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Abstract. We use singular entropies, and the connection with the fundamental solution of the
entropy equation and its adjoint operator, in order to derive a new formula describing the coupling
of oscillations between the two characteristic fields in systems of two conservation laws.

1. Introduction

The theory of compensated compactness [Ta] provides a framework for the analysis of os-

cillations in scalar and systems of two conservation laws. It has been effective in establishing

existence theorems for the equations of elasticity [Dp1, Lin, Sh] and the equations of isentropic

gas dynamics [Dp2, DCL, LPT2, LPS, CL], and for obtaining information on propagation and

cacellation of oscillations to solutions of systems of two conservation laws [Se1, Se2, Ch1]. The

kinetic formulation [LPT1, LPT2] has provided a novel perspective for this problem leading to

existence results for the equations of isentropic gas dynamics [LPS, CL] and the equations of

chromatography [JPP].

The objective of the present work is to apply the machinery of singular entropies developed

in [PTz] for strictly hyperbolic 2 × 2 systems to the study of propagation and cancellation of

oscillations. The kinetic formulation is based on an efficient representation of the entropy struc-

ture of the problem, and this representation provides a concrete object for the study of Tartar’s

commutation relation. This leads to (i) simplified proofs for the results on cancellations of oscil-

lations developed in [Se1], and (ii) to a new formula for the coupling of oscillations between the

two characteristic fields.
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We consider a strictly hyperboilic 2× 2 system with characteristic speeds λ1 < λ2. It is shown

in [PTz] that the equations generating entropy-entropy flux pairs

(1.1) Lw,z[η] := ηwz − gz

g
ηw − fw

f
ηz = 0 ,

qw = λ1ηw ,

qz = λ2ηz ,

where gz

g = − λ1z

λ1−λ2
, fw

f = λ2w

λ1−λ2
, admit singular (distributional) solutions of the form

(1.2)

H 1lk(w, ξ) , (λ1(ξ, ζ) +Q) 1lk(w, ξ) ,

H 1lk(z, ζ) , (λ2(ξ, ζ) +Q) 1lk(z, ζ) ,

where 1lk(w, ξ) =

⎧⎪⎨
⎪⎩

1lk<ξ<w if k < w

0 if k = w

−1lw<ξ<k if w < k

,

H = H(w, z; ξ, ζ), Q = Q(w, z; ξ, ζ) solves the Goursat problem (2.26) and k ∈ R is a parameter.

(Typically, we are interested in the values of k equal to 0, ∞ or −∞ and this dependence is

omitted.) We show that the universal entropy pair H − Q generating (1.2) is precisely the

generator of the fundamental solution of L, that is

(1.3) Lw,z

[
H1l(w, ξ)1l(z, ζ)

]
= δ(w − ξ) δ(z − ζ) .

This observation leads to introduce the fundamental solution of LT , the adjoint operator to L,

(1.4) LT
w,z

[
Θ1l(w, ξ)1l(z, ζ)

]
= δ(w − ξ) δ(z − ζ) .

The fundamental solution of LT is generated by the so called Riemann function Θ = Θ(w, z; ξ, ζ),

defined by the Goursat problem (2.30) and satisfying H(w, z; ξ, ζ) = Θ(ξ, ζ;w, z). The theory

of fundamental solutions for linear hyperbolic operators is classical (see [So] and the Appendix),

but to our knowledge the presentation in terms of simple distributions is novel. In particular, the

relations of singular entropies and fundamental solutions leads to efficient representation formulas

for entropy pairs η − q (see section 2).

Next, we consider an oscillating family of solutions that satisfies the usual compensated com-

pactness framework and introduce the Young measure ν describing their oscillations

(1.5) wk �− limh(wε, zε) =
∫
h(w, z) dνx,t(w, z) = h .
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The singular entropies is an efficient tool for localizing the support of the Young measure ν and

extracting information from Tartar’s commutation relation

(1.6) η1q2 − η2q1 = η1 q2 − η2 q1

In section 3, we study cancellations of oscillations of the same characteristic field, by coupling

singular entropies (1.2) belonging to the same characteristic family. This culminates to an alter-

native proof of a result by Serre [Se1], stating that for a distributed Young measure we have the

formulas

(1.7)
∂λ1

∂w
(w, z)g2(w, z)ϕ(w) = 0 ,

∂λ2

∂z
(w, z)f2(w, z)ψ(z) = 0 ,

for any ϕ(w), ψ(z) continuous. In particular, formulas (1.7) imply strong convergence when both

characteristic fields are genuinely nonlinear, or for the equations of elasticity with exactly one

inflection point in the stress-strain constitutive relation [Se3].

In Section 4, we derive a novel formula describing the coupling of oscillations among the two

characteristic fields. We explain briefly the approach. First, from the compensated compactness

bracket and the singular entropies, we derive the formula

(1.8)
1

δ − γ

Θ(ξ, ζ;w, z)
(λ2 − λ1)(ξ, ζ)

1lw<ξ1lz<ζ =
Θ(ξ, ζ;w, z)

(λ2 − λ1)(ξ, ζ)
1lw<ξ

Θ(ξ, ζ; w̄, z̄)
(λ2 − λ1)(ξ, ζ)

1lz̄<ζ

where Θ = Θ(w, z; ξ, ζ) is the Riemann function, while δ − γ is a constant denoting the normal-

ization factor

(1.9)
1

δ − γ
=

Θ(ξ, ζ;w, z)
(λ2 − λ1)(ξ, ζ)

Equation (1.8) may be viewed as a constraint on the joint distribution function of the random

variables (w, z) describing the oscillations of the Riemann invariants. To extract information, we

use certain remarkable properties of the kernel Θ
λ2−λ1

. Namely, there is a differential operator

(1.10) N := ∂2
ξζ +

λ2ζ

λ2 − λ1
∂ξ − λ1ξ

λ2 − λ1
∂ζ

such that

(1.11)
N
( Θ
λ2 − λ1

1lw<ξ1lz<ζ

)
=

1
(λ2 − λ1)(ξ, ζ)

δ(w − ξ)δ(z − ζ)

N
( Θ
λ2 − λ1

1lw<ξ

)
= N

( Θ
λ2 − λ1

1lz<ζ

)
= N

( Θ
λ2 − λ1

)
= 0
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The reader will surely notice the explicit effect of genuine nonlinearity on the form of the operator

N . By applying the operator N to (1.8) and using (1.11) we obtain

1
δ − γ

1
(λ2 − λ1)(ξ, ζ)

δ(w − ξ)δ(z − ζ)

= ∂ξ

( Θ
λ2 − λ1

1lw<ξ

)
∂ζ

( Θ
λ2 − λ1

1lz<ζ

)
+ ∂ζ

( Θ
λ2 − λ1

1lw<ξ

)
∂ξ

( Θ
λ2 − λ1

1lz<ζ

)(1.12)

Formula (1.12) is an abstract formula describing the coupling of oscillations among the two

characteristic fields, without recourse to any structural hypotheses on the fields beyond strict

hyperbolicity. In addition, it contains as special cases the specialized formulas developed by

Serre [Se1, Se2], concerning the coupling of oscillations between two linearly degenerate fileds, or

between a linearly degenerate and a general field (see section 4).

2. Singular entropy pairs and the fundamental solution

We consider a strictly hyperbolic system of two conservation laws

(2.1)
ut + a(u, v)x = 0

vt + b(u, v)x = 0

with characteristic speeds λ1 < λ2, right eigenvectors r1, r2 and left eigenvectors l1, l2. The

eigenvectors are normalized so that ri · lj = δij .

Let w = w(u, v) and z = z(u, v) be the 1- and 2-Riemann invariants defined by ∇w = l1 and

∇z = l2, or equivalently by
∇w · r2 = 0 , ∇w · r1 = 1 ,

∇z · r2 = 1 , ∇z · r1 = 0 .

The Riemann invariants induce a map T : (u, v) → (w, z) which is locally invertible. For certain

special systems, like the equations of elastodynamics, T can be a globally defined and invertible

map.

A given field ψ may be expressed in terms of the conserved variables (u, v) or in terms of the

Riemann coordinates (w, z). The two representations are connected through the formulas

ψ(u, v) = ψ̂(w(u, v), z(u, v)) ,

∂ψ̂

∂w
◦ (w, z) =

(
r1 · ∇

)
ψ ,

∂ψ̂

∂z
◦ (w, z) =

(
r2 · ∇

)
ψ .
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(In the sequel we drop the hats and use the same notation in both domains.) Genuine nonlinearity

of the characteristic fields is expressed by

r1 · ∇λ1 > 0 or
∂λ1

∂w
> 0 and respectively r2 · ∇λ2 > 0 or

∂λ2

∂z
> 0 .

