5, which requires wavelets up to
level j = 5 in the expansion (62).

Our results listed in Table 1 are only of preliminary character due to the incompleteness
of our multivariate wavelet basis 'y](-fg in the subspaces W; under consideration. On each level
4, only the nearest neighbor wavelets of each type p, with respect to the nucleus, have been
taken into account. The contributions to the energy of type p wavelets decrease on all levels
in the order p = (1,2,3) >> (4,5,6) > 7. This has to be expected due to the different
number of univariate wavelets in the tensor products (19). It can be seen that the dominant
contribution comes from the level j = —2, which allready recovers 83% of the correlation
energy. Compared with it, the contribution of the next coarser level j = —3 is almost negligible

(< 10~* Hatree), clearly demonstrating that the assumption of a lower bound on the coarse
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Figure 5: Constants C]m’é of upper bounds for the wavelet coefficients of products. Dotted
lines connect the cases where the levels j,¢ are kept fixed. The constants refer to Sweldens
biorthogonal wavelet basis [44] with six vanishing moments for 1 and .

levels in the expansion (27) is reasonable. In the direction of finer scales, contributions to
the correlation energy decrease quite fast. A definite statement concerning the asymptotic
convergence behavior, however, cannot be drawn from our results. Nevertheless our results
show that rather accurate energies can be achieved already with a rather small number of
wavelets. This is encouraging in view of the fact that we have used regular Cartesian grids,
which were not especially adopted to atomic symmetries, except that we have placed the
nucleus in the origin.

5 Conclusions

We have outlined a wavelet based method for the description of electron correlations within
the many-electron Schrodinger equation. Such kind of approach enables a multiscale treat-
ment of electron correlations, which means that the specific length- and energy-scales of the
various underlying physical processes can be explicitly represented by the wavelet basis. The
high dimensionality of many-electron problems can be dealt with by means of the hyperbolic
wavelet approximation. For an accurate description of short-range correlations, however, local
refinements in the inter-electronic cusp regions are required.

Apart from physical aspects of our method, we have discussed various technical pecu-
liarities. This includes the efficient calculation of one- and two-electron integrals, where we
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Table 1: Full tensor product wavelet expansion of F for the helium atom. Wavelets in the
expansion (27) range from the coarsest level jo = —2 up to the finest level jmax. No restriction
on the tensor products has been imposed (@ = 2jmax). An analytic evaluation of the integrals
in the Gaussian basis set yields a Hartree-Fock reference energy of -2.861514 Hartree. Three-
dimensional wavelets were generated from the univariate wavelet with six vanishing moments
of Sweldens [44] and the univariate scaling function of Deslauriers and Dubuc [45].

Wavelet type p
jmax 14 2 3 4 5 6 7 n® Energy (Hartree)

- - - - - - - - 0 -2.861525
2 2 2 2 - - - - 28 -2.894232
12 2 2 - - - - 91 -2.899038

o 2 2 2 - - - - 190 -2.900613
2 2 2 2 4 4 4 - 190 -2.896436
-1 2 2 2 4 4 4 - 703 -2.901015
0 2 2 2 4 4 4 - 1540 -2.902738

1 2 2 2 4 4 4 - 2701 -2.903004
-2 4 4 4 8 378 -2.896523
-1 2 2 2 4 4 4 8 1431 -2.901269

exact -2.903724

¢ Number of three-dimensional wavelets of type p (19) on each level jy < j < jmax-
b Number of symmetrized tensor products.

have used the sparsity of Coulomb integrals within the nonstandard representation, in order
to get an efficient scheme for the calculation of more complicated integrals. Moreover we
have discussed the numerical calculation of elementary Coulomb integrals solely based on the
knowledge of the filter coefficients. We also presented a detailed treatment of products of
wavelets. Their appearance represents a key feature of our method.

