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Abstract
We study the principle of the fermionic projector for the two-point action corre-

sponding to the Lagrangian

L[A] = |A2|2 − µ |A|4 , µ ∈ R

and a fermionic projector which in the vacuum is the direct sum of seven identical
massive sectors and one massless left-handed sector, each of which is composed of
three Dirac seas. It is shown under general assumptions and for an interaction via
general chiral and (pseudo)scalar potentials that the sectors spontaneously form pairs,
which are referred to as blocks. The resulting so-called effective interaction can be
described by chiral potentials corresponding to the effective gauge group

SU(2)⊗ SU(3)⊗ U(1)3 .

This model has striking similarity to the standard model if the block containing the
left-handed sector is identified with the leptons and the three other blocks with the
quarks. Namely, the effective gauge fields have the following properties.

• The SU(3) corresponds to an unbroken gauge symmetry. The SU(3) gauge fields
couple to the quarks exactly as the strong gauge fields in the standard model.

• The SU(2) potentials are left-handed and couple to the leptons and quarks
exactly as the weak gauge potentials in the standard model. Similar to the CKM
mixing in the standard model, the off-diagonal components of these potentials
must involve a non-trivial mixing of the generations. The SU(2) gauge symmetry
is spontaneously broken.

• The U(1) of electrodynamics can be identified with an Abelian subgroup of the
effective gauge group.

The effective gauge group is larger than the gauge group of the standard model, but
this is not inconsistent because a more detailed analysis of our variational principle
should give further constraints for the Abelian gauge potentials. Moreover, there
are the following differences to the standard model, which we derive mathematically
without working out their physical implications in detail.

• The SU(2) gauge field tensor F must be simple in the sense that F = Λ s for a
real 2-form Λ and an su(2)-valued function s.

• In the lepton block, the off-diagonal SU(2) gauge potentials are associated with
a new type of potential, called nil potential, which couples to the right-handed
component.

These results give a strong indication that the principle of the fermionic projector is
of physical significance.
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The principle of the fermionic projector is an attempt to formulate physics using a new
type of variational principle in space-time. In the first paper dedicated to this principle [1],
the main concern was the so-called continuum limit, which gives a procedure for analyzing
our variational principles in the setting of relativistic quantum mechanics and classical field
theory. In the present second part, we shall work out the continuum limit more specifically
under the assumption that the configuration of the fermions is as in the standard model.
Our aim is to verify if the interaction between the fermions described by our variational
principles is in agreement with the fundamental forces of nature.

We will develop the theory mainly in the example of the model variational princi-
ple introduced in [1, Section 2.5]. But our methods apply similarly to other variational
principles, and we will try to give an outlook on the general situation as well.

1 The Fermion Configuration of the Standard Model

Guided by the configuration of the leptons and quarks in the standard model, in this
chapter we will introduce a continuum fermionic projector which seems appropriate for
the formulation of a realistic physical model. In preparation, we begin with the simplified
situation where we take into account only the first generation of elementary particles, i.e.
the quarks d, u and the leptons e, νe. In the vacuum, each of these particles is described
by the corresponding Dirac sea (see [1, Section 3.1])

P (x, y) = X tm(x, y) , (1.1)

where tm is the integral over the lower mass shell

tm(x, y) =
∫

d4k

(2π)4
(k/ +m) δ(k2 −m2) Θ(−k0) e−ik(x−y) . (1.2)

(Θ is the Heaviside function. As in [3, 4], we use small letters for solutions of the Dirac
equation and capital letters for the corresponding solutions of the Klein-Gordon equation,
i.e. tm = (i∂/ +m) Tm2 with Tm2 according to [1, eqn (3.4)].) Here m is the mass of the
Dirac particles, and the 4 × 4 matrix X describes their chirality. More precisely, for the
massive particles d, u, and e, X is the identity matrix, whereas for the massless left-handed
neutrinos, we choose X = χL, where χL/R are the chiral projectors χL/R = 1

2(1 ∓ γ5) (we
assume as in the standard model that the neutrinos have zero rest mass; massive neutrinos
are briefly discussed in Remark 4.17). The simplest fermionic projector involving the Dirac
seas of the particles d, u, e, and νe is obtained by taking their direct sum, i.e.

P (x, y) =
4⊕

l=1

Xl tml
(x, y) (1.3)

with m1 = md, m2 = mu, m3 = me, m4 = 0 and X1 = X2 = X3 = 11, X4 = χL.
The spin dimension in (1.3) is (8, 8). Interpreting isometries of the spin scalar product as
local gauge transformations (see [1, Section 2.1]), the gauge group is U(8, 8). Clearly, the
ordering of the Dirac seas in the direct sum in (1.3) is a pure convention. Nevertheless,
our choice is no loss of generality, because any other ordering can be obtained from (1.3)
by a suitable global gauge transformation.

In the standard model, the quarks come in three “colors,” with an underlying SU(3)
symmetry. We can build in this symmetry here by taking three identical copies of each
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quark Dirac sea. This leads us to consider instead of (1.3) the fermionic projector

P (x, y) =
f⊕

l=1

Xl tml
(x, y) (1.4)

with f = 8 and m1 = m2 = m3 = md, m4 = m5 = m6 = mu, m7 = me, m8 = 0, and
X1 = · · · = X7 = 11, X8 = χL. Now the spin dimension is (16, 16), and the gauge group is
U(16, 16). It is convenient to introduce as in [2] the matrix notation

t(x, y) =
f⊕

l=1

tml
(x, y) , X =

f⊕
l=1

Xl , Y =
1
m

f⊕
l=1

ml , (1.5)

where m > 0 is an arbitrary mass parameter (e.g. one may choose m = maxl ml). The
matrices X and Y are referred to as the chiral asymmetry matrix and the mass matrix,
respectively. With this notation, the fermionic projector of the vacuum (1.4) takes the
form

P (x, y) = X t(x, y) , (1.6)

and it satisfies the Dirac equation

(i∂/x −mY ) P (x, y) = 0 . (1.7)

The interaction is introduced as follows. First, in an interacting system the Dirac
particles are moving in a bosonic field (e.g. a Yang-Mills field or a gravitational field). To
describe this mathematically, we insert into the Dirac equation (1.7) an operator B which
is composed of the bosonic potentials,

(i∂/x + B −mY ) P (x, y) = 0 . (1.8)

Second, an interacting system in general contains particles and anti-particles. In our
formulation, this becomes apparent in the unique decomposition of the fermionic projector
of the form

P (x, y) = P sea(x, y) + c

nf∑
a=1

|Ψa(x)�≺Ψa(y)| − c

na∑
a=1

|Φa(x)�≺Φa(y)| , (1.9)

where (Ψa)a=1,...,nf
and (Φa)a=1,...,na are an orthonormal basis for the particle and anti-

particle states, respectively, and c is a normalization constant (see [1, eqn (2.24)]). Here
the projector P sea is built up of the Dirac seas in the presence of the bosonic field B. It
can be defined via the causal perturbation expansion [2], provided that the Dirac operator
is causality compatible with the chiral asymmetry, i.e. if

X∗ (i∂/+ B −mY ) = (i∂/+ B −mY )X , (1.10)

where “∗” denotes the adjoint with respect to the spin scalar product (see [2] for details;
we also remark that this condition will be weakened later on, see Def. 4.1). The condi-
tion (1.10) gives a constraint for the interaction of the neutrinos with the other fermions.
Finally, the light-cone expansion [3] is a powerful tool for analyzing P sea in position space
(cf. the short discussion in [1, Section 1.5]).

Let us now consider the realistic situation of three generations. Grouping the ele-
mentary particles according to their lepton number and isospin, we get the four families
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(d, s, b), (u, c, t), (νe, νµ, ντ ), and (e, µ, τ). In the standard model, the particles within each
family couple in the same way to the gauge fields. If one thinks of a Dirac equation of
type (1.8), this means that the bosonic potentials contained in the operator B should act
similarly on the Dirac seas of each family. This can be arranged by taking the (ordinary)
sum of these Dirac seas. Thus we define the fermionic projector of the vacuum by

P (x, y) =
8⊕

n=1

3∑
α=1

Xn tmnα(x, y) (1.11)

with X1 = · · · = X7 = 11 and X8 = χL; furthermore m11 = m21 = m31 = md, m12 =
m22 = m32 = ms, m13 = m23 = m33 = mb, m41 = m51 = m61 = mu, . . . , m71 = me,
m72 = mµ, m73 = mτ , and m81 = m82 = m83 = 0. We refer to the direct summands
in (1.11) as sectors. The spin dimension in (1.11) is again (16, 16).

Since each sector is composed of states of the three (in general different) masses mnα,
α = 1, 2, 3, the fermionic projector (1.11) cannot be written as a solution of a Dirac
equation of the form (1.7), and thus the methods of [2, 3] for describing the interaction
cannot be applied. To get around this problem, we proceed as follows. We first introduce as
an auxiliary object a new fermionic projector where we replace the ordinary sum in (1.11)
by a direct sum. Thus combining the indices n and α to one index l = (nα), which takes
the values l = 1, . . . , 8 × 3 = 24 =: f , this auxiliary fermionic projector is again given by
(1.4). In matrix notation (1.5), it satisfies the auxiliary Dirac equation (1.7). In order to
describe the case with interaction, we can according to (1.8) insert a perturbation operator
B into the auxiliary Dirac equation. Notice that B acts as a matrix on the 24 components
of the direct sum; we write for clarity B = B(aα)

(bβ) with a, b = 1, . . . , 8 and α, β = 1, 2, 3.
Under the assumption that the auxiliary Dirac operator is causality compatible (1.10),
the results of [2, 3] apply and yield a decomposition of the auxiliary fermionic projector
of the form (1.9) as well as formulas for the light-cone expansion of P sea. In order to
relate these results to the original fermionic projector (1.11), we must reduce the number
of components of the direct sum to get back to eight sectors. To this end, we sum over
the generations, i.e. we define the fermionic projector with interaction (P a

b )a,b=1,...,8 by

P a
b (x, y) =

3∑
α,β=1

P
(aα)
(bβ) (x, y) . (1.12)

We refer to the summations in (1.12) as the partial trace over the generations.
With (1.4) and (1.12), we have introduced the fermionic projector according to the

fermion configuration in the standard model. The only free parameters are the 9 masses
of the elementary leptons and quarks. The operator B which describes the interaction
between the fermions is constrained by the condition that the Dirac operator should be
causality compatible (1.10). But we point out that, apart from this mathematical consis-
tency condition, the operator B can be arbitrary. Thus in contrast to the standard model,
we do not put in the structure of the fundamental interactions here, i.e. we do not specify
the gauge groups, the coupling of the gauge fields to the fermions, the coupling constants,
the CKM matrix, the Higgs mechanism, the masses of the W - and Z-bosons, etc. The
reason is that in our description, the form of the physical interactions is to be described
and determined by our variational principle in space-time.
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2 The Euler-Lagrange Equations in the Vacuum

Following [1, Section 2.5], we want to describe the physical interactions using a variational
principle in discrete space-time. In this chapter, we shall consider the general two-point
action [1, eqn (2.35)]

S =
∑

x,y∈M

L[P (x, y) P (y, x)] (2.1)

and study for which Lagrangians L the corresponding Euler-Lagrange (EL) equations are
satisfied in the vacuum (a problem arising for actions other than two-point actions will be
discussed in Remark 3.9 below). We first derive the EL equations corresponding to (2.1).
We set

Axy = P (x, y) P (y, x) (2.2)

and for simplicity often omit the subscript “xy” in what follows. In a gauge, A is repre-
sented by a 4N × 4N matrix, with N = 8 for the fermion configuration of the standard
model (1.11). We write the matrix components with Greek indices, A = (Aα

β)α,β=1,...,4N .
The Lagrangian in (2.1) is a functional on 4N × 4N matrices. Denoting its gradient by
M,

M[A] = (M[A]αβ )α,β=1,...,4N with M[A]αβ =
∂L[A]

∂Aβ
α

,

the variation of L is given by

δL[A] =
4N∑

α,β=1

M[A]αβ δA
β
α = Tr (M[A] δA) , (2.3)

where “Tr” denotes the trace of 4N × 4N matrices. Summing over x and y yields the
variation of the action,

δS =
∑

x,y∈M

δL[Axy] =
∑

x,y∈M

Tr (M[Axy] δAxy) .

We substitute in the identity

δAxy = δP (x, y) P (y, x) + P (x, y) δP (y, x) (2.4)

and use the symmetry x↔ y as well as the fact that the trace is cyclic to obtain

δS = 4
∑

x,y∈M

Tr (Q(x, y) δP (y, x)) (2.5)

with
Q(x, y) =

1
4

(M[Axy] P (x, y) + P (x, y)M[Ayx]) . (2.6)

We also write (2.5) in the compact form

δS = 4 tr(Q δP ) , (2.7)

where “tr” denotes the trace in the scalar product space H, and Q is the operator on H
with kernel (2.6). Exactly as in [1, Section 2.5], we consider unitary variations of P with
finite support, i.e. [1, eqn (2.43)]

δP = i [B,P ] ,
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where B is a Hermitian operator of finite rank. Substituting into (2.7) and cyclically
commuting the operators in the trace yields that

δS = 4i tr(Q [B,P ]) = 4i tr([P,Q] B) .

Since B is arbitrary, we conclude that

[P,Q] = 0 (2.8)

with Q according to (2.6). These are the EL equations.

2.1 The Spectral Decomposition of P (x, y) P (y, x)

As outlined in [1, Section 2.5] in a model example, the EL equations (2.8) can be analyzed
using the spectral decomposition of Axy. On the other hand, it was explained in [1,
Section 3.3] that A should be looked at in an expansion about the light cone. We shall
now combine these methods and compute the eigenvalues and spectral projectors of A
using the formalism of [1, Section 3.5].

Since the fermionic projector of the vacuum (1.11) is a direct sum, we can study the
eight sectors separately. We first consider the neutrino sector n = 8, i.e.

P (x, y) =
3∑

α=1

χL tmα with mα = 0.

If we assume that the regularized Dirac seas have a vector-scalar structure [1, eqn (3.4)]
and regularize as explained after [1, eqn (3.76)], the regularized fermionic projector, which
with a slight abuse of notation we denote again by P (x, y), is of the form

P (x, y) = χL gj(x, y) γj (2.9)

with suitable functions gj . Since P is Hermitian, P (y, x) is given by

P (y, x) = P (x, y)∗ = χL gj(x, y) γj .

Omitting the arguments (x, y) of the functions gj , we obtain for the 4× 4 matrix A

A = χL g/ χL g/ = χL χR g/ g/ = 0 . (2.10)

Hence in the neutrino sector, Axy is identically equal to zero. We refer to cancellations
like in (2.10), which come about because the neutrino sector contains only left-handed
particles, as chiral cancellations.

Next we consider the massive sectors n = 1, . . . , 7 in (1.11), i.e.

P (x, y) =
3∑

α=1

tmα . (2.11)

Again assuming that the regularized Dirac seas have a vector-scalar structure, the regu-
larized fermionic projector is

P (x, y) = gj(x, y) γj + h(x, y) (2.12)
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with suitable functions gj and h. Using that P is Hermitian,

P (y, x) = gj(x, y) γj + h(x, y) . (2.13)

Again omitting the arguments (x, y), we obtain for the 4× 4 matrix Axy

A = g/ g/ + h g/ + g/ h + hh . (2.14)

It is useful to decompose A in the form

A = A1 + A2 + µ

with
A1 =

1
2

[g/, g/] , A2 = h g/ + g/ h , µ = gg + hh

and gg ≡ gj gj . Namely, A1 and A2 anti-commute, and thus

(A− µ)2 = A2
1 +A2

2 = (gg)2 − g2 g2 + (gh + hg)2 . (2.15)

The right of (2.15) is a multiple of the identity matrix, and so (2.15) is a quadratic equation
for A. The roots λ± of this equation,

λ± = gg + hh ±
√

(gg)2 − g2 g2 + (gh+ hg)2 , (2.16)

are the zeros of the characteristic polynomial of A. However, we must be careful about
associating eigenspaces to λ± because A need not be diagonalizable. Let us first consider
the case that the two eigenvalues in (2.16) are distinct. If we assume that A is diagonaliz-
able, then λ± are the two eigenvalues of A, and the corresponding spectral projectors F±
are computed to be

F± =
11
2
± 1

λ1 − λ2

(
A − 1

2
(λ1 + λ2) 11

)
(2.17)

=
11
2
±

1
2 [g/, g/] + hg/ + g/h

2
√

(gg)2 − g2 g2 + (gh + hg)2
. (2.18)

The explicit formula (2.18) even implies that A is diagonalizable. Namely, a short calcu-
lation yields that

A F± = λ± F± and F+ + F− = 11 ,

proving that the image of F+ and F− are indeed eigenspaces of A which span C4. Moreover,
a short computation using (2.12) and (2.18) yields that

F± P (x, y) =
g/+ h

2
± g/ (gg + hh) − g/ (g2 − h2) + (gg) h + g2 h

2
√

(gg)2 − g2 g2 + (gh + hg)2
. (2.19)

Writing out for clarity the dependence on x and y, the spectral decomposition of A is

Axy =
∑
s=±

λxy
s F xy

s . (2.20)

The following lemma relates the spectral representation of Axy to that of Ayx.
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Lemma 2.1

λxy
± = λyx

∓ (2.21)
F xy
± P (x, y) = P (x, y) F yx

∓ , (2.22)

Proof. According to (2.12) and (2.13), Ayx is obtained from Axy by the transforma-
tions gj ↔ gj , h ↔ h. The eigenvalues (2.16) are invariant under these transformations.
Our convention for labelling the eigenvalues is (2.21). Using this convention, we obtain
from (2.17) that

F xy
± P (x, y) =

1
2
P (x, y) ± 1

λxy
1 − λxy

2

(
Axy P (x, y) − 1

2
(λxy

1 + λxy
2 ) P (x, y)

)

P (x, y) F yx
∓ =

1
2
P (x, y) ± 1

λxy
1 − λxy

2

(
P (x, y) Ayx − 1

2
(λxy

1 + λxy
2 ) P (x, y)

)
.

The identity P (x, y) Ayx = P (x, y) P (y, x) P (x, y) = Axy P (x, y) yields (2.22).

If the eigenvalues in (2.16) are equal, the matrix A need not be diagonalizable (namely, the
right side of (2.15) may be zero without (2.14) being a multiple of the identity matrix).
We shall treat this degenerate case by taking the limits λ+ − λ− → 0 in the spectral
representation (2.20).

Before going on, we point out that according to (2.16), the 4× 4 matrix A has at most
two distinct eigenvalues. In order to understand better how this degeneracy comes about,
it is useful to consider the space V of real vectors which are orthogonal to gj and gj ,

V = {v | vj g
j = 0 = vj gj} .

Since we must satisfy two conditions in four dimensions, dim V ≥ 2. Furthermore, a short
calculation using (2.14) shows that for every v ∈ V ,

[A, vjγ
jγ5] = 0 . (2.23)

Thus the eigenspaces of A are invariant subspaces of the operators vjγ
jγ5. In the case

when the two eigenvalues (2.16) are distinct, the family of operators (vjγ
jγ5)v∈V acts

transitively on the two-dimensional eigenspaces of A. Notice that the operators vjγ
jγ5 map

left-handed spinors into right-handed spinors and vice versa. Thus one may regard (2.23)
as describing a symmetry between the left- and right-handed component of A. We refer
to the fact that A has at most two distinct eigenvalues as the chiral degeneracy of the
massive sectors in the vacuum.

Our next step is to rewrite the spectral representation using the formalism of [1, Sec-
tion 3.5]. Expanding in powers of m and regularizing gives for a Dirac sea tm the series

∞∑
n=0

1
n!

(
iξ/

2
T

(n−1)
[2n] (x, y) + T

(n)
[2n+1](x, y)

)
. (2.24)

In composite expressions, one must carefully keep track that every factor ξ is associated to
a corresponding factor T (n)

[p] . In [1, Section 3.6] this was accomplished by putting a bracket
around both factors. In order to have a more flexible notation, we here allow the two
factors to be written separately, but in this case the pairing is made manifest by adding
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an index (n), and if necessary also a subscript [r], to the factors ξ. With this notation, the
contraction rules [1, eqns (3.93)–(3.95)] can be written as

(ξ(n1)
[r1]

)j (ξ(n2)
[r2]

)j =
1
2

(z(n1)
[r1] + z

(n2)
[r2] ) , (ξ(n1)

[r1] )j (ξ(n2)
[r2]

)j =
1
2

(z(n1)
[r1] + z

(n2)
[r2] ) (2.25)

(and similar for the complex conjugates), where we introduced factors z(n)
[r] which by defi-

nition combine with the corresponding factor T (n)
[r] according to

z
(n)
[r] T

(n)
[r] = −4 (n T (n+1)

[r] + T
(n+2)
{r} ) + (smooth functions) . (2.26)

In our calculations, most separate factors ξ and z will be associated to T (−1)
[0] . Therefore,

we shall in this case often omit the indices, i.e.

ξ ≡ ξ
(−1)
[0] , z ≡ z

(−1)
[0] .