2.a Entropy pairs.

Let U = (u, v) be the conserved variable and F (U) = (a(u, v), b(u, v)) be the flux. A function

η(U) is called an entropy with corresponding entropy flux q(U) if every smooth solution of (2.1)

satisfies the additional conservation law

(2.2) ∂tη(U) + ∂xq(U) = 0 .

Entropy pairs η(U) − q(U) satisfy the equation

(2.3) ∇q(U) = ∇η(U) · ∇F (U) ,

and describe the nonlinear structure of (2.1). For strictly hyperbolic systems of two conservation

laws, (2.3) is a determined linear hyperbolic system whose solutions generate the entropy pairs

η − q.

Proposition 2.1. Let F ∈ C2 give rise to a stritly hyperbolic system. Then η ∈ C2 is an entropy

if and only if

(2.4) rα · ∇2η rβ = 0 for all α �= β .

If η is an entropy then η is strictly convex if and only if

(2.5) rα · ∇2η rα > 0 for any α .

Proof. The compatibility relation for the linear system (2.3) gives that η ∈ C2 is an entropy if

and only if ∇2η∇F =
(∇2η∇F )T = (∇F )T∇2η. This relation, when expressed in the coordinate

system {rα}, gives

(λα − λβ)rα · ∇2η rβ = 0 ,

from where (2.4) follows. Let a be a vector with coordinates aα in the coordinate system {rα}.
Then

a · ∇2η a =
∑
α

|aα|2rα · ∇2η rα
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and (2.5) follows. �

In Riemann coordinates, (2.3) takes the particularly simple form

(2.6)
qw = λ1ηw ,

qz = λ2ηz .

The compatibility equation for (2.6) is

(2.7) ηwz =
λ2w

λ1 − λ2
ηz − λ1z

λ1 − λ2
ηw .

Entropy pairs η − q can then be probuced by solving the hyperbolic equation (2.7) and then

integrating the exact system (2.6). It is convenient to introduce the functions f , g, defined

(within a multiplicative factor) by

(2.8)
f(w, z) = e

R w λ2w
λ1−λ2

ds , g(w, z) = e−
R z λ1z

λ1−λ2
ds ,

and solving fw =
λ2w

λ1 − λ2
f , gz = − λ1z

λ1 − λ2
g .

Then (2.7) is expressed in the form

(2.9) L[η] := ηwz − gz

g
ηw − fw

f
ηz = 0 .

The convexity of entropies can be checked via the relations (2.5), which in Riemann coordinates

take the form:

(2.10)
r1 · ∇2η r1 = ∂2

wη +
(
r1 · ∇2w r1

)
∂wη +

(
r1 · ∇2z r1

)
∂zη ,

r2 · ∇2η r2 = ∂2
zη +

(
r2 · ∇2w r2

)
∂wη +

(
r2 · ∇2z r2

)
∂zη .

(see [Da2] for the derivation). In general, relations (2.5) or (2.10) only provide criteria for local

convexity of the entropies. Nevertheless, in special cases criteria for global convexity of entropies

can also be derived (see [Da1], [PTz]).

2.b Singular entropy pairs and associated representation formulas.

We outline here certain results from [PTz] concerning a class of singular entropies that satisfy

(2.9) in the sense of distributions and generate representation formulas for solutions of the Goursat

problem :

(2.11)
qw = λ1ηw

qz = λ2ηz

with data
{
η(w, 0) = F (w)
η(0, z) = G(z)

,
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where F , G smooth with F (0) = G(0).

Define the indicator function

1lk(w, ξ) =

⎧⎪⎨
⎪⎩

1lk<ξ<w if k < w

0 if k = w

−1lw<ξ<k if w < k

where k is a parameter. 1lk(w, ξ) has the following properties:

(2.12)

1lk(w, ξ) = sign (w − k) 1l{ξ∈(w,k)∪(k,w)}.

∂w1lk(w, ξ) = δ(w − ξ) ,

∂ξ1lk(w, ξ) = −δ(w − ξ) + δ(ξ − k) .

We are mainly interested in the limiting cases k = ±∞, when 1lk(w, ξ) take the form

(2.13) 1l−∞(w, ξ) = 1lξ<w , 1l∞(w, ξ) = −1lw<ξ.

and in the case k = 0 denoted by 1lw(ξ) = 1l(w, ξ).

For H = H(w, z) a C2 function, the computation

(2.14) L[H1l(w, ξ)] = L[H ]1l(w, ξ) +
(
Hz − gz

g
H
)
δ(w − ξ)

shows that if H is an entropy that satisfies H = τg at w = ξ then H1l(w, ξ) is a singular entropy.

In a similar fashion, the companion computation

(2.15) L[H1l(z, ζ)] = L[H ]1l(z, ζ) +
(
Hw − fw

f
H
)
δ(z − ζ)

shows that if an entropy H satisfies H = τf at z = ζ then H1l(z, ζ) is a singular entropy.

This observation is the basis for the following conclusions (see [PTz] for the details):

(i) Let Hr = Hr(w, z; ξ, ζ) be the solution of (2.9) with data

(2.16)

{
Hr = g(ξ,z)

g(ξ,ζ) at w = ξ ,

Hr = 1 at z = ζ ,

and let Qr = Qr(w, z; ξ, ζ) be the associated flux

(2.17) λ1(ξ, ζ) +Qr(w, z; ξ, ζ) = λ1(ξ, z)
g(ξ, z)
g(ξ, ζ)

+
∫ w

ξ

λ1(x, z)
∂Hr

∂w
(x, z; ξ, ζ) dx ,
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satisfying

(2.18)

{
Qr = λ1(ξ, z)

g(ξ,z)
g(ξ,ζ) − λ1(ξ, ζ) at w = ξ ,

Qr = 0 at z = ζ .

Then Hr −Qr generates a singular entropy pair (Hr1lw(ξ), (λ1(ξ, ζ) +Qr)1lw(ξ)).

(ii) Let Hd = Hd(w, z; ξ, ζ) solve (2.9) with data

(2.19)

{
Hd = 1 at w = ξ ,

Hd = f(w,ζ)
f(ξ,ζ) at z = ζ ,

and let Qd = Qd(w, z; ξ, ζ) the associated flux

(2.20) λ2(ξ, ζ) +Qd(w, z; ξ, ζ) = λ2(w, ζ)
f(w, ζ)
f(ξ, ζ)

+
∫ z

ζ

λ2(w, y)
∂Hd

∂z
(w, y; ζ) dy ,

satisfying

(2.21)

{
Qd = 0 at w = ξ ,

Qd = λ2(w, ζ)
f(w,ζ)
f(ξ,ζ) − λ2(ξ, ζ) at z = ζ .

Then Hd −Qd generates a singular entropy pair (Hd1lz(ζ), (λ2(ξ, ζ) +Qd)1lz(ζ)).

Note that the entropies Hr can ge cut in the direction right-left while the entropies Hd can be

cut in the direction up-down; hence, the notation.

(iii) The solution of the Goursat problem (2.11) is represented in terms of the above singular

pairs via the formulas

(2.23)

η(w, z) = η(0, 0) +
∫

R

Hr(w, z; ξ, 0)1lw(ξ)F ′(ξ)dξ +
∫

R

Hd(w, z; 0, ζ)1lz(ζ)G′(ζ)dζ

q(w, z) = q(0, 0) +
∫

R

(
λ1(ξ, 0) +Qr(w, z; ξ, 0)

)
1lw(ξ)F ′(ξ)dξ

+
∫

R

(
λ2(0, ζ) +Qd(w, z; 0, ζ)

)
1lz(ζ)G′(ζ)dζ

2.c Fundamental solution and the universal entropy pair.

The indicator functions provide a simple perspective to solve the problem

(2.24) L[G] = δ(w − ξ)δ(z − ζ)

and thus to express the fundamental solution of the hyperbolic operatorL. LetH = H(w, z) ∈ C2

be a smooth function and consider the computation

(2.25)
L[H1l(w, ξ)1l(z, ζ)] = L[H ]1l(w, ξ)1l(z, ζ) +

(
Hz − gz

g
H
)
δ(w − ξ)1l(z, ζ)

+
(
Hw − fw

f
H
)
1l(w, ξ)δ(z − ζ) +Hδ(w − ξ)δ(z − ζ)
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This computation suggests the following construction: Fix a point (ξ, ζ) in the plane, and let

H = H(w, z; ξ, ζ) be the solution of the Goursat problem

(2.26) L[H ] = 0 ,

{
H = g(ξ,z)

g(ξ,ζ) at w = ξ

H = f(w,ζ)
f(ξ,ζ) at z = ζ

, H(ξ, ζ; ξ, ζ) = 1 .

