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ON THE OPTIMALITY OF VELOCITY AVERAGING LEMMAS
CAMILLO DE LELLIS, MICHAEL WESTDICKENBERG

ABSTRACT. Studying weak solutions of Burgers’ equation with finite entropy dissipation
we show the sharpness of recent results of Jabin and Perthame on velocity averaging. Sim-
ilar arguments give bounds on the regularity of asymptotic finite-energy states for some
variational problems of Ginzburg-Landau type.

1. INTRODUCTION

It is well-known that entropy solutions of Burgers’ equation
du+30,u> =0 onQ:=(0,1) xR (1)

are locally in BV, see [8]. This is no longer true for a general weak solution, which can have
wild oscillations. Thus an improved regularity can only be expected if additional assumptions
are imposed. We will consider here the following class of functions

Definition 1.1. Let S be the set of functions u € L>(2) with

o u is a weak solution of (1),
e the entropy dissipation —p, = Om(u) + 0,q(u) is a Radon measure for every convex

entropy—entropy fluz pair (n,q).

We stress that it is quite natural to consider this class of solutions. First, S contains all
entropy solutions. For these, ji, is non-—negative. Second, for v € S the conservation law
allows a kinetic formulation, see [5]. Using this remark we will show the sharpness of some
recent results in velocity averaging lemmas contained in [9].

To explain this point we recall the kinetic formulation for scalar conservation laws, first in-
troduced in [7]. Assume u € L°(R* x R") is an entropy solution of some scalar conservation
law Qyu + div, A(u) = 0 in several space dimensions. One introduces the local Maxwellian

+1 forO<v<u
X(v,u)=¢ —1 foru<v<0
0 otherwise

Then there exists a non-negative Radon measure m in (¢,2) € R™ x R” and v € R such
that x(v,u(t, z)) satisfies the transport equation

Ox(v,u) + A'(v) - Vox(v,u) = dym in D' (2)

Vice versa, if there exist a bounded function u and a non—negative measure m such that (2)
holds, then u is the unique entropy solution of the conservation law. For entropy solutions
of Burgers’ equation we obtain the transport equation
Ox(v,u) +v0px(v,u) =9dym inD. (3)
1
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One can show that also for functions w as in Definition 1.1, x(v,u) satisfies a transport
equation (2), see [5]. In that case, however, the measure m changes sign in general.

Since u = [ x(v,u)dv, velocity averaging lemmas can be applied to (2). Under certain
assumptions on the non—degeneracy of the flux A, they yield regularity results for u, see
(7, 9]. We stress the fact that the velocity averaging techniques known so far do not use the
non-negativity of m: they give exactly the same regularity also if m in (2) is just a Radon
measure. For u € S, the results in [9] yield

loc

ue W forall a < 3
We prove here that this is essentially sharp.

Let us fix some notation.
For « € R and 1 < p,q < oo let By, be the usual Besov space (see [10] Section 10f).

Definition 1.2. Let 0 > 1 and consider the 1-parameter family of spaces
{B%f’ for1 <r <o, B,}{fo forr>a}. (4)
We say that a set of functions S C L*>®(Q2) is not better than (4) locally if

a > 1/max{o, p}
for every triple (o, p, q) with or a=1/c p<o q<p
or a=1/p p>0 qg<

there exist u € S and a test function 1 € D(Q) such that Yu & By .
We can prove the following result
Proposition 1.3. Let S be the set of Definition 1.1. Then we have
S is not better than (4) locally with o = 3.

Thanks to the embedding W? C By for ¢ > 2 (see [10] Section 11.4) we conclude that
ug Worifa>1/3 orif a <1/3 and p > 1/a. Thus the results in [9] are essentially sharp
in the number of derivatives, whereas the integrability could still be improved.

We prove Proposition 1.3 by constructing weak solutions of (1) with low regularity. The
argument can be generalized to more general fluxes. It is also possible to derive upper bounds
for the regularity of entropy solutions. We refer to Section 3 for further discussion.

We mention that the starting point of our investigation was a class of variational problems
of Ginzburg-Landau type, see [2, 6]. Here one considers a family of functionals F. defined
on curl free planar vector fields (see (15)), and tries to characterize the possible limits w of
sequences {w, }. with limsup, F.(w.) < co. Combining an example of [1] with a construction
of [4] one can show that there exist limits which do not belong to BV. On the other hand,
the results in [9] can again be applied and give w € W2 for all a < 1/3. Using estimates
similar to those in Section 2 we can show that generically w is not better than (4) with
o = 3, see Proposition 3.3.