We point out that the calculation rule (2.26) is valid only modulo smooth functions. This
is because in [1] we analyzed the effects of the ultraviolet regularization, but disregarded
the “regularization” for small momenta related to the logarithmic mass problem. However,
this is not a problem because the smooth contribution in (2.26) is easily determined from
the behavior away from the light cone, where the factors T (n)

• are known smooth functions
and z(n)

[r] = ξ2.
Each summand in (2.11) is regularized according to (2.24). However, the regularization

functions involved may be different for each Dirac sea. Introducing new regularization
functions, we can write the sum of the three Dirac seas again in the form (2.24). More
precisely, in the integrands of [1, eqns (3.77)–(3.79)] we make the following replacements,

h a
p−1
2 →

3∑
α=1

hα a
p−1
2

α , h a
p−1
2 b →

3∑
α=1

hα a
p−1
2

α bα

g a
p
2 →

3∑
α=1

gα a
p
2
α , g a

p
2 b →

3∑
α=1

gα a
p
2
α bα

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.27)

As mentioned in [1, Remark 3.1], the calculation rules for monomials are valid also
when different regularization functions are involved. This implies that the contraction
rules (2.25),(2.26) are valid for the sums of Dirac seas as well. Using (2.24) and the con-
traction rules, we can expand the spectral decomposition around the singularities on the
light cone. Our expansion parameter is the degree on the light cone, also denoted by “deg”.
It is defined by

deg(T (n)
• ) = 1− n , deg(z(n)) = −1 ,

and the degree of a function which is smooth and non-zero on the light cone is set to zero.
The degree of a product is obtained by adding the degrees of all factors, and of a quotient
by taking the difference of the degrees of the numerator and denominator. The leading
contribution to the eigenvalues is computed as follows,

gg + hh =
1
4

(
(ξj T

(−1)
[0] )(ξj T

(−1)
[0] ) + (ξj T

(−1)
[0] )(ξj T

(0)
[2] ) + (ξj T

(0)
[2] )(ξj T

(−1)
[0] )

)
+ (deg < 3)
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=
1
8

(z + z) T (−1)
[0] T

(−1)
[0] + (deg < 3)

=
1
2

(
T

(0)
[0] T

(−1)
[0] + T

(−1)
[0] T

(0)
[0]

)
+ (deg < 3)

(gg)2 − g2 g2 =
1
16

(
(ξj T

(−1)
[0] )(ξj T

(−1)
[0] )

)2

− 1
16

(ξ T (−1)
[0] )2 (ξ T (−1)

[0] )2 + (deg < 6)

=
1
4

(
T

(0)
[0] T

(−1)
[0] + T

(−1)
[0] T

(0)
[0]

)2

− T
(−1)
[0] T

(0)
[0] T

(−1)
[0] T

(0)
[0] + (deg < 6)

=
1
4

(
T

(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

)2

+ (deg < 6)

(gh + hg)2 =
1
4

(
(iξ T (−1)

[0] ) T (0)
[1] + T

(0)
[1] (iξ T (−1)

[0] )
)2

+ (deg < 6) = (deg < 6) ,

and thus

λ± =
1
2

(
T

(0)
[0] T

(−1)
[0] + T

(−1)
[0] T

(0)
[0]

)
+ (deg < 3)

±1
2

√(
T

(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

)2

+ (deg < 6)

=
1
2

(
T

(0)
[0]

T
(−1)
[0]

+ T
(−1)
[0]

T
(0)
[0]

)
+ (deg < 3)

±1
2

(
T

(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

)
± (deg < 6)

4
(
T

(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

) + · · ·

=

⎧⎨
⎩ T

(0)
[0] T

(−1)
[0] for “+”

T
(−1)
[0] T

(0)
[0] for “−”

+ (deg < 3). (2.28)

The spectral projectors are calculated similarly,

F± =
11
2
±

1
8 [ξ/ T (−1)

[0] , ξ/ T
(−1)
[0] ] − i

2

(
T

(0)
[1] (ξ/T (−1)

[0] ) − (ξ/T (−1)
[0] ) T (0)

[1]

)
T

(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

+ (deg < 0) (2.29)

F± P (x, y) =
i

4
(ξ/ T (−1)

[0] ) + (deg < 2)

± i
4

(ξ/ T (−1)
[0] )(T (0)

[0] T
(−1)
[0] + T

(−1)
[0] T

(0)
[0] ) − 2 (ξ/ T (−1)

[0] ) T (−1)
[0] T

(0)
[0]

T
(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

. (2.30)

The last expression contains inner factors ξ. In situations when these factors are not
contracted to other inner factors in a composite expression, we can treat them as outer
factors. Then (2.30) simplifies to

F± P (x, y) =

{
0 for “+”

i
2 ξ/ T

(−1)
[0] for “−”

+ (deg < 2) . (2.31)
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By expanding, one can compute the eigenvalues and spectral projectors also to lower
degree on the light cone. We do not want to enter the details of this calculation here
because in this chapter we only need that the lower degrees involve the masses of the
Dirac seas. This is illustrated by the following expansion of the eigenvalues,

λ± =
1
4
×

⎧⎨
⎩ (z T (−1)

[0] ) T (−1)
[0] + (z T (0)

[2] ) T (−1)
[0] + (z T (−1)

[0] ) T (0)
[2] for “+”

T
(−1)
[0] (z T (−1)

[0] ) + T
(−1)
[0] (z T (0)

[2] ) + T
(0)
[2] (z T (−1)

[0] ) for “−”

+ T
(0)
[1] T

(0)
[1] ∓

T
(0)
[1] T

(−1)
[0] − T (−1)

[0] T
(0)
[1]

T
(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

(T (0)
[1] T

(0)
[0] − T

(0)
[0] T

(0)
[1] ) + (deg < 2) . (2.32)

Similarly, the contributions to degree < 2 involve even higher powers of the masses.
Let us specify how we can give the above spectral decomposition of Axy mathematical

meaning. A priori, our formulas for λ± and F± are only formal expressions because

the formalism of [1, Section 3.5] applies to monomials in T
(n)
• and T

(n)
• , but dividing by

(T (0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0] ) is not a well-defined operation. In order to make mathematical

sense of the spectral decomposition and in order to ensure at the same time that the
EL equations have a well-defined continuum limit, we shall only consider Lagrangians
for which all relevant expressions obtained by substituting the spectral representation

of A into the EL equations are polynomials in T
(n)
• and T

(n)
• . Under this assumption,

working with the spectral representation of Axy can be regarded merely as a convenient
formalism for handling the the EL equations, the latter being well-defined according to [1,
Chapter 3]. Having Lagrangians of this type in mind, we can treat A in the massive sectors
as a diagonalizable matrix with two distinct eigenvalues λ± and corresponding spectral
projectors F±.

The explicit formulas (2.28) and (2.29) show that the eigenvalues of A are to leading
degree not real, but appear in complex conjugate pairs, i.e.

λ+ = λ− and F ∗
+ = F− , (2.33)

where “∗” denotes the adjoint with respect to the spin scalar product. If one considers
perturbations of these eigenvalues by taking into account the contributions of lower degree,
λ+ and λ− will clearly still be complex. As explained after [1, eqn (2.41)], this implies
that the relations (2.33) remain valid (as is e.g. the case in (2.32)). We conclude that in
our expansion about the singularities on the light cone, the eigenvalues appear to every
degree in complex conjugate pairs (2.33).

We finally summarize the results obtained in the neutrino and massive sectors and
introduce a convenient notation for the eigenvalues and spectral projectors of Axy. We
found that within the formalism of [1, Section 3.6], A can be treated as a diagonalizable
matrix. We denote the distinct eigenvalues of A by (λk)k=1,...,K and the corresponding
spectral projectors by Fk. Since A vanishes in the neutrino sector, zero is an eigenvalue
of A of multiplicity four; we choose the numbering such that λ1 = 0. Due to the chiral
degeneracy, all eigenspaces are at least two-dimensional. Furthermore, all non-zero eigen-
values of A are complex and appear in complex conjugate pairs (2.33). It is useful to also
consider the eigenvalues counting their multiplicities. We denote them by (λα)α=1,...,4N or
also by (λncs)n=1,...,8, c=L/R, s=±, where n refers to the sectors and c, s count the eigenvalues

12



within each sector. More precisely,

λ8a = 0 and λnc± = λ
(n)
± , n = 1, . . . , 7 (2.34)

with λ(n)
± as given by (2.16) or (2.32), whereby the index “(n)” emphasizes that the eigen-

values λ± depend on the regularization functions in the corresponding sector.

2.2 Pointwise Spectral Analysis of the Euler-Lagrange Equations

In this Section, we shall derive conditions which ensure that the EL equations (2.8),(2.6)
are satisfied in the vacuum and argue why we want to choose our Lagrangian in such
a way that these sufficient conditions are fulfilled. Since the Lagrangian L[A] must be
independent of the matrix representation of A, it depends only on the eigenvalues λα,

L[Axy] = L(λxy
1 , . . . , λxy

4N ) ,

and furthermore L(λxy
1 , . . . , λxy

4N ) is symmetric in its arguments. In preparation, we first
consider the case when the eigenvalues of A are non-degenerate. Then the variation of the
eigenvalues is given in first order perturbation theory by δλα = Tr(Fα δA). Let us assume
that L depends smoothly on the λα, but is not necessarily holomorphic (in particular, L
is allowed to be a polynomial in |λα|2). Then

δL =
4N∑
α=1

(
∂L(λ)
∂ Reλα

Re Tr(Fα δA) +
∂L(λ)
∂ Imλα

Im Tr(Fα δA)
)

(2.35)

= Re
4N∑
α=1

∂L(λ)
∂λα

Tr(Fα δA) , (2.36)

where we set

∂L(λ)
∂ Reλα

= lim
IR�ε→0

1
ε

(L(λ1, . . . , λα−1, λα + ε, λα+1, . . . , λ4N )− L(λ1, . . . , λ4N ))

∂L(λ)
∂ Imλα

= lim
IR�ε→0

1
ε

(L(λ1, . . . , λα−1, λα + iε, λα+1, . . . , λ4N )− L(λ1, . . . , λ4N ))

and
∂L(λ)
∂λα

≡ ∂L(λ)
∂ Reλα

− i
∂L(λ)
∂ Imλα

. (2.37)

If some of the λαs coincide, we must apply perturbation theory with degeneracies. One
obtains in generalization of (2.36) that

δL = Re
K∑

k=1

∂L(λ)
∂λα

Tr(Fk δA)
∣∣∣∣
λα=λk

. (2.38)

Here our notation means that we choose the index α such that λα = λk. Clearly, α is not
unique iff λk is a degenerate eigenvalue; in this case α can be chosen arbitrarily due to the
symmetry of L. We also write (2.38) in the shorter form

δL = Re
K∑

k=1

∂L(λ)
∂λk

Tr(Fk δA) . (2.39)
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In this formula it is not necessary to take the real part. Namely, as the Lagrangian is real
and symmetric in its arguments, we know that L(λ1, . . . , λ4N ) = L(λ1, . . . , λ4N ), and thus
according to (2.37),

∂L(λ1, . . . , λ4N )
∂λk

=
∂L(λ1, . . . , λ4N )

∂λk

.

Using furthermore that the eigenvalues of A appear in complex conjugate pairs (2.33), one
sees that the operator

K∑
k=1

∂L
∂λk

Fk

is Hermitian. Hence we can write the sum in (2.39) as the trace of products of two
Hermitian operators on H, being automatically real. We conclude that

δL =
K∑

k=1

∂L(λ)
∂λk

Tr(Fk δA) . (2.40)

Comparing (2.40) with (2.3) gives

M[Axy] =
Kxy∑
k=1

∂L(λ)
∂λxy

k

F xy
k . (2.41)

We substitute this identity into (2.6) and apply Lemma 2.1 in each sector to obtain

Q(x, y) =
1
2

Kxy∑
k=1

∂L(λxy)
∂λxy

k

F xy
k P (x, y) =

1
2

Kxy∑
k=1

∂L(λxy)
∂λxy

k

P (x, y) F yx
k . (2.42)

Using these relations, we can write the EL equations (2.8) as

∫
d4z

⎛
⎝P (x, z) P (z, y)

Kzy∑
k=1

∂L(λzy)
∂λzy

k

F yz
k −

Kxz∑
k=1

∂L(λxz)
∂λxz

k

F xz
k P (x, z) P (z, y)

⎞
⎠ = 0 .

(2.43)
This equation splits into separate equations on the eight sectors. In the neutrino sector,
we have according to (2.9),

P (x, z) P (z, y) = χL g/(x, z) χL g/(z, y) = χL χR g/(x, z) g/(z, y) = 0 . (2.44)

Since both summands in (2.43) contain a factor P (x, z) P (z, y), the EL equations are
trivially satisfied in the neutrino sector due to chiral cancellations. In the massive sectors,
there are no chiral cancellations. As shown in [1, Appendix D], there are no further
cancellations in the commutator if generic perturbations of the physical system are taken
into account (see also [1, Section 3.6]). This means that (2.43) will be satisfied if and only
if Q vanishes in the massive sectors, i.e.

Kxy∑
k=1

∂L(λxy)
∂λxy

k

F xy
k P (x, y) XX∗ = 0 . (2.45)

As explained on page 12, we shall only consider Lagrangians for which (2.45) is a linear

combination of monomials in T (n)
• and T (n)

• . Thus we can evaluate (2.45) weakly near the
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light cone and apply the integration-by-parts rules [1, eqn (3.107)]. However, it is reason-
able to impose that (2.45) should be satisfied even pointwise (i.e. without weak evaluation),
as the following arguments show. First, one should keep in mind that the integration-by-
parts rules are valid only to leading order in (lEP )−1. As is worked out in [1, Appendix C],
the restriction to the leading order in (lEP )−1 is crucial when perturbations by the bosonic
fields are considered (basically because the microscopic form of the bosonic potentials is
unknown). But in the vacuum, one can consider the higher orders in (lEP )−1 as well
(see the so-called regularization expansion in [1, Section 3.4]). Therefore, it is natural to
impose that in the vacuum the EL equations should be satisfied to all orders in (lEP )−1.
Then the integration-by-parts rules do not apply, and weak evaluation becomes equivalent
to pointwise evaluation. A second argument in favor of a pointwise analysis is that even
if we restricted attention to the leading order in (lEP )−1 and allowed for integrating by
parts, this would hardly simplify the equations (2.45), because the integration-by-parts

rules depend on the indices n of the involved factors T (n)
• and T

(n)
• . More precisely, the

relations between the monomials given by the integration-by-parts rules are different to
every degree, and thus the conditions (2.45) could be satisfied only by imposing to every
degree conditions on the regularization parameters. It seems difficult to satisfy all these
extra conditions with our finite number of regularization functions. Clearly, this last ar-
gument does not rule out the possibility that there might be a Lagrangian together with
a special regularization such that (2.45) is satisfied to leading order in (lEP )−1 only after
applying the integration-by-parts rules. But apart from not being quite satisfactory due
to our first argument, such Lagrangians are certainly difficult to handle, and we shall not
consider them here.

For these reasons, we here restrict attention to Lagrangians for which (2.45) is satisfied
pointwise. Then (2.45) simplifies to the conditions

∂L(λxy)
∂λxy

ncs
= 0 for n = 1, . . . , 7. (2.46)

2.3 Motivation of the Lagrangian, the Mass Degeneracy Assumption

Let us discuss the conditions (2.46) in concrete examples. We begin with the class of
Lagrangians which are polynomial in the eigenvalues λα of A. Since different powers
of λα have a different degree on the light cone, there cannot be cancellations between
them. Thus it suffices to consider polynomials which are homogeneous of degree h, h ≥ 1.
Furthermore, as the Lagrangian should be independent of the matrix representation of A,
it can be expressed in terms of traces of powers of A. Thus we consider Lagrangians of
the form

L[A] = Ph[A] , (2.47)

where Pl denotes a polynomial in Tr(Ap) homogeneous in A of degree l, i.e.

Pl =
∑
n

cn Rp1 · · · Rpmax(n)
with

max(n)∑
j=1

pj = l, (2.48)

Rp = Tr(Ap) =
4N∑
α=1

λp
α (2.49)
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and coefficients cn, which for simplicity we assume to be rational. In the example of degree
h = 3,

L[A] = c1 R3 + c2 R1 R2 + c3 R1 R1 R1 (2.50)

with three coefficients cn ∈ Q (only two of which are of relevance because the normalization
of L has no effect on the EL equations). We assume that L is non-trivial in the sense
that at least one of the coefficients cn in the definition (2.47),(2.48) of L should be non-
zero. The EL equations corresponding to (2.47) can easily be computed using that δRp =
p Tr(Ap−1 δA) together with (2.4) and the fact that the trace is cyclic. The resulting
operator Q in (2.8) is of the form

Q(x, y) =
[
P0 A

h−1 + P1 A
h−2 + · · · + Ph−1

]
P (x, y) (2.51)

where Pl are homogeneous polynomials of the form (2.48) (P0 is a rational number). In
the example (2.50),

Q(x, y) =
[
3
2
c1 A

2 + c2 R1 A +
1
2

(c2 R2 + 3c3 R2
1)
]
P (x, y) .

By substituting the regularized formulas of the light-cone expansion into (2.51), one sees

that Q(x, y) is to every degree on the light cone a polynomial in T (n)
• and T (n)

• , well-defined
according to [1, Section 3.5]. Thus for polynomial actions, our spectral decomposition is
not needed. But it is nevertheless a convenient method for handling the otherwise rather
complicated combinatorics of the Dirac matrices.

For the polynomial Lagrangian (2.47), the conditions (2.46) become

P0 λ
h−1 + P1 λ

h−2 + · · · + Ph−1 = 0 for λ = λncs, n = 1, . . . , 7 (2.52)

and the Pl as in (2.48). It is useful to analyze these conditions algebraically as polynomial
equations with rational coefficients for the eigenvalues of A. To this end, we need to
introduce an abstract mathematical notion which makes precise that, according to (2.34),
the eigenvalues λncs have certain degeneracies, but that there are no further relations
between them. We say that the matrix A has n independent eigenvalues if A has n distinct
eigenvalues, one of them being zero and the others being algebraically independent. The
following lemma shows that the conditions (2.52) can be fulfilled only if the degree of the
Lagrangian is sufficiently large.

Lemma 2.2 For a non-trivial Lagrangian of the form (2.47) which satisfies the condi-
tions (2.52),

h ≥ n , (2.53)

where n denotes the number of independent eigenvalues of A.

Proof. First suppose that the factors Pl in (2.52) are not all zero. Then we can regard
the left of (2.52) as a polynomial in λ of degree at most h − 1. According to (2.34), the
eigenvalues λ8a in the lepton sector all vanish. Thus the polynomial in (2.52) has at least
n− 1 distinct zeros, and thus its degree must be at least n− 1. This proves (2.53).

It remains to consider the case when the coefficients Pl in (2.52) all vanish. Since the
Lagrangian is non-trivial, at least one of the Pl is non-trivial, we write Pl 
≡ 0. On the
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other hand, Pl[A] = 0 and furthermore l ≤ h−1 from (2.52). Hence to conclude the proof
it suffices to show that

Pl 
≡ 0 ∧ Pl[A] = 0 =⇒ l ≥ n− 1. (2.54)

To prove (2.54), we proceed inductively in n. For n = 1 there is nothing to show. Assume
that (2.54) holds for given n and any matrix A with n independent eigenvalues. Consider
a matrix A with n+ 1 independent eigenvalues. A given non-trivial polynomial Pl+1 can
be uniquely decomposed in the form

Pl+1 = R1 Pl + R2 Pl−1 + · · · + Rl+1 P0 , (2.55)

where the polynomials Pl−k contain only factors Rj with j > k. Since Pl+1 
≡ 0, at least
one of the factors Pl−k is non-trivial. Let k ≥ 0 be the smallest natural number such that
Pl−k 
≡ 0. The functional Pl+1[A] is a homogeneous polynomial of degree l + 1 in the
eigenvalues λ1, . . . , λn+1 of A. We pick those contributions to this polynomial which are
homogeneous in 0 
= λn+1 of degree k+1. These contributions all come from the summand
Rk+1Pl−k in (2.55) because the summands to its left are trivial and the summands to its
right are composed only of factors Rl with l > k+1. Hence apart from the prefactor λk+1

n+1

and up to irrelevant combinatorial factors for each of the monomials, these contributions
coincide with the polynomial Pl−k(λ1, . . . , λn) evaluated for a matrix with n indepen-
dent eigenvalues. We conclude that if Pl+1(λ1, . . . , λn+1) vanishes, then Pl−k(λ1, . . . , λn)
must also be zero. The induction hypothesis yields that l−k ≥ n−1 and thus l+1 ≥ n.

We are looking for a Lagrangian which is as simple as possible. One strategy is to
consider the general polynomial Lagrangian (2.47) and to choose the degree h minimal.
According to Lemma 2.2, the degree cannot be smaller than the number of independent
eigenvalues of A. Thus if we treat the eigenvalues as being algebraically independent in
the sectors containing the Dirac seas (d, s, b), (u, c, t), and (e, µ, τ), then h is bounded
from below by h ≥ 3× 2 + 1 = 7. Unfortunately, polynomials of degree ≥ 7 involve many
coefficients cn and are complicated. Therefore, it is desirable to reduce the number of
independent eigenvalues. Since the eigenvalues depend on the masses and regularization
functions of the particles involved (see (2.32)), we can reduce the number of distinct
eigenvalues only by assuming that the massive sectors are identical. The best we can do
is to assume that

mu = md = me , mc = ms = mµ , mt = mb = mτ , (2.56)

and that the regularization functions in the massive sectors coincide. Then the additional
degeneracies in the massive sectors reduce the number of distinct eigenvalues to three.
If (2.56) holds, the bound of Lemma 2.2 is even optimal. Namely, a simple calculation
shows that the polynomial Lagrangian of degree three (2.50) with

c1 = 14 , c2 = −3
2
, c3 =

1
28

(2.57)

satisfies the conditions (2.46). According to Lemma 2.2, a degree h < 2 would make it nec-
essary to impose relations between λ+ and λ−, which is impossible in our formalism (2.28).
We conclude that (2.50),(2.57) is the polynomial Lagrangian of minimal degree which sat-
isfies the conditions (2.46). We refer to (2.56) as the mass degeneracy assumption. In order
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to understand what this condition means physically, one should keep in mind that (2.56)
gives conditions for the bare masses, which due to the self-interaction are different from
the effective masses (this is a bit similar to the situation in the grand unified theories,
where simple algebraic relations between the bare quark and lepton masses are used with
some success [7]).

Another strategy for finding promising Lagrangians is to consider homogeneous poly-
nomials of higher degree, but which are of a particular simple form. A good example for
such a Lagrangian is the determinant,

L[A] = detA . (2.58)

By writing detA = det(11 − (11 − A)), expanding in powers of (11 − A), and multiplying
out, this Lagrangian can be brought into the form (2.47),(2.48) with h = 4N . The
Lagrangian (2.58) is appealing because of its simple form. Furthermore, it has the nice
property that whenever the eigenvalues of A appear in complex conjugate pairs (2.33),
the product of these eigenvalues is positive, and thus L ≥ 0. Unfortunately, there is the
following drawback. The matrix A vanishes identically in the neutrino sector (2.10), and
so A has a zero eigenvalue of multiplicity four. As a consequence, L and its variations
vanish until perturbations of at least fourth order are taken into account, making the
analysis rather complicated. For this reason, (2.58) does not seem the best Lagrangian for
developing our methods, and we shall not consider it here.

