
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Construction and Arithmetics of

H-Matrices

(revised version: July 2004)

by

Lars Grasedyck and Wolfgang Hackbusch

Preprint no.: 103 2002

Construction and Arithmetics of H-Matrices

Lars Grasedyck, Wolfgang Hackbusch
Max-Planck-Institute for Mathematics in the Sciences

Inselstr. 22-26, D-04103 Leipzig, Germany
{lgr, wh}@mis.mpg.de

Abstract

In previous papers hierarchical matrices were introduced which are data-sparse and allow an approx-
imate matrix arithmetic of nearly optimal complexity. In this paper we analyse the complexity (storage,
addition, multiplication and inversion) of the hierarchical matrix arithmetics. Two criteria, the sparsity
and idempotency, are sufficient to give the desired bounds. For standard finite element and boundary
element applications we present a construction of the hierarchical matrix format for which we can give
explicit bounds for the sparsity and idempotency.

AMS Subject Classification: 65F05, 65F30, 65F50
Key words: Hierarchical matrices, data-sparse approximations, formatted matrix operations, fast solvers.

1 Introduction

1.1 Overview

In [8] a new format for the representation of matrices was introduced, the so-called hierarchical matrices or
shortly H-matrices. This format is well-suited for the data-sparse representation of matrices arising in the
boundary element method or for the approximation of the inverse to a finite element discretisation of an
elliptic partial differential operator. In subsequent papers, several model problems were analysed and for
each of them a suitable H-matrix format was defined. A short overview and an introduction to hierarchical
matrices can be found in [3].

In this paper we do not describe the various applications of the H-matrix arithmetic, but present a
precise complexity analysis. It turns out that such an analysis can be based on two criteria, namely the
sparsity and idempotency of the underlying tree. Corresponding to the exact matrix operations +, · we
define the so-called formatted matrix operations ⊕, � that allow us to compute an approximate inverse to
an H-matrix in almost linear complexity. For standard finite element and boundary element applications we
are able to give a construction of the H-matrix format where we can give explicit bounds for the sparsity
and idempotency.

The rest of the paper is organised as follows. The next subsections give a short introduction to H-
matrices. In Section 2 we present the algorithms for the formatted arithmetic operations within the set
of H-matrices and estimate their complexity. Section 3 describes the image of the inversion operator in
the set of H-matrices and introduces the admissibility condition that allows us to approximate efficiently
(BEM) stiffness matrices or the inverse to a (FEM) stiffness matrix in the set of H-matrices. Based upon the
admissibility condition we construct the hierarchical structures and H-matrices in Section 4. The theoretical
results are confirmed by numerical tests which are presented in Section 5.

1.2 R(k)-Matrices

The basic building blocks for H-matrices are matrices of low rank (as compared to their size). We use a
data sparse representation for this kind of matrices.

1

Definition 1.1 (R(k)-matrix representation) Let k, n, m ∈ N0. A matrix M ∈ Rn×m is called an R(k)-
matrix (given in R(k)-representation) if M is given in factorised form

M = ABT , A ∈ Rn×k, B ∈ Rm×k, (1.1)

with A, B in full matrix representation.

Throughout this paper the storage is measured by the number of floating point numbers to be stored,
while the cost of an operation is given by the number of elementary operations +,−, ·, /.

Remark 1.2 (storage and matrix-vector product) The storage requirements NF,St(n, m) for a matrix
M ∈ Rn×m in full matrix representation is NF,St(n, m) = nm. The storage requirements NR,St(n, m, k) for
an n × m R(k)-matrix M is

NR,St(n, m, k) = k(n + m). (1.2)

The complexity NF ·v(n, m) and NR·v(n, m, k) for the computation of the matrix-vector product of M in full
matrix and R(k)-matrix representation is

NF ·v(n, m) = 2nm− n, NR·v(n, m, k) = 2k(n + m) − n − k.

In the next lemma, the term ’truncated’ will appear in two meanings. First in part (a), the truncated
singular value decomposition (SVD) and the truncated QR-decomposition are the exact ones, where the
corresponding factors are reduced to the non-zero part. In part (b) of the lemma, truncation from rank k
to k′ < k includes loss of information.

Lemma 1.3 (truncated SVD, truncation) (a) Let R = ABT ∈ Rn×m be an R(k)-matrix. A truncated
singular value decomposition of R can be computed with complexity NR,SVD(n, m, k) ≤ 5k2(n+m)+23k3 as
follows:

1. Calculate a truncated QR-decomposition A = QARA of A, QA ∈ Rn×k, RA ∈ Rk×k.

2. Calculate a truncated QR-decomposition B = QBRB of B, QB ∈ Rm×k, RB ∈ Rk×k.

3. Calculate a singular value decomposition RART
B = ŨΣṼ T of RART

B .

4. Define U := QAŨ ∈ Rn×k and V := QBṼ ∈ Rm×k.

Then R = UΣV T is a (truncated) SVD. Due to [5, Sections 5.2.9 and 5.4.5], the complexity of the
previous steps is

QR-decomposition of A: 4nk2

QR-decomposition of B: 4mk2

multiplication of RART
B: 2k3

SVD of RAR�B: 21k3

Multiplication of QAŨ and QBṼ : 2nk2 + 2mk2

Altogether: NR,SVD(n, m, k) = 6k2(n + m)+ 23k3

(b) A truncation of an R(k)-matrix R to rank k′ ≤ k is defined as the best approximation with respect to
the Frobenius and spectral norm of R in the set of R(k′)-matrices. This can be computed by using the first
k′ columns of the matrices UΣ and V from the truncated singular value decomposition of R with the same
complexity as above. We denote the truncation from rank k to k′ by the symbol

T R
k′←k. (1.3)

If k′ ≥ k, T R
k′←k is the identity. In the representation (1.1), the matrices A, B are extended by k′ − k zero

columns.

2

We remark that the truncation in part (b) becomes non-unique when the k′th and (k′ + 1)st singular
values are equal. Consequently, all operators defined below and involving a truncation may be non-unique.

Definition 1.4 (formatted addition) The formatted addition R ⊕ S of two n × m R(k)-matrices R and
S is defined as a truncation of R + S to the set of R(k)-matrices, i.e., R ⊕ S := T R

k←2k (R + S) .

Note that ⊕ is commutative, but in general not distributive (i.e., (A ⊕ B) ⊕ C and A ⊕ (B ⊕ C) may
differ).

Remark 1.5 The formatted addition can be computed with complexity NR,⊕(n, m, k) ≤ 24k2(n+m)+184k3.

Proof. Use the truncation of Lemma 1.3b for the R(2k)-matrix R + S.

Lemma 1.6 (spectral and Frobenius norm) The spectral and Frobenius norm of an n×m R(k)-matrix
R can be computed as in Lemma 1.3a with complexity NR,‖·‖(n, m, k) ≤ 4k2(n + m) + 23k3.

Proof. The norms can be obtained from the singular values, i.e., steps 1-3 from Lemma 1.3a are to be
performed.

1.3 H-Matrices

In essence, the hierarchical structure of H-matrices is the tree structure defined below.

1.3.1 H-Trees TI

Here, we give only the definition of an H-tree and introduce some notations. The concrete construction of
the tree will be discussed in §4.1.

Definition 1.7 (H-tree, sons) Let I be a finite set and let TI = (V, E) be a tree with vertex set V and
edge set E. For a vertex v ∈ V we define the set of sons of v as S(v) := {w ∈ V | (v, w) ∈ E}. The tree TI

is called an H-tree of I, if the following conditions hold:

I is the root of TI and ∅ �= v ⊂ I for all v ∈ V, (1.4a)

∀v ∈ V : either S(v) = ∅ or v =
⋃̇

w∈S(v)
w. (1.4b)

In (1.4b) we use the notation ∪̇ for the disjoint union.
In the following we identify V and TI , i.e., we write v ∈ TI instead of v ∈ V. The edge set E is not

needed, since S(·) contains all information about the edges.

Definition 1.8 (descendant, father, leaf, level, depth) Let TI be an H-tree. We define the descen-
dants of a vertex v ∈ TI by S∗(v) := {w ∈ TI | w ⊂ v} and the uniquely determined predecessor (father) of
a non-root vertex v ∈ TI is denoted by F(v). The set of leaves of the tree TI is L(TI) = {v ∈ TI | S(v) = ∅}.
The levels of the tree TI are defined as

T
(0)
I := {I}, T

(�)
I := {v ∈ TI | F(v) ∈ T

(�−1)
I } for � ∈ N,

and we write level(v) = � if v ∈ T
(�)
I . The depth of T is defined as depth(T) := max{� ∈ N0 | T

(�)
I �= ∅}.

The leaves of T on level � are denoted by L(TI , �) := L(TI) ∩ T
(�)
I .

The introduced notation requires implicitly #S(v) �= 1, as discussed in

Remark 1.9 (general H-trees) In the definition of an H-tree the vertices were labelled by subsets of the
index set I. Therefore, it is not possible that a vertex v has exactly one son w ((1.4b) would demand v = w).
This could be overcome by denoting the vertices of an H-tree by a tuple (v, �), where v ⊂ I and � is the level
number of the vertex. Then the vertex (v, �) is allowed to have exactly one son (v, � + 1). In the rare cases
where it becomes important, we will explicitly note the level number, e.g., by v ∈ T (�), but omit the tuple
notation otherwise.

3

Remark 1.10 (a) Any H-tree TI with root I has the property ∪̇v∈L(TI)v = I, i.e., the leaves of an H-tree
yield a partitioning for the index set I.

(b) For any H-tree TI and � ∈ {0, . . . , depth(T)} there holds

I =

⎛⎜⎝ ·⋃
v∈T

(�)
I

v

⎞⎟⎠ ∪̇

⎛⎝ ·⋃
v∈L(TI ,�−1)

v

⎞⎠ ∪̇ · · · ∪̇

⎛⎝ ·⋃
v∈L(TI ,0)

v

⎞⎠ .

(c) Each vertex v ∈ TI induces a subtree

Tv := (Vv, Ev), Vv := {w ∈ S∗(v)}, Ev := E ∩ (Vv × Vv) ,

which is an H-tree of the index set v.

Proof. a) Use induction over the depth of H-trees. b) Consider T ′I := TI\∪depth(TI)
j=�+1 and apply part a).

1.3.2 Block H-Trees TI×J

For (rectangular) matrices from RI×J we need H-trees with the root I×J. The case I×I for square matrices
is a particular subcase. Again, the concrete construction is postponed to §4.2.

Definition 1.11 (block H-tree) Let I and J be finite sets and let TI and TJ be H-trees of I and J . An
H-tree TI×J is called a block H-tree (based upon TI and TJ) if for all v ∈ T

(�)
I×J there exist r ∈ T

(�)
I and

s ∈ T
(�)
J such that v = r × s. In the case TI = TJ we say that TI×I is based on TI.

Given v ∈ TI×J , Definition 1.11 does not fix whether a vertex v is a leaf or not. But if v = r × s is not
a leaf, the set of sons is given by S(v) = {v′ = r′ × s′ | r′ ∈ S(r), s′ ∈ S(s)}. Since by definition, r and s
belong to some identical level number �, the sons v′ = r′ × s′ ∈ S(v) are products of r′ and s′ from level
number � + 1. Furthermore, the set T

(�)
I×J defined in Definition 1.11 is a subset of T

(�)
I × T

(�)
J .

Definition 1.12 (cardinality, submatrix, supermatrix) Let M ∈ RI×J be a matrix over the index set
I × J . We denote the cardinality of a set I by #I. The submatrix (Mi,j)(i,j)∈I′×J′ for a subset I ′ × J ′

of I × J is denoted by M |I′×J′ . For a superset I ′′ × J ′′ ⊃ I × J we denote the matrix M ′′ ∈ RI′′×J′′
with

entries M ′′
i,j =

{
Mi,j if (i, j) ∈ I × J
0 otherwise

}
by M |I′′×J′′

.

Remark 1.13 (partitioning) Due to Remark 1.10a, any block H-tree TI×J with root I×J has the property
∪̇v∈L(TI×J) = I × J . Vice versa, given a partitioning P ⊂ TI×J such that ∪̇v∈P = I × J, there is a unique
H-subtree T ′I×J of TI×J (with same root I × J) so that L(T ′I×J) = P .

In previous papers (e.g., [8], [10]), we have based the H-matrix on a partitioning P ⊂ TI×J . Equivalently,
we can use the associated H-tree TI×J with L(T ′I×J) = P (see Remark 1.13).