H satisfies automatically the normalization condition H(ξ, ζ; ξ, ζ) = 1 and the relations{
Hz − gz

g H = 0 at w = ξ

Hw − fw

f H = 0 at z = ζ

Define next Q = Q(w, z; ξ, ζ) to be the corresponding flux normalized by Q(ξ, ζ; ξ, ζ) = 0. Inte-

grating (2.6) and using the formulas

λ1fw = ∂w(λ2f) and λ2gz = ∂z(λ1g)

we see that

(2.27)
Q(w, z; ξ, ζ) = λ1(ξ, z)H(ξ, z; ξ, ζ) − λ1(ξ, ζ) +

∫ w

ξ

λ1(x, z)Hw(x, z; ξ, ζ) dx

= λ2(w, ζ)H(w, ζ; ξ, ζ) − λ2(ξ, ζ) +
∫ z

ζ

λ2(w, y)Hz(w, y; ξ, ζ) dy .

The pair H −Q has the following properties:

(iv1) H = H(w, z; ξ, ζ) generates the fundamental solution of (2.9), that is

L[H1l(w, ξ)1l(z, ζ)
]

= δ(w − ξ) δ(z − ζ) .

(iv2) By the results of Section 2.b the pair H −Q forms a “universal” entropy pair, in the sense

that it can be cut in both directions to produce singular entropy pairs

(2.28)
H 1l(w, ξ) , (λ1(ξ, ζ) +Q) 1l(w, ξ) ,

H 1l(z, ζ) , (λ2(ξ, ζ) +Q) 1l(z, ζ) .

Consider next the adjoint of the operator L, defined by

LT [θ] := θwz + ∂w

(gz

g
θ
)

+ ∂z

(fw

f
θ
)

The fundamental solution of LT is computed by a similar argument. For Θ(w, z) ∈ C2, a

computation gives

(2.29)
LT [Θ1l(w, ξ)1l(z, ζ)] = LT [Θ]1l(w, ξ)1l(z, ζ) +

(
Θz +

gz

g
Θ
)
δ(w − ξ)1l(z, ζ)

+
(
Θw +

fw

f
Θ
)
1l(w, ξ)δ(z − ζ) + Θδ(w − ξ)δ(z − ζ)
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If Θ = Θ(w, z; ξ, ζ) is defined as the solution of the Goursat problem,

(2.30a) LT [Θ] = 0 ,

{
Θ = g(ξ,ζ)

g(ξ,z) at w = ξ

Θ = f(ξ,ζ)
f(w,ζ) at z = ζ

, Θ(ξ, ζ; ξ, ζ) = 1 ,

then Θ satisfies

(2.30b)

{
Θz + gz

g Θ = 0 at w = ξ

Θw + fw

f Θ = 0 at z = ζ

and Θ1l(w, ξ)1l(z, ζ) is the fundamental solution of the adjoint operator

(2.31) LT
[
Θ1l(w, ξ)1l(z, ζ)

]
= δ(w − ξ) δ(z − ζ) .

The generating function Θ is called Riemann function.

From the Green’s formulas in the Appendix we obtain :

(v1) The solution η of the Goursat problem (2.11) can be represented in terms of the Riemann

function Θ via the formula

(2.32)
η(w, z) = Θ(0, 0;w, z)η(0, 0) +

∫ w

0

Θ(x, 0;w, z)
(
F ′(x) − fx(x, 0)

f(x, 0)
F (x)

)
dx

+
∫ z

0

Θ(0, y;w, z)
(
G′(y) − gy(0, y)

g(0, y)
G(y)

)
dy

(v2) The generators H and Θ of the fundamental solutions obey the symmetry

(2.33) H(w, z; ξ, ζ) = Θ(ξ, ζ;w, z)

Note that (v1) is an immediate consequence of (A.9). (v2) is again obtained from (A.9) if we

select u = H(w, z; ξ, ζ) defined in (2.26) and v = Θ(ξ, ζ;w, z) defined in (2.30).

(vi) This analysis culminates to a representation formula for the solution (η, q) of (2.11) in terms

of the universal entropy pair H −Q in (2.26)-(2.27) or, equivalently, the singular pair (2.28):

η(w, z) = H(w, z; 0, 0)η(0, 0) +
∫

R

H(w, z;x, 0)1lw(x)f(x, 0)
d

dx

F (x)
f(x, 0)

dx

+
∫

R

H(w, z; 0, y)1lz(y)g(0, y)
d

dy

G(y)
g(0, y)

dy(2.34a)

q(w, z) = q(0, 0) +Q(w, z; 0, 0)η(0, 0) +
∫

R

(
λ1(x, 0) +Q(w, z;x, 0)

)
1lw(x)f(x, 0)

d

dx

F (x)
f(x, 0)

dx

+
∫

R

(
λ2(0, y) +Q(w, z; 0, y)

)
1lz(y)g(0, y)

d

dy

G(y)
g(0, y)

dy(2.34b)
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The assertion that the solution (η, q) of (2.11) is given by the formulas (2.34) can be checked

directly using (2.26), (2.27) and (2.28). We do not present here the lengthy yet straightforward

computations. Note that (2.34a) is just a rewriting of (2.32) using (2.33) while (2.34b) is the

companion formula representing the fluxes. We remark that (2.23) and (2.34) offer two alternative

representations of the solutions to (2.11) using different entropy kernels.

3. Cancellation of oscillations for 2 × 2 systems

In the next two sections we discuss the properties of oscillating families of solutions to 2 × 2

systems, using the fundamental solution of the entropy equations and the universal entropy-

entropy flux pair. Consider the following framework: (uε, vε) is a family of solutions to (2.1)

taking values within the domain of invertibility of the Riemann coordinates. We assume that the

Riemann invariants (wε(x, t), zε(x, t)) are uniformly stable in L∞
x,t, that is

(A1) |wε| + |zε| ≤ K

for some constant K, and satisfy the compactness framework that the dissipation measure,

(A2) ∂tη(wε, zε) + ∂xq(wε, zε) ∈c H
−1
loc,x,t ,

is precompact in H−1
loc,x,t for all smooth entropy pairs η − q.

By (A1) a subsequence converges to some functions w(x, t), z(x, t) ∈ L∞,

wε ⇀ w zε ⇀ z , weak-� in L∞.

Let us introduce the Young measure νx,t associated with (a subsequence of) (wε, zε) and repre-

senting the weak-� limits of (wε, zε):

(3.1) wk �− limh(wε, zε) =
∫
h(w, z) dνx,t(w, z)

For a.e (x, t) the measure ν = νx,t has compact support contained in the ball of radius K. We

will at times use the notation

h =
∫
h(w, z) dν(w, z) .

The div-curl lemma and (A2) imply that for any two entropy pairs ηi − qi, i = 1, 2, we have

Tartar’s commutation bracket [Ta]

η1q2 − η2q1 = η1 q2 − η2 q1



12

Our objective is to analyze the commutation bracket using the universal entropy pair H − Q,

which represents all possible entropy pairs (see (2.34)).

The universal pair H(w, z; ξ, ζ)-Q(w, z; ξ, ζ) is defined in Section 2.c. H is the entropy satis-

fying the Goursat data

(3.2) H(ξ, z; ξ, ζ) =
g(ξ, z)
g(ξ, ζ)

, H(w, ζ; ξ, ζ) =
f(w, ζ)
f(ξ, ζ)

while Q is the associated flux

(3.3)
Q(w, z; ξ, ζ) = λ1(w, z)H(w, z; ξ, ζ) − λ1(ξ, ζ) −

∫ w

ξ

∂λ1

∂w
(x, z)H(x, z; ξ, ζ) dx

= λ2(w, z)H(w, z; ξ, ζ) − λ2(ξ, ζ) −
∫ z

ζ

∂λ2

∂z
(w, y)H(w, y; ξ, ζ) dy .