In the polynomial Lagrangian (2.50),(2.57), we did not use that the eigenvalues of A
appear in complex conjugate pairs. This fact can be exploited to construct an even simpler
Lagrangian. Assume again that the masses are degenerate (2.56). Then the absolute
squares |λα|2 of the eigenvalues of A take only the two values 0 and |λ+|2 = |λ−|2, with
multiplicities 4 and 28, respectively. Thus if we consider homogeneous polynomials in
|λα|2, there is already a Lagrangian of degree two which satisfies the conditions (2.46),
namely

L =
4N∑
α=1

|λα|4 − 1
28

(
4N∑
α=1

|λα|2
)2

. (2.59)

Using the notion of the spectral weight [1, eqn (2.38)],

|A| ≡
(

K∑
k=1

nk |λk|2
) 1

2

,

this Lagrangian can be written as

L[A] = |A2|2 − 1
28
|A|4 . (2.60)

The factor 1/28 may be replaced by a Lagrangian multiplier µ,

L[A] = |A2|2 − µ |A|4 , (2.61)

because the value of µ = 1/28 is uniquely determined from the condition that the EL
equations should be satisfied in the vacuum. The functional (2.61) can be regarded as
the effective Lagrangian corresponding to the variational principle with constraint [1,
eqns (2.38),(2.39)]. We conclude that (2.60) is precisely the model variational principle
introduced in [1, Section 2.5].
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The operator Q corresponding to the Lagrangian (2.60) is computed using (2.42) to
be

Q(x, y) = 2
Kxy∑
k=1

(
|λk|2 − 1

28
|A|2

)
xy

λk F
xy
k P (x, y) . (2.62)

Let us verify that this expression is well-defined in the framework of [1, Section 3.6]:
We introduce the so-called spectral adjoint Ā by taking the complex conjugate of the
eigenvalues in the spectral decomposition of A,

Ā =
Kxy∑
k=1

λk Fk . (2.63)

According to (2.16) and (2.18), the transformations g ↔ −g, h↔ h leave the eigenvalues
λ± unchanged and map the spectral projectors into their adjoints, F± → F ∗±. These
transformations can be realized by exchanging x with y and anti-commuting with γ5, and
thus

Āxy =
Kxy∑
k=1

λxy
k F xy

k

(2.33)
=

Kxy∑
k=1

λxy
k (F xy

k )∗ = γ5 Ayx γ
5 . (2.64)

Using that

Ā =
K∑

k=1

λk Fk , (AĀ) Ā =
K∑

k=1

|λk|2 λk Fk , |A|2 = Tr(AĀ) ,

one can write (2.62) as a polynomial in Axy, Āxy, and P (x, y). If now we express Āxy in
terms of Ayx, (2.64), and substitute in (2.2) as well as the expansion for P (x, y), (2.24),

we obtain for Q(x, y) a linear combination of monomials in T (n)
• and T (n)

• .
The above considerations give a motivation for the Lagrangian (2.60) together with

the mass degeneracy assumption (2.56). Clearly, our discussion does not rule out the
possibility that there are other physically interesting actions. In particular, we only con-
sidered Lagrangians for which the corresponding kernel Q(x, y) is a linear combination of

monomials in T (n)
• and T (n)

• . This means that if the methods of [1] were extended to more
general operations on the T (n)

• , this might give rise to other promising actions (e.g. if one
succeeded in defining the absolute value |T (n)

• |, one could consider in analogy to (2.59)

the Lagrangian L =
∑4N

α=1 |λα|2 − 1
28

(∑4N
α=1 |λα|

)2
). But with the methods presently

available, the Lagrangian (2.60) gives the simplest promising variational principle. Also,
it is nice that all the special properties of the fermionic projector of the vacuum were
used. Namely, the EL equations corresponding to (2.60) are fulfilled only due to chiral
cancellations in the neutrino sector and due to the fact that the eigenvalues of A appear
in complex conjugate pairs.
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3 The Dynamical Gauge Group

We now begin the analysis of the EL equations with interaction. The general method is to
substitute the regularized formulas of the light-cone expansion into (2.8) and to take the
continuum limit as described in [1, Chapter 3]. In order to work in a concrete example, we
shall analyze our model variational principle (2.60). But the methods as well as many of
the results carry over to other variational principles, as will be discussed in the Remarks
at the end of Chapter 3 and at the end of Chapter 4.

For the bosonic potentials in the auxiliary Dirac equation (1.8) we make the ansatz

B = C/+ γ5 E/+ Φ + iγ5 Ξ (3.1)

with a vector potential C, an axial potential E, and scalar/pseudoscalar potentials φ and
Ξ, which again in component notation B = B(aα)

(bβ) we assume to be of the form

C = Ca
b δ

α
β , E = Ea

b δ
α
β , φ = φ

(aα)
(bβ) , Ξ = Ξ(aα)

(bβ) . (3.2)

Exactly as in [3], it is convenient to introduce the chiral potentials

AL/R = C ± E , (3.3)

and to define the dynamical mass matrices by

mYL/R = mY − φ∓ iΞ . (3.4)

Then the auxiliary Dirac equation takes the form

(i∂/+ χL(A/R −mYR) + χR(A/L −mYL))P (x, y) = 0 . (3.5)

Clearly, the potentials in (3.1) must be causality compatible. We assume in what follows
that this condition is satisfied, and will specify what it means in the course of our analysis.

Let us briefly discuss the ansatz (3.1). The vector and axial potentials in (3.1) have
a similar form as the gauge potentials in the standard model. Indeed, when combined
to the chiral potentials (3.3), they can be regarded as the gauge potentials corresponding
to the gauge group U(8)L ⊗ U(8)R. This so-called chiral gauge group includes the gauge
group of the standard model. At every space-time point, it has a natural representation
as a pair of 8 × 8 matrices acting on the sectors; we will work in this representation
throughout. Compared to the most general ansatz for the chiral potentials, the only
restriction in (3.3),(3.2) is that the potentials are the same for the three generations.
This can be justified from the behavior of the fermionic projector under generalized gauge
transformations, as will be explained in Remark 3.7 below. The scalar potentials in (3.1)
do not appear in the standard model, but as we shall see, they will play an important role
in our description of the interaction (here and in what follows, we omit the word “pseudo”
and by a “scalar potential” mean a scalar or a pseudoscalar potential). We point out that
we do not consider a gravitational field. The reason is that in the present paper, we want
to restrict attention to the interactions of the standard model. But since the principle
of the fermionic projector respects the equivalence principle, one could clearly include a
gravitational field; we plan to do so at a later point. Compared to a general multiplication
operator, (3.1) does not contain bilinear potentials (i.e. potentials of the form Hjkσ

jk with
σjk = i

2 [γj , γk]). Clearly, bilinear potentials do not appear in the standard model, but
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it is not obvious why they should be irrelevant in our description. Nevertheless, we omit
bilinear potentials here in order to keep the analysis as simple as possible. To summarize,
(3.1) is certainly not the most general ansatz which is worth being studied. But since the
potentials in (3.1) are considerably more general than the gauge potentials in the standard
model, it seems reasonable to take (3.1) as the starting point for our analysis.

3.1 The Euler-Lagrange Equations to Highest Degree on the Light Cone

We come to the detailed calculations. We again work with the spectral decomposition of
Axy and proceed degree by degree on the light cone. In this section, we consider the highest
degree. Then the fermionic projector is influenced only by the chiral potentials (and not
by the scalar potentials or the particle states), and the chiral potentials merely describe
local phase transformations of the fermionic projector. More precisely, truncating all
contributions of degree < 2 and denoting this “truncated fermionic projector” by P0(x, y),
we have (see [3, Section 2.2])

P0(x, y) =
(
χL XL L

∫ y

x
+χR XR R

∫ y

x

)
i

2
ξ/ T

(−1)
[0] (x, y) , (3.6)

where we used for the ordered exponentials the short notation

c

∫ y

x
= Pexp

(
−i

∫ 1

0
Aj

c(τy + (1− τ)x) (y − x)j dτ
)

(3.7)

with c = L or R. We also truncate the matrix Axy by setting

A0(x, y) = P0(x, y) P0(y, x) .

It follows from (3.6) that

A0 =
{
χL XL L

∫ y

x
R

∫ x

y
XR + χR XR R

∫ y

x
L

∫ x

y
XL

}
1
4

(ξ/ T (−1)
[0] )(ξ/ T (−1)

[0] ) . (3.8)

We can assume in what follows that the matrix inside the curly brackets is diagonalizable;
indeed, this is the generic situation, and the general case immediately follows from it
by approximation. The matrix A0 is invariant on the left- and right-handed spinors. If
considered on one of these invariant subspaces, the curly brackets depend only on the sector
indices a, b = 1, . . . , 8, whereas the factors to their right involve only Dirac matrices. This
allows us to factorize the spectral decomposition of A0 as follows. We first diagonalize the
phase factor, i.e.

Wc ≡ Xc c

∫ y

x
c

∫ x

y
Xc =

8∑
n=1

νnc Inc (3.9)

with eigenvalues νnc (counting multiplicities) and corresponding spectral projectors Inc,
where c is defined by L = R and R = L. The matrices WL and WR are obtained from
each other by taking their adjoint. Thus we can arrange that the same holds for their
spectral decompositions,

νnc = νnc , I∗nc = Inc . (3.10)

The spectral representation of the second term in (3.8) is computed exactly as described
in Subsection 2.1. More precisely, it is obtained from (2.16) and (2.18) by setting h to
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zero, i.e. similar to (2.28) and (2.29),

1
4

(ξ/ T (−1)
[0] )(ξ/ T (−1)

[0] ) =
∑
s=±

λs Fs (3.11)

with

λs =
1
4
T

(−1)
[0] T

(−1)
[0] ×

{
z if s = +
z if s = − (3.12)

Fs =
1

z − z ×
{

ξ/ξ/− z if s = +
−ξ/ξ/+ z if s = − (3.13)

Combining (3.9) and (3.11) gives

A0 =
8∑

n=1

∑
c=L,R

∑
s=±

λncs Fncs (3.14)

with
λncs = νnc λs , Fncs = χc Inc Fs . (3.15)

It might be surprising at first sight that, although A0 clearly is a gauge-invariant
expression, the phase shifts described by the ordered exponentials in (3.6) do not drop out
in (3.8). Let us explain in detail how this comes about. We first recall that under gauge
transformations, the truncated fermionic projector transforms like

P0(x, y) −→ U(x) P0(x, y) U(y)−1 , (3.16)

where U is unitary with respect to the spin scalar product, U(x)∗ = U(x)−1. These
U(2N, 2N) gauge transformations correspond to a local symmetry of the system, which is
related to the freedom in choosing a local basis for the spinors (see [1, Section 2.1]). When
forming the closed chain, the gauge transformations at y drop out,

P0(x, y) P0(y, x) −→ U(x) P0(x, y) P0(y, x) U(x)−1 .

In order to see the relation between the phase transformations in (3.6) and the above gauge
transformations, it is useful to consider the situation when the chiral potentials have the
form of pure gauge potentials, i.e.

Aj
c = iVc (∂jV −1

c ) (3.17)

with unitary operators VL, VR ∈ U(8). Then the ordered exponential (3.7) reduces to a
product of unitary transformations at the two end points,

c

∫ y

x
= Vc(x) Vc(y)−1 .

Using that the potentials are causality compatible, (3.6) becomes

P0(x, y) =
∑

c=L,R

χc Vc(x)Xc

(
i

2
ξ/ T

(−1)
[0] (x, y)

)
Vc(y)−1 . (3.18)
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Hence the left- and right-handed components of P0 are transformed independently by VL

and VR, respectively. In order to write these transformations in a form similar to (3.16),
we combine VL and VR into one operator V ,

V = χL VL + χR VR .

The effect of the chiral potentials in (3.18) is then described by the transformation

P0(x, y) −→ V (x) P0(x, y) V (y)∗ ,

and thus the closed chain transforms according to

P0(x, y) P0(y, x) −→ V (x) P0(x, y) V (y)∗ V (y) P0(y, x) V (x)∗ . (3.19)

The point is that the transformation V is in general not unitary, because

V ∗ = χR V
−1
L + χLV

−1
R

in general


= χL V
−1
L + χRV

−1
R = V −1 .

More precisely, V is unitary if and only if VL = VR at every space-time point. According
to (3.17), this implies the condition AL ≡ AR. From (3.3) we conclude that V is unitary
if and only if the axial potentials E in (3.1) are identically equal to zero. This means
that only the subgroup U(8) ⊂ U(8)L ⊗ U(R)R of the chiral gauge group, which gives
rise to the vector potential C in (3.1), describes local unitary transformations of the
fermionic projector and thus corresponds to a local gauge symmetry in the sense of [1,
Section 2.2]. We refer to this subgroup of the chiral gauge group as the free gauge group
F ; it can be identified with a subgroup of the gauge group, F ⊂ U(2N, 2N) (we remark
for clarity that the other degrees of freedom of the gauge group U(2N, 2N) are related to
the gravitational field [5] and are thus not considered here). The axial potentials, however,
describe local transformations which are not unitary and thus cannot be identified with
gauge transformations in the sense of [1, Section 2.2]. These non-unitary transformations
do not correspond to an underlying local symmetry of the system. The interpretation of
these results is that the chiral gauge group is spontaneously broken, only its subgroup F
corresponds to an unbroken local symmetry of the system.

A simple way to understand why the chiral gauge group is spontaneously broken is
that axial potentials describe relative phase shifts between the left- and right-handed
components of the fermionic projector. Such relative phases do not drop out when we
form composite expressions, as one sees in (3.19) or, more generally, in (3.8). By imposing
that the relative phases be zero in all composite expressions, we can distinguish those
systems in which the axial potentials vanish identically. In this way, one can fix the gauge
up to global chiral gauge transformations (i.e. transformations of the form (3.18) with
constant matrices Vc) and up to local free gauge transformations. Since this gauge fixing
argument makes use of the phases which appear in P0(x, y), one may regard the chiral
gauge symmetry as being spontaneously broken by the fermionic projector.

The spontaneous breaking of the chiral gauge symmetry by the fermionic projector has,
at least on the qualitative level, some similarity to the Higgs mechanism in the standard
model. We recall that in the Higgs mechanism one arranges by a suitable quartic potential
in the classical Lagrangian that the Higgs field Φ has a non-trivial ground state, i.e. Φ 
= 0
in the vacuum. The Higgs field is acted upon by a local gauge group. Since Φ 
= 0, one
can, by prescribing the phase of Φ, fix the gauge globally. This shows that the local gauge
symmetry is spontaneously broken by the Higgs field, a fact which can then be used to give
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the gauge bosons mass. In our setting, we also have in the vacuum a non-trivial object,
namely the fermionic projector, which is composed of the Dirac seas corresponding to the
leptons and quarks. Thus our situation is indeed quite similar to the Higgs mechanism,
if one only keeps in mind that the role of the Higgs field in our description is played by
the fermionic projector of the vacuum. Clearly, this analogy does not carry over to the
mathematical details. But also in our description, the spontaneous symmetry breaking
can give rise to massive gauge bosons (see [6]).

Since the chiral gauge symmetry is spontaneously broken, we cannot expect that the
EL equations admit chiral potentials corresponding to the whole group U(8)L ⊗ U(8)R.
In order to quantify which restrictions for the chiral potentials we get, we must work in
a more general setting and introduce a suitable mathematical notation. Contributions
to the fermionic projector which involve the phases of the chiral potentials, but not the
gauge fields, currents, or scalar potentials, are called gauge terms. Likewise, we refer to
the contributions of the gauge terms to a composite expression in the fermionic projector
as the gauge terms in the respective expression. The simplest examples for gauge terms
are (3.6) or (3.8), but we will encounter gauge terms to lower degree on the light cone as
well.

Def. 3.1 A subgroup G of the chiral gauge group is called a dynamical gauge group
if the gauge terms of the potentials corresponding to G vanish in the EL equations. Its
subgroup G ∩ F is the free dynamical gauge group.

Clearly, this definition does not give a unique dynamical gauge group. In particular, every
subgroup of a dynamical gauge group is again a dynamical gauge group. Since we want
to choose the dynamical gauge group as large as possible, we can always restrict attention
to dynamical gauge groups which are maximal in the sense that they are not contained in
a larger dynamical gauge group.

We first analyze the gauge term (3.6) in the EL equations corresponding to our varia-
tional principle (2.60) to the to highest degree on the light cone. This gives the following
result.

Theorem 3.2 The eigenvalues νnc of Wc must satisfy the conditions

ν8c = 0 and |νnc| = |νn′c′ | for n, n′ = 1, . . . , 7 and c, c′ = L,R. (3.20)

The dynamical gauge group G is restricted by

G ⊂ (U(7) ⊗ U(1))L ⊗ (U(7) ⊗ U(1))R , (3.21)

where the U(7) are unitary matrices acting on the seven massive sectors, and the U(1) act
on the neutrino sector.

If conversely the conditions (3.20) or (3.21) are satisfied, then the EL equations are
satisfied to degree 11 on the light cone.

It is easy to see that the conditions in the above theorem are sufficient for the EL equations
to be satisfied, and this consideration also gives an idea of how these conditions come about.
Namely, suppose that (3.21) holds. Then the dynamical gauge potentials are invariant on
the massive sectors as well as on the neutrino sector. Using a block matrix notation where
the first component refers to the massive sectors and the second component to the neutrino
sector, we see from (3.9) that the matrices WL and WR have the form

WL =
(
U 0
0 0

)
, WR =

(
U∗ 0
0 0

)
(3.22)
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with U a unitary 7 × 7 matrix. Hence their eigenvalues νnc satisfy the conditions (3.20).
Similar to the calculation leading to (2.62), the gradient of the Lagrangian is computed
using (2.41) to be

M[A] = 4
K∑

k=1

{(
|λk|2 − 1

28
|A|2

)
λk

}
Fk . (3.23)

We saw in Section 2.3 that the curly brackets vanish in the vacuum. If (3.20) is satisfied,
the gauge terms change the eigenvalues λncs only by a phase (3.15). Since these phases
drop out when absolute values are taken, the curly brackets in (3.23) are zero even with
interaction (to the highest degree on the light cone). This implies according to (2.6) that
Q vanishes, and so the EL equations are satisfied.

It is more difficult to show that the conditions (3.20) and (3.21) are also necessary.
We give the prove in detail. In preparation, we prove that for the truncated fermionic
projector, an analogue of Lemma 2.1 holds even in the presence of chiral potentials.

Lemma 3.3 The spectral representations of A0(x, y) and A0(y, x) are related to each other
by

λxy
nc± = λyx

nc∓ , F xy
nc± P0(x, y) = P0(x, y) F

yx
nc∓ . (3.24)

Proof. In the case c = L, we can use that XL = 11 and obtain from (3.9) that

W xy
L = L

∫ y

x
W yx

R L

∫ x

y
.

Since the ordered exponentials are unitary, the eigenvalues of W xy
L and W yx

R coincide, and
furthermore their spectral projectors are obtained from each other by a unitary transfor-
mation,

νxy
nL = νyx

nR , Ixy
nL = L

∫ y

x
Iyx
nR L

∫ x

y
. (3.25)

Hence

F xy
nLs P0(x, y) = χL I

xy
nL F

xy
s P0(x, y)

= χL L

∫ y

x
Iyx
nR

{
F xy

s L

∫ x

y
χL P0(x, y)

}
. (3.26)

According to (3.6), the left-handed component of P0(x, y) involves the ordered exponential

L

∫ y

x
, which precisely cancels the ordered exponential L

∫ x

y
in (3.26). Thus the curly brackets

in (3.26) are independent of the chiral potentials, and so we can apply our result in the

vacuum (2.22). The ordered exponential L

∫ y

x
in (3.26) introduces the correct phase factor

into P0(x, y), and we conclude that

F xy
nL± P0(x, y) = χL P0(x, y) I

yx
nR F

yx
∓ = P0(x, y) F

yx
nR∓ .

For the right-handed component, the calculation is a bit more complicated because
XR 
= 11: Replacing x↔ y in (3.25) and solving for Ixy

nR gives

νxy
nR = νyx

nL , Ixy
nR = L

∫ y

x
Iyx
nL L

∫ x

y
.
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Using that XR and R

∫
commute (as we assume the potentials to be causality compatible)

and that XR is idempotent, we obtain that

F xy
nRs P0(x, y) = χR I

xy
nR F

xy
s P0(x, y) = χR L

∫ y

x
Iyx
nL F

xy
s L

∫ x

y
P0(x, y)

= χR L

∫ y

x
Iyx
nL

(
L

∫ x

y
R

∫ y

x
XR

){
F xy

s R

∫ x

y
χR P0(x, y)

}
.

Now in the factor P0(x, y) we can take out the chiral asymmetry matrix XR (it is already
contained in the round brackets to its left), and thus we can, exactly as in (3.26), in
the curly brackets apply Lemma 2.1. Furthermore, the round brackets coincide with the
matrix W yx

L , which clearly commutes with its spectral projector Iyx
nL. This gives

F xy
nR± = χR

(
L

∫ y

x
W yx

L R

∫ x

y

)
P0(x, y) I

yx
nL F

yx
∓ .

According to (3.9), the bracket is equal to XR.

Proof of Theorem 3.2. Using the argument given after the statement of the theorem, it
remains to show that the conditions (3.20) and (3.21) are necessary. Exactly as in (2.42),
it follows from Lemma 3.3 that, to highest degree on the light cone,

Q(x, y) =
1
2

∑
n,c,s

∂L(λxy)
∂λxy

ncs
F xy

ncs P0(x, y) + (deg < 11).

Computing the Euler-Lagrange equations similar to (2.43) and keeping track of the chiral
cancellations yields that, in analogy to (2.45),

∑
n,c,s

∂L(λxy)
∂λxy

ncs
F xy

ncs P0(x, y) c

∫ z

y
Xc + (deg < 11) = 0 ,

and by multiplying from the right by the macroscopic unitary matrix c

∫ y

z
, we can arrange

that z = x. We substitute in (3.6) and the right of (3.15), and apply (2.31),

∑
nc

∂L(λ)
∂λnc−

χc Inc

{
Xc c

∫ y

x
c

∫ x

y
Xc

}(
i

2
ξ/ T

(−1)
[0]

)
+ (deg < 11) = 0 .

The curly brackets coincide with the matrix Wc, and since Inc is a spectral projector of
this matrix, we simply get a scalar factor νnc. Furthermore, we use the particular form of
our Lagrangian (2.60) as well as the left of (3.15) to obtain that

i
∑
n,c

⎛
⎝|νnc|2 − 1

14

∑
n′,c′
|νn′c′ |2

⎞
⎠ |νnc|2 χc ξ/ Inc|λ−|2 λ− T (−1)

[0] = 0 . (3.27)

Using (2.28), the non-smooth factors are a monomial of degree eleven,

|λ−|2 λ− T (−1)
[0]

=
(
T

(−1)
[0]

T
(0)
[0]

T
(−1)
[0]

)2

T
(0)
[0]

. (3.28)
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We cannot assume that this monomial is equal to zero. Namely, the fermionic projector
differs to highest degree on the light cone from the fermionic projector of the vacuum only
by macroscopic phase factors (this is guaranteed by the gauge invariance of the regularized
causal perturbation expansion [1, Appendix C]). Therefore, exactly as explained for the
vacuum in Section 2.2, we can evaluate (3.27) even pointwise. In particular, we can
consider the regularization expansion of (3.27) (see [1, Section 3.3]). This means that
in order to set the monomial (3.28) in (3.27) equal to zero, we would have to impose an
infinite number of regularization conditions. We conclude that in order to satisfy (3.27), we
must assume that the macroscopic prefactor vanishes. Using that the spectral projectors
Inc are linearly independent, we get the conditions⎛

⎝|νnc|2 − 1
14

∑
n′,c′
|νn′c′ |2

⎞
⎠ |νnc|2 = 0 for all n, c.