2. PROOF OF PROPOSITION 1.3

We proceed in three steps.
Step 1 A family of weak solutions of (1).
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Assume that {Ap}r € €' and {cx}r € (3 are two nonincreasing sequences of positive
numbers which will be determined later on. Let

= g JAVS
k=1
Inductively, we now define numbers

- - +o e
T =1, —Ap and  z) =1 — A2,

and intervals Iy := [2, 2] for k € N. We prescribe initial data

0,) =Y el (5)

and construct a weak solution w of (1) with (5), consisting of shocks only. For a jump

connecting 0 and ¢, the Rankine-Hugoniot condition gives a shock speed sy, : —ck Define
vectors Xy, := (1, sg). Then
U= ch 1,4, where A; = ({0} X Ik) +R"TX;.
k=1

This u is a weak solution of (1), but it is entropy violating. We compute 0, x (v, u)+v0,x (v, u)
and show that it is the v—derivative of a Radon measure m € M;,.(R, x Rf x R,). We
restrict our attention on the set 2 :=[0,1]; x R,. Define

= ({0} x z}7) +[0,1] X for j € N.
The unit normal to Jj, is given by (1 4 s2)~'/2(s;, —1). Then

Oex (v, u) + v x (v, u) th (H'LJf —H'LJ) in D'(Q2) (6)

where the function Ay, is defined as

and hg(v) = 0 otherwise. Then
=3 Hy(w)(H'LJS —H'L ),

where Hy, is a v—primitive of (6). For example we can choose

2

v 1 cpv—v f c O,
i) = [ hk(s)ds:{ b forvelal }
0

0 otherwise

The function Hj, is non—negative. Its Ll(R)fnorm equals

Hy(v)dv = 7
/ Y 12 1+ck/4 )
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i.e. is essentially cubic in the shock strength. Then we have

> 1 c
N2 J1+e2/4 — — -
[l ammx0) ;1: c/ NIk

Since {cy}r € €3 by assumption, m is a finite measure.

—_

Eal

i M8
?vc,c
—~
o
SN—

Step 2 Besov norms and main estimate.

We will work with Besov spaces B, defined on R?. Several equlvalent norms are known
for these spaces. A particularly useful one is the “local means” norm. Let ®, o € D be
mollifiers and assume that ¢ satisfies a certain moment condition (we refer to [10] Section
11 for details). Define a scaling ¢,(t,x) := s 2p(t/s, x/s) for (t,z) € R* and s > 0. Then

c ds\ '
[ullBg, ~ [lux @|L» + (/ s_o‘q||u*<ps||qu?> if ¢ < oo (9)
0
for some € > 0. If ¢ = oo the integral in s must be replaced by a sup. We also use that
lull g, ~ ||U||Bg;1 + ||atu||Bg,;1 + ||awu||Bg,;1>

and will concentrate on the 0,u—part with o« < 1. For negative regularity ¢ may be chosen
to be a standard mollifier (satisfying no moment conditions). Moreover, the first term in (9)
can be dropped, see [11] Remark 6. Thus we only have to consider

e (1-a) g ds 1/q '
[0z ul| por ~ (/o s Q}}(amu)*%”m?) if ¢ < o0

with the obvious modification for ¢ = co. We remark in passing that

|Dul|pm = sup ||Du* psljr for all u € BV. (10)

0<s<e

This follows easily from the lower semi-continuity of the variation. Hence the space BV fits
very neatly into the Besov space framework. (In fact, in his first work on Caccioppoli sets
[3] De Giorgi defined the space BV as the set of all u € L*™ such that (10) stays finite, where
s is the heat kernel.)

To fix ideas, we let ¢ be a non—negative, radially symmetric test function with

1 for (t,z) € By(0
p(t,x) :{ 0 for Emg E RQ(\)BQ(O) }

We now fix some test function ¢» € D(2) which equals 1 on a sufficiently large open set, say
[1/4,3/4]x[—1, 3]. Note that 0, (¢u) = ud,1p+10,u. Since ud,yp € L™, clearly ud,y) € BS,
for any o < 1. Thus to show that 9,(vu) ¢ BS," for some o < 1, it is sufficient to show
that ¥0,u & Bl‘j;l.
We proceed as follows: The partial derivative of u is a measure
0= 3 O ) = Y - )
V14 cg/4 1

By construction, the distance between J© and its neighbors is not less than Ay /(2+/1 + s2).
We choose ¢, < 2 so to ensure that this distance is bigger than Ay /4. Hence, for all k£ with
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4s < Ay/4, only one line J contributes to the convolution (9,u) * ¢, (recall that ¢, is

supported in a ball of radius 2s). Thus
(@) * gl (t2) =

D> ui x et o)