To ilustrate the feasibility of our approach we applied it to the helium atom. Our results
indicate that already with a comparatively small number of wavelets reasonable accuracies
can be achieved.

Appendices

A Elementary integrals for scaling functions

We have seen in Section 2.2 that all the required integrals can be reduced to elementary
integrals involving scaling functions 3y, only. In this Appendix we want to discuss methods
how to actually calculate these integrals. In principle there are two different ways to tackle
this problem. One possible approach would be to use an analytic representation for the scaling
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function e.g. in terms of piecewise polynomials and to calculate integrals analytically or by
convenient quadrature formulas. However, closed analytic expressions are not always available
for scaling functions and an approximate treatment seems to be problematic in view of their
occasionally rather complicated structure. Amnother approach is to avoid any reference to
analytic expressions for wavelets at all and to use filter coefficients only. We follow the latter
approach, which makes our method more flexible with respect to the choice of the wavelet
basis. The general procedure to compute integrals along this line depends on whether or not
the integrals satisfy scaling relations of the form (59) with respect to the levels j. If this is the
case we can use the very elegant and simple method of Beylkin [52], Dahmen and Micchelli
[65]. Otherwise we have used the Gaussian transform method discussed below, which requires
the Fourier transform of the scaling function. The Fourier transform can be easily calculated
from the filter coefficients using a product formula.

A.1 Integral calculation according to Beylkin, Dahmen and Micchelli

The basic idea is to use a scaling relation of the form (59), which relates an integral for scaling
functions on level j+1 to the same type of integral for scaling functions on level j. To illustrate
this method, we want to discuss the simple case of overlap integrals in some detail. Inserting
the refinement relation of the scaling functions (4) into the overlap integral

(Poalgnn) = [ dopla - a)p()

= 22 Z hyhe / dzr o2z — 2a — b)p(2z — ¢)
b,c

= QZhbhc/d:Jc o(x —2a — b+ c)p(x)
b,c

= 2) (Z hchb2a+c> {¢0,6l¥0,0); (77)
b c

we end up with a linear system of equations for these integrals. Alternatively, Eq. (77) can
be viewed as an eigenvalue problem for the eigenvalue 1. Eqgs. (77) do not completely specify
the overlap integrals, the additional condition [52]

> {poalpoo) =1 (78)

a

is required in order to get a unique solution of Eqs. (77), which corresponds to the overlap
integrals. The condition (78) is a simple consequence of Eq. (5) and the normalization property
1= [dzp(x).

An iterative scheme can be applied for solving Egs. (77) [52, 55]. For this we have to find
an initial guess for the integrals (o q|®0,0)(0) Which satisfies condition (78) e.g.

{¢0,al%0,0) (0) = 90,a- (79)

From this initial guess we obtain applying Eqs. (77) in a first iteration

(po.aleo0)) =2 <Z hchb—2a+c> {©0,61%0,0) (0)- (80)
b c

This process continues until convergence has been achieved. Due to the structure of Egs. (77),
condition (78) is preserved in each iteration.
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The wavelet coupling coefficients (71) can be traced back to integrals

{

) i= [ da ol — )l ~ D)g(a) (81)

using the refinement relations (4) and (7). Analogous to the previous case, these integrals can
be related to a linear system of equations

(p0,0005|Po0) =27 (Z ilehcza+ehd—2b+e> {©0,c00,d|$0,0) (82)
c,d e

supplemented by the additional condition

> {p0,a0,|P0,0) = 1. (83)
a,b

Together, Eqgs. (82) and (83) uniquely specify the integrals (81).
The same technique applies to the kinetic energy integrals as well. The system of equations

{¢0,alAlwo,0) —232 (Zh by 2a+c> ( 0) (84)

has to be completed by the condition [52]

0) =2 (85)

in order to get the kinetic energy integrals. For the Deslauriers and Dubuc interpolating
scaling functions, Eq. (85) is a simple consequence of #2 = Y, a%¢(z —a), which can be easily
derived from Egs. (5) and (17).