This implies that the absolute values of 14 of the eigenvalues νnc must coincide, and
that the remaining two eigenvalues must be zero. The matrix WL contains a factor XR

and is thus singular of rank one. Choosing the numbering such that νL8 = 0, it follows
from (3.10) that also νR8 = 0. Hence the two zero eigenvalues are those for n = 8. This
shows that (3.20) is a necessary condition.

Next we will show that (3.20) implies the constraint for the dynamical gauge group (3.21).
We introduce for fixed x and y the abbreviations

U = L

∫ y

x
R

∫ x

y
and T = XR . (3.29)

We consider U = (Ua
b ) and T = (T a

b ) as matrices on C8 endowed with the standard
Euclidean scalar product 〈., .〉. Then U is unitary, and T is a projector of rank 7. According
to (3.10), the conditions (3.20) tell us that the matrix UT must have 7 eigenvalues on the
unit circle and one zero eigenvalue. For a vector u in the kernel of UT ,

0 = 〈UTu, UTu〉 = 〈Tu, Tu〉 ,
where we used in the last step that U is unitary. Thus u is also in the kernel of T . On the
other hand, if u is an eigenvector of UT corresponding to an eigenvalue on the unit circle,

|u|2 = 〈UTu, UTu〉 = 〈Tu, Tu〉 .
Since for a projector, |Tu| < |u| unless u is in the image of T , it follows that u is also an
eigenvector of T , of eigenvalue one. We conclude that every eigenvalue of UT is also an
eigenvalue of T , or equivalently that

[UT, T ] = 0 . (3.30)

Let us analyze what this commutator condition means for the chiral potentials. We
already know from the causality compatibility condition that

[AR, T ] = 0 . (3.31)

Hence substituting the definition of U , (3.29), into (3.30) and using that the resulting
condition must hold for all x and y, we obtain that [ALT, T ] = 0. Subtracting the adjoint
and using that T is idempotent gives the stronger statement

[AL, T ] = 0 . (3.32)
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From (3.31) and (3.32) we conclude that the chiral potentials must be block diagonal in
the sense that (Ac)ab = 0 if a = 8 and b 
= 8 or vice versa. Such chiral potentials correspond
precisely to the gauge group in (3.21).

Remark 3.4 We point out that the subgroup U(1)L⊗U(1)R of the gauge group in (3.21),
which acts on the neutrino sector, is not uniquely determined and could be replaced by
any other subgroup which contains U(1)L. This can immediately be understood from the
fact that the neutrino sector contains only left-handed particles, and thus the form of the
potential AR, which acts on the right-handed component, has no significance. To make
this argument rigorous, we consider the Dirac equation (3.5). Since P = XP , we may
replace the chiral potentials Ac in (3.5) by AcXc, and this indeed makes the component of
AR in the neutrino sector equal to zero, showing that this component is of no relevance.
We conclude that we may arbitrarily change the subgroup U(1)R in (3.21); e.g. we could
replace (3.21) by

(U(7) ⊗ U(1))L ⊗ U(7)R or (U(7)L ⊗ U(7)R)⊗ U(1) . (3.33)

We do not write out this obvious arbitrariness in what follows; instead, we will simply
give the gauge groups in the most convenient form.

3.2 The Gauge Terms in the Euler-Lagrange Equations

We come to the analysis of the EL equations to the next lower degree 10 on the light
cone. According to the formulas of the light-cone expansion [3], the structure of the
fermionic projector to the next lower degree is considerably more complicated than (3.6),
because in addition to gauge terms, there are also contributions involving the chiral fields
and currents as well as the scalar potentials. Fortunately, the following general argument
allows us to distinguish these different types of contributions in the EL equations. In the
formulas for P (x, y), the gauge terms always involve ordered exponentials of the chiral
potentials, integrated along the line segment xy = {αx + (1− α)y, 0 ≤ α ≤ 1}. We refer
to such contributions as line contributions. The fields, currents, and scalar potentials,
however, are in the light-cone expansion evaluated at individual points, namely either
at the end points x, y or at an intermediate point z ∈ xy; we call the corresponding
contributions to the light-cone expansion point contributions. In the case of an evaluation
at an intermediate point z, the point contributions clearly involves an integral over z along
xy. But in contrast to the line contribution, where the chiral potentials at different points
enter the ordered exponential in a nonlinear way, the line integrals in a point contribution
simply takes averages of the potentials, fields, or currents along the line segment. For
example by expanding the ordered exponential in a Dyson series (i.e. in an expansion in
powers of y − x) and considering the higher order terms, one sees immediately that the
line and point contributions are independent in the EL equations in the sense that the EL
equations must be satisfied separately by the line and point contributions. Moreover, we
can distinguish point contributions in the EL equations, provided that their configuration
of the tensor indices is different. Therefore, the point contributions involving the scalar
potentials, the chiral fields, and the currents are independent in the EL equations as well.

Using the above arguments, we can study the gauge terms and the contributions involv-
ing the scalar potentials, the gauge fields, and the currents separately. In the remainder
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of this section, we consider only the gauge terms. Thus we restrict attention to chiral
potentials, i.e. we consider instead of (3.5) the Dirac equation

(i∂/−mY + χL A/R + χR A/L) P (x, y) = 0

with Y a fixed matrix. We will return to the general Dirac equation (3.5) in Chapter 4.

Def. 3.5 We introduce for p ∈ {4, . . . , 7} the groups Bp, Fp ⊂ U(8) by

Bp = { g ⊕ · · · ⊕ g︸ ︷︷ ︸
p summands

⊕ g−1 ⊕ · · · ⊕ g−1︸ ︷︷ ︸
7−p summands

with g ∈ U(1)} (3.34)

Fp = U(p)⊗ U(7− p)⊗ U(1) (3.35)

and define corresponding subgroups Bp and Fp of the dynamical gauge group by

Bp = Bp ⊗ 11 ⊂ U(8)L ⊗ U(8)R , Fp = {(g, g) with g ∈ Fp} ⊂ F . (3.36)

Their product

Gp = Bp · Fp ≡ {bf with b ∈ Bp, f ∈ Fp} ⊂ U(8)L ⊗ U(8)R (3.37)

is called the pth dynamical gauge group.

In block matrix notation, the elements of Bp and Fp can be written as⎛
⎝ z 11p 0 0

0 z−1 11q 0
0 0 0

⎞
⎠ and

⎛
⎝ g 0 0

0 h 0
0 0 l

⎞
⎠ , (3.38)

respectively, where the first component refers to the first p sectors, the second component
to the next q ≡ 7 − p sectors, and the last component to the neutrino sector. Here
z, l ∈ U(1), g ∈ U(p), and h ∈ U(q). Clearly, Bp and Bp are group isomorphic to
U(1). Notice that Bp acts only the left-handed component. The group Fp transforms
the left- and right-handed components in the same way, and so its corresponding gauge
potentials are vector potentials. The groups Bp and Fp commute, and this ensures that
their product (3.37) is again a group. It is easy to verify that Fp is indeed the largest
subgroup of F which commutes with Bp,

Fp =
{
f ∈ F | bfb−1 = f for all b ∈ Bp

}
.

We introduce an abbreviation for the linear combination of monomials

M ≡ T
(0)
[1] T

(0)
[1] T

(−1)
[0] T

(0)
[0] − T

(−1)
[0] T

(1)
[2] T

(−1)
[0] T

(0)
[0] . (3.39)

Theorem 3.6 There are the following possibilities for the choice of the dynamical gauge
group.

(1) Without assuming any relations between the basic monomials, the dynamical gauge
group must be contained in the free gauge group,

G ⊂ F0 = U(7)⊗ U(1) . (3.40)
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(2) If we allow for one relation between the basic monomials, the dynamical gauge group
is (possibly after a global gauge transformation) restricted by

G ⊂ Gp for some p ∈ {4, . . . , 7}. (3.41)

In this case, the relation between the basic monomials is

(M −M) T (−1)
[0] T

(0)
[0] T

(−1)
[0] = 0 (3.42)

with M according to (3.39).

(3) If we allow for two relations between the basic monomials, we get no constraints for
the dynamical gauge group besides those of Theorem 3.2. The two relations between
the basic monomials are (3.42) and

M T
(−1)
[0] T

(0)
[0] T

(−1)
[0] = 0 . (3.43)

In each of these cases, the gauge terms vanish in the EL equations to degree 10 on the
light cone.

Proof. We first bring the EL equations to degree 10 into a more explicit form. Theorem 3.2
implies that the variation of our Lagrangian vanishes to highest degree on the light cone,

∂L(λ)
∂λncs

+ (deg < 9) = 0 . (3.44)

According to (2.41) and (2.6), it follows that all contributions to the EL equations vanish
for which the variation of the Lagrangian is considered to highest degree (even if the
spectral projectors or the factors P (x, y) are expanded to lower degree). This means that
we only need to compute the Lagrangian to the next lower degree, whereas it suffices to
take into account both the spectral projectors and the factors P (x, y) to highest degree.

Since the Lagrangian is a function of the eigenvalues only, our task is to calculate
the contribution to the eigenvalues to the next lower degree two, denote by ∆λncs. This
calculation is carried out in a more general context in Appendix A (see Theorems A.1
and A.3). Specializing the obtained results gives

∆λ8cs = 0 ,

whereas for n = 1, . . . , 7,

∆λxy
nc− = T

(0)
[1] T

(0)
[1] − T

(−1)
[0] T

(1)
[2] + νnc

(
T

(0)
[2] T

(0)
[0] + T

(−1)
[0] T

(1)
[2]

)
(3.45)

+
T

(0)
[1] T

(−1)
[0] − T (−1)

[0] T
(0)
[1]

λxy
nc− − λxy

nc−

(
νnc T

(0)
[1] T

(0)
[0] − νnc T

(0)
[0] T

(0)
[1]

)
(3.46)

∆λyx
nc+ = ∆λxy

nc− (3.47)

(here λxy
nc− denotes the eigenvalues of A0, (3.15)). Using the last equation together with

Lemma 3.3, the EL equations take again the form (2.45). Substituting in the asymptotic
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formula to highest degree (2.31) and expanding our Lagrangian (2.60) shows that the EL
equations become to degree 10,

∑
nc

∆

⎛
⎝|λnc−|2 − 1

28

∑
n′,c′,s′

|λn′c′s′ |2
⎞
⎠λ− |νnc|2 χc Inc (iξ/ T (−1)

[0] ) = 0 .

Since the eigenvalues appear in complex conjugate pairs, we may replace the sum over
s′ by a factor two and set s′ = −. Also, the non-vanishing macroscopic factor ξ/ can be
omitted. Furthermore, we use that the spectral projectors Inc are macroscopic and linearly
independent, and that |νnc|2 vanishes for n = 8 and is equal to one otherwise, (3.20). We
thus obtain that the EL equations to degree 10 are equivalent to the conditions that for
all n = 1, . . . , 7,⎡

⎣Re
(
λnc− ∆λnc−

)− 1
14

∑
n′,c′

Re
(
λn′c′− ∆λn′c′−

)⎤⎦T (−1)
[0] T

(0)
[0] T

(−1)
[0] = 0 .

It is more convenient to write this condition in the form that the expression

Hnc ≡ 2 Re
(
λnc− ∆λnc−

)
T

(−1)
[0] T

(0)
[0] T

(−1)
[0]

should be independent of n and c,

Hnc = Hn′c′ for all n, n′ = 1, . . . , 7 and c, c′ = L,R. (3.48)

Next we compute Hnc by substituting in the formulas for λnc− and ∆λnc−, (2.28) and
(3.45),(3.46). Since the last summand of ∆λnc−, (3.46) is imaginary, we can use that for
α ∈ iR,

2 Re
(
λnc− α

)
= α (λnc− − λnc−) ,

and the denominator in (3.46) drops out. We thus obtain

Hnc =
(
νnc M + νnc M + L+ L

)
T

(−1)
[0] T

(0)
[0] T

(−1)
[0] , (3.49)

where M is the linear combination of monomials (3.39), and L is given by

L ≡ T
(0)
[0] T

(−1)
[0]

(
T

(0)
[2] T

(0)
[0] + T

(−1)
[0] T

(1)
[2]

)
. (3.50)

We conclude that the EL equations to degree 10 are equivalent to the conditions (3.48)
with Hnc given by (3.49) and (3.39), (3.50).

Let us analyze what the conditions (3.48) mean. First of all, the contributions to (3.49)
which involve L or L are clearly independent of n, c and thus drop out in (3.48). In the case
n′ = n and c′ = c, we can in (3.48) apply the first part of (3.10) to obtain the necessary
conditions

(νnc − νnc) (M −M) T (−1)
[0] T

(0)
[0] T

(−1)
[0] = 0 . (3.51)

If we assume no relations between the basic monomials, this implies that νnc = νnc, and
thus

νnc = ±1 for all n = 1, . . . , 7 and c = L,R. (3.52)
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For x = y, the matrix Wc becomes Wc = XcXc, and thus the eigenvalues in (3.52) are
equal to one. Since these eigenvalues depend smoothly on x and y, we conclude that
νnc = 1 for all x and y. This means in the block matrix representation for Wc, (3.22), that
the unitary matrix U is equal to the identity. Thus, according to (3.9),

Xc c

∫ y

x
c

∫ x

y
Xc = Wc = XcXc . (3.53)

Differentiating with respect to y and setting y = x gives

Xc (Ac −Ac)Xc = 0 .

Hence the left- and right-handed potentials must coincide on the massive sectors. Using
the argument in Remark 3.4, we can arrange the same in the neutrino sector. This gives
the dynamical gauge group in (3.40). Conversely, if (3.40) is satisfied, then the matrices
Wc are of the form (3.53). It follows that νnc = 1 for all n = 1, . . . , 7 and c = L,R, and
thus (3.48) holds.

We next consider the case when we allow for relations between the basic monomi-
als. The only way to avoid the conditions (3.6) (which lead to the dynamical gauge
group (3.40)) is to assume that the factor M −M in (3.51) vanishes. This gives precisely
the relation (3.42). If (3.42) holds, Hnc simplifies to

Hnc = 2 Re (νnc) M + L+ L . (3.54)

If we assume no further relations between the basic monomials, the conditions (3.48) are
equivalent to

Re (νnc) = Re (νn′c′) for all n = 1, . . . , 7 and c = L,R. (3.55)

The only way to avoid these conditions is to impose in addition that (3.43) holds. If this
is done, all terms involving νnc or νnc drop out in (3.49), and (3.48) is satisfied.

It remains to show that the conditions (3.55) are equivalent to (3.41). Again using the
argument in Remark 3.4, it is obvious that the dynamical gauge group has the required
form on the neutrino sector, and thus we can in what follows restrict attention to the
seven massive sectors. Then G is a subgroup of U(7)L ⊗ U(7)R, and the matrices Wc are
unitary and have the spectral representation

Wc(x, y) = c

∫ y

x
c

∫ x

y
=

7∑
n=1

νnc Inc . (3.56)

Suppose that (3.41) is satisfied. Then

G �
(

L

∫ y

x
, R

∫ x

y

)
= (bf, f)

with b ∈ Bp and f ∈ Fp, and thus

Wc = bf f−1 = b .

As one sees immediately from (3.38), the eigenvalues νnc of b are equal to z and z with
z ∈ U(1) ⊂ C. Thus the conditions (3.55) are satisfied.
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Suppose conversely that the conditions (3.55) hold. We denote the Lie algebra of the
dynamical gauge group by g; it is a subalgebra of su(7)⊕ su(7). Let π be the projection
onto the axial part,

π : g �→ su(7) : (AL, AR)→ AL −AR . (3.57)

Its image π(g) is a subspace of su(7) (but it is in general no subalgebra). For the first part
of our argument, we consider the situation “locally” for x near y. Expanding the ordered
exponentials in (3.56) in x and setting y = x yields according to (3.7) that

WL/R(x+ εu, x) = 11 ± iε(AL
j (x)−AR

j (x)) uj + O(ε2) . (3.58)

Since the gauge potentials at x can be chosen freely with values in the dynamical gauge
algebra, the term A ≡ (AL

j (x) − AR
j (x)) uj can take any value in π(g). The eigenvalues

of (3.9) have the expansion νnc = 1± iελn + o(ε), where λn are the eigenvalues of A. We
conclude from (3.55) that

σ(A) = {±λ with λ = λ(A) ∈ R} for all A ∈ π(g). (3.59)

We can assume in what follows that π(g) is non-trivial, π(g) 
= 0, because otherwise
the dynamical gauge potentials are according to (3.57) pure vector potentials, giving rise
to (3.40).

Next we consider the eigenvalues of W xy
c “globally” for y away from x. Expanding the

ordered exponentials in (3.56) along the line x+ εξ, ξ ≡ y − x gives

WL(x+ εξ, y) = WL(x, y) + iε
(
AL

j (x)WL(x, y)−WL(x, y) AR
j (y)

)
ξj + O(ε2) . (3.60)

It would be nicer to have the potentials AL and AR on the same side of the factor WL.
Therefore, we perform a unitary transformation with Uε = 11− iεAL

j +O(ε2) to obtain

Uε WL(x+ εξ, y) U−1
ε = WL(x, y) + iε WL(x, y) A + O(ε2) , (3.61)

where we set A ≡ (AL
j − AR

j ) ξj. Let us analyze what (3.55) and our information on
A, (3.59), tell us about the form of WL; for simplicity, we work rather elementary with
matrices. As explained before (3.59), we are free to choose A ∈ π(g); we fix any A 
= 0.
We diagonalize the matrix WL for given x and y. This gives according to (3.55),

WL(x, y) =
(
z 11p 0
0 z 11q

)
(3.62)

with z ∈ U(1), where we used a block matrix notation similar to that in (3.38) and again
set q = 7−p. We can without loss of generality assume that p ∈ {4, 5, 6}. We fist consider
the case z 
= z. Computing the eigenvalues of (3.61) in first order perturbation theory, the
conditions (3.55) yield that A must be of the form

A =
(
λ 11p C∗

C −λ 11q

)
with a q × p matrix C and λ ∈ R. By changing the basis on the eigenspaces of WL(x, y),
we can even arrange that

A =

⎛
⎝ λ 11p C∗ 0

C −λ 11p 0
0 0 −λ 117−2p

⎞
⎠ (3.63)
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with a p×p matrix C. Thus −λ is an eigenvalue of A. According to (3.59), the eigenvalues
of A are precisely ±λ. Since A 
= 0, we know furthermore that λ 
= 0. It is a general
result on self-adjoint matrices that if the expectation value of a unit vector coincides with
the largest eigenvalue of the matrix, then this vector must be an eigenvector. Applied
to (3.63), this result shows that the submatrix C is zero. Thus

A =
(
λ 11p 0

0 −λ 11q

)
with p ∈ {4, 5, 6}, λ 
= 0.

This means that WL and A have the same eigenspaces. Repeating the above construction
for general x and y while keeping A fixed, one sees that the matrices WL(x, y) all have the
same eigenspaces as A (and this is trivially true even when WL degenerates to a multiple
of the identity matrix). This shows that in our basis, (3.62) holds even for all x and y.
In the case z = z for our original matrix WL (chosen before (3.62)), WL is a multiple of
the identity matrix. If this is true for all x and y, then (3.62) holds for p = 0. Otherwise,
we choose x and y such that WL(x, y) is not a multiple of the identity matrix and repeat
the above argument. We conclude that for some p ∈ {4, . . . , 7} and possible after a global
gauge transformation, the matrix WL has for all x and y the form (3.62).

Let us show that the representation (3.62) is surjective in the sense that for every
z ∈ U(1) we can choose the dynamical gauge potentials on the line segment xy such that
WL is of the form (3.62) for this given z. To this end, we take the determinant of (3.62)
and (3.56),

z7−2p = detWL = det
(

L

∫ y

x
R

∫ x

y

)
.

Using that the determinant is multiplicative, we obtain from (3.7) that

z7−p = exp
(
−i

∫ 1

0
Tr (A(τy + (1− τ)x) dτ)

)
,

where we again set A = (AL
j −AR

j ) ξj . This shows that the phase of z is simply additive
along the line segment xy. It follows immediately that this phase can take arbitrary values,
provided that there is A ∈ π(g) with non-zero trace. Indeed, it follows from (3.59) and
the fact that A is an odd-dimensional matrix that Tr(A) 
= 0 for all A 
= 0.

We finally return to the expansion (3.60). Writing the chiral potentials as block ma-
trices,

Ac
j ξ

j =
(
ac

11 ac
12

ac
21 ac

22,

)
and using that both WL(x+εξ, y) and WL(x, y) are of the form (3.62) with phases denoted
by z = zε and z = z0, respectively, we obtain(
zε 11p 0

0 zε 11q

)
=

(
z0 11p 0

0 z0 11q

)
+ iε

(
z0 (aL

11 − aR
11) z0 a

L
12 − z0 aR

12

z0 a
L
21 − z0 aR

21 z0 (aL
22 − aR

22)

)
+O(ε2) .

Since z0 ∈ U(1) can take arbitrary values, it follows that

aL
11 − aR

11 = λ 11p , aL
22 − aR

22 = −λ 11q , ac
12 = 0 = ac

21 .

Chiral potentials of this form correspond precisely to the dynamical gauge group Gp

in (3.18).
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We finally make three remarks which give a better justification of the ansatz for the
vector/axial potentials in (3.1), of the formalism used, and of the variational principles to
which this formalism applies.

Remark 3.7 (The chiral potentials on the generations) Compared to the most general
ansatz for the vector and axial potentials,

C = C
(aα)
(bβ) , E = E

(aα)
(bβ) , (3.64)

the potentials in (3.2) are restricted in that they must be the same for the three generations.
We shall now justify the ansatz in (3.2) from the form of the gauge terms.

Recall that in Section 2.1, we combined the regularization functions of the three gen-
erations to new “effective” regularization functions in each sector (2.27). Here we write
this procedure symbolically as

T
(n)
• =

3∑
α=1

T
(n)
α • ,

where T (n)
α • involves the regularization functions for a single Dirac sea in the generation α.

Let us consider how the analogue of the gauge term (3.6) looks like. In the case when the
potentials are diagonal on the generations, i.e.