4S<Ak/4

5

(11)

where the functions appearing in the sum have pairwise disjoint supports. Since g, is sup-
ported in a ball of radius 2s and ¢ is 1 on [1/4,3/4] x [—1, 3] we have
fort € [1/4 +2s,3/4 — 2s].

|(Ozw) * s (£, ) = [(0ott) * 0] (£, 7)
Moreover, since ¢ is non—negative, each summand of (11) can be estimated from below

2c,52
el t) 2 § 5 VR
0 otherwise
+
—ten/?) gy e Roand ¢ € [5,1 = s,

where y 1=

s2_y2
for y € [—s, $]

T
V142 /4

see Figure 1. These remarks allow us to give the following estimate:

t

1

77
7

T
.

P
7

i
7
s

1 2z,
/ / |(WO,u) * @[ (¢, x) dedt > Z 2°¢)
0 Jo 4s<Ag/4

Then we have

Step 3 Conclusion.

|W0eu) * o, = esv7!

FIGURE 1. Local means (0,u) * ps.

o\ 2
2
(1 + %) Sl_p/
4 $+2s

3
2_25

r

1

(1—2%)5dzdt

> cs'P Z ¢, for some constant ¢ = ¢(p, ¢).

4S<Ak/4

1/p

> o

4S<Ak/4

Now we consider three cases:
If a>1/p thenu¢ By . }

CAse I: p > 3. {

If g<oo then u ¢ Byl

(12)
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Since 3 < (P if p > 3, we have
Z g =0(1) ass|O0.
4S<Ak/4

Therefore, if ¢ < 0o and o > 1/p, (12) yields

< 1 ds 1/q € ds 1/q
[¥0sull pa—r = ¢ (/ (=) g(5—1)a _) — (/ T—l)) .
' 0 S 0 s a—p)d

Similarly, if ¢ = oo and « > 1/p, then

Optt|| pa—1 > ¢ sup s'7 sp! = o0,
||¢ T HBp’oo p

0<s<e
This proves that v cannot be better than le/opo for p > 3.
Case II: p<3,a>1/3.  Thenu ¢ By .
We consider sequences of the form
A=k and ¢, =k forkeN

with suitable numbers (3, . Since we assume that {Ag}r € £' and {ci}r € €3, we require
B> 1and vy > 1/3. Then we have

4s < Ap/2 = k< (16s)71/5
As a consequence, we obtain the following estimate:
If v < 1/p, then Z =0 (s’uﬂp)/ﬁ) as s | 0.
4s<Ay /4
Since # > 1 and v > 1/3, we have

p 3—p
<l—p<l-Lt=""X=
P 5 5

1—
0 < P

and thus

1 1 1-— 1
T B
pop g 3
Assume now that o > 1/3. Then we can find > 1 and 1/p > > 1/3 such that

5= <1—a>+(%—1)—]%<1—w>/ﬁ<o,

and therefore (12) yields

€ 1/(] € 1/(]
[V0pull ot > C(/ 5= (= Vag=(1=w)/6 @) = c(/ 570 é) = 00.
P.q 0 s 0 s

A similar estimate holds in case ¢ = oo.

Case III: g <p<3. Thenu¢ B;/j.
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To achieve this last step, we need a more refined estimate. Let ¢(z) := z (logz)? for
some o > 1. This ¢ is strictly monotone increasing for z > 1 and unbounded. Hence, ¢ is
invertible and the inverse function ¢! is increasing and unbounded, too. We define

Ay, = (p(k + 2))71 and ¢y, == (p(k+2))""3 for k € N.
Then {Ag}x € €8 and {ci}x € €3 as needed. We estimate
¢~ (1/(165))-2 1/(16s)
43<ZA,€/4CZ > /1 (p(z+2) " dz = [0(3) y e 7@,(;‘%@))
with a substitution of variables y(z) := ¢(z + 2). Now we claim that
¢ (¢ (y) < c(logy)”  for y large, (13)

with ¢ > 0 some constant. If (13) holds we can estimate

1/(16s)
Z & > c(—log 163)0/ y PR dy > ¢(—log 16s) 75~ )/3 for0<s<e
4S<Ak/4 SO(3)

for suitable € and ¢ = ¢(g,0). Since ¢ < p we can choose ¢ > 1 small enough such that
oq/p < 1. Then (12) yields

€ 1/q
O,ull 23 > ¢ —log 165) 7P —ds = 00.
|10 ”B /3 Z ( & )
pP,q 0

S

This proves that u does not belong to B;,/q?’.
It remains to show (13). Since ¢! is increasing and unbounded, (13) is equivalent to

¢'(z) <c(logp(z))” for 2 large.
To establish this, we compute

¢'(z) = (log2)7[1+0(logz)"'] < c(logz)” < ¢ (log(z (log 2)7))" = ¢ (log e(2))”
for some ¢ > 0 and z large. This proves our claim.

