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Abstract

We consider critical points and solutions of the gradient flow for vari-
ational integrals with integrands satisfying a Legendre-Hadamard condi-
tion. We show that if a solution of the Euler-Lagrange system or the
gradient flow has first (spatial) derivatives which are bounded and of van-
ishing mean oscillation, higher regularity follows.

1 Introduction

Let Q C R" be a bounded open domain and f € C?(R™*") a function which
satisfies the Legendre-Hadamard condition
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for some A > 0 and for all £ € R™*", ( € R™, and n € R". Moreover, we
require that the second derivatives of f are bounded, that is

ID*f] <A
for some A > 0. We consider the functional

F(u):/Qf(Vu)da?

for u € H'(Q,R™). We study critical points thereof, i. e. solutions of the Euler-
Lagrange system

divDf(Vu) =0 (2)
in Q, which is short for
"9 af
z = =1
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and solutions of the corresponding gradient flow,
% —divDf(Vu) =0 (3)



in @ x (0,7T) for some T > 0. It is easy to see that smooth solutions of (3)
satisfy

d
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for all n € C§°(2 x (0,T)) and 0 < t < T'. For weak solutions, we will impose
this as an additional condition.

f(Vu)ndz (4)
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Under the stronger assumption that f is uniformly strictly quasiconvex, Evans
[3] proved the following partial regularity result for minimizers u of the func-
tional F' (see also Evans—Gariepy [5]): There exists an open set Qo C Q with
|Q\ Q| = 0, such that u is C"*-regular in Qg for some a > 0. This result has
been improved by Acerbi-Fusco [1], Fusco-Hutchinson [6], Giaquinta—Modica
[7], and Kristensen—Taheri [9], among others. In all these papers it is crucial that
u satisfies some minimality condition. Indeed there is an example by Miiller—
Sverak [11] of a function f and a critical point u of the corresponding functional
that is Lipschitz continuous, but not C'-smooth in any open subset of Q. Hence
the Euler-Lagrange system (2) alone cannot give any Holder continuity of the
gradient.

On the other hand, if we do have C1:*-regularity for a solution of (2), and if
the function f is smooth, then it is possible to prove also C*°-regularity, and the
same is true for solutions of (3). The question that we study in this note is, how
much initial regularity is necessary to obtain higher regularity? One needs more
than Lipschitz regularity, as the example mentioned above shows, but possibly
less than C'-regularity is sufficient. Results by Chiarenza—Frasca-Longo [2]
and Ragusa [12] on solutions of elliptic equations with coefficients in the space
VMO (see definition below) suggest that the condition Vu € VMO(Q, R™*"™)
for a solution of (2) or a similar condition for a solution of (3) might imply
higher regularity. This turns out to be the case.

The space VMO(2, R™*™) of functions of vanishing mean oscillation in  with
values in R™*™ is a subspace of the John—Nirenberg space BMO(£2, R™*").
These spaces can be defined as follows (cf. [8] and [13]).

For g € R® and r > 0, we write B,(x¢) for the open ball in R* with center
zo and radius r. Let ¢ € L'(Q, R™*"). We define

losow =  sup ][ 16— ()5, (20|
B (20)CQ J B, (z0)

where we use the notation

1
D=1, ot | o
(9)B, (20) B (o) | Br(0)] By (zo)

We set,

BMO(Q,R™*") = {¢ € L' (Q,R™*"): [glamo(e) < oo},



and VMO(Q, R™*™) the space of functions ¢ € BMO(Q, R™*™) such that

sup  sup ][ |6 = (@), (zo)|[dz = 0 a3 p = 0.
r<p Bn(x0)CQ J By(z0)

For the parabolic problem (3), it is natural to work with parabolic cylinders
P.(20) = By(z0) x (to — r?,tg + r?), where 25 = (z0,t), instead of balls. Re-
placing everywhere B,.(zo) by P-(20) and € by an open set Q' C Q x R in the
definitions above, we obtain the spaces BMO' (€2, R™*") and VMO’ (2, R™*").

We have the following results.

Theorem 1.1 For any L > 0 there exist constants € > 0 and o > 0 with the
following properties.