In principal, the H-matrix uses the R(k)-representation (1.1) for all blocks v = r × s ∈ TI×J . By
practical reasons this is less efficient for small-sized blocks. Therefore, a minimal block size nmin will be
introduced. The use of the R(k)-representation is restricted to min{#r, #s} > nmin, otherwise the standard
full representation is used (in the later numerical examples we choose nmin = 32).

1.3.3 Set of Hierarchical Matrices

Definition 1.14 (H-matrix) Let k, nmin ∈ N0. The set of H-matrices induced by a block H-tree T with
blockwise rank k and minimal block size nmin is defined as

H(T, k) := {M ∈ RI×J | ∀r × s ∈ L(T) : rank(M |r×s) ≤ k or #r ≤ nmin or #s ≤ nmin}.

A matrix M ∈ H(T, k) is said to be given in H-matrix representation, if for all leaves r × s with #r ≤ nmin

or #s ≤ nmin the corresponding matrix block M |r×s is given in full matrix representation and in R(k)-matrix
representation for the other leaves.

4

2 H-Matrix Arithmetics and Their Complexity

In the first part of this section we estimate the storage requirements of an H-matrix, the cardinality of the
H-tree, the complexity of the matrix-vector multiplication, truncation and formatted addition of H-matrices
based on the sparsity of the H-tree T . In the second part we define the idempotency constant which is
needed to bound the complexity of the matrix multiplication and inversion in the set of H-matrices.

2.1 Sparsity Based Estimates

Hierarchical matrices possess a certain kind of sparsity which is essential for favourable estimates of the
storage and the cost of the matrix-vector multiplication and matrix addition.

2.1.1 Sparsity Constant and H-Trees

The block H-tree TI×J may have a sparsity property which is measured by the quantity Csp defined below.
In §4.2, the construction of TI×J will lead to block H-trees with a sparsity constant Csp independent of the
size of #I.

Definition 2.1 (sparsity constant) Let TI×J be a block H-tree based on TI and TJ . We define the sparsity
(constant) Csp of TI×J by

Csp := max
{

max
r∈TI

#{s ∈ TJ | r × s ∈ TI×J} , max
s∈TJ

#{r ∈ TI | r × s ∈ TI×J}
}

. (2.1)

In many estimates (e.g., in (2.2) below) sums over the quantities #{. . . } appear. Then the maximum
Csp from (2.1) could be replaced by the possibly smaller average.

In the following, we simplify the notation TI×J by T without subscripts.

Lemma 2.2 (a) Let T be a block H-tree based on TI and TJ with sparsity constant Csp. If TI and TJ satisfy
#S(v) �= 1 for all vertices v ∈ TI ∪ TJ , then

#TI ≤ 2#I, #T ≤ 2Csp min{#I, #J}.

(b) Let p := depth(T) ≥ 1. If #S(v) �= 1 is not necessarily fulfilled, then it still holds

#TI ≤ 2p#I, #T ≤ 2pCsp min{#I, #J}.

(c) The previous estimates provide a bound for #L(T) ≤ #T .

Proof. The first inequality of part (a) is trivial. The second inequality is derived by

#T =
∑

r×s∈T

1 =
∑
r∈TI

#{r × s ∈ T } ≤
∑
r∈TI

Csp ≤ 2#ICsp. (2.2)

Part (c) is a consequence of L(T) ⊂ T .
Due to the distinction between the R(k)-representation and the full representation, we introduce L−(T)

and L+(T).

Definition 2.3 Let T be a block H-tree based on TI and TJ . The set of “small” leaves of T is denoted
by L−(T) := {r × s ∈ L(T) | #r ≤ nmin or #s ≤ nmin} and the set of “large” leaves is denoted as
L+(T) := L(T) \ L−(T).

Later, in (3.6), it will turn out that nmin should not be smaller than a constant given there.

5

2.1.2 Storage

The estimate in the next lemma makes use of the set of occupied levels L of a block H-tree T defined by

L := {i ∈ N0 | L(T, i) �= ∅}. (2.3)

In particular, #L is of interest. Note that #L ≤ depth (T) + 1.

Lemma 2.4 (storage) Let T be a block H-tree based on TI and TJ with sparsity constant Csp (cf. (2.1))
and minimal block size nmin. Then the storage requirements NH,St(T, k) for an H-matrix M ∈ H(T, k) are
bounded by

NH,St(T, k) ≤ #LCsp max{k, nmin}(#I + #J).

Proof.

NH,St(T, k) Def. 1.14=
∑

r×s∈L−(T)

NF,St(#r, #s) +
∑

r×s∈L+(T)

NR,St(#r, #s, k)

Rem. 1.2
≤

∑
r×s∈L−(T)

nmin(#r + #s) +
∑

r×s∈L+(T)

k(#r + #s) (2.4)

≤
∑

r×s∈L(T)

max{k, nmin}#r +
∑

r×s∈L(T)

max{k, nmin}#s

Def. 2.1
≤

∑
i∈L

∑
r∈T

(i)
I

Csp max{k, nmin}#r +
∑
i∈L

∑
s∈T

(i)
J

Csp max{k, nmin}#s

Rem. 1.10
≤

∑
i∈L

Csp max{k, nmin}#I +
∑
i∈L

Csp max{k, nmin}#J

= #LCsp max{k, nmin}(#I + #J).

In line (2.4), the maximum in NF,St(#r, #s) ≤ nmin ∗max{#r, #s} is estimated by #r + #s. Under the
assumption #r ≈ #s, this is an overestimation by the factor 2. Therefore, #LCsp max{k, 1

2nmin}(#I +#J)
is supposed to be closer to NH,St(T, k).

The aim will be to construct T such that depth (T) = O (log n) , where n is the size of I and J .

2.1.3 Matrix-Vector Multiplication

Lemma 2.5 (matrix-vector product) Let T be a block H-tree. The complexity NH·v(T, k) of the matrix-
vector product in the set of H-matrices can be bounded from above and below by

NH,St(T, k) ≤ NH·v(T, k) ≤ 2NH,St(T, k).

Proof. According to Remark 1.2 the storage requirements in a block r × s in full matrix representation are
#r#s. The cost to multiply the submatrix with a vector x and add the result to the target vector y are
2#r#s − #r for the multiplication and #r for the addition:

NF,St ≤ NF ·v ≤ 2NF,St.

For a block r × s in R(k)-matrix representation the storage requirements are k(#r + #s). The cost to
multiply the submatrix with a vector x and add the result to the target vector y are (due to Remark 1.2)
2k(#r + #s) − #r − k for the multiplication and #r for the addition:

NR,St ≤ NR·v ≤ 2NR,St.

Since an H-matrix consists blockwise of either full matrices or R(k)-matrices, this concludes the proof.

6

Algorithm 2.6 (matrix-vector product) Let M ∈ H(T, k) be an H-matrix. To compute the matrix-
vector product y := y + Mx with x ∈ RJ , y ∈ RI , we call MVM(M , I × J , x, y), where MVM is the
following procedure:

procedure MVM(M , r × s, x, var y);
begin

if S(r × s) �= ∅ then { subdivide block }
for each r′ × s′ ∈ S(r × s) do MVM(M , r′ × s′, x, y)

else y|r := y|r + M |r×s x|s { full or R(k)-matrix }
end;

2.1.4 Truncation

In (1.3), we have defined the truncation T R
k′←k of R(k)-matrices. The extension to H-matrices is given below.

Definition 2.7 (truncation of H-matrices) Let T be a block H-tree and let k, k′ ∈ N0. We define the
truncation operator

T Hk′←k : H(T, k) → H(T, k′)

by M ′ = T Hk′←k (M) with M ′|r×s = T R
k′←k (M |r×s) for all r × s ∈ L+(T) and M ′|r×s = M |r×s for all

r × s ∈ L−(T).

Remark 2.8 T Hk′←k maps a matrix M ∈ H(T, k) to a best approximation M ′ ∈ H(T, k′) of M with respect
to the Frobenius norm. Since there is possibly more than one best approximation we choose an arbitrary
representative.

Note that #L(T) appearing in the next estimate can be bounded by means of Lemma 2.2c.

Lemma 2.9 (complexity of the H-matrix truncation) Let T be a block H-tree based on the H-trees TI

and TJ . A truncation T Hk′←k(M) of an H-matrix M ∈ H(T, k) can be computed with complexity

NH,k′←k(T) ≤ 6kNH,St(T, k) + 23k3#L(T).

Proof. Lemma 1.3b and Remark 1.2 show

NH,k′←k(T) =
∑

r×s∈L+(T)

NR,SVD(#r, #s, k)
Lemma1.3b

≤
∑

r×s∈L+(T)

6k2(#r + #s) + 23k3

= 6k
[∑

r×s∈L+(T)

k(#r + #s)
]

+ 23k3#L+(T)
(1.2)

≤ 6kNH,St(k, T) + 23k3#L(T).

A sum M of q R(k)-matrices Ai (1 ≤ i ≤ q) is an R(qk)-matrix. Instead of the optimal trunca-
tion M ′ = T Rk←qk(

∑
Ai), we can apply the cheaper T Rk←2k-truncation to sums of only two terms: M2 :=

T Rk←2k (A1 + A2) , Mi := T Rk←2k (Mi−1 + Ai) (i = 3, . . . , q) resulting in M ′′ := Mq (in general, M ′′ �= M ′).

Lemma 2.10 (fast truncation of H-matrices) Let T be a block H-tree. An approximate truncation of an
H-matrix from H(T, qk) to H(T, k) (not necessarily a best approximation) can be computed with complexity

NH,k
fast← qk

(T) ≤ (q − 1)(24kNH,St(T, k) + 184k3#L(T))

by successive use of the truncation T Hk←2k: let M ∈ H(T, qk) be decomposed into M =
∑q

i=1 Mi with matrices
Mi ∈ H(T, k). Then we define

M̃1 := M1 and M̃j := T Hk←2k(M̃j−1 + Mj) for j = 2, . . . , q.

The matrix M̃q is the desired approximation in H(T, k).

7

The truncation procedure from Lemma 2.9 is useful for theoretical purposes because it computes a best
approximation. The fast truncation procedure from Lemma 2.10 can yield arbitrarily poor results (because
of cancellation of the singular values), but in practice this is not likely to occur.

If we want to approximate an H(T, k)-matrix by an R(k)-matrix then we can exploit the hierarchical
structure of the H-matrix format to do this with almost linear complexity. This is by itself an important
result, but we will also use this (fast) conversion in the multiplication procedure for H-matrices in Section
2.2.2.

Algorithm 2.11 (hierarchical conversion) Let T be a block H-tree of depth p := depth(T) where each
vertex v ∈ T has at most Csons successors. For a matrix M ∈ H(T, k) we compute an approximation
RH ∈ R(k) in p + 1 steps:

1. We convert the matrix blocks of M corresponding to “small” leaves r× s ∈ L−(T) to R(k)-format and
retain the “large” leaves r × s ∈ L−(T):

Rp|r×s :=
{

T Rk←nmin
(M |r×s) if r × s ∈ L−(T),

M |r×s otherwise.

2. For each � = p−1, . . . , 0 we define the matrix R� blockwise for all r×s ∈ T (�)∪L(T, �−1)∪· · ·∪L(T, 0)
(cf. Remark 1.10) by

R�|r×s :=
{

T Rk←Csonsk
(R�+1|r×s) if r × s ∈ T (�),

M |r×s otherwise.

The last matrix R0 ∈ R(k) is the desired approximation RH to M .

Lemma 2.12 (accuracy and complexity of the hierarchical conversion) We use the notation from
Algorithm 2.11. If Rbest denotes an R(k)-best approximation to M (with respect to the Frobenius norm) and
RH the above defined hierarchical approximation, then the error is bounded by

‖RH − M‖F ≤ (2p+1 + 1)‖Rbest − M‖F

while the complexity for the conversion (we assume nmin ≤ k and Csons ≥ 2) is

NR(k)←H ≤ 6CspC2
sonsk

2(p + 1)(#I + #J) + 23C3
sonsk

3#T.

Proof. a) (Complexity) The conversion of the full matrix blocks r × s ∈ L−(T) to R(k)-format is done by a
singular value decomposition which has a complexity of 21n3

min. For all vertices r × s ∈ T \ L(T) we have
to truncate the sum over all sons of r × s, which due to Remark 1.3a is of complexity 6C2

sonsk
2(#r + #s) +

23C3
sonsk

3. For all vertices this sums up to

NR(k)←H ≤
∑

r×s∈L−(T)

21n3
min +

∑
r×s∈T\L(T)

(
6C2

sonsk
2(#r + #s) + 23C3

sonsk
3
)

≤
∑

r×s∈T

(
6C2

sonsk
2(#r + #s) + 23C3

sonsk
3
)

≤ (p + 1)Csp6C2
sonsk

2(#I + #J) + 23C3
sonsk

3#T.

b) (Error) We define the sets

R(T, �, k) := {M ∈ RI×J | ∀r × s ∈ T (�) ∪ L(T, � − 1) ∪ · · · ∪ L(T, 0) : rank(M |r×s) ≤ k}.