Recall that for any (ξ, ζ) the pairs

(3.4)
H(w, z; ξ, ζ) 1l(w, ξ) , (λ1(ξ, ζ) +Q(w, z; ξ, ζ)) 1l(w, ξ) ,

H(w, z; ξ, ζ) 1l(z, ζ) , (λ2(ξ, ζ) +Q(w, z; ξ, ζ)) 1l(z, ζ) ,

are distributional solutions of (2.6), and that

L[H(w, z; ξ, ζ)1l(w, ξ)1l(z, ζ)
]

= δ(w − ξ) δ(z − ζ) .

The functions 1l(w, ξ), 1l(z, ζ) in the above relations may be replaced by the functions in (2.13).

First, the commutation bracket is expressed in terms of the universal pair H − Q. In what

follows, we suppress the w, z dependence of H and Q (with respect to which weak limits are

taken), and use the notation

(3.5) Q1(ξ, ζ) = λ1(ξ, ζ) +Q(ξ, ζ) , Q2(ξ, ζ) = λ2(ξ, ζ) +Q(ξ, ζ) .

Proposition 3.1. For a.e. ξ, θ,

(3.6)

(
Q1(θ, ζ)H(ξ, ζ) −Q1(ξ, ζ)H(θ, ζ)

)
1lw>θ1lw<ξ

= Q1(θ, ζ)1lw>θ H(ξ, ζ)1lw<ξ −Q1(ξ, ζ)1lw<ξ H(θ, ζ)1lw>θ

For a.e ζ, k,

(3.7)

(
Q2(ξ, ζ)H(ξ, k) −Q2(ξ, k)H(ξ, ζ)

)
1lz>ζ1lz<k

= Q2(ξ, ζ)1lz>ζ H(ξ, k)1lz<k −Q2(ξ, k)1lz<k H(ξ, ζ)1lz>ζ
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Proof. Let ζ be fixed and suppress the ζ dependence. For ϕ, ψ ∈ C∞
c (R) we have

∂t

∫
H(wε, zε; ξ)1lwε<ξϕ(ξ)dξ + ∂x

∫
Q1(wε, zε; ξ)1lwε<ξϕ(ξ)dξ ∈c H

−1
loc

∂t

∫
H(wε, zε; θ)1lwε>θψ(θ)dθ + ∂x

∫
Q1(wε, zε; θ)1lwε>θψ(θ)dθ ∈c H

−1
loc

The div-curl lemma then implies that for a.e. fixed (x, t)

∫
ξ

∫
θ

(
Q1(θ)H(ξ) −Q1(ξ)H(θ)

)
1lw<ξ1lw>θϕ(ξ)ψ(θ) dξdθ

=
∫

ξ

H(ξ)1lw<ξϕ(ξ) dξ
∫

θ

Q1(θ)1lw>θψ(θ) dθ −
∫

θ

H(θ)1lw>θψ(θ) dθ
∫

ξ

Q1(ξ)1lw<ξϕ(ξ) dξ

and by Fubini∫
ξ

∫
θ

{(
H(ξ)Q1(θ) −H(θ)Q1(ξ)

)
1lw<ξ1lw>θ

−
(
H(ξ)1lw<ξ Q1(θ)1lw>θ −H(θ)1lw>θ Q1(ξ)1lw<ξ

)}
ϕ(ξ)ψ(θ) dξdθ = 0

Since ϕ, ψ are arbitrary, (3.6) follows. The same argument gives (3.7). �

Due to (A1) the Young measure is for each fixed (x, t) compactly supported. Fix (x, t) and

define the smallest rectangle in the w − z plane containing the support of ν. Let ξmin, ξmax be

the locations of the vertical boundaries and ζmin, ζmax the locations of the horizontal boundaries

of the enclosing rectangle.

Lemma 3.2. (i) If ξmin < ξmax there is a constant γ so that

(3.8)

Q1(ξ, ζ)1lw>ξ = γH(ξ, ζ)1lw>ξ

Q1(ξ, ζ)1lw<ξ = γH(ξ, ζ)1lw<ξ

Q1(ξ, ζ) = γH(ξ, ζ)

for a.e. ξmin < ξ < ξmax

and

(3.9)
(
Q1(θ, ζ)H(ξ, ζ) −Q1(ξ, ζ)H(θ, ζ)

)
1lw>θ1lw<ξ = 0 a.e. ξmin < θ < ξ < ξmax

(ii) If ζmin < ζmax there is a constant δ so that

(3.10)

Q2(ξ, ζ)1lz>ζ = δH(ξ, ζ)1lz>ζ

Q2(ξ, ζ)1lz<ζ = δH(ξ, ζ)1lz<ζ

Q2(ξ, ζ) = δH(ξ, ζ)

for a.e. ζmin < ζ < ζmax
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and

(3.11)
(
Q2(ξ, ζ)H(ξ, k) −Q2(ξ, k)H(ξ, ζ)

)
1lz>ζ1lz<k = 0 a.e. ζmin < ζ < k < ζmax

(iii) If ξmin < ξmax and ζmin < ζmax then

(3.12) (δ − γ)H(ξ, ζ) = Q2(ξ, ζ) −Q1(ξ, ζ) = λ2(ξ, ζ) − λ1(ξ, ζ) .

Proof. Fix ζ and again suppress the ζ dependence. Let a, b be two points such that ξmin <

a, b < ξmax. The entropy H(w, z; ξ) is continuous in all arguments and H(ξmin, z; ξmin) > 0

for z ∈ R by (3.2). If a0 is selected sufficiently near ξmin then H(w, z; a) > 0 on the strip

(w, z) ∈ (ξmin, a0) × (ζmin, ζmax) for all ξmin < a < a0. For α ∈ (ξmin, a0) it is

H(a)1lw<a =
∫

w<a

H(w, z; a) dν(w, z) > 0

The bracket (3.6) gives for θ > a

Q1(θ)1lw>θ H(a)1lw<a −Q1(a)1lw<a H(θ)1lw>θ

=
(
Q1(θ)H(a) −Q1(a)H(θ)

)
1lw>θ1lw<a = 0

and hence

(3.13) Q1(θ)1lw>θ =
Q1(a)1lw<a

H(a)1lw<a

H(θ)1lw>θ =: γmin H(θ)1lw>θ for a < θ.

Similarly, if b is selected suficiently near ξmax, we have H(b)1lw>b > 0 and

(3.14) Q1(ξ)1lw<ξ =
Q1(b)1lw>b

H(b)1lw>b

H(ξ)1lw<ξ =: γmax H(ξ)1lw<ξ for b < ξ.

We conclude that γmin = γmax =: γ and that

Q1(ξ)1lw<ξ = γH(ξ)1lw<ξ , Q1(ξ)1lw>ξ = γH(ξ)1lw>ξ , for a.e. ξ ∈ (ξmin, ξmax) .

If we now take ξn → ξ+ from the right, then 1lw<ξn → 1lw≤ξ dν − a.e and we have by the

dominated convergence theorem that

Q1(ξ)1lw≤ξ = γH(ξ)1lw≤ξ

Thus the last identity in (3.8) follows; (3.9) is then an immediate consequence of (3.8) and (3.6).

The second part of the lemma, (3.10) and(3.11), is proved by a similar argument, while (3.12)

follows upon subtracting (3.8) and (3.10) and using (3.5). �

Next, we show that the brackets (3.9) and (3.11) entail information on cancellation of oscilla-

tions within each characteristic field.
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Proposition 3.3. (i) If ξmin < ξmax then for any continuous ϕ

(3.15)
∫
∂λ1

∂w
(w, z)g2(w, z)ϕ(w) dν(w, z) = 0 .

(ii) If ζmin < ζmax then for any continuous ψ

(3.16)
∫
∂λ2

∂z
(w, z)f2(w, z)ψ(z) dν(w, z) = 0 .