(i) Ifu € HY (2, R™) is a weak solution of (2) satisfying IVull g () < L and
[Vulgmo(a) < €, then u € b (Q,R™).

loc
(ii) If u € HY(Q x (0,T),R™) is a weak solution of (3) satisfying (4) and the
estimates ||Vu||p=xo,r) < L and [Vulpmor(ox(o,1)) < € then Vu €
CY¥(Q x (0,T), Rm>m).

loc
Corollary 1.1

(i) Let u € H'(Q,R™) be a weak solution of (2). If Vu € L>®(Q,R™X")N
VMO(Q, R™*") | then u € C2%(Q, R™) for some o > 0.

loc

(ii) Letu € H'(Q2x(0,T),R™) be a weak solution of (3) satisfying (4). If Vu €
L®(Q x (0,T),R™*") 0 VMO'(Q x (0,T), R™*"), then Vu € O (Q x
(0,T),R™*™) for some a > 0.

The corollary follows immediately from the theorem, and (i) follows from (ii)
by considering time-independent solutions of (3). Thus we concentrate on the
evolution equation (3) in the rest of the paper.

2 Blow-up

The following arguments are due to Evans [3]. We sketch them briefly for the
convenience of the reader.
We use the abbreviation

E(u, zo,1) :][ |Vu — (Vu)pr(20)|2 dz
P,,(Zg)

for P.(20) CR® x R and u € H'(P,(2), R™).

Lemma 2.1 For any L > 0 and any § > 0 there exist ¢ > 0 and § € (0,1),
such that for any P,(z0) C R® x R and any weak solution uw € H*(P,(z),R™)
of (8) and (4) with the properties |(Vu)p, (x| < L and E(u, z,7) < €, we have

(97”)72]€3 - [u(z) — (W) Py, (20) = (VU) Py, (20) x|*dz < SE(u, zo,7).



Proof. Fix L > 0 and § > 0. If the claim were false for this particular choice,
then for any fixed # € (0,1), we could find a sequence of parabolic cylinders
P, (21) CR" x R and a sequence of solutions uy € H'(P,, (21), R™) of (3) and
(4), such that |(Vuk)p, (2| < L and
E(ug, zr,7%) =t €2 =0 as k — 00,
but
(97“19)72][ k() = (k) By, (z1) = (VUR) By, (20) - 7] d2 > 6.
Pory, (1)

Write z, = (2, tr), and define &, = (Vuk)p”e (z2)- O€t

vg(z,t) =

(u(zg + reex, ty +r,%t) (uk)p, () — riéy - )
ELTE

and

Fu(6) = 3 (76 +x6) — F(&) ~ DF(EE).

k
Then we have

('Uk)Pl(O) =0, (VUk)pl(O) =0, ][ |V’Uk|2dz =1,
P (0)

and

72 vk = (k) Py 0) — (VOR) Py (0) - 2|” d2 > 6. (5)
Ps(0)

Furthermore,

fr(0)=0, Dfy(0)=0, [D*fi] <A.
It is easy to check that the vy still satisfy (3) and (4) with f replaced by fy.
From (4) we obtain a uniform bound on [ Prya(0) v ? dz.

Passing to a subsequence, we may assume that v converges to some v €
H'(Py5(0),R™) weakly in H' and strongly in L?. Furthermore we may assume
that £ — & as k — oo. Note that we have for ¢ € C§°(P;/2(0), R™) the identity

0= / <<6”’“,¢> +ka(v1;k)v¢> dz
P1/2(0)
:/ <<avk,¢> /D fe(sVop)(Vog, Vo) d )
P1/2(0)

From the fact that D2 f;,(£) = D2 f(&x + €€), we infer that
1
/ D? f1.(sVvg) ds — D?f(&)
0

strongly in L2. Hence v satisfies

o} o*f o’ .
Z Z Ly (aglagj(fo) )ZO, i=1,...,m.
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Since (1) holds, we can apply linear regularity theory to v. We obtain the
estimate

][ o — (0)mao) — (V0)py o) - 2’ dz < O
P, (0)

for a constant C' = C'(n,m, \,A). If we choose 8 < C~/4§'/*  then this contra-
dicts (5) by the strong convergence of vy to v in L2. O

3 Estimates involving the BMO-norm

In this section we will prove Theorem 1.1, using certain ideas of Kristensen-
Taheri [9]. For this we will need the following inequality for the parabolic
Hardy-Littlewood and Fefferman—Stein maximal functions

5*(20) = sup ]{3 ol

P.(z1)3z0

and

o* () =  sup ]{3 = @nld:

P.(z1)3z0

for ¢ € L (R™ x R,R™>"). It is a version of Lemma 6.1 in [9], and its proof
is the same, except that instead of cubes in R™, one uses sets of the form
[x1 —r, 21 +r] X .ooX [xp =1y +7] X [t =12t + 17

Lemma 3.1 Let ® : [0,00) — [0,00) be a continuous and increasing function
with ®(0) = 0. There extist constants C = C(n) > 0 and A = A(n) > 1, such
that for any § > 0 and any ¢ € L®(R® x R, R™*") with compact support, the
inequality

/ Vdz < —/ ( > dz+Co D(Ad*) dz
RrxR R»xR RrxR
is satisfied.