C = (Cα)ab δ
α
β , E = (Eα)ab δ

α
β , (3.65)

the generalization of (3.6) is straightforward, namely

P0(x, y) =
3∑

α=1

(
χL XL L

∫ y

x
+χR XR R

∫ y

x

)
α

i

2
ξ/ T

(−1)
α [0] (x, y) , (3.66)

where the index α of the brackets means that we take the ordered exponentials of the
chiral potentials in the corresponding generation. This gauge term involves relative phase
shifts of the individual Dirac seas. If we substitute it into the EL equations, we get many
contributions involving these relative phases, and if we want these contributions to drop
out, we must introduce additional regularization conditions for certain polynomials in T (n)

α • ,
α = 1, 2, 3. Thus unless we impose very strong additional conditions on the regularization,
the only way to fulfill the EL equations is to set all the relative phases to zero. This gives
precisely our ansatz (3.2).

If the potentials C and E are not diagonal on the generations, the form of the gauge
terms is not obvious because there is no longer a canonical way to put in the factors
T

(−1)
α • . This point could be clarified by generalizing the regularized causal perturbation

expansion [1, Appendix C] to the case of systems of Dirac seas involving different regular-
izations, but we do not want to enter these technical details here. Qualitatively speaking,
it is clear that if already the potentials (3.65) lead to strong additional conditions in the
EL equations, this will even more be the case for the general ansatz (3.64).

Remark 3.8 (The vector component is null on the light cone) In [1, Section 3.4], we
introduced the regularization condition that the vector component should be null on the
light cone. We remarked that this condition need not be imposed ad hoc, but that it
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actually follows from the equations of discrete space-time. We are now in a position to
justify this regularization condition from the EL equations.

In our formula for the perturbation of the eigenvalues (3.45),(3.46), we omitted all
contributions involving factors T (n)

{.} , assuming that they are of lower degree on the light
cone. This is the only point where we used that the vector component is null on the light
cone. Without imposing this regularization conditions, we get for ∆λxy

nc− the additional
contributions

−νnc

(
T

(0)
[2] T

(1)
{0} + T

(−1)
[0] T

(2)
{2}

)
+
T

(0)
[1] T

(−1)
[0] − T (−1)

[0] T
(0)
[1]

λxy
nc− − λxy

nc−

(
νnc T

(0)
[1] T

(1)
{0} − νnc T

(1)
{0} T

(0)
[1]

)
.

This leads to an additional contribution to Hnc, (3.49), of the form

(
νnc K + νnc K + L+ L

)
T

(−1)
[0]

T
(0)
[0]

T
(−1)
[0]

with polynomials K and L, where K is given explicitly by

K = T
(0)
[1] T

(0)
[1] T

(−1)
[0] T

(1)
{0} − T

(−1)
[0] T

(1)
{0} T

(0)
[0] T

(0)
[1] .

The monomials appearing here have a different homogeneity in the “large” light-cone
coordinate l than those in (3.39) (more precisely, they involve an additional factor of l;
note that the scaling in l is given by the upper index of T (n)

• , see [1, eqn (3.77)–(3.79)]).
Using the different scaling behavior in l, we can distinguish the contributions involving
K and L in the EL equations in the sense that both of these contributions must vanish
separately. But this means that we can just as well omit K in the EL equations, exactly
as it was done in (3.45),(3.46) under the assumption that the vector component is null on
the light cone. This argument applies similar to other contributions to the EL equations,
to every degree on the light cone.

Remark 3.9 (n-point actions) We now discuss some difficulties which arise in the study
of actions other than two-point actions. These difficulties are the reason why we do not
consider such actions here. Let S be a general n-point action

S =
∑

x1,...,xn∈M

L[P (x1, x2) · · ·P (xn−1, xn) P (xn, x1)]] , n ≥ 1.

If n = 1, the corresponding EL equations are of the form (2.8) with

Q(x, y) = δxy f [P (x, x)] , (3.67)

where f is a functional depending only on P (x, x). Expressions like (3.67) do not have a
well-defined continuum limit because the methods of [1, Chapter 3] apply to composite ex-
pressions only away from the origin (i.e. for x 
= y). Even if one succeeded in giving (3.67)
a mathematical meaning, this expression is local and does not involve any ordered expo-
nentials of the chiral potentials. As a consequence, we would have no gauge terms, and the
only constraint for the chiral potentials would be the causality compatibility condition.
The resulting dynamical gauge group G = U(8)L ⊗ U(7)R would be too large for physical
applications. For these reasons, one-point actions do not seem worth considering.
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If on the other hand n > 2, the operator Q in the Euler-Lagrange equations takes the
form

Q(x1, x2) =
∑

x2,...,xn−1∈M

f [P (x1, x2) · · ·P (xn−1, xn)P (xn, x1)]] P (x2, x2) · · ·P (xn−1, xn) .

where f is a functional on the closed chain. Again, it is not clear how to make mathematical
sense of this expression in the continuum limit, but in contrast to (3.67) it now seems
possible in principle to adapt the methods of [1, Chapter 3]. We disregard these technical
difficulties here and merely discuss the form of the gauge terms in the simplest example
of a single Dirac sea and a U(1) vector potential A. It might be that the only relevant
contributions to the EL equations comes about when the points x1, . . . , xn all lie on a
straight line. Generally speaking, the situation in this case would be quite similar to that
for a two-point action, and does not seem to give anything essentially new (although the
quantitative details would clearly be different). In particular, the gauge terms of type (3.6)
drop out in the closed chain, in agreement with the fact that the U(1) corresponds to an
unbroken local gauge symmetry. However, the situation is much different if we assume
that the points x1, . . . , xn do not necessarily lie on a straight line. Namely, in this case the
phase shifts in the closed chain add up to an integral along the polygon C with vertices
x1, . . . , xn,

e
−i

R x2
x1

Aj (x2−x1)j · · · e−i
R xn−1

xn
Ak (xn−xn−1)k

e−i
R x1
xn

Al (x1−xn)l

= exp
(
−i

∮
C
Ai ds

i

)
.

Stokes’ theorem allows us to write this line integral as a surface integral. More precisely,
choosing a two-dimensional surface S with ∂S = C,

exp
(
−i

∮
C
Ai ds

i

)
= exp

(
−i

∫
S
Fij dσ

ij

)
,

where F = dA is the field tensor and dσ is the area form on S. This simple consideration
shows that the phase shift in the closed chain is in general not zero; indeed, it is zero for
any position of the points xk if and only if the field tensor vanishes identically. Thus in
the Euler-Lagrange we now expect additional contributions which involve surface integrals
of the gauge field tensor; we refer to such contributions as surface terms. The appearance
of surface terms seems a problem because they give constraints even for those gauge
potentials which correspond to a local symmetry of the system.
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4 Spontaneous Block Formation

The dynamical gauge group introduced in the previous chapter cannot be identified with
the physical gauge group, because the results of Theorem 3.6 are not compatible with the
gauge groups in the standard model. Namely, if we allow for two relations between the
monomials (case (3)), the resulting dynamical gauge group (U(7)⊗U(1))L⊗(U(7)⊗U(1))R
is too large. The cases (1) and (2), on the other hand, seem too restrictive because
either no chiral gauge fields are allowed (3.40), or else the chiral gauge fields must be
Abelian and are diagonal on the sectors (3.41), in contrast to the weak SU(2) gauge
fields in the standard model. Fortunately, these seeming inconsistencies disappear when
scalar potentials are taken into account, and it is indeed possible in case (2) to model an
interaction involving non-Abelian chiral gauge fields. The point is that if scalar potentials
are included, the dynamical mass matrices YL/R, (3.4), are in general not diagonal on the
sectors. Using a local transformation of the fermionic projector, one can reformulate the
interaction such that the dynamical mass matrices become diagonal, but then the resulting
chiral fields have off-diagonal contributions and can be identified with so-called “effective”
non-Abelian gauge fields. In this chapter, we study the EL equations for an interaction
involving both chiral and scalar potentials. After the preparations of Section 4.1, in
Section 4.2 we show that the EL equations imply that the fermionic projector splits globally
into four so-called blocks, which interact with each other only via free gauge fields. We
can distinguish between three quark blocks and one lepton block; these will be analyzed
in more detail in Section 4.3. In Chapter 5, we finally give the transformation to the
corresponding effective interaction.

Since including the scalar potentials may give further constraints for the dynamical
gauge potentials, we cannot expect that the dynamical gauge potentials of the previous
chapter will all be admissible here. Therefore, we merely assume that the dynamical gauge
potentials present in the system correspond to a subgroup of the dynamical gauge group
of Theorem 3.6. In order not to get lost in analytical details which are of no physical
relevance, we make the following additional assumptions.

(I) The system should contain chiral dynamical gauge fields.

(II) The chiral Dirac particles should enter the EL equations.

¿From the physical point of view, the last assumption is trivial because otherwise the chiral
Dirac particles (=neutrinos) would be unobservable. Furthermore, we need to assume that
our system involves several gauge fields which are sufficiently “independent” from each
other. This assumption could be made precise in many different ways; our formulation
seems particularly convenient.

(III) The free gauge fields should distinguish the chiral and massive Dirac particles in
the sense that for every pair of a chiral and a massive Dirac particle there is a free
dynamical gauge field which couples to the two particles differently.

For the interactions in the standard model, the last assumption is clearly satisfied because
the electromagnetic field couples to all massive Dirac particles, but not to the neutrinos.
Assumption (III) could be weakened, but this would make it necessary to rule out a
number of exceptional cases in the analysis, and we do not want to go into this here. We
finally give our guideline for dealing with the regularization.
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(IV) Impose as few relations between the basic monomials as possible such that (I)–(III)
can be fulfilled.

This method will uniquely determine all relations between the basic monomials.

4.1 The Partial Trace and the Dynamical Mass Matrices

We want to analyze the EL equations in the presence of chiral and scalar potentials (3.5)
to the degree 10 on the light cone. Thus the only difference to the setting of Theorem 3.6
is that, instead of a constant matrix Y , we now allow more generally for dynamical mass
matrices YL(x) and YR(x). One difficulty is that the scalar potentials may depend in a
complicated way on the generation index (in contrast to the chiral potentials, which we
assumed to be constant on the generations; see (3.2)). In particular, the partial trace (1.12)
becomes a non-trivial operation when dynamical mass matrices are present. In this section,
we give a few general considerations on the partial trace of the dynamical mass matrices.

We first introduce a convenient notation. In our calculations so far, we omitted the
mass matrix Y in all contributions to the fermionic projector. Now that we are working
with the dynamical mass matrices YL/R, these clearly have to be written out. In composite
expressions, we need to make clear how the partial traces are to be taken. To this end,
we denote the sums over the upper and lower generation index by the tildes ´ and `,
respectively. Thus we introduce the matrices

ÝL/R : C8×3 → C8 , (ÝL/R)a(bβ) =
3∑

α=1

(YL/R)(aα)
(bβ)

ỲL/R : C8 → C8×3 , (ỲL/R)(aα)
b =

3∑
β=1

(YL/R)(aα)
(bβ) .

Similarly, we denote the sum over both generation indices by the accent ˆ,

ŶL/R : C8 → C8 , (ŶL/R)a(bβ) =
3∑

α,β=1

(YL/R)(aα)
(bβ) .

Clearly, (ÝL/R)∗ = ỲR/L and (ŶL/R)∗ = ŶR/L. In a contribution to the fermionic projector
which involves a product of dynamical mass matrices, the partial trace leads us to label
the first and last factor YL/R by ´ and ,̀ respectively. For example, in the presence
of a homogeneous scalar potential, we write the light-cone expansion of the left-handed
component of the fermionic projector in analogy to (2.24) as

χL P (x, y) = χL

(
X
iξ/

2
T

(−1)
[0]

+ ŶL T
(0)
[1]

+
iξ/

2
ÝL ỲR T

(0)
[2]

+ · · ·
)
. (4.1)

Furthermore, we denote the contraction in the sector index by TrS ,

TrSB ≡
8∑

n=1

Bn
n .

On should keep in mind that the partial trace is not cyclic, because we sum over the upper
and lower index independently. For example,

TrS ÝLỲR

in general


= TrSÝRỲL . (4.2)
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But both terms are clearly real and ≥ 0.
The EL equations are formulated in terms of the fermionic projector, which is obtained

from the auxiliary fermionic projector by taking the partial trace (1.12). Therefore, we
regard the fermionic projector as a physical object only after the partial trace has been
taken. Thus it is a reasonable point of view that we do not need to worry about noncausal
line integrals in the light-cone expansion as long as the corresponding contributions to the
auxiliary fermionic projector drop out when the partial trace is taken. This leads us to
weaken the causality compatibility condition (1.10) by imposing a condition only on the
partial trace of the system of interacting Dirac seas t̃.

Def. 4.1 The Dirac operator is weakly causality compatible if

3∑
α,β=1

(X t̃)(aα)
(bβ) =

3∑
α,β=1

(t̃ X∗)(aα)
(bβ) .

Under this assumption, the fermionic projector is defined by

P a
b (x, y) =

3∑
α,β=1

(X t̃)(aα)
(bβ) (x, y) . (4.3)

In what follows, we shall assume that the weak causality compatibility condition is satisfied
for all contributions to the fermionic projector which are of relevance to the degree on the
light cone under consideration.

Our point of view that the fermionic projector has a physical meaning only after
taking the partial trace also implies that we should consider different choices of dynamical
mass matrices as being equivalent if taking the partial trace gives the same fermionic
projector (1.12). Furthermore, for this equivalence it is not necessary that the fermionic
projectors are identical, but it suffices that all contributions to the fermionic projector
which enter the EL equations are the same. More specifically, to the degree 10 on the
light cone the EL equations will involve at most quadratic terms in m, and so every factor
YL/R carries an accent. Thus two dynamical mass matrices can be considered as being
equivalent if their partial traces coincide. In other words, the dynamical mass matrices
are determined only modulo the equivalence relation

B1 � B2 if B́1 = B́2 and B̀1 = B̀2.

This arbitrariness in choosing the dynamical mass matrices can be used to simplify these
matrices. For example, we will set the matrix entries to zero whenever possible by applying
for every a, b ∈ {1, . . . , 8} and c ∈ {L,R} the rule

(Ýc)a(b.) = 0 = (Ỳc)
(a.)
b =⇒ (Yc)

(a.)
(b.) = 0 .

Here the dot means that we are using a matrix notation in the generation index, i.e.
(Ýc)a(b.) is a 3-vector and (Yc)

(a.)
(b.) (for fixed a, b) a 3 × 3 matrix. We refer to the just-

described method of simplifying the dynamical mass matrices that we choose a convenient
representation of Yc.

In order to rule out pathological cases, we need to impose a condition on the dynamical
mass matrices. Note that in the vacuum the mass matrices are block diagonal in the sense
that (YL/R)(a.)

(b.) = δa
bY

a
L/R for suitable 3 × 3 matrices Y a

L/R. Thus the off-diagonal elements
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(YL/R)(a.)
(b.) , a 
= b, contain scalar potentials. It would be too restrictive to assume that

there are no cancellations when the partial trace is taken; i.e. we do want to allow for
the possibility that (Ýc)a(b.) = 0 or (Ỳc)

(a.)
b = 0 although (Yc)

(a.)
(b.) 
= 0 (for some a 
= b).

But such cancellations should occur only with a special purpose, for example in order to
ensure that the Dirac operator be weakly causality compatible or in order to arrange that
certain terms drop out of the EL equations. For such a purpose, it is not sufficient that
one off-diagonal element of Ýc vanishes, but all the off-diagonal elements in the same row
should be zero. This is the motivation for the following definition.

Def. 4.2 The dynamical mass matrices are non-degenerate if for all a, b ∈ {1, . . . , 8},
a 
= b, and c ∈ {L,R},

(Ỳc)
(a.)
b 
= 0 and (Ýc)a(b.) = 0 =⇒ (Ýc)a(d.) = 0 for all d 
= a.

The freedom to choose a convenient representation of the dynamical mass matrices
reduces our problem to revealing the structure of the matrices Ýc and Ỳc. One difficulty is
that the EL equations involve these matrices only in products of the form ÝL/R(y)ỲL/R(x).
The following elementary lemma will allow us to use information on the matrix product
to derive properties for the individual factors.

Lemma 4.3 (uniform splitting lemma) Let B ⊂ Gl(Cp1,Cp2) be a set of (p2 × p1)
matrices with the property that for all B1, B2 ∈ B there is λ ∈ C such that

B∗
1 B2 = λ 11C

p1 . (4.4)

Then there is a unitary (p2 × p2) matrix U and an integer r ≥ 0 with rp1 ≤ p2 such that
every B ∈ B can be written in the form

B = U

⎛
⎝ p summands︷ ︸︸ ︷

b⊕ · · · ⊕ b
0

⎞
⎠ }rp1 rows

}p2 − rp1 rows
(4.5)

for a suitable (r × 1) matrix b.

We mention for clarity that b⊕ · · · ⊕ b is a (rp1× p1) matrix; it could also be written as a
block matrix with diagonal entries b. The word “uniform” in the name of the lemma refers
to the fact that the unitary transformation U is independent of B ∈ B. In our applications,
this will mean that U is constant in space-time. Such constant unitary transformations
are irrelevant (e.g. they could be absorbed into a more general definition of the partial
trace), and we can often simply ignore them.

Proof of Lemma 4.3. Let (e1, . . . , ep1) be an orthonormal basis of Cp1. We introduce the
subspaces

Ei = <{Bei with B ∈ B}> ⊂ Cp2

and the mappings
πi : B �→ Ei : B → Bei .

The property (4.4) implies that for all B1, B2 ∈ B,

〈B2 ei, B1 ej〉 = 〈B∗
1 B2 ei, ej〉 = λ(B1, B2) δij . (4.6)

If i 
= j, this relation shows that the subspaces (Ei)i=1,...,p1 are orthogonal. In the case
i = j, (4.6) yields that the inner product 〈πi(B1), πi(B2)〉 is independent of i. Thus the
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mappings πi are unitarily equivalent, and so we can arrange by a unitary transformation
that the πi all have the same matrix representation π(B) = b.

4.2 Analysis of Degeneracies

The operatorQ corresponding to the Dirac operator (3.5) is again given by (2.6) and (2.41).
But we must be careful because we no longer have simple relations between the spectral
decompositions of Axy and Ayx (like Lemma 2.1 or Lemma 3.3). Thus

Q(x, y) =
1
4

⎛
⎝Kxy∑

k=1

∂L(λxy)
∂λxy

k

F xy
k P (x, y) + P (x, y)

Kyx∑
k=1

∂L(λyx)
∂λyx

k

F yx
k

⎞
⎠ . (4.7)

Following (I) and (IV), we can restrict attention to case (2) of Theorem 3.6. In this
case, the eigenvalues of A are highly degenerate. We must take into account that these
degeneracies will in general be removed by the scalar perturbation. This subtle problem is
treated in a more general context in Appendix A. We now specialize the obtained results
using a notation which is adapted to the dynamical gauge group Gp, (3.41). We let ↑ and
↓ be the sets

↑ = {1, . . . , p} , ↓ = {p + 1, . . . , 7}
and introduce the corresponding projectors I↑/↓ by

I↑ =
∑
n∈↑

In , I↓ =
∑
n∈↓

In ,

where (In)ab = δa
b δ

a
n are the projectors on the sectors (in the case p = 7, we set ↓= ∅ and

P↓ = 0). To the highest degree on the light cone (i.e. if the eigenvalues are treated as in
Theorem 3.2), the chiral gauge fields corresponding to Gp lead to five distinct eigenvalues
of Axy, one of which is zero. The spectral projectors corresponding to the kernel and the
non-zero eigenvalues are given by I8 and

(χc I↑ + χc̄ I↓) Fs with c = L/R, s = ±, (4.8)

respectively. To the next lower degree on the light cone, we need to take into account
the perturbation of A by gauge terms and the scalar potentials. Theorem A.3 shows
that the dimension of the kernel of A is not affected by the perturbation, and thus it
suffices to consider the non-zero eigenvalues. According to Theorem A.1, the degeneracy
of the non-zero eigenvalues is in general removed. In order to describe the splitting of
the eigenvalues in the massive sectors, we first associate to each spectral projector (4.8)
a projector on an invariant subspace of A (which is no longer necessarily an eigenspace),
and the perturbed eigenvalues are then obtained by diagonalizing A on these invariant
subspaces (see Sections A.1 and A.4 for details). It is the main result of Theorem A.1
that the perturbation is block diagonal on the left- and right-handed components of the
invariant subspaces. This means more precisely that the left- and right-handed components
of (Fk)k=2,...,K , i.e. the image of the eight projectors

χc I↑ Fs and χc I↓ Fs with c = L/R, s = ±, (4.9)
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can be perturbed to obtain invariant subspaces of A, and thus it suffices to analyze A on
these smaller subspaces. Since each of these subspaces carries fixed indices (c, s), a basis
on each subspace may be labelled by the sector index n. We choose a basis such that A
is diagonal on the invariant spaces. We denote the corresponding eigenvalues (counting
multiplicities) by (λncs +∆λncs) and the spectral projectors by (Fncs+∆Fncs). For clarity,
we point out that the unperturbed spectral projectors Fncs appearing here may differ from
those in (3.15) in that we are using a different basis on the sectors, which need not be
orthogonal and may depend on c, s and x, y. This slight abuse of notation cannot lead to
confusion because in (3.15) we are free to choose any basis on the degenerate subspaces.

For our choice of the Lagrangian (2.59) and the dynamical gauge group according
to (3.41), the factors ∂L/∂λk in (4.7) vanish identically to the highest degree, see (3.44).
Thus it suffices to take into account the perturbation of these factors. Using the above
notation, we obtain

Q(x, y) =
1
4

∑
n,c,s

((
∆
∂L(λxy)
∂λxy

ncs

)
F xy

ncs P (x, y) + P (x, y)
(

∆
∂L(λyx)
∂λyx

ncs

)
F yx

ncs

)
+ (deg < 10) . (4.10)

Note that the perturbation of the spectral projectors ∆Fncs does not appear here; this
is a major simplification. Computing the perturbation of the Lagrangian and using that
the unperturbed eigenvalues satisfy the relations of Lemma 3.3, one sees that the difficult
terms to compute are of the form∑

n,c,s

P(λxy
ncs, λ

xy
ncs) {∆λxy

ncs F
xy
ncs P (x, y) + P (x, y) ∆λyx

nc̄s̄ F
yx
nc̄s̄} (4.11)

∑
n,c,s

P(λxy
ncs, λ

xy
ncs)

{
∆λxy

ncs F
xy
ncs P (x, y) + P (x, y) ∆λyx

nc̄s̄ F
yx
nc̄s̄

}
, (4.12)

where P stands for a polynomial in both arguments. The subtle point in computing
expressions of the form (4.11), (4.12) is to carry out the sums over n ∈ ↑ and n ∈ ↓ (for
fixed c, s), because the corresponding indices {(ncs), n ∈↑/↓} label our basis vectors on the
invariant subspaces associated to the projectors χcI↑/↓Fs. We shall now give a procedure for
explicitly computing these sums. First of all, it is helpful that the unperturbed eigenvalues
do not depend on n ∈ ↑ or ↓. Thus the polynomials P in (4.11),(4.12) are constants, and
so we may restrict attention to the terms inside the curly brackets. It is a complication
that ∆λncs and P (x, y) involve the gauge potentials corresponding to the free gauge group
Fp. To bypass this difficulty, we choose x and y on a fixed null line L in Minkowski space,

x, y ∈ L = u+ R v with v2 = 0 (4.13)

and arrange by a gauge transformation that the free gauge potentials vanish identically on
L (this is possible because free gauge transformations are local unitary transformations; see
page 22). After this transformation the chiral potentials are on xy Abelian and diagonal
in the sector index.