Proof. Fix ζ and suppress the ζ dependence. Let ξ ∈ (ξmin, ξmax) and h > 0 and note that

(3.9) gives

(3.17)
(
Q1(ξ + h)H(ξ) −Q1(ξ)H(ξ + h)

)
1lξ<w<ξ+h

A computation using (3.3) gives

I(ξ + h; ξ) = Q1(w, z; ξ + h)H(w, z; ξ) −Q1(w, z; ξ)H(w, z; ξ + h)

=
∫ ξ+h

ξ

∂λ1

∂w
(x, z)H(x, z; ξ + h)H(w, z; ξ) dx

+
∫ w

ξ

∂λ1

∂w
(x, z)

[
H(x, z; ξ)H(w, z; ξ + h) −H(x, z; ξ + h)H(w, z; ξ)

]
dx

=:
∫ ξ+h

ξ

F (x,w, ξ, h)dx +
∫ w

ξ

G(x,w, ξ, h)dx

From (3.17) we form the quotient

(3.18)
1
h
I(ξ + h; ξ)

1
h

1lξ<w<ξ+h = 0

and obtain
1
h2

∫
ξ

( ∫
dν(w, z)I(ξ + h; ξ)1lξ<w<ξ+h

)
ϕ(ξ)dξ = 0

for a test function ϕ. Using Fubini’s theorem this is expressed as

∫
dν(w, z)

1
h2

(∫ w

w−h

∫ ξ+h

ξ

ϕ(ξ)F (x,w, ξ, h) dxdξ +
∫ w

w−h

∫ w

ξ

ϕ(ξ)G(x,w, ξ, h) dxdξ
)

= 0

The domain of integration of the first integral is a parallelepiped of area h2 and has the Taylor

expansion ∫ w

w−h

∫ ξ+h

ξ

ϕ(ξ)F (x,w, ξ, h) dxdξ = F (w,w,w, 0)ϕ(w)h2 + o(h2)
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The second integral is over a triangle of area 1
2h

2 and has the Taylor expansion

∫ w

w−h

∫ w

ξ

ϕ(ξ)G(x,w, ξ, h) dxdξ = G(w,w,w, 0)
1
2
h2 + o(h2)

Also note that

F (w,w,w, 0) =
∂λ1

∂w
(w, z)H2(w, z;w, ζ) =

∂λ1

∂w
(w, z)

(g(w, z)
g(w, ζ)

)2

G(w,w,w, 0) = 0

Passing to the limit h→ 0 in (3.18), we deduce

∫
dν(w, z)

∂λ1

∂w
(w, z)g2(w, z)

ϕ(w)
g2(w, ζ)

= 0

The final result (3.15) follows by redefining the test function ϕ, while (3.16) is proved via a similar

argument. �

Next, we write a commutation bracket involving singular entropy pairs associated with different

characteristic fields. Let (ξ, ζ) and (ξ′, ζ′) be two distinct points. An argument as in the proof of

Proposition 3.1, in conjunction with (3.8) and (3.10), yields

((
λ2(ξ′, ζ′) +Q(ξ′, ζ′)

)
H(ξ, ζ) − (λ1(ξ, ζ) +Q(ξ, ζ)

)
H(ξ′, ζ′)

)
1lz<ζ′1lw<ξ

= H(ξ, ζ)1lw<ξ (λ2(ξ′, ζ′) +Q(ξ′, ζ′))1lz<ζ′ −H(ξ′, ζ′)1lz<ζ′ (λ1(ξ, ζ) +Q(ξ, ζ))1lw<ξ

= (δ − γ)H(ξ, ζ)1lw<ξ H(ξ′, ζ′)1lz<ζ′

(3.19)

Equation (3.19) contains the most general information regarding the coupling of the two charac-

teristic fields. In the sequel we will use a simplified bracket, obtained from (3.19) by taking the

limits ξ′ → ξ and ζ → ζ′. The simplified bracket reads

(3.20) (λ2 − λ1)(ξ, ζ) H(ξ, ζ)1lw<ξ1lz<ζ = (δ − γ)H(ξ, ζ)1lw<ξ H(ξ, ζ)1lz<ζ

Obviously, identical relations hold if 1lw<ξ and/or 1lz<ζ are replaced by 1lw>ξ and/or 1lz>ζ .

Lemma 3.4. If ξmin < ξmax and ζmin < ζmax then δ > γ and the corners of the rectangle

[ξmin, ξmax] × [ζmin < ζmax] belong to the support of ν.
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Proof. The function H(ξ, ζ) satisfies the boundary conditions (3.2) and is thus strictly positive

on the lines w = ξ and z = ζ. Consider now any point (ξ, ζ) so that the sector {w < ξ, z < ζ}
meets the support on a small set. In this case H(ξ, ζ)1lw<ξ1lz<ζ > 0, and (3.19) implies that no

term on the right side can vanish. Hence δ �= γ.

Consider now the point (ξ, ζ) to be inside the rectangle [ξmin, ξmax]× [ζmin < ζmax] and near

the corner (ξmin, ζmin). Then H(ξ, ζ)1lw<ξ > 0 and H(ξ, ζ)1lz<ζ > 0. Again (3.19) and the fact

that δ �= γ imply H(ξ, ζ)1lw<ξ1lz<ζ �= 0. Thus the corner (ξmin, ζmin) ∈ supp ν and δ > γ.

Similar arguments show that all corners belong to the support of ν. �

4. Coupling of oscillations between the two characteristic fields

Next, we study the coupling of oscillations between the two characteristic fields. The starting

point is the relation (3.20), where H = (w, z; ξ, ζ) is the generator of the fundamental solution of

the operator

L = ∂2
wz +

λ2w

λ2 − λ1
∂z − λ1z

λ2 − λ1
∂w

(see section 2.c). In section 4.a we derive a formula describing the coupling of oscillations of the

two characteristic fields, in terms of the Riemann function and the characteristic speeds. Then

in sections 4.b,c we show that this formula produces as special cases certain formulas obtained

by Serre [Se1, Se2] valid for the cases of two linearly degenerate fields, or one linearly degenerate

field coupled with a general one.

4.a The coupling formula for general fields.

The analysis will use the Riemann function Θ = Θ(ξ, ζ;w, z) defined in (2.30). Recall that Θ

generates the fundamental solution of the adjoint operator LT in (2.31), and is connected to H

through the symmetry relation

(4.1) Θ(ξ, ζ;w, z) = H(w, z; ξ, ζ)

Equation (3.20) is expressed in the form

(4.2)
1

δ − γ

Θ(ξ, ζ;w, z)
(λ2 − λ1)(ξ, ζ)

1lw<ξ1lz<ζ =
Θ(ξ, ζ;w, z)

(λ2 − λ1)(ξ, ζ)
1lw<ξ

Θ(ξ, ζ; w̄, z̄)
(λ2 − λ1)(ξ, ζ)

1lz̄<ζ

The averages in (4.2) denote integration with respect to the Young measure ν in the variables

(w, z) or (w̄, z̄). The factor δ − γ is constant, and, as seen from (3.12), satisfies for (ξ, ζ) in the
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support of ν

(4.3)
1

δ − γ
=

Θ(ξ, ζ;w, z)
(λ2 − λ1)(ξ, ζ)

We view it as a normalization factor and just carry it along in the analysis. The dependence of

Θ in (w, z) is henceforth suppressed.

The forthcoming analysis is based on some remarkable properties of the kernel Θ(ξ,ζ;w,z)
(λ2−λ1)(ξ,ζ) .

Let N be the differential operator

(4.4) N := ∂2
ξζ +

λ2ζ

λ2 − λ1
∂ξ − λ1ξ

λ2 − λ1
∂ζ

Then, we have

Lemma 4.1. The function Θ(ξ,ζ;w,z)
(λ2−λ1)(ξ,ζ) satisfies

(4.5) N
( Θ(ξ, ζ)

(λ2 − λ1)(ξ, ζ)
1lw<ξ1lz<ζ

)
=

1
(λ2 − λ1)(ξ, ζ)

δ(w − ξ)δ(z − ζ)

(4.6) N
( Θ(ξ, ζ)

(λ2 − λ1)(ξ, ζ)
1lw<ξ

)
= N

( Θ(ξ, ζ)
(λ2 − λ1)(ξ, ζ)

1lz<ζ

)
= N

( Θ(ξ, ζ)
(λ2 − λ1)(ξ, ζ)

)
= 0

Proof. Let Θ = Θ(ξ, ζ;w, z). From (2.8), (2.30a) and (2.30b) we see that Θ(ξ,ζ;w,z)
(λ2−λ1)(ξ,ζ) satisfies

(4.7) N
( Θ

(λ2 − λ1)

)
= 0 ,

⎧⎪⎨
⎪⎩
(

Θ
λ2−λ1

)
ζ

+ λ2ζ

λ2−λ1

(
Θ

λ2−λ1

)
= 0 at ξ = w(

Θ
λ2−λ1

)
ξ
− λ1ξ

λ2−λ1

(
Θ

λ2−λ1

)
= 0 at ζ = z

Then (4.5) and (4.6) follow by a direct computation. �

The identities in Lemma 4.1 allow to extract from (4.2) information on the way oscillations

in the two characteristic fields couple. We first give a formal derivation that will be justified in

Proposition 4.2. Apply the operator N on both sides of (4.2) and interchange derivatives and

averages. Using (4.5) and (4.6) we obtain

1
δ − γ

1
(λ2 − λ1)(ξ, ζ)