By R� we denote the matrix appearing in the �th step of the algorithm. Obviously R� is contained in the
set R(T, �, k). The matrix R0 is the resulting approximant RH. From one level � to the next level �− 1, the
algorithm determines a best approximation (with respect to the Frobenius norm) of the matrix R� in the
set R(T, �, k):

∀R̃ ∈ R(T, �, k) : ‖R� − R�−1‖F ≤ ‖R� − R̃‖F . (2.5a)

8

In the first step (conversion of the full matrix blocks) this reads

∀R̃ ∈ R(T, p, k) : ‖M − Rp‖F ≤ ‖M − R̃‖F . (2.5b)

By induction we prove ‖R� − Rbest‖F ≤ 2p−�‖Rp − Rbest‖F as follows. The start � = p of the induction is
trivial. The induction step � �→ � − 1 follows from

‖R�−1 − Rbest‖F ≤ ‖R�−1 − R�‖F + ‖R� − Rbest‖F

(2.5a)

≤ 2‖R�−1 − Rbest‖F .

Using this inequality, we can conclude that

‖M − R0‖F = ‖M −
p−1∑
�=0

(R� − R�+1) − Rp‖F ≤ ‖M − Rp‖F +
∑p−1

�=0 ‖R� − R�+1‖F

(2.5a,b)

≤ ‖M − Rbest‖F +
p−1∑
�=0

‖Rbest − R�+1‖F

≤ ‖M − Rbest‖F +
p−1∑
�=0

2p−�−1‖Rp − Rbest‖F ≤ 2p‖Rp − Rbest‖F + ‖M − Rbest‖F

≤ 2p(‖Rp − M‖F + ‖M − Rbest‖F) + ‖M − Rbest‖F

(2.5b)

≤ (2p+1 + 1)‖M − Rbest‖F .

2.1.5 Addition

Definition 2.13 (formatted H-matrix addition) The formatted addition ⊕ : H(T, k) × H(T, k) →
H(T, k) is defined as a truncation of the (exact) sum to the set of H-matrices, i.e., A⊕B := T Hk←2k(A +B).

Remark 2.14 According to Lemma 2.9 the complexity of the formatted H-matrix addition is bounded by

NH,⊕(T, k) ≤ 24kNH,St(T, k) + 184k3#L(T).

In the later inversion procedure (see Table 1) we have to add three H-matrices A, B, C and to truncate
the sum to rank k and to overwrite C by the result. This is done by the following algorithm.

Algorithm 2.15 (formatted H-matrix addition) Let A, B, C ∈ H(T, k) be H-matrices over the index
set I × J . To compute the (formatted) sum C := T Hk←3k(A + B + C) we use the following procedure (called
by Add(C, I × J , A, B)):

procedure Add(var C, r × s, A, B);
begin

if S(r × s) �= ∅ then { subdivide block }
for each r′ × s′ ∈ S(r × s) do Add(M , r′ × s′, A, B)

else C|r×s := T R
k←3k (C|r×s + A|r×s + B|r×s) { full or R(k)-matrix }

end;

2.1.6 Matrix-Matrix Multiplication

We consider the multiplication of two (rectangular) matrices A ∈ RI×J and B ∈ RJ×K (a particular case
is I = J = K). To elucidate the difficulty of the multiplication, we recall that the addition is a structure-
preserving operation in the sense that the sum of two H-matrices based on the H-tree T can be represented
using the same H-tree T and the sum of the blockwise ranks. In contrast to the addition, the product of two
H-matrices is much more complicated: even if I = J = K and if A and B belong to the same set H(T, k),
the tree T is in general not suitable for the representation of the (exact) product. A suitable tree is the
product tree T · T , which is defined next.

Definition 2.16 (product of block H-trees) Let T = TI×J be a block H-tree based on TI , TJ and let
T ′ = TJ×K be a block H-tree based on TJ , TK. We define the product tree TI×K (denoted by T ·T ′) by means
of root(T · T ′) := I × K and the description of the set of sons of each node. For each level � = 0, . . . , p − 1
and each vertex r × t ∈ (T · T ′)(�), the set of sons of r × t is defined by

S(r × t) :=
{
r′ × t′

∣∣∣ ∃s ∈ T
(�)
J ∃s′ ∈ T

(�+1)
J : r′ × s′ ∈ ST (r × s), s′ × t′ ∈ ST ′(s × t)

}
.

9

We remark that depth(T · T ′) ≤ min{depth(T), depth(T ′)}.

Lemma 2.17 (a) Let T be a block H-tree based on TI , TJ and let T ′ be a block H-tree based on TJ , TK .
Then the tree T · T ′ is a block H-tree based on TI , TK.

(b) Let Csp(T) and Csp(T ′) denote the corresponding sparsity constant. Then the sparsity of T · T ′ can
be estimated by

Csp(T · T ′) ≤ Csp(T)Csp(T ′).

Proof. Let r ∈ TI . Due to the symmetry of the sparsity we only give a bound for #{t ∈ TK | r× t ∈ T · T ′}:

{t ∈ TK | r × t ∈ T · T ′}
Def. 2.16

⊂ {t ∈ TK | ∃s ∈ TJ : r × s ∈ T, s× t ∈ T ′},

#{t ∈ TK | r × t ∈ T · T ′} ≤
∑

s∈TJ ,r×s∈T

#{t ∈ TK | s × t ∈ T ′} ≤ Csp(T)Csp(T ′).

Definition 2.18 (predecessors) Let T be an H-tree, i ∈ [0, depth(T)], t ∈ T (i). We define the predecessor
of t on level j ∈ {0, . . . , i} as the uniquely determined vertex F j(t) ∈ T (j) with t ∈ S∗(F j(t)).

Due to the H-tree property, the condition t ∈ S∗(F j(t)) can equivalently be defined by t ⊂ F j(t).
In the following, we describe the exact multiplication of two H-matrices. In §2.2 we consider the trunca-

tion to a given format and rank, which leads to the formatted multiplication � analogously to the formatted
addition ⊕ from §2.1.5.

Lemma 2.19 (representation of the H-matrix product) Let T be a block H-tree based on TI , TJ and
let T ′ be a block H-tree based on TJ , TK. For each leaf r × t ∈ L(T · T ′, i) we define

U(r × t, j) :=
{

s ∈ T
(j)
J

∣∣∣ F j(r) × s ∈ T and s ×F j(t) ∈ T ′ and
(F j(r) × s ∈ L(T) or s ×F j(t) ∈ L(T ′))

}
, j ∈ N0.

Then for two matrices M ∈ H(T, k) and M ′ ∈ H(T ′, k′) and each r × t ∈ L(T · T ′, i) there holds

(M · M ′)|r×t =
i∑

j=0

∑
s∈ U(r×t,j)

M |r×sM
′|s×t (2.6)

and

J =
⋃̇

j=0,... ,i

⋃̇
s∈U(r×t,j)

s. (2.7)

Proof. a) Assuming that (2.7) is true, we conclude the representation formula (2.6) from (2.7). The proof of
(2.7) is given in the following parts b-d.

b) (Disjointness of U(r × t, j)) According to Remark 1.10b, the elements of U(r × t, j) are disjoint.
c) (Disjointness w.r.t. j) Let s ∈ U(r × t, j), s′ ∈ U(r × t, j′), j ≤ j′ and s ∩ s′ �= ∅. Since s, s′ ∈ TJ and

TJ is an H-tree we get s′ ⊂ s, F j(s′) = s. It follows

F j′ (r) × s′ ⊂ F j(r) × s, s′ ×F j′(t) ⊂ s ×F j(t). (2.8)

Due to the definition of U(r × t, i) either F j(r) × s or s × F j(t) is a leaf. Hence, one inclusion in (2.8)
becomes an equality which implies j′ = j.

d) (Covering) Let j ∈ J . It holds t0 := F (0)(r)×J ∈ T , t′0 := J×F (0)(t) ∈ T ′ and j ∈ J . If neither t0 nor
t′0 is a leaf, then there exists J ′ ∈ S(J) such that j ∈ J ′ and t1 := F (1)(r) × J ′ ∈ T , t′1 := J ′ ×F (1)(t) ∈ T ′.
By induction we define ti = F (i)(r) × s, t′i = s ×F (i)(t) with j ∈ s. Let i be the first index for which either
ti = F (i)(r) × s or t′i = s ×F (i)(t) is a leaf. Then j ∈ s ∈ U(r × t, i).

10

Theorem 2.20 (structure of the H-matrix product) Let T be a block H-tree based on TI , TJ and let T ′

be a block H-tree based on TJ , TK. Let Csp(T) and Csp(T ′) denote the sparsity constant of T and T ′ and set
p := min{depth(T), depth(T ′)}. The exact multiplication is a mapping · : H(T, k)×H(T ′, k′) → H(T ·T ′, k̃)
for some k̃ which can be bounded by

k̃ ≤ (p + 1)min{Csp(T), Csp(T ′)}max{k, k′, nmin}. (2.9)

The exact multiplication can be performed with complexity

NH,·(T, T ′) ≤ 2(p + 1)Csp(T)Csp(T ′) (max{k′, nmin}NH,St(T, k) + max{k, nmin}NH,St(T ′, k′)) .

Proof. a) (Rank) Let M ∈ H(T, k), M ′ ∈ H(T ′, k′), and r × t ∈ L(T · T ′). Due to (2.6), we can express
the product by (p + 1)maxi

j=0 #U(r × t, j) addends, each of which is a product of two matrices. From the
definition of U(r× t, j) we get that for each addend one of the factors corresponds to a leaf and so its rank is
bounded by max{k, k′, nmin}. Hence, each addend has a rank bounded by max{k, k′, nmin}. It follows that
k̃ ≤ (p + 1)maxi

j=0 #U(r × t, j)max{k, k′, nmin}. The cardinality of U(r × t, j) is bounded by

#U(r × t, j) ≤ #{s ∈ T
(j)
J | F j(r) × s ∈ T } ≤ Csp(T),

#U(r × t, j) ≤ #{s ∈ T
(j)
J | s ×F j(t) ∈ T ′} ≤ Csp(T ′),

which yields #U(r × s, j) ≤ min{Csp(T), Csp(T ′)}.
b) (Complexity) Using the representation formula (2.6), we have to compute the products M |r×sM

′|s×t

that consist (due to the definition of U(r× t, j)) of max{k, k′, nmin} matrix-vector products. In the following,
the expressions NH,St(Tr×J , k) and NH,St(T ′J×t, k

′) appear which denote the storage requirements for a
submatrix to the index set r × J and J × t of a matrix in H(T, k) and H(T ′, k′). We use the abbreviations
κ := max{k, nmin} and κ′ := max{k′, nmin} and conclude that

NH,·(T, T ′)
Lem. 2.5

≤
∑

r×t∈L(T ·T ′)

p∑
j=0

∑
s∈U(r×t,j)

max{2κ′NH,St(Tr×s, k), 2κNH,St(T ′s×t, k
′)}

(2.7)

≤
∑

r×t∈L(T ·T ′)
2 max{κ′NH,St(Tr×J , k), κNH,St(T ′J×t, k

′)}

= 2
p∑

i=0

(∑
r×t∈L(T ·T ′,i)

κ′NH,St(Tr×J , k) +
∑

r×t∈L(T ·T ′,i)
κNH,St(T ′J×t, k

′)

)
Lem. 2.17

≤ 2
p∑

i=0

(Csp(T)Csp(T ′)κ′NH,St(T, k) + Csp(T)Csp(T ′)κNH,St(T ′, k′))

≤ 2(p + 1)Csp(T)Csp(T ′) (κ′NH,St(T, k) + κNH,St(T ′, k′)) ,

proving the last estimate.
The factor p + 1 in (2.9) can be replaced by #L with L corresponding to L(T · T ′) (cf. (2.3)).

Remark 2.21 Lemma 2.17 shows that the product of two sparse H-matrices will always yield a sparse H-
matrix. Theorem 2.20 bounds the blockwise rank of the product. However, the product tree T ·T ′ may change

drastically even if T = T ′: .