This allows to prove the following estimate.

Lemma 3.2 For any L > 0 there exist constants ¢ > 0 and 6 € (0,1) and
a continuous function w : [0,00) — [0,00) with w(0) = 0, such that for any
P,(20) C R* xR and any solution u € H*(P,.(z0),R™) of (3) and (4) satisfying
IVu||L < L and E(u, zo,7) < €2, the inequality

oul?

g
at| ©

E(u, zp,0r) + (0r)2][
Py, (20

ou
ot

2
dz)

< (% +w([VU]BMO'(PT(zo)))> (E(u,zo,r)+7.][

20)

holds.



Proof. Let p : [0,2L] — [0, 00) be the continuous function

pla)= sup  sup |D*f(&) — D*f(&)],
[€1|<2L [€2—£&1|<a

and define o : [0,00) — [0, 00) to be the concave and non-decreasing function
o(a) =inf {l(a): [ : R — R is linear and increasing with [ > p in [0,2L]}.
Then clearly o > p and ¢(0) = 0. Moreover, o has the property
o(Aa) < Ao(a)

for all A > 1, since it is concave.

We prove that for any § > 0, we have
ou
ot

2
dz)

+cor*2]{3 I @ = (Tu)p, oy ol 0 (6)

E(u,z,7/2) < (0 4+ C()O'([V’LL]BMOI(PT(ZO)))) (E(u, 20,T) + r2][
P,

(20)

for a constant Cy = Cy(n, A, A, d). Then the claim follows from (4) and Lemma
2.1.

By the same transformations as in the proof of Lemma 2.1, we may assume
that PT(Z()) = P1 (0) and

(W)p,0) =0, (Vu)p, ) =0,
as well as
7(0)=0, Df(0)=0.
Note that (1) implies
A Werdns [ D06, V0)do
B1(0) B1(0)

for all ¢ € HJ(B1(0),R™). Choose a cut-off function v € C§°(P,(0)) with
0<vy<Tland~y=1in P(0). Set n=~> We find that

A |Vul>dz < A |V (nu)|? dz
Py /2(0) P1(0)

/ n*>D? f(0)(Vu, Vu) dz + A6 |Vu|? dz
P (0)

P (0)
+Cy / lul? dz
Py (0)

for a constant C, = C1(n, A\, A, d). Furthermore, we have

/ n* <%,u> dz = / Df(Vu)V(n*u) dz
P1(0) ot P1(0)

= / /1 D? f(sVu)(Vu, V(n?u)) ds dz
P;i(0) Jo

IA

1
> / / n*>D? f(sVu)(Vu, Vu) dz ds
0 JPi(0)

- A0 |Vul|? dz—C'g/ lu|? dz,
P1(0) P1(0)



where Co = Cy(n, A, A, d). Finally,

| I (s50) - DOV, Vu)lds < [ qPo(Vul|Vaf* ds
Py (0)

P (0)

< /P IR CARRICARN RS

for 0 < s <1 by the definition of o. It is easy to see that [v*Vulgmor rnxr) <
C3[Vulgmor (p, (o)) for a constant C3 = Cs(n,m,~) (cf. [4]). Applying Lemma
3.1 with ®(a) = o(a)a? and the Hardy-Littlewood-Wiener maximal inequality,
we find that

1

/P o, 7PN d= < Cao (Tl e, 00) / MRS
1 (0 0

where the constant C'y depends only on n, m, and . Combining these estimates
and replacing 6 by a smaller constant, we obtain (6). a

Proof of Theorem 1.1. All that remains to be done is to estimate the expression

0
®(u, 2z9,7) = sup ][ <|Vu - (VU)P3(21)|2 + 52| =
P (21)CPr(20) / Ps(21)

y |2
)dz

ot

with the help of Lemma 3.2, to obtain
1
(I>(U, 20, 07‘) S <§ + w([vu]BMO’(P,.(zo)))> (I>(U, 20, 7‘),

where 6 and w are determined by Lemma 3.2. If [Vulgmor (o x (0,7)) is sufficiently
small, then we conclude that

07
q)(’U,,Z(),T) S CO <T‘L> q)('U/,Z(),T'())
0
for Pr,(z0) C 2% (0,T) and 0 < r < 1, and for a constant Co = Co(n,m, L, f).
The Holder continuity of Vu follows from this and Theorem 4.6.1 in [10]. O
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