δ(w − ξ)δ(z − ζ) = ∂ξ

( Θ(ξ, ζ)
(λ2 − λ1)(ξ, ζ)

1lw<ξ

)
∂ζ

( Θ(ξ, ζ)
(λ2 − λ1)(ξ, ζ)

1lz<ζ

)

+ ∂ζ

( Θ(ξ, ζ)
(λ2 − λ1)(ξ, ζ)

1lw<ξ

)
∂ξ

( Θ(ξ, ζ)
(λ2 − λ1)(ξ, ζ)

1lz<ζ

)
(4.8)

Furthermore, performing the differentiations in (4.8), we obtain (4.9). Next, we give a rigorous

derivation of (4.9).
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Proposition 4.2. If ξmin < ξmax and ζmin < ζmax, then the coupling of oscillations is described

by the formula

(4.9)

1
δ − γ

1
λ2 − λ1

δ(w − ξ)δ(z − ζ) =
Θ

λ2 − λ1
δ(ξ − w)

Θ
λ2 − λ1

δ(ζ − z)

+
Θ

λ2 − λ1
δ(ξ − w) ∂ζ

( Θ
λ2 − λ1

)
1lz<ζ + ∂ξ

( Θ
λ2 − λ1

)
1lw<ξ

Θ
λ2 − λ1

δ(ζ − z)

+ ∂ξ

( Θ
λ2 − λ1

)
1lw<ξ ∂ζ

( Θ
λ2 − λ1

)
1lz<ζ + ∂ζ

( Θ
λ2 − λ1

)
1lw<ξ ∂ξ

( Θ
λ2 − λ1

)
1lz<ζ

where Θ = Θ(ξ, ζ;w, z) is the Riemann function, defined as the solution of the Goursat problem

(2.30), and λ2 − λ1 = (λ2 − λ1)(ξ, ζ).

Remark. The precise meaning of the terms in (4.9) is provided by the formula (4.18) and will

be made clear in the course of the proof. Formula (4.18) indicates that the action of the Young

measure is described by a sum of four product measures each describing specific couplings of the

two oscillating fields. The study of special cases in sections 4.b and 4.c further illustrates the

nature of various terms.

Proof. We will use the notation

(4.10)
a = − λ2ζ

λ2 − λ1
, b =

λ1ξ

λ2 − λ1

Θ = Θ(ξ, ζ;w, z) Θ̄ = Θ(ξ, ζ; w̄, z̄)

Note that Θ
λ2−λ1

satisfies

(4.11)

N Θ
λ2 − λ1

= (∂2
ξζ − a∂ξ − b∂ζ)

Θ
λ2 − λ1

= 0{
(∂ζ − a) Θ

λ2−λ1
= 0 at ξ = w

(∂ξ − b) Θ
λ2−λ1

= 0 at ζ = z

while Θ̄
λ2−λ1

satisfies the same Goursat problem with the boundary conditions applied at ξ = w̄

and ζ = z̄.

We write (4.2) in the expanded form

(4.12)

1
δ − γ

∫
(w,z)

dν(w, z)
Θ

λ2 − λ1
1lξ>w1lζ>z

=
∫

(w,z)

dν(w, z)
Θ

λ2 − λ1
1lξ>w

∫
(w̄,z̄)

dν(w̄, z̄)
Θ̄

λ2 − λ1
1lζ>z̄
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Let N T be the adjoint operator of N ,

(4.13) N T := ∂2
ξζ + ∂ξ(a·) + ∂ζ(b·) ,

and ϕ = ϕ(ξ, ζ) be a test function with compact support. We multiply (4.12) with N Tϕ and

integrate the resulting identity over (ξ, ζ). The outcome of the operation is calculated below for

the left and right parts of (4.12) separately.

Step 1. The left part of (4.12) gives

Il =
1

δ − γ

∫
ξ

∫
ζ

( ∫
(w,z)

dν(w, z)
Θ

λ2 − λ1
1lξ>w1lζ>zN Tϕ

)
dξdζ

=
1

δ − γ

∫
(w,z)

dν(w, z)
∫

ξ>w

∫
ζ>z

Θ
λ2 − λ1

N Tϕdξdζ

The Green’s identity (A.4) in the Appendix, applied to the functions u = Θ
λ2−λ1

, v = ϕ on the

rectangle SQMP with corners S = (w, z) and M = (W,Z), gives∫∫
SQMP

(ϕN Θ
λ2 − λ1

− Θ
λ2 − λ1

N Tϕ)dξdζ = ϕ
Θ

λ2 − λ1

∣∣∣
(W,Z)

− ϕ
Θ

λ2 − λ1

∣∣∣
(w,z)

−
∫

z<ζ<Z

Θ
λ2 − λ1

(∂ζ + a)ϕ
∣∣∣
ξ=W

dζ −
∫

w<ξ<W

Θ
λ2 − λ1

(∂ξ + b)ϕ
∣∣∣
ζ=Z

dξ

−
∫

z<ζ<Z

ϕ(∂ζ − a)
Θ

λ2 − λ1

∣∣∣
ξ=w

dζ −
∫

w<ξ<W

ϕ(∂ξ − b)
Θ

λ2 − λ1

∣∣∣
ζ=z

dξ

We now send W,Z → ∞. Since ϕ has compact support and Θ
λ2−λ1

satisfies (4.11), we arrive at

the formula

(4.14)
∫

ξ>w

∫
ζ>z

Θ
λ2 − λ1

N Tϕdξdζ = ϕ(w, z)
Θ(w, z;w, z)

(λ2 − λ1)(w, z)
=

ϕ(w, z)
(λ2 − λ1)(w, z)

Hence,

(4.15)

Il =
1

δ − γ

∫
ξ

∫
ζ

(∫
(w,z)

dν(w, z)
Θ

λ2 − λ1
1lξ>w1lζ>zN

Tϕ
)
dξdζ

=
1

δ − γ

∫
(w,z)

ϕ(w, z)
(λ2 − λ1)(w, z)

dν(w, z)

Step 2. The right part of (4.12) gives

(4.16)

Ir =
∫

ξ

∫
ζ

( ∫
(w,z)

dν(w, z)
Θ

λ2 − λ1
1lξ>w

∫
(w̄,z̄)

dν(w̄, z̄)
Θ̄

λ2 − λ1
1lζ>z̄

)
(N Tϕ)dξdζ

=
∫

(w,z)

dν(w, z)
∫

(w̄,z̄)

dν(w̄, z̄)
( ∫

ξ>w

∫
ζ>z̄

Θ
λ2 − λ1

Θ̄
λ2 − λ1

N Tϕdξdζ
)
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Again we apply Green’s identity (A.4) in the Appendix, now to the functions u = ΘΘ̄
(λ2−λ1)2 , v = ϕ,

on the rectangle SQMP with corners S = (w, z̄) and M = (W, Z̄). We now obtain

∫∫
SQMP

(
ϕ
(N ΘΘ̄

(λ2 − λ1)2
)− ΘΘ̄

(λ2 − λ1)2
N Tϕ

)
dξdζ = ϕ

ΘΘ̄
(λ2 − λ1)2

∣∣∣
(W,Z̄)

− ϕ
ΘΘ̄

(λ2 − λ1)2

∣∣∣
(w,z̄)

−
∫

z̄<ζ<Z̄

ΘΘ̄
(λ2 − λ1)2

(∂ζ + a)ϕ
∣∣∣
ξ=W

dζ −
∫

w<ξ<W

ΘΘ̄
(λ2 − λ1)2

(∂ξ + b)ϕ
∣∣∣
ζ=Z̄

dξ

−
∫

z̄<ζ<Z̄

ϕ(∂ζ − a)
ΘΘ̄

(λ2 − λ1)2

∣∣∣
ξ=w

dζ −
∫

w<ξ<W

ϕ(∂ξ − b)
ΘΘ̄

(λ2 − λ1)2

∣∣∣
ζ=z̄

dξ

Note that (4.11) implies

N ΘΘ̄
(λ2 − λ1)2

=
(
∂ξ

Θ
λ2 − λ1

)(
∂ζ

Θ̄
λ2 − λ1

)
+
(
∂ζ

Θ
λ2 − λ1

)(
∂ξ

Θ̄
λ2 − λ1

)
⎧⎨
⎩

(∂ζ − a) ΘΘ̄
(λ2−λ1)2

= Θ
λ2−λ1

(
∂ζ

Θ̄
λ2−λ1

)
at ξ = w

(∂ξ − b) ΘΘ̄
(λ2−λ1)2

= Θ̄
λ2−λ1

(
∂ξ

Θ
λ2−λ1

)
at ζ = z̄

Sending W, Z̄ → ∞ and using that ϕ has compact support, we deduce

(4.17)