2.2 Idempotency Based Estimates

2.2.1 Case I = J = K

Next, we consider the case I = J = K. Given matrices A, B ∈ H(T, k), where T is the block H-tree based
on TI , we would like to get a product AB in H(T, k). Due to §2.1.6, the result is a matrix in H(T ·T, k̃) with
the product tree T · T instead of T. The necessary conversion from H(T · T, k̃) into H(T, k′′) is discussed in
the following.

11

An H-tree T may be called idempotent if T · T = T holds for the multiplication of Definition 2.16. In
that case, we immediately get the desired representation formula (2.6) of the product of two H-matrices
from H(T, k) in the same set. In general, however, the tree T will not be idempotent but almost idempotent,
which will be measured by the idempotency constant introduced below.

Definition 2.22 (idempotency) Let T be a block H-tree based on TI . We define the elementwise idem-
potency Cid(r × t) and idempotency constant Cid(T) by

Cid(r × t) := #{r′ × t′ | r′ ∈ S∗(r), t′ ∈ S∗(t) and ∃s′ ∈ TI : r′ × s′ ∈ T, s′ × t′ ∈ T },
Cid(T) := maxr×t∈L(T) Cid(r × t).

If the tree T is fixed, the short notation Cid is used instead of Cid(T).

If the tree T is idempotent, then for any r× t ∈ L(T) and s ∈ TI there holds r×s ∈ L(T) or s× t ∈ L(T)
(see Definition 2.16) so that Cid = 1. The reverse statement is not true: if Cid = 1 then T is not necessarily

idempotent, because the tree T · T can be coarser than T : .

Example 2.23 To illustrate Definition 2.22 we consider the block H-tree

and the leaf r × t in the top left corner:

r

t

r’ r’

s’

s’

t’ t’

The vertex s′ connects the two vertices r′, t′ in the sense that r′×s′ ∈ T and s′×t′ ∈ T , while r′×t′ �∈ T . The
number of vertices r′, t′ that are contained in r, t and connected by a vertex s′ is 5, which is the elementwise
idempotency Cid(r × t) of the vertex r × t:

r’ r’ r’
r’ r’

t’ t’ t’ t’ t’

The following theorem provides a matrix product such that the result lies in H(T, k′′) (same tree T as
for the factors).

Theorem 2.24 (multiplication of H-matrices) Let T be a block H-tree of the index set I× I with idem-
potency constant Cid, sparsity constant Csp and depth p. We assume (for simplicity) nmin ≤ k, k′. The exact
multiplication is a mapping · : H(T, k) ×H(T, k′) → H(T, k̃) with some k̃ bounded by

k̃ ≤ CidCsp(p + 1)max{k, k′}.

The formatted multiplication �best : H(T, k) × H(T, k′) → H(T, k′′) for any k′′ < k̃ is defined as the exact
multiplication followed by the truncation T H

k′′←k̃
of Lemma 2.9 and can be computed with complexity

NH,�,best(T, k, k′) ≤ 43C3
idC

3
spk3(p + 1)3 max{#I, #L(T)}

by truncating the exact product. Using the fast truncation algorithm of Lemma 2.10, the complexity can be
reduced to

NH,�(T, k, k′) ≤ 56C2
sp max{Cid, Csp}max{k, k′}2(p + 1)2#I + 184CspCid max{k, k′}3(p + 1)#L(T).

We call this mapping � or �fast in contrast to �best from above.

12

Proof. a) (Rank) Due to (2.9), in each leaf of T · T the rank is bounded by (p + 1)Csp max{k, k′}. If a leaf
from T is contained in a leaf from T · T , then the restriction to the leaf from T does not increase the rank.
If a leaf from T contains leaves from T · T then their number is bounded by Cid and therefore the rank
bounded by k̃.

b) (Complexity) We split the cost estimate into three parts: Nmul for calculating the exact product in
T · T , N− for converting the R(k̃)-blocks corresponding to “small” leaves L−(T) in full matrix format and
N+, N fast

+ for the (fast) truncation of the R(k̃)-blocks to “large” leaves L+(T) of rank k′′.
b1) (Nmul) According to Theorem 2.20 and Lemma 2.4, the exact product using the R(k̃)-representation

in each leaf can be computed with complexity 4C3
sp(p + 1)2kk′#I.

b2) (N−) In the “small” leaves r× s ∈ L−(T) we have to change the representation to full matrix format
which has a cost of 2k̃#r#s:

N− ≤
∑

r×s∈L−(T)

2k̃#r#s ≤
∑

r×s∈L(T)

2k̃nmin(#r + #s) ≤
p∑

i=0

∑
r×s∈L(T,i)

2k̃nmin(#r + #s)

Rem. 1.10b
≤ 4(p + 1)Cspk̃nmin#I ≤ 4(p + 1)2C2

spCid max{k, k′}nmin#I.

b3) (N+) For each “large” leaf in L+(T) we truncate the R(k̃)-block to rank k using Lemma 2.9 for the
truncation or Lemma 2.10 for the fast truncation:

N+

Lem. 2.9
≤ 6k̃NH,St(T, k̃) + 23(k̃)3#L(T)

Lem. 2.4
≤ 12C3

spC2
id max{k, k′}2(p + 1)3#I + 23C3

spC3
id max{k, k′}3(p + 1)3#L(T)

≤ 35C3
spC

3
id max{k, k′}3(p + 1)3 max{#I, #L(T)},

N fast
+

Lem. 2.10
≤ CspCid(p + 1)

(
24 max{k, k′}NH,St(T, max{k, k′}) + 184 max{k, k′}3#L(T)

)
Lem. 2.4

≤ 48C2
spCid max{k, k′}2(p + 1)2#I + 184CspCid max{k, k′}3(p + 1)#L(T).

2.2.2 General Case

Now we consider the general case of possibly different index sets I, J, K.
In Theorem 2.20 the cost for the exact multiplication A · B of two matrices from H(T, k) and H(T ′, k′)

is estimated and it turns out that the product lies in the set of H-matrices based on the product tree T · T ′
(with increased rank). In practice, the structure in which the product has to be stored (after some kind of
conversion) is given. If T is based on TI , TJ and T ′ is based on TJ , TK , then we assume that the target tree
T ′′ is based on TI , TK . Consequently, each leaf of T ′′ is either

• contained in a leaf of T · T ′ or

• a vertex of T · T ′.

The following algorithm deals with the second case where the product of two structured matrices has to
be computed and converted to R(k′′)-format. To do this as fast as possible, we simultaneously compute the
product of the two structured matrices and apply the hierarchical conversion of Algorithm 2.11.

Algorithm 2.25 (simultaneous multiplication and conversion to R(k′′)-format) Let T be a block
H-tree based on TI , TJ , let T ′ be a block H-tree based on TJ , TK and let T ′′ be a block H-tree based on
TI , TK. Let A ∈ H(T, k), B ∈ H(T ′, k′) be H-matrices.

First, we sketch the idea for a 2× 2 partitioning of the index set: assume we want to convert the product[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=
[

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

13

to R(k′′)-format. By induction, we have already computed R(k′′)-approximations to AijBj� for i, j, � ∈ {1, 2}.
The sum Ai1B1� + Ai2B2� is then converted to an R(k′′)-matrix Ri�. Therefore, we have to approximate
the matrix consisting of the four R(k′′)-submatrices R11, R12, R21, R22 by an R(k′′)-matrix. This can be

accomplished if we treat
[

R11 R12

R21 R22

]
=

[
R11 0
0 0

]
+
[

0 R12

0 0

]
+
[

0 0
R21 0

]
+
[

0 0
0 R22

]
as an

R(4k′′)-matrix and use the truncation T R
k′′←4k′′ from Lemma 1.3. To compute the (formatted) product C :=

A � B we use the following procedure called by “C := 0; MulAddRk(C, I, J, K, A, B)”:
procedure MulAddRk(var C, r, s, t, A, B);
begin

C′ := 0 ∈ Rr×s. if S(r × s) = ∅ or S(s × t) = ∅ then

begin C′ := A|r×sB|s×t; { full or R(k)- or R(k′)-matrix }
C := T Rk′′←k′′+max{k,k′,nmin}(C + C′)

end else

begin for each r′ ∈ S(r), s′ ∈ S(s), t′ ∈ S(t) do

MulAddRk(C′|r′×t′ , r′, s′, t′, A, B);
C := T Rk′′←#S(r)#S(t)k′′ (C + C′)

end end;

At last we are able to present the algorithm for the fast H-matrix multiplication �.

Algorithm 2.26 (fast H-matrix multiplication) Let T be a block H-tree based on TI , TJ , let T ′ be a
block H-tree based on TJ , TK and let T ′′ be a block H-tree based on TI , TK. Let A ∈ H(T, k) and B ∈ H(T ′, k′)
be H-matrices. The following procedure computes a matrix C ∈ H(T ′′, k′′) such that C approximates A · B
by the fast truncation of Lemma 2.10 and Algorithm 2.25.

C = A � B is obtained by the call “C := 0; MulAdd(C, I, J, K, A, B)” of
procedure MulAdd(var C, r, s, t, A, B);
begin

if S(r × s) �= ∅ and S(s × t) �= ∅ and S(r × t) �= ∅ then { all matrices subdivided }
for r′ ∈ S(r), s′ ∈ S(s), t′ ∈ S(t) do MulAdd(C, r′, s′, t′, A, B)

else if S(r × t) �= ∅ then { target matrix subdivided }
begin C′ := A|r×sB|s×t; { full or R(k)- or R(k′)-matrix }

C := T Hk′′←k′′+max{k,k′,nmin}(C + C′)
end else MulAddRk(C, r, s, t, A, B) { target matrix not subdivided }

end;

2.3 Inversion of H-matrices

In order to explain the inversion procedure for H-matrices, we will shortly recapitulate the idea of [8] for
a quad tree T based on a binary tree TI . Afterwards we introduce the (slightly more general) H-matrix
inversion algorithm and bound the complexity by the complexity of the matrix multiplication.

Example 2.27 (Inversion of a 2 × 2 block matrix) Let M =
[

M11 M12

M21 M22

]
be a positive definite ma-

trix. The inverse M−1 to M can be written in the form

M−1 =
[

(M11)−1(I + M12S
−1M21(M11)−1) (M11)−1M12S

−1

S−1M21(M11)−1 S−1

]
, S := M22 − M21(M11)−1M12.

(2.10)

The invertibility of M11 and S is ensured by the positive definiteness of M (the supposed positive definiteness
can be replaced by regularity of all principal submatrices).

In (2.10) we use the multiplication and addition of matrices as well as the inverses (M11)−1 and S−1.
The idea now is to replace the exact addition and multiplication by the formatted H-matrix counterparts
and define the two inverses in the subblocks recursively. This is done by the following algorithm.

14

Algorithm 2.28 (H-matrix inversion) The procedure Invert from Table 1 for the inversion of an H-
matrix M is to be called by “H := 0; R := 0; Invert(M, I, H, R);” where the inverse is returned in the
matrix R, H is needed as auxiliary storage and the original matrix M is overwritten.

procedure Invert(var M , r, var H , var R);
begin if S(r × r) = ∅ then R|r×r := (M |r×r)

−1 else { full submatrix }
begin determine the sons S(r) = {r1, . . . , rσ}; { elimination of the lower triangular blocks }

for � = 1, . . . , σ do
begin Invert(M, r�, H, R);

for j = 1, . . . , � − 1 do
begin H |r�×rj := 0; MulAdd(H |r�×rj , r�, r�, rj , R|r�×r�

, R|r�×rj); R|r�×rj := H |r�×rj end;
for j = � + 1, . . . , σ do
begin H |r�×rj := 0; MulAdd(H |r�×rj , r�, r�, rj , R|r�×r�

, M |r�×rj); M |r�×rj := H |r�×rj end;
for i = � + 1, . . . , σ do
begin

for j = 1, . . . , � do
begin H |ri×rj := 0; MulAdd(H |ri×rj , ri, r�, rj , M |ri×r�

, R|r�×rj);
H |ri×rj := −H |ri×rj ; Add(R|ri×rj , ri, rj , 0, H |ri×rj)

end;
for j = � + 1, . . . , σ do
begin H |ri×rj := 0; MulAdd(H |ri×rj , ri, r�, rj , M |ri×r�

, M |r�×rj);
H |ri×rj := −H |ri×rj ; Add(M |ri×rj , ri, rj , 0, H |ri×rj)

end end end;
for � = σ, . . . , 1 do { elimination of the upper triangular blocks }

for i = � − 1, . . . , 1 do
for j = 1, . . . , σ do
begin H |ri×rj := 0; MulAdd(H |ri×rj , ri, r�, rj , M |ri×r�

, R|r�×rj);
H |ri×rj := −H |ri×rj ; Add(R|ri×rj , ri, rj , 0, H |ri×rj)

end end end;

Table 1: Procedure for the H-matrix inversion

Theorem 2.29 (complexity of the formatted inversion) Let T be a block H-tree. We assume that for
the ‘small’ matrix blocks r × s ∈ L−(T) the complexity of the inversion is bounded by the complexity of the
multiplication (in the case nmin = 1 both are one elementary operation). Then the complexity NH,Inv(T, k)
of the formatted inversion (Algorithm 2.28) in the set H(T, k) is bounded by NH,�(T, k, k).