We first state the formulas for the perturbation of the eigenvalues in full generality; we
shall discuss and analyze these formulas afterwards beginning with simple special cases.
In order to keep the notation as simple as possible, we restrict attention to the case c = L
and n ∈ ↑, and shall give symbolic replacement rules with which the analogous formulas
are obtained in all other cases.
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Def. 4.4 Let ν, µ and ν8, µ8 be the phase factors

ν = TrS

(
I7 R

∫ y

x
L

∫ x

y

)
, µ = TrS

(
I1 L

∫ y

x

)
TrS

(
I7 R

∫ x

y

)
(4.14)

ν8 = TrS

(
I8 R

∫ y

x
L

∫ x

y

)
, µ8 = TrS

(
I1 L

∫ y

x

)
TrS

(
I8 R

∫ x

y

)
. (4.15)

We introduce the p× p matrices Λ− and Λ+ by

Λ− = ν

∫ y

x
dz I↑ ÝL ỲR I↑ T

(0)
[2] T

(0)
[0] (4.16)

+ν
∫ x

y
dz I↑ ÝR ỲL I↑ T

(−1)
[0] T

(1)
[2] (4.17)

+I↑ ŶL(y) I↑ ŶL(x) I↑ T
(0)
[1] T

(0)
[1]

−I↑ ÝR(y) I↑ ỲL(x) I↑ T
(−1)
[0] T

(1)
[2]

− 1
νλ− − νλ+

I↑
(
ŶL(y) T (0)

[1] T
(−1)
[0] − ŶR(y) T (−1)

[0] T
(0)
[1]

)

× I↑
(
ν ŶR(x) T (0)

[1]
T

(0)
[0]
− ν ŶL(x) T (0)

[0]
T

(0)
[1]

)
I↑

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.18)

+µν I↑ ŶL(y) I↓ ŶL(x) I↑ T
(0)
[1] T

(0)
[1]

−µν I↑ ÝR(y) I↓ ỲL(x) I↑ T
(−1)
[0] T

(1)
[2]

− µν

λ− − λ+
I↑

(
ŶL(y) T (0)

[1] T
(−1)
[0] − ŶR(y) T (−1)

[0] T
(0)
[1]

)

× I↓
(
ŶR(x) T (0)

[1] T
(0)
[0] − ŶL(x) T (0)

[0] T
(0)
[1]

)
I↑

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.19)

−µ8ν8 I↑ ÝR(y) I8 ỲL(x) I↑ T
(−1)
[0] T

(1)
[2] (4.20)

Λ+ = ν

∫ y

x
dz I↑ ÝL ỲR I↑ T

(0)
[2] T

(0)
[0] (4.21)

+ν
∫ x

y
dz I↑ ÝR ỲL I↑ T

(−1)
[0] T

(1)
[2] (4.22)

+I↑ ŶR(y) I↑ ŶR(x) I↑ T
(0)
[1] T

(0)
[1]

−I↑ ÝR(y) I↑ ỲL(x) I↑ T
(−1)
[0] T

(1)
[2]

− 1
νλ− − νλ+

I↑
(
ν ŶL(y) T (0)

[1] T
(0)
[0] − ν ŶR(y) T (0)

[0] T
(0)
[1]

)
× I↑

(
ŶR(x) T (0)

[1] T
(−1)
[0] − ŶL(x) T (−1)

[0] T
(0)
[1]

)
I↑

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.23)
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+µν I↑ ŶR(y) I↓ ŶR(x) I↑ T
(0)
[1] T

(0)
[1]

−µν I↑ ÝR(y) I↓ ỲL(x) I↑ T
(−1)
[0] T

(1)
[2]

− µν

λ− − λ+
I↑

(
ŶL(y) T (0)

[1] T
(0)
[0] − ŶR(y) T (0)

[0] T
(0)
[1]

)

× I↓
(
ŶR(x) T (0)

[1] T
(−1)
[0] − ŶL(x) T (−1)

[0] T
(0)
[1]

)
I↑

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.24)

−µ8ν8 I↑ ÝR(y) I8 ỲL(x) I↑ T
(−1)
[0] T

(1)
[2] (4.25)

We denote the spectral adjoint of Λ∓ (defined in analogy to (2.63)) by Λ∓.

Lemma 4.5 Up to contributions of degree < 4,∑
n∈↑

∆λxy
nL+ F

xy
nL+ P (x, y) = 0 =

∑
n∈↑

∆λxy
nL+ F

xy
nL+ P (x, y) (4.26)

∑
n∈↑

∆λxy
nL− F

xy
nL− P (x, y) = Λ− P (x, y) (4.27)

∑
n∈↑

∆λxy
nL− F

xy
nL− P (x, y) = Λ− P (x, y) (4.28)

∑
n∈↑

P (x, y) ∆λyx
nR− F

yx
nR− = 0 =

∑
n∈↑

P (x, y) ∆λyx
nR− F

yx
nR− (4.29)

∑
n∈↑

P (x, y) ∆λyx
nR+ F yx

nR+ = Λ+ P (x, y) (4.30)

∑
n∈↑

P (x, y) ∆λyx
nR+ F yx

nR+ = Λ+ P (x, y) . (4.31)

The corresponding formulas for the opposite chirality are obtained by the symbolic replace-
ments

L ←→ R , ν ←→ ν , ν8 ←→ ν8 , µ8 ←→ νν8 µ8 . (4.32)

In the case p < 7, we may furthermore perform the replacements

↑ ←→ ↓ , ν ←→ ν , µ ←→ µ and µ8 ←→ µν µ8 . (4.33)

Proof. According to (2.31), to the highest degree on the light cone we have the identities
Fnc+P (x, y) = 0 and Fnc−P (x, y) = χcInP (x, y). This gives (4.26), and (4.27) follows
directly from Theorem A.1 and the results of Section A.3. In a basis where Λ− is diagonal,
(4.28) is an immediate consequence of (4.27). The relations (4.29)–(4.31) are obtained
similarly using the identities P (x, y) Fnc− = 0 and P (x, y) Fnc+ = P (x, y) χcIn as well as
the formulas of Appendix A. Alternatively, they can be deduced from (4.26)–(4.28) by
taking the adjoint and interchanging x with y (note that it follows from Lemma 3.3 and
the fact that the eigenvalues appear in complex conjugate pairs that ∆λxy

nL+ = ∆λxy
nR−).

To derive the replacement rule (4.32), we first note that in the case p = 7, the projector
I↓ vanishes, and thus all contributions to Λ± involving µ are equal to zero. In the case
p < 7,

µ −→ TrS

(
I1 R

∫ y

x

)
TrS

(
I7 L

∫ x

y

)
= ν TrS

(
I1 L

∫ y

x

)
ν TrS

(
I7 R

∫ x

y

)
= µ

µ8 −→ TrS

(
I1 R

∫ y

x

)
TrS

(
I8 L

∫ x

y

)
= ν TrS

(
I1 L

∫ y

x

)
ν8 TrS

(
I8 R

∫ x

y

)
= νν8 µ .
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Using the relations

TrS

(
I7 L

∫ y

x

)
TrS

(
I1 R

∫ x

y

)
= µ and TrS

(
I7 L

∫ y

x

)
TrS

(
I8 R

∫ x

y

)
= µν µ8 ,

the replacement rule (4.33) is straightforward.

We note for clarity that, after multiplying out the formulas of Def. 4.4, Λ+ and Λ− are
obtained from each other by replacing the chiral indices according to ŶLŶL ←→ ŶRŶR.
But all other products of the dynamical mass matrices as well as the phase factors ν, µ,
and δ are the same in Λ− and Λ+. In contrast, the replacement rule (3.9) flips the chiral
indices of all mass matrices, and also reverses the chirality of the gauge fields.

A straightforward calculation using (4.10), Lemma 3.3, and Lemma 4.5 shows that for
our Lagrangian (2.59), the EL equations yield the conditions[

λxy
↑L− (Λ− + Λ+) + λxy

↑L− (Λ− + Λ+)
]
λxy
↑L− P (x, y) = f(x, y) I↑ P (x, y) , (4.34)

where we set λ↑cs = λncs, n ∈ ↑. Here f(x, y) can be any scalar function; it takes into
account that the average of all eigenvalues drops out in the EL equations when we take the
difference of the contributions resulting from the two terms in (2.59). Similar conditions
for the opposite chirality and for ↑ replaced by ↓ are obtained from (4.34) by applying the
rules (4.33) and (4.32). We point out that the resulting four equations must clearly be
satisfied for the same function f(x, y). These four equations together are even equivalent
to the EL equations to degree 10.

The remaining problem is to analyze the obtained equations of types (4.34). At first
sight, this seems a difficult problem because the matrices Λ± have a complicated explicit
form (see Def. 4.4) and because taking the spectral adjoints makes it necessary to diagonal-
ize these matrices. Fortunately, the requirement that the EL equations be mathematically
consistent will give us strong restrictions on the form of Λ±, and will indeed make it pos-
sible to reveal a relatively simple global structure of the admissible interactions. In order
to explain how the mathematical consistency conditions come about, we first recall that
for polynomial Lagrangians (2.47) we saw after (2.50) that the resulting operator Q is a
polynomial in the fermionic projector and is thus well-defined within the formalism of the
continuum limit. However, the situation is different for our Lagrangian (2.60), because the
spectral weight is an operation which does not necessarily make sense in the continuum
limit. Using the relation (2.64), we could show that to the highest degree on the light
cone, the operator Q is a linear combination of monomials, but we cannot expect that the
same is true to the next lower degree.

More specifically, the mathematical problem in (4.34) is to make sense of the spectral
adjoint. For clarity, we explain the difficulty and our basic argument in the simple example

B1 M1 + B2 M2 , (4.35)

where B1 and B2 are matrices depending on the macroscopic potentials, and M1/2 are
two monomials. The monomials can be considered as scalar functions which are highly
singular on the light cone, and which we can control in the continuum limit only in the
weak sense. To form the spectral adjoint in (4.35), we need to know the eigenvalues and
spectral projectors of the matrix B1M1 +B2M2. In general, the spectral decomposition of
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this matrix will depend nonlinearly on M1 and M2, because the zeros of the characteristic
polynomials involve roots of the monomials. In this generic situation, the spectral adjoint is
ill-defined in the formalism of the continuum limit. The only case in which the eigenvalues
are linear in M1 and M2 is when the eigenvectors can be chosen independent of the
monomials. This is possible iff the matrices B1 and B2 have a common eigenvector basis,
or equivalently if they commute,

[B1, B2] = 0 .

This simple argument shows that the requirement that the spectral adjoint be well-defined
leads to commutator relations for the macroscopic potentials. In the next lemma we apply
this argument to the matrices Λ− and Λ+. By the contributions to Λ− (and similarly
for Λ+) we mean the individual summands obtained by multiplying out all the terms
in (4.16)–(4.20).

Lemma 4.6 For any x, y ∈ L there is a basis on the sectors such that the contributions
to Λ− are all diagonal matrices. In this basis, also all contributions to Λ+ are diagonal.

Proof. Clearly, our argument after (4.35) applies in the same way to the spectral adjoint
of a finite sum. Thus in order to make mathematical sense of the spectral adjoint Λ− we
need to assume that the contributions to Λ− all commute with each other. Hence we can
choose a basis such that these contributions are all diagonal. In particular, one sees that in
this basis the matrix products Ŷc1(x) and Ŷc2(y) are diagonal for all c1, c2 ∈ {L,R}. Since
Λ+ is obtained from Λ− by suitably changing the chiral indices in these matrix products,
it follows immediately that the contributions to Λ+ are also diagonal.

For clarity, we point out that it is a-priori not clear whether the basis of the above lemma
is orthogonal. Thus at the moment we do not know if the matrices Λ∓ are normal.
But Lemma 4.6 yields that Λ− and Λ+ commute with each other (and also these matrices
commute by definition with their spectral adjoints). For commuting matrices, the spectral
adjoint satisfies the relation

A+B = A+B if [A,B] = 0.

This relation is very useful in the EL equations. Namely, setting

Λ = Λ− + Λ+ ,

we can write (4.34) as[
λ↑L− Λ + λ↑L− Λ

]
λ↑L− P (x, y) = f(x, y) I↑ P (x, y) + (deg < 10) , (4.36)

where for simplicity we omitted the indices “xy”. The other three EL equations are
obtained from (4.36) again by applying the replacement rules (4.32) and (4.33).

We proceed by analyzing the EL equations (4.36) for special choices of x and y, for
which the matrix Λ becomes particularly simple. We begin with the situation where we
choose x such that the scalar potentials vanish at x, i.e.

YL(x) = Y = YR(x) (4.37)

with Y the mass matrix of the vacuum (for example, we can choose x close to infinity).
Then the matrices YL/R(x) are diagonal in the sector index, and are on the massive sectors
a multiple of the identity. Thus the “off-diagonal” contributions (4.19),(4.20) to Λ− vanish
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(and similarly for Λ+). In the “diagonal” contributions (4.16)–(4.18), on the other hand,
we can simplify our notation by omitting the factors ŶL/R(x). Then the matrix Λ takes
the form

Λ = 2ν
∫ y

x
dz I↑ ÝL ỲR I↑ T

(0)
[2] T

(0)
[0]

+2ν
∫ x

y
dz I↑ ÝR ỲL I↑ T

(−1)
[0] T

(1)
[2]

+I↑ (ŶL(y) + ŶR(y)) I↑ T
(0)
[1] T

(0)
[1]

−2 I↑ ÝR(y) Ỳ I↑ T
(−1)
[0] T

(1)
[2]

−
ν T

(0)
[1] T

(0)
[0] − ν T

(0)
[0] T

(0)
[1]

νλ− − νλ+
I↑

(
ŶL(y) T (0)

[1]
T

(−1)
[0]

− ŶR(y) T (−1)
[0]

T
(0)
[1]

)
I↑

−
T

(0)
[1] T

(−1)
[0] − T

(−1)
[0] T

(0)
[1]

νλ− − νλ+
I↑

(
ν ŶL(y) T (0)

[1] T
(0)
[0] − ν ŶR(y) T (0)

[0] T
(0)
[1]

)
I↑

Evaluating the EL equations (4.36) for this choice of Λ yields the following result.

Lemma 4.7 Suppose that (I) holds. Without introducing any relations between the basic
monomials (besides those of Theorem 3.6), we can choose for any y ∈ L suitable parame-
ters a, b ∈ R and c ∈ C such that at y,

I↑ ÝLỲR I↑ = a I↑ , I↑ ÝRỲL I↑ = b I↑ (4.38)

I↑ ŶL(y) I↑ = c I↑ , I↑ ŶR(y) I↑ = c I↑ . (4.39)

The analogous formulas for I↑ interchanged by I↓ are obtained by the replacements

↑ ←→ ↓ and L ←→ R (4.40)

with the parameters a, b, and c unchanged.

Proof. The above Λ contains contributions which are scalar multiples of the matrices
I↑ŶL(y)I↑ and I↑ŶR(y)I↑. Thus in the basis of Lemma 4.6, these matrices are both diag-
onal. Since one is the adjoint of the other, we conclude that these matrices are normal,
and thus their spectral adjoints coincide with the usual adjoints,

I↑ ŶL I↑ = I↑ ŶR I↑ , I↑ ŶR I↑ = I↑ ŶL I↑ . (4.41)

The matrices ÝLỲR and ÝRỲL, on the other hand, are Hermitian and thus spectrally
self-adjoint,

ÝL ỲR = ÝL ỲR , ÝR ỲL = ÝR ỲL . (4.42)

Applying the relations (4.41) and (4.42), a straightforward calculation gives

λ↑L− Λ + λ↑L− Λ

= 2
∫ y

x
dz I↑ ÝL ỲR I↑

(
T

(0)
[0] T

(0)
[2] T

(−1)
[0] T

(0)
[0] + T

(−1)
[0] T

(0)
[0] T

(0)
[0] T

(0)
[2]

)

+2
∫ x

y
dz I↑ ÝR ỲL I↑

(
T

(−1)
[0] T

(0)
[0] T

(−1)
[0] T

(1)
[2] + T

(−1)
[0] T

(1)
[2] T

(−1)
[0] T

(0)
[0]

)
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+ν I↑ (ŶL + ŶR) I↑ T
(0)
[0] T

(0)
[1] T

(−1)
[0] T

(0)
[1] + ν I↑ (ŶL + ŶR) I↑ T

(−1)
[0] T

(0)
[1] T

(0)
[0] T

(0)
[1]

−2ν I↑ ÝR Ỳ I↑ T
(−1)
[0] T

(0)
[0] T

(−1)
[0] T

(1)
[2] − 2ν I↑ ÝR Ỳ I↑ T

(−1)
[0] T

(1)
[2] T

(−1)
[0] T

(0)
[0]

+
(
ν T

(0)
[1] T

(0)
[0] − ν T

(0)
[0] T

(0)
[1]

)
I↑

(
ŶL T

(0)
[1] T

(−1)
[0] − ŶR T

(−1)
[0] T

(0)
[1]

)
I↑

+
(
T

(0)
[1] T

(−1)
[0] − T

(−1)
[0] T

(0)
[1]

)
I↑

(
ν ŶL T

(0)
[1] T

(0)
[0] − ν ŶR T

(0)
[0] T

(0)
[1]

)
I↑

= 2
∫ y

x
dz I↑ ÝL ỲR I↑

(
T

(0)
[0] T

(0)
[2] T

(−1)
[0] T

(0)
[0] + T

(−1)
[0] T

(0)
[0] T

(0)
[0] T

(0)
[2]

)

+2
∫ x

y
dz I↑ ÝR ỲL I↑

(
T

(−1)
[0] T

(0)
[0] T

(−1)
[0] T

(1)
[2] + T

(−1)
[0] T

(1)
[2] T

(−1)
[0] T

(0)
[0]

)

+2ν
(
I↑ ŶL I↑ T

(0)
[1] T

(0)
[1] T

(−1)
[0] T

(0)
[0] − I↑ ÝR Ỳ I↑ T

(−1)
[0] T

(1)
[2] T

(−1)
[0] T

(0)
[0]

)

+2ν
(
I↑ ŶR I↑ T

(−1)
[0] T

(0)
[0] T

(0)
[1] T

(0)
[1] − I↑ ÝR Ỳ I↑ T

(−1)
[0] T

(0)
[0] T

(−1)
[0] T

(1)
[2]

)
,

where for simplicity the arguments y were omitted. We substitute this formula into (4.36).
Since we do not allow for additional relations between the basic monomials, we can simplify
the resulting monomials only by applying (3.42). From this one sees that (4.36) is satisfied
for suitable f(x, y) if and only if the following five matrices are multiples of I↑,∫ y

x
I↑ ÝL ỲR I↑ ,

∫ x

y
I↑ ÝR ỲL I↑ (4.43)

ν
(
I↑ ŶR I↑ − I↑ ÝR Ỳ I↑

)
, ν I↑ ŶL I↑ − ν I↑ ÝR Ỳ I↑ , ν I↑ ÝL I↑ − ν I↑ ÝR I↑ . (4.44)

We can assume that y 
= x, because otherwise (4.38) and (4.39) follow immediately
from (4.37). Differentiating (4.43) with respect to y along the line L gives (4.38) (a and
b are real because the matrices on the left of (4.38) are Hermitian). According to (I),
the phase factor ν can take any value on the unit circle. Thus in (4.44) the contributions
involving ν and ν must separately be multiples of I↑. This gives the left relation in (4.39),
and the relation on the right is obtained by taking the adjoint.

The analogous relations for I↑ replaced by I↓ are derived in the same way. The re-
placements (4.40) leave the phase factor ν unchanged (see (4.14) and (4.15)). Thus the EL
equation (4.34) remains valid under (4.40) for the same function f only if the parameters
a, b, and c are unchanged.

Next we consider the the degeneracies in the limit y → x. In this case, the formulas
of Def. 4.4 simplify in that all phase factors drop out. We obtain the following result.

Lemma 4.8 Without introducing any relations between the basic monomials (besides those
of Theorem 3.6), the dynamical mass matrices must satisfy the relations

I↑ ŶL I↓ = 0 = I↑ ŶR I↓ . (4.45)

Proof. According to the replacement rule (4.32), it suffices to derive the second part
of (4.45). We compute the matrix Λ modulo scalar multiples of I↑. Using (4.38) and (2.28),
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we obtain

Λ =
(
I↑ ŶL I↓ ŶL I↑ + I↑ ŶR I↓ ŶR I↑

)
T

(0)
[1] T

(0)
[1]

− 1
λ− − λ+

I↑
(
ŶL T

(0)
[1] T

(−1)
[0] − ŶR T

(−1)
[0] T

(0)
[1]

)
I↓

(
ŶR T

(0)
[1] T

(0)
[0] − ŶL T

(0)
[0] T

(0)
[1]

)
I↑

− 1
λ− − λ+

I↑
(
ŶL T

(0)
[1] T

(0)
[0] − ŶR T

(0)
[0] T

(0)
[1]

)
I↓

(
ŶR T

(0)
[1] T

(−1)
[0] − ŶL T

(−1)
[0] T

(0)
[1]

)
I↑

= 2
(
I↑ ŶL I↓ ŶL I↑ + I↑ ŶR I↓ ŶR I↑

) λ−
λ− − λ+

T
(0)
[1] T

(0)
[1]

−2 I↑ ŶL I↓ ŶR I↑
1

λ− − λ+
T

(0)
[1] T

(0)
[1] T

(−1)
[0] T

(0)
[0]

−2 I↑ ŶR I↓ ŶL I↑
1

λ− − λ+
T

(−1)
[0] T

(0)
[0] T

(0)
[1] T

(0)
[1] .