∫
ξ>w

∫
ζ>z

ΘΘ̄
(λ2 − λ1)2

N Tϕdξdζ

=
∫

ξ>w

∫
ζ>z

ϕ
(
∂ξ

Θ
λ2 − λ1

)(
∂ζ

Θ̄
λ2 − λ1

)
+
(
∂ζ

Θ
λ2 − λ1

)(
∂ξ

Θ̄
λ2 − λ1

)
dξdζ

+
∫
{ζ>z̄,ξ=w}

ϕ
Θ

λ2 − λ1

(
∂ζ

Θ̄
λ2 − λ1

)
dζ +

∫
{ξ>w,ζ=z̄}

ϕ
Θ̄

λ2 − λ1

(
∂ξ

Θ
λ2 − λ1

)
dξ

+ ϕ
Θ

λ2 − λ1

Θ̄
λ2 − λ1

∣∣∣
ξ=w,ζ=z̄

Combining (4.15), (4.16) and (4.17) we arrive at the formula

(4.18)

1
δ − γ

∫
(w,z)

dν(w, z)
ϕ(w, z)

(λ2 − λ1)(w, z)

=
∫

(w,z)

dν(w, z)
∫

(w̄,z̄)

dν(w̄, z̄)

{
ϕ(w, z̄)

Θ
λ2 − λ1

(w, z̄)
Θ̄

λ2 − λ1
(w, z̄)

+
∫
{ζ>z̄,ξ=w}

Θ
λ2 − λ1

(
∂ζ

Θ̄
λ2 − λ1

)
ϕdζ +

∫
{ξ>w,ζ=z̄}

Θ̄
λ2 − λ1

(
∂ξ

Θ
λ2 − λ1

)
ϕdξ

+
∫

ξ>w

∫
ζ>z̄

[(
∂ξ

Θ
λ2 − λ1

)(
∂ζ

Θ̄
λ2 − λ1

)
+
(
∂ζ

Θ
λ2 − λ1

)(
∂ξ

Θ̄
λ2 − λ1

)]
ϕdξdζ

}

which is precisely (4.9). �
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It is expedient to rewrite (4.18) in other formats that illustrate aspects of the formula. To this

end, note that (2.8) gives

(4.19)

f(w, z)
f(ξ, z)

= e−
R

w
ξ

λ2w
λ2−λ1

(x,z)dx =
(λ2 − λ1)(ξ, z)
(λ2 − λ1)(w, z)

e−
R

w
ξ

λ1w
λ2−λ1

(x,z)dx

g(w, z)
g(w, ζ)

= e
R z

ζ

λ1z
λ2−λ1

(w,y)dy =
(λ2 − λ1)(w, ζ)
(λ2 − λ1)(w, z)

e
R z

ζ

λ2z
λ2−λ1

(w,y)dy

where the last expressions involve the coefficients of genuine nonlinearity λ1w and λ2z . Further-

more, since

(4.20) H(w, z;w, ζ) =
g(w, z)
g(w, ζ)

, H(w, z; ξ, z) =
f(w, z)
f(ξ, z)

,

and Θ(ξ, ζ;w, z) = H(w, z; ξ, ζ), we have

(4.21)

Θ
λ2 − λ1

∣∣∣
ξ=w

=
Θ(w, ζ;w, z)

(λ2 − λ1)(w, ζ)
=
g(w, z)
g(w, ζ)

1
(λ2 − λ1)(w, ζ)

Θ̄
λ2 − λ1

∣∣∣
ζ=z̄

=
Θ(ξ, z̄; w̄, z̄)

(λ2 − λ1)(ξ, z̄)
=
f(w̄, z̄)
f(ξ, z̄)

1
(λ2 − λ1)(ξ, z̄)

Using (4.21), we rewrite (4.18) as

(4.22)

1
δ − γ

∫
(w,z)

dν(w, z)
ϕ(w, z)

(λ2 − λ1)(w, z)

=
∫

(w,z)

dν(w, z)
∫

(w̄,z̄)

dν(w̄, z̄)

{
ϕ(w, z̄)

g(w, z)
g(w, z̄)

f(w̄, z̄)
f(w, z̄)

1
(λ2 − λ1)2(w, z̄)

+
∫

ζ>z̄

ϕ(w, ζ)
g(w, z)
g(w, ζ)

1
(λ2 − λ1)(w, ζ)

(
∂ζ

Θ̄
λ2 − λ1

)
(w, ζ)dζ

+
∫

ξ>w

ϕ(ξ, z̄)
f(w̄, z̄)
f(ξ, z̄)

1
(λ2 − λ1)(ξ, z̄)

(
∂ξ

Θ
λ2 − λ1

)
(ξ, z̄)dξ

+
∫

ξ>w

∫
ζ>z

[(
∂ξ

Θ
λ2 − λ1

)(
∂ζ

Θ̄
λ2 − λ1

)
+
(
∂ζ

Θ
λ2 − λ1

)(
∂ξ

Θ̄
λ2 − λ1

)]
ϕdξdζ

}

For the choice of test function ϕ = (λ2−λ1)2gfψ, with ψ = ψ(ξ, ζ) a new test function, (4.22)
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takes the form

(4.23)
1

δ − γ

∫
(w,z)

dν(w, z)(λ2 − λ1)(w, z)g(w, z)f(w, z)ψ(w, z)

=
∫

(w,z)

dν(w, z)
∫

(w̄,z̄)

dν(w̄, z̄)

{
ψ(w, z̄)g(w, z)f(w̄, z̄)

+

(∫
ζ>z̄

ψ(w, ζ)(λ2 − λ1)(w, ζ)f(w, ζ)
(
∂ζ

Θ̄
λ2 − λ1

)
(w, ζ)dζ

)
g(w, z)

+

(∫
ξ>w

ψ(ξ, z̄)(λ2 − λ1)(ξ, z̄)g(ξ, z̄)
(
∂ξ

Θ
λ2 − λ1

)
(ξ, z̄)dξ

)
f(w̄, z̄)

+
∫

ξ>w

∫
ζ>z

[(
∂ξ

Θ
λ2 − λ1

)(
∂ζ

Θ̄
λ2 − λ1

)
+
(
∂ζ

Θ
λ2 − λ1

)(
∂ξ

Θ̄
λ2 − λ1

)]
(λ2 − λ1)2gfψdξdζ

}

For product test functions ψ(ξ, ζ) = Φ(ξ)Ψ(ζ), the first term in the right factorizes into a product

of Young measures. By contrast, the remaining three terms will not in general factorize, since

they contain couplings of the variables (w, z) and (w̄, z̄) (recall that Θ̄ = Θ(ξ, ζ, w̄, z̄) while

Θ = Θ(ξ, ζ;w, z)). The implications of (4.22) or (4.23) on various special cases are studied below.

4.b Two linearly degenerate characteristic fields.

Consider the case that both characteristic fields are linearly degenerate, that is ∂λ1
∂w = ∂λ2

∂z = 0.

In this case, (4.19) reads

f(w, z)
f(ξ, z)

=
(λ2 − λ1)(ξ, z)
(λ2 − λ1)(w, z)

,
g(w, z)
g(w, ζ)

=
(λ2 − λ1)(w, ζ)
(λ2 − λ1)(w, z)

while the Goursat problem (4.7) becomes

(4.24) ∂2
ξζ

( Θ
λ2 − λ1

)
= 0 ,

⎧⎨
⎩
∂ζ

(
Θ

λ2−λ1

)
= 0 at ξ = w

∂ξ

(
Θ

λ2−λ1

)
= 0 at ζ = z

Θ(w, z;w, z) = 1 .