Proof. We prove the statement by induction over the depth p of the tree T . For p = 0, we have assumed that
the inversion is of the same complexity as the multiplication. Now let p > 0. For the inversion of the matrix
we call the multiplication MulAdd for all combinations of blocks ri, r�, rj , where the combination i = � = j
stands for the inversion which is by induction at most of the same complexity as the multiplication. This is
exactly what is done for the computation of the product of two H-matrices. Additionally, we have to call
n − 1 times the formatted addition Add in the block ri × rj , again the same for the product.

3 Approximation of Matrices by H-Matrices

In this section we first give an algebraic result concerning the structure of the inverse to an H-matrix where
the underlying tree T is the one from the right of the picture in Remark 2.21. Afterwards, we introduce
the admissibility condition that is needed (in the applications that we aim for) to construct the tree T in
such a way that the ‘large’ leaves r × s ∈ L+(T) allow for a low rank approximation of the matrix under
consideration. In the context of partial differential equations it is the inverse to the stiffness or mass matrix
that has to be stored (and computed), in the boundary element context it is the discrete operator that has
to be stored (and computed).

15

For later purpose, we mention a result the proof of which is an easy exercise.

Lemma 3.1 Let Mi ∈ H(T, k) converge to M as i → ∞. Then also M ∈ H(T, k), i.e., H(T, k) is closed.

3.1 Algebraic Approximation

In the practical applications, it is essential that although the inverse M−1 has a rather large local rank, we
are able to approximate M−1 by a matrix from H(T, k) with modest rank k. In this subsection, however, we
apply no truncation and show instead what the local rank of the exact inverse is.

Theorem 3.2 Let M ∈ H(T, k) be an H-matrix with minimal block size nmin = k and blockwise rank k.
The block H-tree T is based on a binary H-tree TI and for all r × s ∈ T we define

S(r × s) =
{

{r′ × s′ | r′ ∈ S(r), s′ ∈ S(s)} if r = s,
∅ otherwise

(similar to the block partitioning B2 from [8, Section 2.2.2]). Let M be invertible and p := depth(T). Then
the exact inverse M−1 to M fulfils

M−1 ∈ H(T, kp). (3.1)

Proof. We prove the statement by induction over the depth p.
a) Start of induction (p = 0). The block H-tree T consists only of the root I × I. Since M was assumed

to be of full rank it follows from Definition 1.14 that #I ≤ nmin. Furthermore, L(T) = L−(T) = {I × I},
L+(T) = ∅. Therefore M−1 ∈ H(T, 0).

b) Induction step: let the statement be true for trees with depth < p. Let S(I) = {I1, I2}. The matrices
M, M−1 are partitioned into 2 × 2 submatrices corresponding to the index sets I1, I2:[

M11 M12

M21 M22

] [
(M−1)11 (M−1)12
(M−1)21 (M−1)22

]
=
[

I 0
0 I

]
. (3.2)

By induction we have (M11)−1 ∈ H(TI1×I1 , k(p− 1)) and (M22)−1 ∈ H(TI2×I2 , k(p− 1)). Let us assume for
a moment that M11 and M22 are invertible. Then equation (3.2) consists of four identities:

(M−1)11 = (M11)−1 − (M11)−1M12(M−1)21,

(M−1)22 = (M22)−1 − (M22)−1M21(M−1)12,

(M−1)12 = −(M11)−1M12,

(M−1)21 = −(M22)−1M21.

The matrices M12, M21 are of rank at most k. The last two equations reveal that rank((M−1)12) ≤ k ≤ kp
and rank((M−1)21) ≤ k ≤ kp, the first two ones show (M−1)11 ∈ H(TI1×I1 , k(p − 1) + k) and (M−1)22 ∈
H(TI2×I2 , k(p − 1) + k).

c) If M11 or M22 is not invertible, then for any small enough ε > 0 the matrices M11 + εI and M22 + εI
are invertible, so that (M + εI)−1 ∈ H(T, kp). Application of Lemma 3.1 to the limit ε → 0 yields (3.1).

Example 3.3 (inversion of a special sparse matrix) We consider a regular triangulation of [0, 1]2 with
n2 = 22p, p ∈ N, degrees of freedom: the vertices of the grid are

vij =
(

i − 1
n − 1

,
j − 1
n − 1

)
, i, j = 1, . . . , n.

16

Two vertices vij , vi′j′ are neighboured if |i − i′| + |j − j′| ≤ 1 or if i − i′ = j − j′ and |i − i′| = 1. The index
set is I := {(i, j) | i, j = 1, . . . , n}. The index set I is divided successively as follows:

I 0 I 2I 1

I 3

I 4

I 5

I 6

In the first step we divide the index set I into two equally sized subsets I1 := {(i, j) | i = 1, . . . , n/2, j =
1, . . . , n} and I2 := {(i, j) | i = n/2 + 1, . . . , n, j = 1, . . . , n} which are the two sons of the root I. In
the second step we divide the index set I1 into two equally sized subsets I3 := {(i, j) | i = 1, . . . , n/2, j =
1, . . . , n/2} and I4 := {(i, j) | i = 1, . . . , n/2, j = n/2 + 1, . . . , n} which are the two sons of I1, analogously
I2 is divided into two sons I5, I6. We repeat steps one and two until the index subsets contain only one
element: they are the leaves of the binary H-tree TI .

The root of the block H-tree T is I × I. The sons of a vertex r×s ∈ T are defined as required in Theorem
3.2.

Let the matrix M ∈ RI×I be sparse in the sense that M(i,j),(i′,j′) = 0 if the corresponding vertices vij , vi′j′

of the grid are not neighboured (This arises typically for finite element or finite difference discretisations of
partial differential operators).

The vertices of the H-tree TI were chosen such that at most n elements of two disjoint index subsets Ii, Ij

of I are neighboured. Therefore the rank k of M restricted to Ii × Ij is at most n. If M is invertible, then
Theorem 3.2 yields

M ∈ H(T, n) ⇒ M−1 ∈ H(T, np).

¿From [8] we can estimate the storage requirements for the H-matrix representation of M−1 by 2n3p2 which
(for p > 6) is less than n4 for the full matrix representation.

3.2 Analytic Approximation: Model Problem

We consider an integral operator of the form

K[u](x) =
∫

Ω

g(x, y)u(y)dy

on a subdomain or submanifold Ω ⊂ Rd with a kernel function g : Rd×Rd → R. The operator K is discretised
by a Galerkin finite element (boundary element) scheme for a basis B := {φ1, . . . , φn}, φi : Ω → R, and
yields a matrix

Ki,j :=
∫

Ω

∫
Ω

φi(x)g(x, y)φj(y)dxdy, i, j ∈ {1, . . . , n}.

We denote the supports of the basis functions by

Ωi := supp φi ⊂ Ω and Ωτ := ∪i∈τΩi ⊂ Ω for τ ⊂ I.

Our aim is to approximate the matrix K by a matrix KH ∈ H(T, k) for a ‘suitable’ block H-tree T and
rank k. If one assumes that the kernel g is asymptotically smooth (cf. [2]) then it can locally be approximated
by a degenerate kernel g̃(x, y) =

∑k
i=1 g1,i(x)g2,i(y) such that

max
(x,y)∈Ωτ×Ωσ

|g(x, y) − g̃(x, y)| = O(C
d√

k
τ,σ)

17

for a block τ × σ ∈ TI×I , where the constant Cτ,σ < 1 depends on the ratio of their distance (dist(τ, σ) :=
dist(Ωτ , Ωσ)) with respect to the Euclidean distance and their Chebyshev diameter (diam) defined by

diam(τ) := inf
{
ρ ∈ R | ∃x ∈ Rd ∀y ∈ Ωτ : ‖x − y‖2 ≤ ρ/2

}
. (3.3)

Typically, one requires the standard admissibility condition

min{diam(τ), diam(σ)} ≤ 2η dist(τ, σ) (3.4)

to ensure Cτ,σ < 1 (exponential convergence with respect to the rank k). However, the statements in this
article also hold for the stronger admissibility condition

max{diam(τ), diam(σ)} ≤ 2η dist(τ, σ) (3.5)

(min replaced by max), which is needed for the (more refined) H2-matrix approach.
It is essential that the basis functions φi have a small support as usual in FEM or BEM. In the extreme

opposite case of global support (Ωi = Ω), there exists not even a single block τ×σ that fulfils the admissibility
condition (3.4). Therefore, we assume that the supports are locally separated in the sense that there exist
two constants Csep and nmin such that

max
i∈I

#{j ∈ I | dist(Ωi, Ωj) ≤ C−1
sep diam(Ωi)} ≤ nmin. (3.6)

The left-hand side is the maximal number of ‘rather close’ supports. Note that the bound nmin is the same
as in Definition 2.3, i.e., the choice of nmin should satisfy (3.6). The constant Csep is needed in the next
section. The following example illustrates that Csep is very small, even if the grid is strongly graded (note
that the smaller Csep is the weaker is the condition (3.6)).

Example 3.4 (geometrically graded mesh) Let Ω = [0, 1] be an interval that is subdivided into n dis-
joint sub-intervals Ωi:

Ωn := [0, 21−n], Ωi := (2−i, 21−i].

The mesh is geometrically graded to the left corner and fulfils condition (3.6) for the constants nmin := 3
and Csep := 3 for any n ∈ N (the ratio of the diameters between two adjacent sub-intervals is 2 < Csep). A
stronger grading would result in a larger Csep.

One should notice that an extremely refined mesh like in Example 3.4 is rarely used in practice.

Example 3.5 (algebraically graded mesh) Usually, adaptive grids refined towards a point use an alge-
braically graded mesh like Ωn := [0, n−g], Ωi :=

((
i−1
n

)g
,
(

i
n

)g] for a suitable exponent g ≥ 1 (see [6]).

In our model problem we only consider the discretisation of an integral operator with sufficiently smooth
kernel. However, the same admissibility condition (3.5) is also required to construct block H-trees T that
are suitable to approximate the inverse to a finite element stiffness matrix in the set H(T, k), where the
underlying differential operator is uniformly elliptic with L∞-coefficients (cf. [1]). Note that the integral
kernel (the corresponding Green’s function) has very poor smoothness, since the coefficients may be extremely
nonsmooth.

4 Construction of the H-Tree and Block H-Tree

4.1 Construction of the H-Tree TI

Let I be any fixed (finite) index set. Let d ∈ N. For each i ∈ I we choose an arbitrary point mi ∈ supp(φi).

Construction 4.1 (cardinality balanced clustering) Let {e1, . . . , ed} ∈ Rd denote the unit vectors.
We construct the tree TI by defining root(TI) := I and for each vertex t ∈ T the set S(t) of successors
as follows. We define the minimal and maximal coordinates

αj := min{〈mi, ej〉 | i ∈ t}, βj := max{〈mi, ej〉 | i ∈ t} for j = 1, . . . , d.

18

Let jmax := argmax{βj − αj | j ∈ {1, . . . , d}}. We sort the set {〈mi, ejmax〉 | i ∈ t} in non-descending order
mi1 , . . . , mi#t

(or determine the median). The set of sons of t is then defined as

S(t) := {s1, s2}, s1 := {i1, . . . , i�#t/2�}, s2 := {i�#t/2�+1, . . . , i#t}.

The above defined cardinality balanced construction has shown to be practically useful. Later we will
see that for some model problems we can prove that the cardinality balanced construction is well suited.
In general however, we are not able to prove much for the resulting tree TI , and therefore we give another
easier to analyse procedure. In the numerical test of the last chapter we compare both approaches.