3. CONCLUDING REMARKS

3.1. Weak solutions. If we have better regularity in the right hand side of (3), then u can
be smoother. Refining the calculations of Section 2 we can prove

Proposition 3.1. Let o € [1,3], and consider the family S of bounded weak solutions of (1)
for which the distribution

83_‘7{(%)((1), u) + v 0. x (v, u)} is a Radon measure.

Then S is not better than (4) locally.
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Assume for example that d,m in (3) itself is a measure (hence o = 2). Then, instead of
estimating the norm of Hy in (7)&(8), we consider

o 1 o
1Dsm pmney =D 2/ 1+ 2 /4 / [ (v)] dv = 5 >
k=1 R k=1

Then the arguments in Section 2 can be repeated in a straightforward way and they give the
result above, i.e. that u can have up to 1/2 derivatives. When even 9%m is a measure, then
u can have a full derivative. We conjecture that in this case u is in BV locally.

Our construction can be adapted for different fluxes.

Proposition 3.2. Let 0 > 3, and consider the family S of bounded weak solutions of Oyu +
- 0,u”" ' =0 on (0,1) x R such that

Oix(v,u) +v7 2 0px(v,u) = Oym in D, (14)
for some Radon measure m. Then S is not better than (4) locally.

This suggests that the regularity of u depends on the non—degeneracy of the flux which is
also what we expect from the velocity averaging arguments, see [7].

We conclude by giving an exact statement of what examples can be constructed for the
variational problems cited in the introduction. Let Q C R? be bounded and define

_ap|2)2
F.(w):= (= Jwl)” +¢e|Vw|* for w € HY(Q,R?). (15)
Q 9

Proposition 3.3. There exists {w.}cj0 C L>(Q, R?) such that

e V xw. =0 and limsup, F.(w.) < oo;
e w. converges (strongly in LP for every p < oo) to a w which locally is not better than
(4) with o = 3.

3.2. Entropy solutions. Similar arguments can also be applied for entropy solutions. Let
us consider the flux f(u) := %Hu”l for 0 > 1. Since f is convex, only decreasing jumps

satisfy the entropy condition. Increasing jumps must be replaced by rarefaction waves.

t
1

N[

FIGURE 2. Entropy solutions.
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We want to use a construction as in Step 1 of Section 2, i.e. we define suitable piecewise
constant initial data. We start with sequences {A};, € ¢* and {c;}x of positive numbers,
and put inductively

o0

+ . + ot

x] = E A and  x, =) — A
k=1

for k£ € N. An initial jump connecting 0 to ¢, evolves into a rarefaction wave whose leading
edge moves with speed s} := f'(cx) = ¢f. We want to ensure that waves do not interact
in the time interval [0,1]. Then A, and ¢, cannot be chosen independently. Instead, we
are forced to assume sj < Ay, for k € N, i.e. {cx}x € £°. We emphasize that {c}, € (7F?
would be sufficient to make m in the kinetic equation (16) a bounded measure. But since
rarefaction waves need more space, better summability of {c;}y is required. To have the
densest possible packing of shocks, we put Ay := ¢f. We define
cr) — f(0 1
Tpq = xlj — Spr1 with s = /( ];2 — g( ) = p— 1CZ

for £ € N. Then the shock starting at x, and connecting ¢ to 0 hits the rarefaction wave
at time ¢ = 1, see Figure 2. As in Section 2 we can write down a kinetic equation (16).
We observe that only the jumps contribute to the non—negative measure m which again is
bounded. We note that for all & with /|lx]? — |[}]> > 4s, only one jump (and no rarefaction

wave) is involved in the convolution (9,u) * ¢s(t,z) if t < 1, see Figure 2. This amounts to

16s < 2 cq o Ag
s = .
o+l 1+ o+l /14+A2

Arguing as in Step 3 of Section 2, we can then prove

Proposition 3.4. Let o > 1, and consider the family S of bounded entropy solutions of
O+ = 0,u*t =0 on (0,1) x R such that

o+1
Orx(v,u) +v7 O x(v,u) = 0ym in D, (16)
for some Radon measure m. Then S is not better than (4) locally.

This corresponds to the regularity conjectured in [7].
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