A slight modification of this method can be applied to elementary two-electron Coulomb
integrals (59). This just requires the values of the integrals at large distances greater than the
diameter L of the scaling function, where the supports of the scaling functions do not overlap
any more. In such a case numerical quadrature formulas for wavelets [56] become applicable,
which greatly simplifies the computation of these integrals. The scaling function of Deslauriers
and Dubuc [44, 45] satisfies the vanishing moment property (17). For our present purposes
it was therefore already sufficient to use the point charge approximation for the Coulomb

integrals
1

at large distances |a| > L. Keeping the integrals for |a| > L fixed, we have used equation

(Bo, a| |ﬁ0 0) ¥ (86)

{

%Wo,o) =2 Xb: (; Hch—2a+c> (ﬂo,b|é|ﬂo,0) (87)

to calculate the integrals for |a| < L iteratively. No additional condition is required in this case.
For our initial guess of the integrals |a] < L, we simply used the point charge approximation,
except at the origin, where some finite value has to be chosen. The accuracy of this scheme
is just limited by the numerical error inherent to the integrals at large distances, which are
kept fixed. We observed a fast convergence rate of O(27%%) with respect to the number of
iterations k.

Iterative schemes cannot be applied to one-electron Coulomb integrals (39) for arbitrary
positions C of the nucleus. However it is possible for the special case, where a nucleus is
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located on a grid point. First we want to consider the case C = 0. Obviously these integrals
satisfy the equation

(Boal 1) =23 Huoa (fonl ) (58)
b

which means that we can apply the same technique as for the two-electron Coulomb integrals.
In order to make the method applicable for general molecules, we notice that C can be
approximated with arbitrary accuracy by an expansion of the form C = -7, 27'b;, where
the b; are vectors with integer components. Using such kind of expansion, we can express an
integral for a scaling function on level j by applying the multivariate refinement relation (20)
n times (Hp =3, H'Hy o)

</6j,a

Ly L o3t n/ 3 B2 "r —2"a - p)
TC) = 2 XP:HP d’r FErel (89)

93(n+i/2) Z H" / Br BRI + 31, 24" 'b; — 2"a — p)
P
P

| r |

1
3n/2
23/ ZHS—WHZZO 2j+n—ip, <Bj+n,p|;>
P

in terms of integrals of scaling functions with C = 0 on level j 4+ n, with j +n > m. Although
such kind of procedure is always possible, it might become rather troublesome for large n.
Therefore it seems to be reasonble to consider a different approach which avoids expansions
over a large number of levels.

A.2 Gaussian transform method for Coulomb integrals

Typically quantum chemistry requires the computation of three- and six-dimensional integrals,
where the integrands can be factorized except of functions depending on |r| and |r; — ra|,
respectively. In some cases it is possible to apply the Gaussian transform method, which has
been introduced into quantum chemistry by Boys and Shavitt [57]. The Coulomb potential
can be expressed in terms of an integral over a Gaussian function

1 2 o0
o= \/_%/0 dt exp(—|r — C[?t?), (90)

which enables a factorization of the three-dimensional integral

Ly _ p(z —az)p(y — ay)p(z — az)
<ﬂ0,a|%> = /d3’l“ | - Cy| (91)
= #/0 dtG(aI,t, Cz) G(ay,t, Cy) G(az’t7 Cz) (92)

into a product of one-dimensional integrals '

Gla,t,C) = 271/ /7 O:O d exp[—(z +a— O] p(x), (93)

at the expense of calculating an additional integral with respect to the auxiliary variable
t. The function G(a,t,C) is smooth with respect to ¢, due to the compact support of the
scaling function ¢. Provided that G(a,t,C) shows a well behaved asymptotic behavior for