Construction 4.2 (geometrically balanced clustering) Without loss of generality we assume that the
domain Ω is contained in the cube [0, hmax)d. The regular subdivision of this cube into 2d, 22d, . . . , 2pd

subcubes can be used to define an H-tree TI with
∑p

j=0 2dj vertices corresponding to one of the subcubes. We
construct the tree TI by defining root(TI) := I and for each vertex t ∈ T the set S(t) of successors as follows.
The cubes Cl

j on level l for a multiindex j ∈ Nd are defined as

C(1)
12

C(1)
2 2C(1)

1 2

(0)C1 1 C(2) C(3)C(1)
1 1 ** **

Cl
j := Il

j1 × · · · × Il
jd

with Il
i :=

[
(i − 1)2−lhmax, i2−lhmax

)
.

The sons (successors) S(Cl
j) are defined as the 2d cubes on level l + 1 that are contained in Cl

j. Each index

subset t ∈ T
(�)
I corresponds to a cube Cl

j, starting with the root I and the cube C0
(1,... ,1). The sons of a vertex

t with corresponding cube Cl
j are defined as

S(t) := {sC | C ∈ S(Cl
j)} \ {∅}, where sC := {i ∈ t | mi ∈ C} for C ∈ S(Cl

j).

4.2 Construction of the Block H-Tree T

Based on the H-tree TI from Construction 4.1 or Construction 4.2 and the admissibility condition (3.4) we
can define the block H-tree T as follows. For an index subset r ⊂ I we define the corresponding domain as
Ωr := ∪i∈rΩi. A product index set r × s with corresponding cubes Cr and Cs is called admissible, if

min{d̃iam(r), d̃iam(s)} ≤ 2ηd̃ist(r, s), (4.1)

where the modified distance and diameter are

d̃iam(t) := diam(Ct) + 2 max
i∈t

diam(Ωi),

d̃ist(r, s) := dist(Cr, Cs) − 2 max
i∈r∪s

diam(Ωi).

If a product r×s is admissible with respect to (4.1) then (see Lemma 4.5) the corresponding domain Ωr×Ωs

is admissible with respect to the standard admissibility condition (3.4).

19

Ω i

im

Ω

Cr

r

L1

L2

Cr

Figure 1: Left: the cluster Ωr contains the whole set Ωi while the corresponding cube Cr contains only mi.
Right: the cube Cr and the first two layers L1 and L2.

Construction 4.3 (canonical block H-tree) Let the H-tree TI be given. We define the block H-tree T
by root(T) := I × I and for each vertex r × s ∈ T the set of successors

S(r × s) :=
{

{r′ × s′ | r′ ∈ S(r), s′ ∈ S(s)} if #r > nmin and #s > nmin and r × s is inadmissible,
∅ otherwise.

Lemma 4.4 Let T be the block H-tree of depth p ≥ 1 built from the H-tree TI by Construction 4.3. We
denote the maximal number of sons of a vertex s ∈ TI by Csons. Then the sparsity constant (cf. Definition
2.1) Csp of T is bounded by

Csp ≤ Csons max
r∈TI

#{s ∈ TI | r × s ∈ T \ L(T) and r × s is inadmissible}.

Proof. Let r × s ∈ T (�). Then r × s is either the root of T or the father element F(r)×F(s) is inadmissible
due to Construction 4.3.

Lemma 4.5 (geometrically balanced cluster tree) Let hmin := mini∈I diam(Ωi). We use the same
notation as in Construction 4.2 and assume that (3.6) holds for some constants Csep, nmin ∈ N. Then
Constructions 4.2 and 4.3 yield a block H-tree T where each r × s ∈ L+(T) fulfils

min{diam(Ωr), diam(Ωs)} ≤ 2η dist(Ωr, Ωs)

and the depth as well as the sparsity and idempotency constant of T is bounded by

Csp ≤ (8(η−1(1 + 2Csep) + Csep)
√

d + 4)d,

Cid ≤ ((4 + 4η)(1 + 2Csep))2d,

depth(T) ≤ 1 + log2

(
(1 + 2Csep)

√
dhmaxh

−1
min

)
.

Proof. a) Admissibility. Let r × s ∈ L+(T) be admissible. Since diam(Ωr) ≤ d̃iam(r) and d̃ist(r, s) ≤
dist(Ωr, Ωs) we have

d̃iam(r) ≤ 2ηd̃ist(r, s) ⇒ diam(Ωr) ≤ 2η dist(Ωr, Ωs).

b) Sparsity. For all t ∈ T
(�)
I with #t > nmin there holds

max
i∈t

diam(Ωi)
(3.6)

≤ Csep diam(Ct) = Csep

√
d 2−�hmax, (4.2a)

d̃iam(t) = diam(Ct) + 2 max
i∈t

diam(Ωi) ≤ (1 + 2Csep)
√

d 2−�hmax, (4.2b)

d̃iam(t) ≥
√

d 2−�hmax. (4.2c)

20

Our aim is to apply Lemma 4.4 where we have to bound the number of inadmissible vertices. Let r ∈ TI

with #r > nmin. The distance from Cr to the clusters belonging to the same level � is considered in layers
(see Figure 1) as follows:

L1 := {Cs | dist(Cs, Cr) = 0}, Li := {Cs | dist(Cs, Li−1) = 0} \ Li−1 for i = 2, 3, . . .

The distance of a cluster Ωs to Ωr with Cs ∈ Li+1 is bounded by

d̃ist(s, r)
(4.2a)

≥ (i − Csep

√
d) 2−�hmax. (4.2d)

For a cluster Ωs with Cs ∈ Li+1 there holds

i ≥ (η−1 + 2η−1Csep + Csep)
√

d ⇒ η(i − Csep

√
d) ≥ (1 + 2Csep)

√
d

⇒ η(i − Csep

√
d) 2−�hmax ≥ (1 + 2Csep)

√
d 2−�hmax

(4.2b,d)⇒ min{d̃iam(s), d̃iam(r)} ≤ η d̃ist(s, r)

and it follows that all products s × t with Cs ∈ Li+1 and i ≥ ilayer := ((1 + 2Csep)η−1 + Csep)
√

d are
admissible. The number of inadmissible clusters is therefore bounded by #L1 + · · ·+#Lilayer ≤ (2ilayer+1)d.
According to Lemma 4.4, the sparsity of T is bounded by Csp ≤ 4d(2ilayer + 1)d.

c) Depth. From (4.2b) the diameter of a (non-leaf) cluster on level � is bounded by (1+2Csep)
√

d 2−�hmax.
According to the definition of hmin we get (1 + 2Csep)

√
d 2−�hmax ≥ hmin and therefore � ≤ log2((1 +

2Csep)
√

d (hmax/hmin)).
d) Idempotency. Let r × t ∈ L(T, �). If #Ir ≤ nmin or #It ≤ nmin, then the elementwise idempotency

is Cid(r × t) = 1. Now let r × t be admissible. Define q := �(log2(2(1 + η)(1 + 2Csep))�. We want to prove
that for all vertices r′, s′, t′ ∈ T �+q, r′ × s′ ∈ S∗(r × s) and s′ × t′ ∈ S∗(s × t) one of the vertices r′ × s′ and
s′ × t′ is a leaf. Let r′, s′, t′ be given as above and min{#r′, #s′, #t′} > nmin.

For u ∈ {r′, s′, t′} it holds

d̃iam(u)
(4.2b)

≤ (1 + 2Csep)
√

d 2−q−�hmax ≤ 1
2

√
d(η + 1)−12−�hmax. (4.2e)

Then we can estimate

d̃iam(s′)
(4.2e)

≤ 1
2

√
d(1 − η(η + 1)−1)2−�hmax = 1

2

√
d 2−�hmax − η 1

2

√
d 2−�hmax(η + 1)−1

(4.2c,e)

≤ 1
2 min{d̃iam(r), d̃iam(t)} − η max

u∈{r′,s′,t′}
d̃iam(u)

≤ 1
2η d̃ist(r, t) − η max

u∈{r′,s′,t′}
d̃iam(u)

= 1
2η dist(Cr , Ct) − η max

i∈r∪t
diam(Ωi) − η max

u∈{r′,s′,t′}
d̃iam(u)

≤ η max{dist(Cr′ , Cs′), dist(Cs′ , Ct′)} + η diam(Cs′) − η max
u∈{r′,s′,t′}

d̃iam(u)

≤ η max{d̃ist(r′, s′), d̃ist(s′, t′)} + 2η max
i∈r′∪s′∪t′

diam(Ωi) + η diam(Cs′)

− η max
u∈{r′,s′,t′}

d̃iam(u)

≤ η max{d̃ist(r′, s′), d̃ist(s′, t′)},

i.e., either r′ × s′ or s′ × t′ is admissible (and has no sons). It follows that there are no vertices r′′ × s′′ ∈
T (�+q+1) and s′′ × t′′ ∈ T (�+q+1) with r′′ ∈ S∗(r), t′′ ∈ S∗(t). Since the number of sons of a vertex is limited
by 22d, there are at most 22dq vertices in T × T that are contained in r × t.

Remark 4.6 Lemma 4.5 proves that Construction 4.2 (→ H-tree) combined with Construction 4.3 (→ block
H-tree) yields an H-tree T that is sparse and idempotent with Csp and Cid independent of the cardinality of
the index set I. The depth of the tree is estimated by the logarithm of the ratio of the smallest element to the
diameter of the whole domain (which can be large). Construction 4.1 does not necessarily lead to sparsity
(idempotency) independent of #I. This is not to say that the resulting H-matrices are not data-sparse, but
the block-structure is less homogenous and more difficult to analyse. The trees from Construction 4.1 fulfil
the condition #S(t) �= 1 for all vertices t ∈ T .

21

Remark 4.7 (admissibility for H2-matrices) The results of Lemma 4.5 depend on the admissibility con-
dition (3.4). In the context of H2-matrices [11] the stronger admissibility condition

max{diam(τ), diam(σ)} ≤ 2ηdist(τ, σ) (4.3)

is required. The bounds for the sparsity constant Csp, the idempotency constant Cid and the depth p of the
tree also hold for the admissibility condition (4.3), because the reference cubes Cr,Cs on the same level are
all of equal size.

4.3 A Special Vertex Concentrated Grid

In Lemma 4.2 we were able to prove that the block H-tree constructed by geometrically balanced clustering
is sparse and almost idempotent with constants independent of the number of basis functions #I. However,
the depth p of the tree depends on the ratio of the diameter hmin of the smallest support to the diameter hmax

of the whole domain. For a uniformly refined grid with nd vertices in Rd we would expect hmin = O(n−1),
while hmax = O(1). If the grid is concentrated along one edge using an algebraically graded mesh, we would
expect hmin = O(n−d) (see Example 3.5). In both cases the depth p is proportional to log(n). Therefore,
for practically relevant grid constructions, the depth of the tree causes no problems.

However, there are pathological cases of geometrically graded meshes. In Example 3.4 the grid is expo-
nentially concentrated towards the origin. The diameter of the leftmost interval is 21−n and the diameter of
the domain is 1. Here, the depth of the (geometrically balanced) tree would be p = O(n) (implying that the
H-matrix technique is as costly of the naive approach, e.g., the storage is NH,St ≤ depth(T)Csp#I = O(n2)).

In the following we consider a similar example in R2 where we can prove that the (almost) cardinality
balanced H-tree of the index set has sparsity and idempotency constants independent of n. In the next
example, the elements (panels) may be considered as the supports of piecewise constant basis functions in a
boundary element method.

L3L5 L4 L2 L1

0
0

1

1

{1, . . . , p}
����

����
{1, . . . , p/2}

�
��

�
��

{p/2 + 1, p}
�

��
�

��
...

...

	
		

�
���

	
		

�
���

{1} {2} . . . {p − 1} {p}

Figure 2: Left: the grid consists of n = 3p + 1 panels. The diameter of the smallest panel is 2−p
√

2. The
grid is partitioned into layers L1, . . . , Lp that contain panels of equal size.Right: a balanced H-tree for the
index set J = {1, . . . , p}, where p is a power of two. If p is not a power of two, then there appear also leaves
on the last but one level.

Example 4.8 We consider the grid from Figure 2 with n = 3p + 1 panels (Ωi)i∈I that is constructed by p
times regularly refining the panel at the origin into four parts and starting with the unit square [0, 1]2. We
define the layers L1, . . . , Lp that contain panels of equal size (see Figure 2) where the size is decreasing with
increasing layer number.

Let J := {1, . . . , p} denote the layer numbers and let TJ be a cardinality balanced binary H-tree of J as
depicted in Figure 2. Analogously, the tree TI is the same as TJ but the layer numbers are replaced by the

22

numbers of the domains that belong to it. The tree T is built as in Construction 4.3 with the admissibility
condition

r × s admissible ⇔ min{diam(Ωr), diam(Ωs)} ≤ 2η dist(Ωr, Ωs)

and nmin := 2�3/2 + log2(η
−1)�. In the following we bound the sparsity Csp and idempotency Cid of T .