The solution of (4.25) is

(4.25)
Θ(ξ, ζ;w, z)

(λ2 − λ1)(ξ, ζ)
=

1
(λ2 − λ1)(w, z)

and it satisfies ∂ξ

(
Θ

λ2−λ1

)
= ∂ζ

(
Θ

λ2−λ1

)
= 0. Most of the coupling terms in (4.18) drop out and

it simplifies to

1
δ − γ

∫
(w,z)

dν(w, z)
ϕ(w, z)

(λ2 − λ1)(w, z)

=
∫

(w,z)

dν(w, z)
∫

(w̄,z̄)

dν(w̄, z̄)ϕ(w, z̄)
1

(λ2 − λ1)(w, z)
1

(λ2 − λ1)(w̄, z̄)
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For ϕ = Φ(ξ)Ψ(ζ) a product this, in turn, gives

(4.26)
1

δ − γ

∫
dν

Φ(w)Ψ(z)
(λ2 − λ1)(w, z)

=
(∫

dν
Φ(w)

(λ2 − λ1)(w, z)

)(∫
dν

Ψ(z)
(λ2 − λ1)(w, z)

)

Furthermore, by (4.3) and (4.25),

(4.27)
1

δ − γ
=
∫

dν

λ2 − λ1

Equation (4.26) may be viewed as stating that the probability measure µ :=
(

1
λ2−λ1

)−1
1

λ2−λ1
ν

can be factorized into µ = µ1 ⊗ µ2, a product of its marginals.

4.c Coupling of a linearly degenerate with a general field.

Consider now the case that the first characteristic field is general while the second characteristic

field is linearly degenerate, λ1 = λ1(w, z) while λ2 = λ2(w). In this case, (4.19) reads

(4.28)

f(w, z)
f(ξ, z)

=
(λ2 − λ1)(ξ, z)
(λ2 − λ1)(w, z)

e−
R

w
ξ

λ1w
λ2−λ1

(x,z)dx

g(w, z)
g(w, ζ)

=
(λ2 − λ1)(w, ζ)
(λ2 − λ1)(w, z)

The Goursat problem (4.4), (4.7) takes the form

(4.29)

(
∂2

ξζ − λ1ξ

λ2 − λ1
∂ζ

) Θ
λ2 − λ1

= 0{
∂ζ

Θ
λ2−λ1

= 0 at ξ = w(
∂ξ − λ1ξ

λ2−λ1

)
Θ

λ2−λ1
= 0 at ζ = z

Θ(w, z;w, z) = 1

Integrating the problem and using (4.28), we obtain

(4.30)
Θ(ξ, ζ;w, z)

(λ2 − λ1)(ξ, ζ)
=

1
(λ2 − λ1)(w, z)

e−
R w

ξ

λ1w
λ2−λ1

(x,z)dx =
1

(λ2 − λ1)(ξ, z)
f(w, z)
f(ξ, z)

which, in particular, implies ∂ζ

(
Θ

λ2−λ1

)
= 0.

Again many terms in (4.22) drop out, and the resulting identity reads

(4.29)

1
δ − γ

∫
(w,z)

dν(w, z)
ϕ(w, z)

(λ2 − λ1)(w, z)

=
∫

(w,z)

dν(w, z)
∫

(w̄,z̄)

dν(w̄, z̄)

{
ϕ(w, z̄)

g(w, z)
g(w, z̄)

f(w̄, z̄)
f(w, z̄)

1
(λ2 − λ1)2(w, z̄)

+

(∫
ξ>w

ϕ(ξ, z̄)
1

(λ2 − λ1)(ξ, z̄)f(ξ, z̄)
∂ξ

( 1
(λ2 − λ1)(ξ, z)f(ξ, z)

)
dξ

)
f(w, z)f(w̄, z̄)

}
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For a test function ϕ = (λ2 − λ1)fΦΨ, with Φ = Φ(ξ), Ψ = Ψ(ζ), we conclude

(4.30)
1

δ − γ

∫
(w,z)

dν(w, z)f(w, z)Φ(w)Ψ(z) =

(∫
(w̄,z̄)

dν(w̄, z̄)f(w̄, z̄)Ψ(z̄)

)

×
(∫

(w,z)

dν(w, z)
[ Φ(w)
(λ2 − λ1)(w, z)

+ f(w, z)
∫

ξ>w

Φ(ξ)∂ξ

( 1
(λ2 − λ1)(ξ, z)f(ξ, z)

)
dξ
])

It can be further expressed in the form

(4.31)

1
δ − γ

∫
Φ(w)Ψ(z)f(w, z)dν =

( ∫
Ψ(z)f(w, z)dν

)
×
( ∫ [

−
∫

ξ

1
(λ2 − λ1)(ξ, z)f(ξ, z)

1lw<ξ∂ξΦ(ξ)
]
f(w, z)dν

)
which states that the measure µ := fν is a product measure.

Note that (4.3) and (4.30) imply for the constant δ − γ the formula

(4.32)
1

δ − γ
=
∫

Θ
λ2 − λ1

dν =
∫

1
(λ2 − λ1)(w, z)

e
− R w

ξ

λ1w
λ2−λ1

(x,z)dx
dν

and in turn, by differentiating with respect to ξ, that

(4.33)
∫

λ1w

(λ2 − λ1)2
(w, z)e−

R
w
ξ

λ1w
λ2−λ1

(x,z)dx
dν = 0

The information in (4.33) is already covered by (3.15), but interestingly the derivation is inde-

pendent of (3.15).

A. Appendix. Green’s formulas for hyperbolic operators

We list here some material concerning Green’s formulas for hyperbolic operators (see Sobolev

[So]). Consider the hyperbolic operator in two variables

(A.1) Lu = uwz − auw − buz − cu ,

where a, b, c are functions of (w, z), and its adjoint operator

(A.2) LT v = vwz + ∂w(av) + ∂z(bv) − cv .

One can easily derive the identities

(A.3)

vLu− uLT v = ∂wz(uv) − ∂w

[
u(vz + av)

]− ∂z

[
u(vw + bv)

]
= −∂wz(uv) + ∂w

[
v(uz − au)

]
+ ∂z

[
v(uw − bu)

]
= ∂w

(1
2
vuz − 1

2
uvz − auv

)
+ ∂z

(1
2
vuw − 1

2
uvw − buv

)
,
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(A.3) gives rise to various Green type formulas.

Let SQMP be a rectangle in the w − z plane with coordinates S = (ξ0, ζ0), Q = (ξ1, ζ0),

M = (ξ1, ζ1) and P = (ξ0, ζ1). Integrating the third identity in (A.3) over the rectangle SQMP

we obtain after some integrations by parts the Green formula

(A.4)

∫∫
SQMP

(vLu − uLT v) = vu
∣∣∣
M

− vu
∣∣∣
S
−
∫ M

Q

u(vz + av)dz −
∫ M

P

u(vw + bv)dw

−
∫ P

S

v(uz − au)dz −
∫ Q

S

v(uw − bu)dw

Suppose next that SP is a vertical segment on the w− z plane and assume that the function v

is of compact support. Integrating the second identity in (A.3) over the strip R × SP we obtain

(A.5)
∫∫

(−∞,∞)×SP

(vLu − uLT v) =
∫ ∞

−∞
v(uw − bu)

∣∣∣
z=ζ1

dw −
∫ ∞

−∞
v(uw − bu)

∣∣∣
z=ζ0

dw .

Similarly, if SQ is a horizontal segment on the w − z plane and v is of compact support then,

upon integrating the second identity in (A.3) over the strip SQ× R, we obtain

(A.6)
∫∫

SQ×(−∞,∞)

(vLu − uLT v) =
∫ ∞

−∞
v(uz − au)

∣∣∣
w=ξ1

dz −
∫ ∞

−∞
v(uz − au)

∣∣∣
w=ξ0

dz .

Formula (A.4) yields a representation formula for the solution u of the Goursat problem

(A.7) Lu = h(w, z) ,
{
u = F (w) at z = ζ0

u = G(z) at w = ξ0
,

where G(ζ0) = F (ξ0) =: u(ξ0, ζ0). Define the Riemann function v = v(w, z; ξ1, ζ1) as the solution

of the problem

(A.8) LT v = 0 ,
{
vz + av = 0 at w = ξ1

vw + bv = 0 at z = ζ1
, v(ξ1, ζ1; ξ1, ζ1) = 1 .

Then (A.4) gives

(A.9)

u(ξ1, ζ1) = v(ξ0, ζ0; ξ1, ζ1)u(ξ0, ζ0) +
∫ P

S

v(w, z; ξ1, ζ1)(uz − au)(w, z)
∣∣∣
w=ξ0

dz

+
∫ Q

S

v(w, z; ξ1, ζ1)(uw − bu)(w, z)
∣∣∣
z=ζ0

dw +
∫∫

SQMP

h(w, z)v(w, z; ξ1, ζ1) dwdz .

Since (ξ1, ζ1) is arbitrary, (A.9) provides a representation of the solution to (A.7) in terms of the

Goursat data F , G and the Riemann function.
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