"We want to mention that such kind of integrals for dual scaling functions also appear in the wavelet
expansion coefficients of Gaussians (62). As a byproduct, the method outlined below can be used for the
calculation of these coefficients.
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limt — oo we can calculate the integral (92) numerically. For this we have determined
Chebyshev approximations [58] for each G(a,t,C) on a sequence of finite intervals, until it
has approached its asymptotic expansion with given accuracy. This requires the evaluation of
G(a,t,C) for a certain number of grid points as well as the determination of the coefficients of
the asymptotic expansion, both can be done rather efficiently by using the inverse fast Fourier
transform (FFT). To see how this works, we insert the inverse Fourier transform of the scaling
function ¢(z) = (27) ! [ dw exp(iwz)p(w) into Eq. (93)

G(a,t,0) = 7 /2 /_O:o dx exp[—(z + a — C)*t?] /_O:o dw p(w) exp(iwx) (94)
- /7 O:O dw expl—w?/(42)] expliw(a + C)] 3(w)

and use the fact that the Fourier transform of a Gaussian is a Gaussian again.
The function G(a,t,C) depends on the Fourier transform of the scaling function ¢, which
can be obtained from the product formula [28]

p(w) = [[ n27w), (95)
j=1

where h(w) = Y hyexp(—ikw) is a finite Fourier series with respect to the filter coefficients
hx. An advantage of this approach is that it does not require any specific knowledge of the
scaling function ¢ beyond its filter coefficients, which characterize ¢ uniquely [28].

For the numerical treatment of the function G(a,t,C'), we first have to discuss its behavior
with respect to small and large ¢ values. It immediately follows from (93) that in the lim¢ — 0
the function G(a,t,C) approaches the value

G(a,0,C) = 2/7(0), (96)

irrespective of the values of the parameters a,C. Within the intermediate regime of not
too large values of ¢, the integrand (94) is dominated by the Gaussian, which guarantees an
expounential slope. However, in the asymptotic regime, the slope of the Fourier transform of
the scaling function becomes essential. We performed a Taylor expansion of the Gaussian

function in order to obtain the asymptotic expansion in powers of ¢27*!
) Gp(a,C)
n>0
(_1)n o . 2n
Gp(a,C) = / dw expliw(a + C)|w™ @(w). (98)
47! J_
The leading order constant becomes
GO(aa C) = 27“)0(0’ + C)a (99)

which gives for C' = 0 and interpolating scaling functions Gy(a,0) = 276y 4. At this point the
regularity of the scaling function enters, which has to be sufficiently large in order to guarantee
existence of at least the leading order term of the asymptotic expansion (97).

In order to use the inverse FFT for the calculation of the function G(a,t,C), we replace
the unbounded integral (94) by an integral over the interval [0, 27]

2T

G(a,t,C) = (-1)* ; dw exp(iaw) g(w,t,C). (100)
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For this we have to perform a resummation of the integrand in terms of the complex valued
function

g(w,t,C) Z t~ ! exp[—(w + £7)%/ (4t?)] ¢ (w + £7) expli(w + £7)C), (101)
{=odd

which is periodic on intervals of length 27 with respect to w and satisfies the symmetry relation
9w+ mt,C)=g"(—~w+mn,t,C) (102)

on the interval [0, 27]. For not too large values of ¢ this sum converges fast due to the Gaussian
factor and we can apply the inverse FFT to the integrals (94) in order to determine G(a,t,C)
for all required a simultaneously. The function G(a,t,0) for the interpolating scaling function
of Deslauriers and Dubuc [45] is shown in Fig. 6 for various values a. A differing asymptotic
behavior for ¢ = 0 and a # 0 can be clearly recognized. Correspondingly, we can calculate
the asymptotic coefficients

(_1)a+n 27

4np! 0

Gn(a,C) = dw exp(iaw) gp(w, C) (103)

with integrand
gn(w,C) = Z (w4 £7)?" p(w + £r) expli(w + £x)C), (104)
{=odd

where the convergence of the sum strongly depends on the regularity of the scaling function.
A sufficiently high regularity of the scaling function is therefore desirable, in order to keep
control on the asymptotic behavior of the integrand in Eq. (92).