Next we compute the square bracket in (4.36),

λ↑L− Λ + λ↑L− Λ

= −2 I↑ ŶL I↓ ŶR I↑
1

λ− − λ+

(
λ+ T

(0)
[1] T

(0)
[1] T

(−1)
[0] T

(0)
[0] − λ− T

(−1)
[0] T

(0)
[0] T

(0)
[1] T

(0)
[1]

)

+2 I↑ ŶR I↓ ŶL I↑
1

λ− − λ+

(
λ− T

(0)
[1] T

(0)
[1] T

(−1)
[0] T

(0)
[0] − λ+ T

(−1)
[0] T

(0)
[0] T

(0)
[1] T

(0)
[1]

)

Since I↓ projects onto a subspace of dimension 7 − p < p, the rank of the matrices
I↑ŶRI↓ŶLI↑ and I↑ŶLI↓ŶRI↑ is smaller than p, and therefore these matrices cannot be
scalar multiples of I↑. Thus the EL equations have a well-defined continuum limit only if
the factors (λ− − λ+)−1 in the above expression drop out. This is the case only if

I↑ ŶR I↓ ŶL I↑ = I↑ ŶL I↓ ŶR I↑ .

If these necessary conditions are satisfied, the above formula simplifies to

λ↑L− Λ + λ↑L− Λ = 2 I↑ ŶL I↓ ŶR I↑

(
T

(0)
[1] T

(0)
[1] T

(−1)
[0] T

(0)
[0] + T

(−1)
[0] T

(0)
[0] T

(0)
[1] T

(0)
[1]

)
.

Now the EL equations have a well-defined continuum limit, and assuming for the regular-
ization parameters only the relation (3.42), we conclude that

I↑ ŶR I↓ ŶL I↑ = 0 . (4.46)

The matrix product in this equation can be written in the form BB∗ with B ≡ I↑ŶRI↓.
Hence (4.46) implies that B = 0.

The previous two lemmas simplify the structure of the perturbation on the degenerate
subspaces considerably. Namely, we can write Λ in the form

Λ = ρ(ν, ν) I↑ − 2 I↑ ÝR(y) (I↑ + µν I↓ + µ8ν8 I8) ỲL(x) I↑ T
(−1)
[0] T

(−1)
[0] ,
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where ρ is a complex function which is invariant under the replacements (4.40). A short
calculation yields

1
2
(
λ↑L− Λ + λ↑L− Λ

)
= (a+ ν b+ ν b) I↑ (4.47)

−ν I↑ ÝR(y) I↑ ỲL(x) I↑ N − ν I↑ ÝR(y) I↑ ỲL(x) I↑ N (4.48)

−µ I↑ ÝR(y) I↓ ỲL(x) I↑ N − µ I↑ ÝR(y) I↓ ỲL(x) I↑ N (4.49)

−µ8 νν8 I↑ ÝR(y) I8 ỲL(x) I↑ N − µ8 νν8 I↑ ÝR(y) I8 ỲL(x) I↑ N , (4.50)

where the complex functions a and b are invariant under (4.40), and N is the monomial

N = T
(−1)
[0] T

(1)
[2] T

(−1)
[0] T

(0)
[0] . (4.51)

We split up the analysis of the EL equations corresponding to (4.47)–(4.50) into several
lemmas. We say that the summands (4.49) or (4.50) are non-trivial if there are admissible
dynamical mass matrices such that this summand or one of the expressions obtained by
applying the replacements (4.32) and/or (4.33) are non-zero. Furthermore, we refer to
two phase functions α, β ∈ S1 as being independent if for α fixed, β can take any value in
S1 and vice versa.

Lemma 4.9 Under the assumptions (I)–(III), ν is independent of the phase functions
µ, µ8, ν8, and µµ8. The term (4.50) is non-trivial.

Proof. Suppose that the dynamical mass matrices were zero in the neutrino sector, i.e.

YL I8 ≡ 0 ≡ YR I8 (4.52)

Then the Dirac operator, and thus also the fermionic projector, would be invariant on
the neutrino sector. As a consequence, the chiral Dirac particles would drop out of all
composite expressions due to chiral cancellations, in contradiction to (II). We conclude
that (4.52) is false. Since we are free to choose a convenient representation of the dynamical
mass matrices, we can assume that the matrices

ÝL I8 , ÝR I8 , ỲL I8 , ỲR I8 (4.53)

do not all vanish identically. The contributions to the fermionic projector which involve the
matrix products I8ÝL/R or ỲL/RI8 enter only the perturbation calculation for the kernel
of P (x, y) P (y, x), and according to Theorem A.3 they drop out of the EL equations.
Thus (II) is satisfied only if

(I↑ + I↓) ÝL I8 
≡ 0 or (I↑ + I↓) ÝR I8 
≡ 0 .

This shows that (4.50) is non-trivial.
According to (III), there is a free dynamical gauge field which couples differently to

the Dirac particles in the sectors n = 1 and n = 8. The corresponding free gauge poten-
tials describe relative phase shifts of the fermionic projector on Im I1 and Im I8. These
relative phases are captured by µ8 and µ8ν8 (see (4.15). Since the free gauge potentials
on the line segment xy can be chosen arbitrarily, it follows that ν is independent of µ8

and µ8ν8. A similar argument for I7 instead of I1 shows that ν and µµ8 are independent.
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Lemma 4.10 Imposing at most one additional relation between the basic monomials (be-
sides those of Theorem 3.6), ν and µ are independent. The term (4.49) is non-trivial.

Proof. Assume to the contrary that ν and µ are dependent or that (4.49) is trivial. Then
the phases in (4.47)–(4.49) are all dependent on ν. The independence of the phases estab-
lished in Lemma 4.9 yields that the EL equations must be satisfied separately for (4.50).
Imposing at most one additional relation between the basic monomials, we cannot arrange
that (4.50) drops out of the EL equations. We thus obtain that for a suitable complex κ,

I↑ ÝR(y) I8 ỲL(x) I↑ = κ(x, y) I↑ , (4.54)

and this condition must also be satisfied after the replacements (4.32) and/or (4.33) for
the same κ. Since the rank of I8 is smaller than that of I↑, the lhs of (4.54) is a singular
matrix, and thus κ vanishes identically. This implies that the lhs of (4.54) is trivial (i.e.
vanishes also after the replacements (4.32),(4.33)), in contradiction to Lemma 4.9.

Having established that the phases in (4.47) and (4.48) are independent of those
in (4.49) and (4.50), we can now apply the uniform splitting lemma to (4.48).

Lemma 4.11 Imposing at most one additional relation between the basic monomials, we
can arrange by a constant unitary transformation that for all a, b = 1, . . . , p and c, d =
p+ 1, . . . , 7,

(I↑ ỲL/R I↑)
(aα)
b = δa

b u
α
L/R , (I↓ ỲR/L I↓)

(cα)
d = δc

d u
α
L/R (4.55)

with uL/R(x) ∈ C3.

Proof. It clearly suffices to consider one chirality. Since ν is independent of µ and µ8ν8,
the EL equations imply that

I↑ ÝR(y) I↑ ỲL(x) I↑ = λ(x, y) I↑ . (4.56)

The dynamical mass matrices can be chosen independently at x and y. Denoting the
class of admissible matrices I↑ỲLI↑ by B, we are in the setting of Lemma 4.3 with p1 = p
and p2 = 3p. Since p2 is divisible by p1, we can, possibly after increasing r, assume that
p2 − rp1 = 0, and thus

I↑ ỲL I↑ = U (uL ⊕ · · · ⊕ uL︸ ︷︷ ︸
p summands

)

with uL(x) ∈ C3. Omitting the constant unitary transformation and writing out the
components, this is just the lhs of (4.55). Under the replacement (4.40), ν as well as α
and β are unchanged. As a consequence, also the function λ in (4.56) is invariant un-
der (4.40), and this implies that the mappings πi of Lemma 4.3 obtained for B = I↑ỲLI↑
and B = I↓ỲRI↓ are all unitarily equivalent. This proves the rhs of (4.55).

It remains to analyze (4.49) and (4.50).

Lemma 4.12 The EL equations to degree 10 can be satisfied only if we impose at least
one additional relation between the basic monomials.
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Proof. In the limit y → x, the matrices I↑ÝR(y) I. ỲL(x) I↑ can be written in the form
B∗B with B = I. ỲL I↑ and are therefore Hermitian and positive semidefinite. This shows
that (4.49) and (4.50) cannot cancel each other identically. According to Lemma 4.10,
(4.49) is non-trivial. It suffices to consider the case that (4.49) does not vanish identically
(in the other cases when (4.49) is non-zero after applying (4.32),(4.33) the argument is
analogous). Then we can arrange a contribution to (4.48)–(4.50) of the form (µAN+µAN)
with a matrix A 
= 0. The same contribution must be present after performing the
replacements (4.40). Since these replacements transform µ into µ (see (4.32) and (4.33)),
we obtain a condition of the form

µAN + µAN = µBN + µBN for all µ ∈ S1 (4.57)

with B a matrix. Without introducing an additional relation between the basic monomials,
we must treat N and N as being independent, and thus (4.57) has no solution.

Using that A and B go over to positive matrices as y → x, one sees that in order to
arrange that (4.57) has a solution, we need to impose that N and N coincide in the EL
equations, i.e.

(N −N) T (−1)
[0] T

(0)
[0] T

(−1)
[0] = 0 . (4.58)

The next lemma is again an application of the uniform splitting lemma and uses the
non-degeneracy assumption of Def. 4.2.

Lemma 4.13 Suppose that the basic monomials satisfy (besides the conditions of Theo-
rem 3.6) the relation (4.58) with N according to (4.51). Then the parameter p in (3.41)
is equal to 4. The phase factors in the neutrino sector are determined by

ν8 = ν and µ8 = µ or µ . (4.59)

We can arrange by constant unitary transformations that for a, b = 1, 2, 3,

(I↓ ỲL/R I↑)
(a+4 α)
b = δa

b v
α
L/R , (I↑ ỲR/L I↓)

(aα)
b+4 = δa

b v
α
L/R (4.60)

with vL/R(x) ∈ C3. In the two cases for µ8 in (4.59),

(I8 ỲL/R I↑)
(8α)
4 = vα

L/R or vα
L/R , (4.61)

respectively. Furthermore,
I8 ỲR/L I↓ = 0 . (4.62)

Proof. Imposing (4.58) and using (4.55), the EL equations (4.36) reduce to the conditions

µ I↑ ÝR(y) I↓ ỲL(x) I↑ + µ I↑ ÝR(y) I↓ ỲL(x) I↑

+µ8 νν8 I↑ ÝR(y) I8 ỲL(x) I↑ + µ8 νν8 I↑ ÝR(y) I8 ỲL(x) I↑ = λ(x, y) I↑ . (4.63)

We first prove that the phase factors must be dependent in the sense that

µ8 νν8 = µ or µ . (4.64)

Assuming the contrary, we must treat the four summands in (4.63) as being independent,
and thus

I↑ ÝR(y) I↓ ỲL(x) I↑ = κ(x, y) I↑ . (4.65)
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Performing the replacement (4.40) and using that µ transforms to µ, we obtain furthermore
that

I↓ ÝL(y) I↑ ỲR(x) I↓ = κ(x, y) I↓ (4.66)

with the same κ as in (4.65). We apply Lemma 4.3 to (4.65) (with p1 = p and p2 =
3(7 − p)) and to (4.66) (with p1 = 7 − p and p2 = p). Leaving out the constant unitary
transformations, we obtain the representations

I↓ ỲL I↑ =

⎛
⎝ p summands︷ ︸︸ ︷

b⊕ · · · ⊕ b
0

⎞
⎠ , I↑ ỲR I↓ =

⎛
⎝ 7 − p summands︷ ︸︸ ︷

b⊕ · · · ⊕ b
0

⎞
⎠ , (4.67)

where b is the complex conjugate of the vector b ∈ C3. According to Lemma 4.10, (4.49) is
non-trivial. Since the contributions to the EL equations involving µ are unchanged when
applying the replacements (4.32) and (4.33), we can arrange that (4.65) does not vanish,
and thus b 
= 0. On the lhs of (4.67), the inequality rp1 ≤ p2 implies that r < 3. Thus on
the rhs of (4.67), the number of zero rows is 3p− r(7− p) > 3. Therefore, IpỲRI↓ = 0, or,
equivalently, by taking the adjoint and in components,

(ÝL)a(d.) = 0 for d = p and a = p+ 1, . . . , 7.

On the other hand, the lhs of (4.67) implies that

(ỲL)a(d.) 
= 0 for d = p and a = p+ 1, . . . , 7.

The non-degeneracy assumption of Def. 4.2 allows us to conclude that

(ÝL)a(d.) = 0 for all a = p+ 1, . . . , 7 and d 
= a.

This implies that I↓ÝLI↑ = 0, in contradiction to the rhs of (4.67) and the fact that b 
= 0.
Repeating the above argument for the opposite chirality gives in analogy to (4.64) that

µ8 = µ or µ . (4.68)

Using that µ and ν are independent according to Lemma 4.10, (4.64) and (4.68) are
equivalent to (4.59).

In the case µ8 = µ, the EL equations (4.36) reduce to the conditions

I↑ ÝR(y) (I↓ + I8) ỲL(x) I↑ = κ(x, y) I↑ . (4.69)

After the replacement (4.40), the phase factors in (4.63) are no longer dependent (cf. (4.32)
and (4.33)), and thus we get the conditions

I↓ ÝL(y) I↑ ỲR(x) I↓ = κ(x, y) I↓ (4.70)

I↓ ÝL(y) I8 ỲR(x) I↓ = 0 . (4.71)

The last relation implies (4.62). Applying the above argument for (4.65) and (4.66)
to (4.69) and (4.70), we again get a contradiction unless Rg I↑ = Rg (I↓ + I8). This shows
that p = 4. Possibly after increasing r, we obtain in analogy to (4.67) the representations

(I↓ + I8) ỲL I↑ = b⊕ b⊕ b⊕ b , I↑ ỲR I↓ = b⊕ b⊕ b . (4.72)
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Writing these relations in components gives (4.60) and (4.61).
In the case µ8 = µ, we obtain in analogy to (4.69) the condition

I↑ ÝR(y) I↓ ỲL(x) I↑ + I↑ ÝR(y) I8 ỲL(x) I↑ = κ(x, y) I↑ , (4.73)

and after the replacement (4.40) again the conditions (4.70) and (4.71). The lhs of (4.70)
can be split into a product of matrices of the form A(y) B(x). Since (4.70) and (4.73)
involve the same function κ(x, y), the matrices on the lhs of (4.73) must split in the same
way. To this end, the matrix I↑ ÝR(y) I8 ỲL(x) I↑ must (possibly after a constant unitary
transformation) be diagonal for all x and y, so that the spectral adjoint reduces to the
complex conjugate (i.e. to taking the complex conjugate of all matrix entries). After taking
this complex conjugate, we can proceed exactly as in the case µ8 = µ above. The only
difference is that we obtain a representation not for the matrix I8ỲLI↑ but for its complex
conjugate, and this leads to the complex conjugate in (4.61).

We remark that the fact that the partial trace is non-cyclic (4.2) is essential for the above
construction to work. Namely, according to the lhs of (4.60),

I↑ ÝL I8 ỲR I↑
in general


= 0 . (4.74)

On the other hand, the weak causality compatibility condition, Def. 4.1, implies that

I8 ÝR I↑ ỲL I8 = XR I8 ÝR I↑ ỲL I8 = 0 . (4.75)

If the partial trace were cyclic, (4.74) and (4.75) would be inconsistent.
Combining the previous lemmas and choosing a convenient representation for the dy-

namical mass matrices gives the main result of this section.

Theorem 4.14 (spontaneous block formation) We consider the EL equations corre-
sponding to the Lagrangian (2.61) in the presence of chiral and scalar potentials (3.1)–(3.5)
to the degree 10 on the light cone. We assume that the Dirac operator is weakly causal-
ity compatible and that the dynamical mass matrices are non-degenerate (see Defs. 4.1
and 4.2). Then, following (IV), we need to introduce two relations between the basic
monomials. Imposing that

(M −M) T (−1)
[0] T

(0)
[0] T

(−1)
[0] = 0 = (N −N) T (−1)

[0] T
(0)
[0] T

(−1)
[0] (4.76)

with M , N according to (3.42) and (4.51), we can arrange by constant unitary transfor-
mations that the Dirac operator is of the following form,

i∂/ −mχL

(
Y q

R ⊕ Y q
R ⊕ Y q

R ⊕ Y l
R

)
− mχR

(
Y q

L ⊕ Y q
L ⊕ Y q

L ⊕ Y l
L

)
(4.77)

+ (χR A/L + A/V )
(
σ3 ⊕ σ3 ⊕ σ3 ⊕ σ3

)
(4.78)

+ (A/q 11)⊕ 0C2 + 0C6 ⊕ (A/l 11 + A/s σ3) . (4.79)

Here Y q/l
L/R are 2× 2 matrices on the sectors which depend also on the generations, i.e. in

components

Y q/l
c = (Y q/l

c )(aα)
(bβ) with a, b = 1, 2, α, β = 1, 2, 3, c = L/R.
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The chiral and vector potentials are trivial on the generations and depend only on the
sector index. AL, AV , and Al are vector fields, and Aq is a 3× 3 matrix potential (11 and
σ3 are Pauli matrices). The vector field As is a function of AL and AR; the two possible
choices are

As ≡ 0 or As ≡ −AL − 2AV . (4.80)

The dynamical gauge groups (see Def. 3.1) are given by

G = U(1)L ⊗F , F = U(1)V ⊗ U(3)q ⊗ U(1)l , (4.81)

where the indices clarify to which potentials in the Dirac operator the groups correspond.

Proof. The Lemmas 4.7 and 4.8 do not immediately imply here because they are based
on the assumption that we have only one relation between the basic monomials. But it
is straightforward to check that if in these lemmas we allowed for an additional relation
between the basic monomials, the argument of Lemma 4.12 would still go through, thus
making it necessary to introduce a third relation between the basic monomials.

Collecting the results of Lemmas 4.7–4.13 and choosing a convenient representation
for the dynamical mass matrices, we obtain that the dynamical mass matrices are block
diagonal as in (4.77). Thus it remains to derive the dynamical gauge group and the form
of the corresponding gauge potentials. Possibly after reordering the sectors, the U(1)L is
precisely the group B4 in Def. 3.5. The free gauge group is obtained by taking the maximal
subgroup of F4 for which the gauge potentials respect the phase conditions (4.59). In the
two cases in (4.80), the U(1)V shifts the phases of µ and µ8 by the same or the opposite
amount, respectively. This corresponds to the two cases in (4.59). The other potentials
must leave the phase functions unchanged, and to this end they must coincide on the
sectors which are mapped into each other by the dynamical mass matrices (4.60). This
gives the group U(3)q ⊗ U(1)l.

We point out that, except for the potentials Aq, the Dirac operator splits into four direct
summands. The first three summands are identical and involve massive Dirac particles,
whereas the chiral Dirac particles are contained in the last summand. The gauge potentials
Aq describe an interaction between the Dirac particles in the three identical summands.
In analogy to the standard model, it is natural to identify the fermions in the first three
and the last summands with the quarks and leptons, respectively. In order to make these
notions precise, we first observe that for the fermionic projector, the above splitting means
that for all contributions considered so far1,

P (x, y) = U(x, y)
(
P q ⊕ P q ⊕ P q ⊕ P l

)
, (4.82)

where U is the generalized phase transformation by the potentials Aq,

U(x, y) = Pexp
(
−i

∫ 1

0
dτ Aq

j(τy + (1− τ)x) (y − x)j
)
. (4.83)

The unitary transformation (4.83) clearly commutes with the direct sum and thus drops
out of the closed chain,

Axy = Aq
xy ⊕Aq

xy ⊕Aq
xy ⊕Al

xy with Aq/l
xy ≡ P q/l(x, y) P q/l(y, x) . (4.84)

1We remark for clarity that that the contributions to the fermionic projector which involve the U(3)q

gauge fields or currents, which have not been considered so far, do not split in the form (4.82). This will
be of relevance later when gauge fields and currents are analyzed [6].

56



Def. 4.15 The first three direct summands in (4.82) and (4.84) are referred to as the
quark blocks. The last direct summand is the lepton block.

4.3 The Dynamical Mass Matrices in the Quark and Neutrino Blocks

We now specify the dynamical mass matrices in the quark and neutrino blocks.

Theorem 4.16 Under the assumptions of Theorem 4.14, the EL equations are satisfied
to the degree 10 on the light cone if and only if the matrices Y q

L/R and Y l
L/R in (4.77) have

(after suitable constant unitary transformations) at all space-time points the following
properties,

Ŷ q
L = (Ŷ q

R)∗ =
(
c 0
0 c

)
(4.85)

Ŷ l
L = (Ŷ l

R)∗ =
(
c 0
0 0

)
(4.86)

Ỳ q
L =

(
a VL b
UL b a

)
, Ỳ q

R =
(

a VR b
UR b a

)
(4.87)

and in the two cases in (4.80),

Ỳ l
L =

(
a 0
WL b 0

)
, Ỳ l

R =
(

a ∗
WR b ∗

)
(4.88)

and

Ỳ l
L =

(
a 0
WL b 0

)
, Ỳ l

R =
(

a ∗
WR b ∗

)
, (4.89)

respectively. Here we use a matrix notation in the sector index. In (4.87)–(4.89), the
matrix entries are vectors in C3 (and this takes into account the dependence on the gen-
erations). The parameter c is complex, a, b ∈ C3, and the stars stand for any vectors in
C3. The off-diagonal elements are non-trivial in the sense that there is a space-time point
where b 
= 0. The matrices UL/R, VL/R, WL/R ∈ U(3) are constant unitary transformations.