The diameter of a single layer Lj is 23/2−j which is also the diameter of Lj ∪ · · · ∪ Lp. Two vertices
r, s ∈ TI are admissible, if there are at least �3/2+ log2(η−1)� layers between them: the smaller one is of the
size 23/2−j and the distance between the two is at least 23/2+log2(η

−1)2−j = η−123/2−j.
(Sparsity) Let r ∈ TI. According to the prior statement the only inadmissible nodes to r are the ones

containing at least one of the 2�3/2 + log2(η−1)� + 1 layers closest to r. From Lemma 4.4 we get Csp ≤
8 + 4�log2(η

−1)�.
(Idempotency) Let r × t ∈ T be admissible and let r × s, s × t be inadmissible, especially #s > nmin.

Then s contains at least 2�3/2 + log2(η−1)� layers so that the two sons of s have at least a distance of
�3/2 + log2(η

−1)� to one of the clusters r, t. Therefore, Cid ≤ #S(r)#S(t) + 1 ≤ 5.

In the previous example we were able to define the H-tree TI such that the canonical block H-tree T
from Construction 4.3 is sparse and idempotent with depth(T) = O(log(n)). This example illustrates that
in the case where the geometrically balanced approach of Construction 4.2 fails, we can use Construction 4.1
which will yield an H-tree TI of depth at most log2(n). In practice however, we do not expect the grids to
be strongly refined only towards a few single vertices and therefore Construction 4.2 should be appropriate.

5 Numerical Results

The numerical tests in this section serve two purposes: first, we want to compare the theoretical results
with the numerical ones in order to see if there is some gap between theoretical asymptotic bounds and
actual complexity. Second, for the cardinality balanced clustering we were not able to sufficiently analyse
the arising H-trees and therefore we want to observe the complexity of the H-matrix arithmetics for some
model problems. It will turn out that the complexity is geometry independend in the sense that it is worse
for a uniform grid than for irregular grids.

It should be noted that the operator to be inverted has no influence on the complexity of the formatted
arithmetics for a fixed rank k (only the approximation quality may differ). For the sake of simplicity, we
consider Poisson’s equation in the next subsections. Numerical results for other operators are presented in
the last Subsection 5.5, see also [12].

All computations in this chapter were performed on a Sun UltraSparc III with 900 MHz CPU clock
rate and 150 MHz memory clock rate.

5.1 Model Problem

We consider Poisson’s equation

−∆u = f

in Ω ⊂ R2 with Dirichlet boundary conditions u|Γ = 0 on Γ := ∂Ω. A Ritz-Galerkin discretisation with basis
functions (φi)n

i=1 leads to the problem of solving a linear system of equations

Ax = b

for the right hand side b ∈ Rn with entries bi :=
∫
Ω f(x)φi(x)dx and the stiffness matrix A ∈ Rn×n with

entries Ai,j :=
∫
Ω

∫
Ω
(∇φj(x))T∇φi(y)dxdy. We choose the nodal basis for the piecewise linear functions on

a triangulation of the domain Ω. Our goal is to compute and store an approximation A
f−1 to A−1 in the

H-matrix format. For the domain and triangulation we consider the three cases

23

Figure 3: The partitioning of the product index set I × I in the uniform case for n = 1024 and n = 4096
degrees of freedom. R(k)-blocks are light grey and full matrix blocks are dark grey.

n = 4096 n = 16384 n = 65536 n = 262144
Csp 23 23 23 23
Cid 18 18 18 18

Table 2: The sparsity Csp and the idempotency Cid of the tree T is bounded for increasing n.

uniform grid boundary concentrated edge concentrated

of a regular refinement of the unit square, a boundary concentrated grid and an edge concentrated grid.
The variety of triangulations is used to compare the clustering algorithms. It turns out that the uniform
grid is the worst case with respect to the complexity of the (formatted) arithmetics per degree of freedom.
Therefore, the numerical results for the uniform triangulation can be regarded as a benchmark result for
arbitrary triangulations.

5.2 Uniform Grid

The H-tree T card
I built by Construction 4.1 (cardinality balanced) and the H-tree T geo

I built by Construction
4.2 (geometrically balanced) for the index set I := {1, . . . , n} coincide in the uniform case. Construction
4.3 yields the block H-tree T whose leaves partition the product index set I × I. The parameter η in the
admissibility condition is η := 1.0 and the minimal blocksize is nmin := 32. For n = 1024 and n = 4096
degrees of freedom the partitioning is depicted in Figure 3. The sparsity Csp and the idempotency Cid of
the tree T are given in Table 2. We observe that the sparsity is bounded by 23 and the idempotency is

24

n = 4096 16384 65536 262144
k = 1 10.59 6.7+1 3.5+2 1.6+3
k = 2 11.85 8.0+1 4.4+2 2.2+3
k = 3 13.73 1.0+2 5.6+2 3.0+3
k = 4 16.19 1.2+2 6.8+2 3.6+3
k = 5 19.33 1.5+2 8.6+2 4.8+3
k = 6 22.41 1.7+2 1.0+3 6.0+3
k = 7 25.80 2.0+2 1.3+3 7.4+3
k = 8 27.87 2.2+2 1.3+3 7.8+3
k = 9 30.19 2.4+2 1.5+3 9.1+3
k = 15 39.77 3.4+2 2.3+3 1.5+4
k = 20 42.15 3.7+2 2.6+3 1.6+4

n = 4096 16384 65536 262144
k = 1 2.4 8.9 2.6+1 4.7+1
k = 2 5.7-1 3.2 1.2+1 2.7+1
k = 3 9.2-2 5.2-1 2.4 1.0+1
k = 4 2.0-2 9.9-2 4.4-1 1.91
k = 5 2.3-3 9.2-3 4.0-2 1.7-1
k = 6 6.4-4 3.7-3 1.8-2 8.4-2
k = 7 1.4-4 6.9-4 2.9-3 1.2-2
k = 8 7.8-5 3.9-4 1.8-3 7.7-3
k = 9 8.5-6 4.6-5 2.1-4 9.4-4
k = 15 6.8-9 3.3-8 1.3-7 5.2-7
k = 20 1.7-12 1.3-10 5.3-10 2.5-9

Table 3: Left: time (in seconds) for the (formatted) inversion on a uniform grid. Right: relative error
‖I − A Inv(A)‖ in the spectral norm for the (formatted) inverse on a uniform grid.

n = 4096 16384 65536 262144
k = 1 1.5-1 0.81 4.1 2.0+1
k = 2 2.4-1 1.44 7.8 4.0+1
k = 3 3.4-1 2.09 1.2+1 6.2+1
k = 4 4.9-1 2.87 1.6+1 8.0+1
k = 5 6.7-1 4.03 2.2+1 1.1+2
k = 6 8.9-1 5.27 2.8+1 1.5+2
k = 7 1.12 6.82 3.7+1 1.9+2
k = 8 1.33 8.02 4.3+1 2.2+2
k = 9 1.66 10.19 5.5+1 2.9+2
k = 15 3.94 24.21 1.3+2 6.9+2
k = 20 5.08 34.04 1.9+2 1.0+3

n = 4096 16384 65536 262144
k = 1 20.59 1.3+2 6.6+2 3.3+3
k = 2 24.95 1.7+2 9.4+2 5.2+3
k = 3 30.36 2.1+2 1.3+3 7.6+3
k = 4 37.82 2.7+2 1.6+3 9.3+3
k = 5 46.91 3.5+2 2.2+3 1.3+4
k = 6 57.02 4.3+2 2.8+3 1.7+4
k = 7 68.75 5.3+2 3.5+3 2.2+4
k = 8 77.28 6.0+2 3.8+3 2.3+4
k = 9 93.55 7.3+2 4.8+3 2.9+4
k = 15 1.7+2 1.4+3 9.7+3 6.2+4
k = 20 2.0+2 1.8+3 1.2+4 8.0+4

Table 4: Left: time (in seconds) for the (formatted) addition on a uniform grid. Right: time (in seconds)
for the (formatted) multiplication on a uniform grid.

n = 4096 16384 65536 262144
k = 1 2.0-2 0.16 0.76 3.3
k = 2 3.4-2 0.18 0.88 3.9
k = 3 3.7-2 0.20 0.99 4.6
k = 4 4.0-2 0.22 1.11 5.2
k = 5 4.3-2 0.24 1.23 5.9
k = 6 4.6-2 0.26 1.35 6.5
k = 7 4.9-2 0.28 1.46 7.1
k = 8 5.1-2 0.30 1.58 7.7
k = 9 5.4-2 0.31 1.69 8.4
k = 15 7.1-2 0.43 2.39 12.1
k = 20 7.1-2 0.44 2.54 13.4

n = 4096 16384 65536 262144
k = 1 1.5+4 7.4+4 3.3+5 1.4+6
k = 2 1.7+4 8.6+4 4.0+5 1.8+6
k = 3 1.9+4 9.8+4 4.7+5 2.1+6
k = 4 2.1+4 1.1+5 5.4+5 2.5+6
k = 5 2.2+4 1.2+5 6.1+5 2.9+6
k = 6 2.4+4 1.3+5 6.8+5 3.3+6
k = 7 2.6+4 1.5+5 7.5+5 3.6+6
k = 8 2.7+4 1.6+5 8.2+5 4.0+6
k = 9 2.9+4 1.7+5 8.8+5 4.4+6
k = 15 3.9+4 2.4+5 1.3+6 6.7+6
k = 20 4.8+4 3.0+5 1.7+6 8.5+6

Table 5: Left: time (in seconds) for the matrix vector multiplication on a uniform grid. Right: storage
requirements (in 1024 Byte) for an H-matrix corresponding to a uniform grid.

25

bounded by 18. The complexity of the (formatted) arithmetics can be seen in Tables 3-5. The estimated
complexity for the (formatted) multiplication and the (formatted) inversion is due to Theorem 2.24 and 2.29
O(n log(n)2k2). For a fixed rank k and an increase of the number of degrees of freedom from n = 65536 = 216

to 4n = 262144 = 218 we expect an increase in the complexity by a factor of 4n log(4n)2

n log(n)2 = 81/16 ≈ 5. This
happens for the (formatted) multiplication in Table 4 for k = 1 and the (formatted) inversion in Table 3
for k ∈ {1, 2}. The (formatted) inversion is by a factor of 2 − 3 faster than the (formatted) multiplication,
because the sparsity of the stiffness matrix is exploited in the computational scheme.

5.3 Boundary Concentrated Grid

The H-tree T card
I built by Construction 4.1 (cardinality balanced) and the H-tree T geo

I built by Construction
4.2 (geometrically balanced) for the index set I := {1, . . . , n} differ in the boundary concentrated case.
Construction 4.3 yields the block H-tree T card or T geo, respectively, whose leaves partition the product
index set I × I. The parameter η in the admissibility condition is η := 1.0 and the minimal blocksize is
nmin := 32. For n = 3058 degrees of freedom the partitioning (geometrically and cardinality balanced) is
depicted in Figure 4. The sparsity Csp and the idempotency Cid of the trees T card and T geo are given in
Table 6. As we expected the sparsity and idempotency constants of the tree T geo are bounded while these

Figure 4: The partitioning of the product index set I × I in the boundary concentrated case for n = 3216
degrees of freedom; to the left the geometrically balanced and to the right the cardinality balanced case.
R(k)-blocks are light grey and full matrix blocks are dark grey.

n = 6664 13568 27384 55024 110312
depth(T geo) 11 13 15 17 19
Csp(T geo) 26 28 34 36 26
Cid(T geo) 18 20 24 22 20
depth(T card) 9 10 11 12 13
Csp(T card) 32 38 56 80 131
Cid(T card) 24 28 34 39 53

Table 6: The sparsity Csp and the idempotency Cid of the tree T geo are bounded for increasing n while this
is not true for T card in the boundary concentrated case.

values seem to increase for the tree T card. The complexity and accuracy of the (formatted) inversion is