The Gaussian transform method can also be applied to two-electron Coulomb integrals.
It requires only some slight modifications with respect to the one-electron Coulomb integrals.
For this we have used an identity analogous to (90) and obtained

{

1) = oz | 4G (ent) Glat) Gla.) (105)
where G(a,t) is now given by
G(a,t) = 2%1/2/ dzydzy exp|—(z1 — 22)°t%] o(z1 — a)p(x2) (106)

_ 4t /_ 0:0 dw exp[—w?/(412)] exp(iwa) |p(w)]?

which corresponds to (94) except that we have to replace the Fourier transform ¢ by |52
Consequently, the numerical treatment of G(a,t) can be done in the same way as for the
one-electron Coulomb integrals.

B Rigorous estimates for wavelet coupling coefficients

We want to start our considerations of wavelet coupling coefficients with a convenient definition
of the regularity of wavelets [59]. Instead of using pointwise regularity, it is favorable to use
a definition based on Sobolev spaces H® with real coefficients s. A univariate wavelet v, ,
belongs to the Sobolev spaces H® if and only if the integral

g0 2= [ do (1+0?)°

27

~ ‘ 2

Pjalw)

(107)
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Figure 6: Function G(a,t,0) of the interpolating scaling function ¢ of Deslauriers and Dubuc
[45] for various values a.

exists. The regularity ¢ of the wavelet is defined by the least upper bound on the set of

parameters s for which the integral (107) exists

t:=sup{s: ;. € H}. (108)

In the following we asume that the regularity # of dual wavelets 1/31-,,1 satisfy —f < t. Actually

this is a rather mild assumption on the regularity of dual wavelets and is e.g. satisfied for our
choice of the wavelet basis.

In order to derive upper bounds on wavelet coupling coefficients, we have to refer to
several estimates on wavelet norms. The first estimate concerns the L° norm. For continuous

wavelets with compact support this norm corresponds to || ¥4 [|zec= sup,{|¢jq(z)|}. The
estimate

I e llpee < 2972,

is an immediate consequence of the definition (6)

(109)

. Here and in the following c¢ refers to un-

specified constants. The approximation property of wavelets gives the following two estimates

for 0 < s < min{t,n} :

|| Tl)m,c ||,5§ c27°m (110)
| Pja lls< 2% (111)

where n corresponds to the number of vanishing moments of the wavelet. We refer to the
literature [60, 61] for further details.
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With these etimates at hand, we can derive upper bounds. We assume that 5,4 < m and
apply the Cauchy-Schwarz inequality to the wavelet coupling coefficients (71)

j £ m
a b c

In a second step we use Moser’s estimate [62] for the wavelet product

<l e -5 | $atbes lls - (112)

I 5ateb ls< elll Pia lls | Pep e + 1 ja o< [ e lls] (113)

again we refer to the literature for further details. Together with the estimates (109), (110)
and (111) this yields an upper bound in terms of the wavelet levels j, £, m

j £ m
a b c

For an efficient approximation of products, it is essential that wavelet coupling coefficients
show a sufficiently fast decay with respect to m for j,/ << m. According to the estimate
(114) we get a decay rate of O(27%™) with respect to m. This again shows the peculiar role
of the regularity of wavelets in our method.

It is in general a non trivial task to determine the regularity of a wavelet due to the lack of
closed analytic expressions. We have tried to determine the regularity by means of a numerical
evaluation of the integral (103). In the case of Sweldens wavelet with six vanishing moments
[44] we obtained the bound 3 < ¢ < 4 on its regularity. This is in agreement with Fig. 5,
where we observed a decay corresponding to ¢ = 4.

S cz—sm (2Sj+é/2 + 28@-177/2) ) (114)
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