26

n = 6664 13568 27384 55024 110312
k = 1 17.83 30.23 7.5+1 1.8+2 4.0+2
k = 2 19.24 33.72 8.6+1 2.1+2 4.7+2
k = 3 21.27 38.26 9.6+1 2.4+2 5.5+2
k = 4 22.79 43.09 1.0+2 2.5+2 5.7+2
k = 5 24.53 44.47 1.1+2 2.7+2 6.3+2
k = 6 25.03 46.66 1.2+2 2.9+2 6.7+2
k = 7 26.42 47.88 1.2+2 3.0+2 7.0+2
k = 8 25.71 47.81 1.2+2 2.9+2 6.9+2
k = 9 25.72 47.94 1.2+2 3.0+2 7.0+2

n = 6664 13568 27384 55024 110312
k = 1 9.6-2 9.9-2 7.9-2 1.1-1 9.4-2
k = 2 1.3-2 1.1-2 1.7-2 1.9-2 1.6-2
k = 3 3.9-3 4.4-3 1.7-3 4.5-3 4.7-3
k = 4 8.6-5 4.7-4 1.7-4 5.0-4 5.1-4
k = 5 8.9-6 3.6-5 7.6-6 4.9-5 5.0-5
k = 6 2.1-8 9.8-7 1.2-6 1.3-6 1.4-6
k = 7 3.1-10 5.0-7 1.9-10 5.8-7 5.9-7
k = 8 1.4-12 4.2-10 2.1-11 2.5-10 2.8-10
k = 9 1.0-14 2.4-13 2.1-14 2.7-13 2.8-13

Table 7: Left: time (in seconds) for the (formatted) inversion on the boundary concentrated grid for the
geometrically balanced tree T geo. Right: relative error ‖I−A Inv(A)‖ in the spectral norm for the (formatted)
inverse on the boundary concentrated grid.

given in Table 7. The complexity of the inversion is reduced as compared to the uniform case while the
accuracy is enhanced. This resembles the fact that the grid degenerates to a lower dimensional structure (the
boundary). The cardinality balanced tree T card is also suitable for the (formatted) arithmetics, although
it is of an irregular structure and does not possess a bounded sparsity or idempotency. From Table 8 we
observe that the complexity of the corresponding arithmetic operations exceeds that of the geometrically
balanced tree by a factor of 2 − 3. Since we were able to provide estimates for the complexity with respect
to the geometrically balanced tree and this tree yields a better performance in practice, we propose to use
the tree T geo over the tree T card.

n = 6664 13568 27384 55024 110312
k = 1 25.69 68.26 1.9+2 4.1+2 8.2+2
k = 2 27.08 73.67 2.1+2 4.6+2 9.7+2
k = 3 29.29 80.22 2.3+2 5.4+2 1.2+3
k = 4 31.07 87.48 2.5+2 5.9+2 1.3+3

n = 6664 13568 27384 55024 110312
k = 1 3.8-2 7.8-2 7.8-2 1.0-1 1.1-1
k = 2 4.8-3 2.2-2 2.2-2 2.7-2 2.8-2
k = 3 1.2-3 6.3-3 6.3-3 8.5-3 8.6-3
k = 4 1.2-4 3.9-4 3.9-4 1.1-3 1.2-3

Table 8: Left: time (in seconds) for the (formatted) inversion on the boundary concentrated grid for the
cardinality balanced tree T card. Right: relative error ‖I−A Inv(A)‖ in the spectral norm for the (formatted)
inverse on the boundary concentrated grid.

5.4 Edge Concentrated Grid

The H-tree T card
I built by Construction 4.1 (cardinality balanced) and the H-tree T geo

I built by Construction
4.2 (geometrically balanced) for the index set I := {1, . . . , n} differ in the edge concentrated case. Construc-
tion 4.3 yields the block H-trees T card or T geo, respectively, whose leaves partition the product index set
I×I. The parameter η in the admissibility condition is η := 1.0 and the minimal blocksize is nmin := 32. For
n = 3058 degrees of freedom the partitioning (gemetrically and cardinality balanced) is depicted in Figure
5. We should mention that the left picture in Figure 5 is slightly misleading because the structure of the
partitioning is not as regular as it seems: blocks r × s with #r ≤ nmin or #s ≤ nmin and #r � nmin or
#s � nmin are not visible but they appear frequently. The sparsity Csp and the idempotency Cid of the
trees T card and T geo are given in Table 9. Again we observe that the sparsity and idempotency is bounded
for the geometrically balanced tree T geo while the sparsity of the cardinality balanced tree T card seems to be
Csp(T card) = O(

√
n). In Figure 5 we find that the maximal sparsity appears only in a few rows or columns

of the matrix and indeed the numerical results in Table 11 indicate that the (formatted) inversion is of
complexity O(n log(n)2). Since the (formatted) inversion with the cardinality balanced tree is by a factor
of 2 − 3 slower than with the geometrically balanced tree, it is advisable to use the latter one for which we
have proven the desired estimates of the complexity.

27

n = 6129 12272 24559 49134 98285
depth(T geo) 13 15 17 19 21
Csp(T geo) 21 21 21 21 21
Cid(T geo) 16 16 16 16 16
depth(T card) 10 11 12 13 14
Csp(T card) 204 204 320 320 640
Cid(T card) 40 48 56 64 72

Table 9: The sparsity Csp and the idempotency Cid of the tree T geo are bounded for increasing n while this
is not true for T card in the edge concentrated case.

Figure 5: The partitioning of the product index set I × I in the edge concentrated case for n = 3058 degrees
of freedom; to the left the geometrically balanced and to the right cardinality balanced case. R(k)-blocks
are light grey and full matrix blocks are dark grey.

n = 6129 12272 24559 49134 98285
k=1 15.01 36.01 8.7+1 2.1+2 4.8+2
k=2 15.76 38.74 9.4+1 2.3+2 5.4+2
k=3 16.83 41.79 1.0+2 2.5+2 6.1+2
k=4 17.93 44.80 1.1+2 2.7+2 6.4+2
k=5 18.94 47.34 1.2+2 2.9+2 6.9+2
k=6 19.56 49.50 1.2+2 3.1+2 7.4+2
k=7 19.78 50.55 1.3+2 3.2+2 7.7+2

n = 6129 12272 24559 49134 98285
k=1 3.2-2 3.9-2 4.4-2 4.7-2 4.9-2
k=2 4.1-3 4.3-3 4.6-3 4.7-3 4.9-3
k=3 4.3-5 4.6-5 4.7-5 4.9-5 4.9-5
k=4 5.3-6 6.2-6 6.4-6 6.8-6 6.9-6
k=5 1.1-8 1.3-8 1.3-8 1.3-8 1.3-8
k=6 5.0-11 5.8-11 5.8-11 5.9-11 6.2-11
k=7 1.9-14 2.8-14 3.5-14 4.5-14 5.2-14

Table 10: Left: time (in seconds) for the (formatted) inversion on the boundary concentrated grid. Right:
relative error ‖I −A Inv(A)‖ in the spectral norm for the (formatted) inverse on the boundary concentrated
grid.

n = 6129 12272 24559 49134 98285
k=1 42.21 1.1+2 2.5+2 5.5+2 1.3+3
k=2 50.69 1.2+2 3.0+2 6.6+2 1.6+3
k=3 57.24 1.5+2 3.6+2 8.2+2 2.1+3
k=4 67.15 1.7+2 4.3+2 9.8+2 2.5+3

n = 6129 12272 24559 49134 98285
k=1 4.6-2 5.5-2 5.5-2 6.5-2 7.0-2
k=2 5.5-3 6.3-3 6.4-3 6.7-3 6.9-3
k=3 1.3-3 1.5-3 1.6-3 1.7-3 1.7-3
k=4 2.9-5 3.2-5 3.5-5 3.7-5 3.7-5

Table 11: Left: time (in seconds) for the (formatted) inversion on the edge concentrated grid for the
cardinality balanced tree T card. Right: relative error ‖I−A Inv(A)‖ in the spectral norm for the (formatted)
inverse on the edge concentrated grid.

28

5.5 A Differential Operator with “Jumping Coefficients”

In this section we replace the Laplacian −∆ = −div∇ by the operator −∆c,

−∆c[u](x) := − (div σ(c, x) ∇) [u](x),

where the function σ(c, x) : R × [0, 1]2 → R is defined by

σ(c, x) :=

⎧⎨⎩
c if x ∈ [0.1, 0.9]2 \ [0.2, 0.8]2,

1 otherwise.

σ = 1

σ = 1

σ = c

The construction of the H-tree TI and the block H-tree T is the same as in Section 5.2. Consequently, the
sparsity and idempotency constants are the same. Moreover, the complexity for the formatted inversion is
the same in the sense that the numbers coincide exactly with those of Tables 3-5. In Table 12 we present
the approximation error ‖I − A Inv(A)‖ in the spectral norm for the formatted inverse Inv(A). In this first

c = 10 n = 4096 n = 16384 n = 65536
k = 1 6.7 26.3 57.3
k = 5 4.2-3 3.6-2 1.6-1
k = 9 3.2-5 2.5-4 9.7-4
k = 13 7.0-7 3.4-6 1.8-5
k = 17 6.1-11 2.5-9 1.4-8

c = 100 n = 4096 n = 16384 n = 65536
k = 1 111 199.9 179.7
k = 5 3.1-2 1.79 3.19
k = 9 3.9-4 4.2-3 1.7-2
k = 13 1.8-6 1.4-4 1.8-4
k = 17 1.1-10 2.4-8 4.3-7

Table 12: The relative error ‖I −A Inv(A)‖ in the spectral norm for the (formatted) inverse on the uniform
grid where the coefficient is c = 10 left and c = 100 right.

example the coefficient σ(c, x) is chosen in a structured way as it may occur, e.g., for technical devices. As a
second example we choose the coefficient σ(c, x) in a stochastic way: for each element τ in our triangulation
we define a random real number cτ ∈ [1, c] and let

σ(c, x) := cτ , for x ∈ τ,

i.e., σ(c, x) is piecewise constant. Table 13 presents the approximation error ‖I − A Inv(A)‖ in the spectral
norm for the formatted inverse Inv(A). The approximation error is (roughly) the same as for the Laplace

c = 10 n = 4096 n = 16384 n = 65536
k = 1 2.77 10.15 31.04
k = 5 2.1-3 9.9-3 4.9-2
k = 9 9.7-6 6.5-5 3.1-4
k = 13 3.8-7 1.3-6 4.9-6
k = 17 9.6-11 3.4-9 1.4-8

c = 100 n = 4096 n = 16384 n = 65536
k = 1 3.00 10.59 32.96
k = 5 2.4-3 1.1-2 5.1-2
k = 9 1.6-5 6.9-5 3.2-4
k = 13 1.5-7 1.1-6 4.0-6
k = 17 7.8-11 4.8-9 9.5-9

Table 13: The relative error ‖I −A Inv(A)‖ in the spectral norm for the (formatted) inverse on the uniform
grid where the bound for the random coefficient is c = 10 left and c = 100 right.

operator (cf. Table 3).

29

References

[1] M. Bebendorf, W. Hackbusch: Existence of H-matrix approximants to the inverse FE-matrix of elliptic
operators with L∞-coefficients. Preprint No. 21, Max-Planck-Institut für Mathematik in den Naturwis-
senschaften, Leipzig, 2002. To appear in Numer. Math.

[2] S. Börm, L. Grasedyck: Low-rank approximation of integral operators by interpolation. Preprint No. 72,
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, 2002.

[3] S. Börm, L. Grasedyck, W. Hackbusch: Introduction to hierarchical matrices with applications. EABE
27 (2003), 403-564.

[4] S. Börm, M. Löhndorf, J. Melenk: Approximation of integral operators by variable-order interpolation.
Preprint No. 82, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, 2002.

[5] G.H. Golub, C.F. Van Loan: Matrix computations. Johns Hopkins University Press, Baltimore and
London, 1996.

[6] I.G. Graham, W. Hackbusch, S.A. Sauter: Finite elements on degenerated meshes: inverse-type inequali-
ties and applications. Preprint No. 102, Max-Planck-Institut für Mathematik in den Naturwissenschaften,
Leipzig, 2002.

[7] L. Grasedyck: Theorie und Anwendungen Hierarchischer Matrizen. Doctoral thesis, Universität zu Kiel,
Germany, 2001.

[8] W. Hackbusch: A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices.
Computing 62 (1999), 89-108.

[9] W. Hackbusch: Iterative solution of large sparse systems. Springer-Verlag, New York, 1994.

[10] W. Hackbusch and B.N. Khoromskij: A sparse H-matrix arithmetic. Part II: Application to multi-
dimensional problems. Computing 64 (2000), 21-47.

[11] W. Hackbusch and B.N. Khoromskij and S.A. Sauter: On H2-matrices. Lectures on applied mathe-
matics, H.-J. Bungartz, R.H.W. Hoppe and C. Zenger (eds), Springer-Verlag, Berlin, 2000, 9–29.

[12] S. Le Borne: H-matrices for convection-diffusion problems with constant convection. To appear in
Computing.

30