Proof. We only consider the first case in (4.80); the second is obtained in the same way
keeping track of the complex conjugates. The weak causality condition of Def. 4.1implies
that ỲLI8 = 0. On the other hand, we already observed after (4.53) that the matrix prod-
uct ỲRI8 enters only the perturbation calculation for the kernel, which is trivial according
to Theorem A.3. This explains the zeros and stars in (4.86) and (4.88). Then (4.85)
and (4.86) follow immediately from Lemma 4.7 and Lemma 4.8. A short calculation us-
ing (4.85) as well as (4.76) and (4.59) yields that the EL equations to degree 10 reduce to
the conditions ∫ z

x
dz I↑ ÝLỲR I↑ = α(x, y) I↑ (4.90)

ν I↑ ÝR(y) I↑ ỲL(x) I↑ + ν I↑ ÝR(y) I↑ ỲL(x) I↑ = β(x, y) I↑ (4.91)

µ I↑ ÝR(y) (I↓ + I8) ÝR(y) I↑ ỲL(x) I↑

+ µ I↑ ÝR(y) (I↓ + I8) ÝR(y) I↑ ỲL(x) I↑ = γ(x, y) I↑ (4.92)

as well as to the conditions obtained by the replacements

L ←→ R , ν ←→ ν (4.93)
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and/or

I↑ + I8 −→ I↓ , I↓ −→ I↑ , µ ←→ µ , ν ←→ ν (4.94)

with the complex functions α, β, and γ unchanged. We first substitute (4.55) into (4.91).
Comparing with the relation obtained by applying (4.93), one sees that 〈uL, uL〉 = 〈uR, uR〉,
and thus we can arrange by a constant unitary transformation that uL = uR. This ex-
plains the diagonal entries in (4.87) and (4.88). Substituting (4.60) and (4.61) into (4.92)
and comparing with the relation obtained by applying (4.94), we obtain similarly that
〈uR, uR〉 = 〈uL, uL〉 and thus, up to a constant unitary transformation, vL = vL. Since
we have already used the freedom in choosing orthogonal bases in order to arrange that
uL = uR, we now need to take into account these unitary transformations. This gives
the off-diagonal elements in (4.87) and (4.88). We conclude that (4.85)–(4.88) are neces-
sary conditions. Substituting (4.85)–(4.88) into (4.90)–(4.92) and applying (4.93),(4.94),
one verifies immediately that these conditions are also sufficient. The last statement in
Lemma 4.10 implies that b is non-trivial.

In Chapters 3 and 4, we always restricted attention to our model variational princi-
ple (2.60). We now make a few general comments on how our methods could be extended
to other two-point actions and which features of the Lagrangian are important for getting
a physically interesting continuum limit.

The methods of Chapter 3 immediately apply to other two-point actions; the only
obstruction is that the gauge terms in the operator Q(x, y) must be polynomials in T

(n)
•

and T
(n)
• . The general mechanism is that the eigenvalues of Axy are influenced by the

gauge terms (cf. (3.15) and (3.45),(3.46)). When analyzed in the EL equations, this leads
to conditions for the eigenvalues of the “phase matrices” Wc (see (3.20) or (3.55)), and
these conditions can finally be translated into constraints for the dynamical gauge fields.
In this last step one uses crucially that the EL equations are nonlocal in the sense that
they yield relations between the chiral potentials even at distant points (see e.g. (3.60)).
This gives rise to global constraints, i.e. conditions which must hold in all of space-time.
For example, Theorem 3.6 states that the dynamical gauge group in case (2) must be
contained in one of the groups (Gp)p=0,...,3 in the whole space-time, but it cannot be the
group Gp1 in one region of space-time and a different group Gp2 in another region (as one
sees by considering line integrals which join the two regions).

For the spontaneous block formation, it is essential that the EL equations are satisfied
only if the eigenvalues of Axy are highly degenerate. The requirement that these degen-
eracies should be respected by the scalar potentials can then be used to show that the
potentials must split globally into a direct sum.

While this general mechanism should occur similarly for most other Lagrangians, the
details depend sensitively on the particular form of the action. Our model Lagrangian
has the special feature that it involves only the absolute squares of the eigenvalues of
Axy. This is the reason why Theorem 3.2 involves only the absolute squares of νnc, (3.20),
leading to the relatively weak constraint for the dynamical gauge group (3.21) (if we had,
for example, considered instead the polynomial Lagrangian (2.50), the gauge terms to
highest degree would have led to conditions also for the phases of νnc, giving rise to much
stronger conditions). To the next lower degree on the light cone, the phases of νnc do
enter the analysis. But since perturbing the absolute square gives rise to a real part,
∆|λncs|2 = 2Re(λncs ∆λncs), we can easily arrange that only the real part of νncs comes
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into play, and so the phases are fixed only up to signs. This is a major advantage of
our action over e.g. polynomial actions, where the same flexibility for the phases can be
arranged only for a large degree of the polynomial. Another action which has the nice
property that it depends only on the absolute squares of the eigenvalues is the determinant
action (2.58). Working with the spectral trace leads to the specific problem that one must
handle spectral adjoints. This is clearly a technical complication, but we do not consider
it to be essential for the spontaneous block formation.

Remark 4.17 (Massive neutrinos) In the analysis of Chapters 3 and 4, the structure of
the neutrino sector was used several times: In the vacuum, the chiral cancellations were
useful because as a consequence, the EL equations were trivially satisfied in the neutrino
sector (see (2.10) and (2.44)). In Theorem 3.2, the chiral cancellations in the neutrino
sector are the reason why the dynamical gauge fields are not allowed to describe a mixing
between the neutrinos and the massive fermions (see the argument leading to (3.30)).
In the proof of Theorem 3.6, it was essential that the number of massive sectors is odd
(see (3.63)). Finally, in the analysis of the degeneracies we always treated the neutrino
sector separately.

Generally speaking, the chiral fermions lead to complications in the case with interac-
tion, because the dynamical gauge fields were not allowed to describe a mixing between
the massive and the chiral fermions, and this made it necessary to take scalar potentials
into account. Also in view of recent experimental obervations, it thus seems tempting to
consider a neutrino sector which is built up of massive chiral Dirac seas. This is indeed
possible, although we see the following difficulties. First, it is not clear how chiral fermions
should be described in Minkowski space. Furthermore, building in massive chiral fermions
is certainly not easy. Namely, if the resulting neutrino sector does not give rise to chiral
cancellations, we must extend the Lagrangian in order to arrange that the EL equations
are satisfied in the vacuum. The analysis of the interaction would also be considerably
different. Finally, one should keep in mind that the recent experiments do not measure
the mass of the neutrinos directly, but merely observe neutrino oscillations, i.e. a mixing
of the neutrinos in different generations. This mixing could also be explained for massless
neutrinos if the interaction of the neutrinos were suitably modified. For these reasons, we
feel that before moving on to massive neutrinos, one should first get a better understanding
of our variational principles for a massless neutrino sector.
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5 The Effective Gauge Group

In this chapter, we will reformulate the interaction of the Dirac particles with chiral and
scalar fields as specified in Theorems 4.14 and 4.16 as an interaction via “effective” non-
Abelian gauge fields. Before working out the details in Sections 5.1 and 5.2, we now give
the general construction. Consider the Dirac equation in the presence of chiral and scalar
potentials (3.5). Since the dynamical mass matrix YL = (YL)(aα)

(bβ) (with a, b = 1, . . . , 8 and
α, β = 1, 2, 3) need not be Hermitian, we cannot diagonalize it by a unitary transformation.
But using the polar decomposition, we can at least represent YL in the form

YL = UL Y
eff U−1

R (5.1)

with two unitary matrices UL/R ∈ U(3 × 8) and Y eff a diagonal matrix with real non-
negative entries2. We introduce the so-called chiral transformation V by

V = χL UR + χR UR . (5.2)

Note that the adjoint of V ,

V ∗ = χR U
−1
L + χL U

−1
R ,

is in general different from its inverse, which we denote by a bar,

V ≡ V −1 = χL U
−1
L + χR U

−1
R .

Thus the chiral transformation need not be unitary. The chiral transformation of the
Dirac operator is defined by and computed to be

V
∗ (i∂/+ χL(A/R −mYR) + χR(A/L −mYL))V = i∂/+ χL A/

eff
R + χR A/

eff
L −mY eff

with Y eff as in (5.1) and

Aeff
c = U−1

c AcUc + iU−1
c (∂Uc) , c ∈ {L,R}. (5.3)

Finally, the effective fermionic projector is obtained from the auxiliary fermionic projector
by the chiral transformation

P eff = V P V ∗ . (5.4)

It satisfies the effective Dirac equation(
i∂/+ χL A/

eff
R + χR A/

eff
L −mY eff

)
P = 0 . (5.5)

Since the chiral transformation is one-to-one, the effective fermionic projector gives an
equivalent formulation of the physical system. The advantage of the effective description is

2For the reader not familiar with the polar decomposition we outline the construction. For a matrix
A ∈ Gl(C

n
) we introduce the Hermitian and positive semidefinite matrix R =

√
A∗A. A short calculation

shows that the matrix V defined by

V u =

j
u for u ∈ Ker R

A R−1 u for u ∈ (Ker R)⊥

is unitary and satisfies the relation A = V R. Diagonalizing R by a unitary transformation, i.e. R =
WDW−1 with D diagonal and W unitary, we obtain the desired representation A = U1DU−1

2 with
U1 ≡ V W and U2 ≡ W .
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that the effective mass matrix Y eff is diagonal. This means that if we interpret the sector
index after the chiral transformation as labelling the different types of Dirac particles (like
u, d, e, νe, etc.), the effective scalar potentials describe a dynamical shift of the mass
of each type of fermion, whereas the interaction between different types of fermions is
described only by the effective chiral potentials. Thus apart from the fact that we allow
for dynamical mass shifts, the Dirac particles interact as in the standard model via chiral
fields.

In general, the effective potentials have locally the form of non-Abelian gauge poten-
tials. But they cannot be chosen at every point independently, because it must be possible
to represent them in the form (5.3) with Ac the Abelian gauge potentials of Theorem 4.14.
We refer to (5.3) as the gauge condition.

For clarity, we point out that unitary transformations in the polar decomposition (5.1)
are not uniquely determined. Thus, similar to the freedom of choosing different gauges,
there is a certain arbitrariness in the choice of UL and UR. Since at infinity the dynamical
mass matrices go over to the mass matrix Y of the vacuum, we can and shall always choose
UL/R such that

lim
x→∞UL/R(x) = 11 . (5.6)

5.1 The Chiral Transformation in the Quark Blocks

Using the splitting (4.84), we may disregard the U(3)q potentials and can analyze the chiral
transformation in the quark and lepton blocks separately. In this section, we consider a
quark block and for ease in notation omit the superscript q. According to Theorem 4.16,
the EL equations to degree 10 give information only on the partial traces of the dynamical
mass matrices. Therefore, the dynamical mass matrices, and as a consequence also the
chiral transformation and the effective potentials, are not completely determined. This
means that we have a certain freedom to arbitrarily change these objects, and we shall use
this freedom to make the following assumption on the form of the effective chiral gauge
potentials.

Def. 5.1 The effective chiral potential Ac, c ∈ {L,R}, has unitary mixing if for every
space-time point x there is a unitary matrix Wc ∈ U(3) and a U(2) potential ac such that
at x,

Aeff
c =

(
11 0
0 Wc

)
ac

(
11 0
0 W−1

c

)
=

(
a11

c a12
c W−1

c

a21
c Wc a22

c

)
(5.7)

(here we use as in Theorem 4.16 a matrix notation in the sectors). The matrix Wc is
referred to as the mixing matrix.

Thus we impose that the effective chiral potentials be trivial on the generations except for
a unitary mixing of the generations in the off-diagonal matrix elements. This assumption
is clearly satisfied for the gauge potentials in the standard model if we choose WR ≡ 11
and WL equal to the CKM mixing matrix. Our ansatz is more general in that we allow
for both left- and right-handed mixing matrices and that Wc = Wc(x) need not be a
constant matrix. Ultimately, the assumption of unitary mixing should be justified from
the EL equations. But this makes it necessary to consider the EL equations to the degree
9 on the light cone. We postpone this analysis to [6] and here simply take Def. 5.1 as a
physically reasonable technical simplification.

Our first lemma characterizes those chiral transformations which respect the condition
of Def. 5.1.
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Lemma 5.2 The effective chiral potential has unitary mixing if and only if the unitary
transformation Uc in (5.2) is for all x of the form

Uc =
(

u11
c u12

c W−1
c

u21
c Wc u22

c

)
with uc ∈ U(2). (5.8)

Furthermore, the mixing matrix is constant.

If Uc is of the form (5.8) with Wc a constant matrix, it is obvious that the corresponding
effective chiral potential (5.3) has unitary mixing. In order to show that the converse is
also true, we must analyze the differential equation for Uc and use the boundary conditions
at infinity (5.6).

Proof of Lemma 5.2. It suffices to prove the “only if” part. Thus we assume that Aeff
c

has unitary mixing and shall derive that Uc is of the form (5.8). For ease in notation we
omit the subscript c. According to Theorem 4.14, A is diagonal and can thus be written
as A = α11 + βσ3 with real functions α and β. When substituting into (5.3), α yields
a contribution to Aeff with unitary mixing, independent of the form of U . Thus α is
irrelevant for the following argument, and we can assume that A ∼ σ3.

Let Ω be the set where the field tensor F = dA− iA ∧A is non-zero,

Ω = {x | F (x) 
= 0} .
We shall first prove that on each connected component ΩC of Ω, U is for all x ∈ ΩC of
the form

U(x) =
(
V1 0
0 V2

)
u(x)

(
11 0
0 W−1

)
(5.9)

with u ∈ U(2) and constant unitary matrices V1, V2,W ∈ U(3). To this end, we differen-
tiate (5.3) and (5.7) to obtain

U−1 F U = F eff =
(

f11 f12 W−1

f21 W f22

)
(5.10)

with f = da+ a ∧ a (these relations can be understood immediately from the behavior of
the field tensor under gauge transformations). At x ∈ Ωc, 0 
= F ∼ σ3. Using this fact
in (5.10) shows that U(x) must be of the form

U =
(
B1 0
0 B2

)(
cosϕ sinϕ
− sinϕ cosϕ

)(
11 0
0 W−1

)
(5.11)

with B1, B2 ∈ U(3) and ϕ ∈ R. Hence at x, the first summand in (5.3) is of the required
form (5.7), and thus the second summand must also be of this form. Computing iU−1(∂U)
for U according to (5.11), one sees that this term is of the form (5.7) only if at x,

∂W = 0 and ∂B1/2 ∼ B1/2 (5.12)

(in the special case sinϕ = 0, we merely obtain that ∂(B2W
−1) ∼ B2W

−1, but since in this
case U only involves the productB2W

−1, we can arrange that ∂W = 0). Integrating (5.12)
gives (5.9).

Let Λ = R4 \ Ω be the set where F vanishes. We next prove that on each connected
component ΛC of Λ, U is of the form

U(x) =
(
eiφ(x) 0

0 e−iφ(x)

)
V ueff(x)

(
11 0
0 W−1

)
(5.13)
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with real φ, ueff ∈ U(2), and constant matrices V ∈ U(6) and W ∈ U(3). In order to derive
this formula, we first use that F = 0 on ΛC to represent A as a pure gauge potential, i.e.

A = iB−1 (∂B) with B =
(
e−iφ 0

0 eiφ

)
(5.14)

and a real function φ. According to the first part of (5.10), also F eff vanishes. Let us
consider what this tells us about the objects in (5.7). Using that the phase factors can be
absorbed into a21, we can arrange that W−1(∂W ) is trace-free. Then the contributions
to F eff involving ∂W and ∂a are linearly independent. From this we conclude that W is
constant on ΛC and that Aeff can be represented as

Aeff = i

(
11 0
0 W

)
u−1

eff (∂ueff)
(

11 0
0 W−1

)
(5.15)

with ueff ∈ U(2). On the other hand, substituting (5.14) into (5.3) gives

Aeff = i(BU)−1 ∂(BU) . (5.16)

Differentiating the unitary matrix

B U

(
11 0
0 W

)
u−1

eff

and using (5.15) and (5.16), one sees that this matrix is constant on ΛC , proving (5.13).
Note that the representation (5.13) poses a weaker constraint on U than (5.9). We

shall now prove that on ΛC even (5.9) holds. If ΛC extends to infinity, we can according
to (5.6) assume that

lim
ΛC�x→∞

φ = 0 , lim
ΛC�x→∞

ueff = 11 and V =
(

11 0
0 W

)
.

Then (5.13) indeed goes over to (5.9). If conversely ΛC is compact, we choose y ∈ ∂ΛC .
Then at y both (5.9) and (5.13) hold, and comparing these formulas one sees that V must
be a diagonal matrix. This implies that on ΛC , (5.13) reduces to (5.9).

We just showed that U can for all X be represented in the form (5.9), where V is
constant on each connected component of Ω and Λ. Possibly after multiplying U by piece-
wise constant unitary transformations and/or absorbing constant unitary transformation
from u into V1, V2, or W , we can assume that all matrices in (5.9) are continuous. The
asymptotics at infinity (5.6) finally yields that V1 = 11 and V2 = W .

Using the result of the previous lemma in (5.1), we can now compute the dynamical
mass matrices and analyze the conditions of Theorem 4.16. We restrict attention to the
special case which will be of relevance later that the right-handed chiral transformation is
trivial.

Lemma 5.3 Assume that UR ≡ 11. If (4.85) and (4.87) are satisfied, the mixing matrix
and the potential uL in (5.7) must have the properties

Ý ẀL = 0 = ẂL Ỳ (5.17)
|Y ẀL| = |Ỳ | = |ẂL Y | (5.18)

uL ∈ SU(2) . (5.19)
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Furthermore, (4.85) and (4.87) are also satisfied if we leave UL unchanged and set the
effective scalar potentials to zero,

Y eff ≡ Y . (5.20)

Conversely, if UR ≡ 11 and (5.17)–(5.20) are satisfied, then (4.85) and (4.87) hold.

Proof. Evaluating (5.1) for UL according to (5.7) and UR ≡ 11 gives

YL =
(

u11
L Y eff

1 u12
L W−1

L Y eff
2

u21
L WL Y

eff
1 u22

L Y eff
2

)

with Y eff = diag(Y eff
1 , Y eff

2 ). Assume that (4.85) and (4.87) are satisfied. Let us evaluate
these relations for the off-diagonal elements of YL. Since b in (4.87) is non-trivial, the
function u21

L (x) does not vanish identically, but clearly it is zero at infinity. As usual,
we implicitly assume that u21

L decays asymptotically at infinity, without necessarily being
zero outside a compact set. Then we can apply a perturbation argument to the lower left
matrix element of YL. Namely, (4.85) yields that ẂLỲ

eff
1 = 0, and taking the asymptotic

limit gives the rhs of (5.17). The rhs of (5.17) is obtained similarly from the upper right
matrix element of YL. Applying the above perturbation argument to the off-diagonal
terms in (4.87) yields (5.18).

We next evaluate (4.85) for the diagonal elements of YL. Since Y eff is a positive matrix,
Ŷ eff

1 and Ŷ eff
2 are real and ≥ 0. Furthermore, uL satisfies as a U(2) matrix the relation

|u11
L | = |u22

L |. From (4.85) we conclude that u11
L = u22

L , and thus u ∈ SU(2).
Finally, it is straightforward to check that (5.17)–(5.20) imply (4.85) and (4.87).

In the remainder of this section, we shall analyze and discuss the gauge condition (5.3).
First, we substitute in (5.8) and pull the constant mixing matrix outside,

Aeff
c =

(
11 0
0 Wc

)(
u−1

c Acuc + iu−1
c (∂uc)

)( 11 0
0 W−1

c

)
.

Next, we decompose the potential and the unitary transformation into the U(1) and SU(2)
parts, i.e.

Ac = α 11 + a σ3 and uc = e−iφ v

with real functions α, a, φ and v ∈ SU(2). This gives

Aeff
c = (α+ ∂φ) 11 +

(
11 0
0 Wc

)[
a v−1σ3v + i v−1(∂v)

] ( 11 0
0 W−1

c

)
. (5.21)

Thus φ describe a usual U(1) gauge transformation. The square bracket can be regarded
as an SU(2) potential, and the matrix Wc introduces a unitary mixing in the off-diagonal
elements. The remaining question is in which way the expression in the square brackets
gives a constraint for the SU(2) potential.

Def. 5.4 The field tensor F = dA− iA∧A of an SU(2) potential A is simple if for every
x there is a real-valued 2-form Λ and s ∈ su(2) such that

F (x) = Λ s . (5.22)
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Lemma 5.5 An SU(2) potential A can be represented in the form

A = a v−1σ3v + i v−1(∂v) (5.23)

with a(x) ∈ R and v(x) ∈ SU(2) if and only if its field tensor is simple.

Proof. If A is of the form (5.23), its field tensor is given by

F = f v−1σ3v

with f = da, and this is obviously simple.
Assume conversely that F is simple. We choose v1 ∈ SU(2) such that

v1 s v
−1
1 = λ σ3

with λ ∈ R and introduce the gauge potential Ã by

Ã = v1 A v
−1
1 − i v1(∂v−1

1 ) . (5.24)

From (5.22) one sees that the corresponding field tensor is

F̃ = f σ3

with the real-valued 2-form f = λΛ. From the fact that F̃ is closed we conclude that
df = 0, and thus there is a 1-form a with f = da. By construction, the SU(2) potentials
Ã and aσ3 have the same field tensor F̃ . As a consequence, they are related to each other
by an SU(2) transformation, i.e.

Ã = a v−1
2 σ3v2 + i v−1

2 (∂v2) (5.25)

with v2 ∈ SU(2). Substituting (5.25) into (5.24) and solving for A gives (5.23) with
v = v2v1.

With this lemma, we have reformulated the gauge condition (5.21) as a structure condition
for the effective field tensor. This makes it possible to regard the effective chiral potentials
as locally defined objects. More precisely, we shall treat the effective chiral potentials as
local gauge potentials, which are constrained only by local conditions like that the effective
field tensor be simple, but we shall not consider the corresponding chiral transformation
(which involves integrating the effective potentials and is therefore defined in a nonlocal
way). In particular, when we have conditions between the effective potentials in the quark
and neutrino sectors, we shall always satisfy them by local relations, i.e. by algebraic or
differential equations involving the effective potentials. This procedure corresponds to the
usual requirement of locality in physics. It could be further justified later [6] by the fact
that the EL equations yield differential equations for the effective potentials (the “field
equations”), and it seems impossible to satisfy these differential equations if the effective
potentials obey nonlocal constraints.

5.2 The Chiral Transformation in the Lepton Block

We come to the analysis in the lepton block; for ease in notation the superscript l will
be omitted. As a consequence of the chiral massless fermions, the dynamical matrices are
different in the lepton and quark blocks. More precisely, YL and YR must now be of the
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form (4.86) and (4.88),(4.89). We shall first show that these conditions are incompatible
with a unitary mixing and then resolve this problem by modifying the mixing in the right-
handed component. Let us assume that (4.88) or (4.89) are satisfied for dynamical mass
matrices of the form (5.1) with UL/R according to Lemma 5.2. Then, choosing a space-time
point where b 
= 0,

(UL Y
eff Ù−1

R ) I2 = 0 but I2 (UR Y
eff Ù−1

L ) 
= 0 , (5.26)

where I1/2 are again the projectors on the two sectors. Introducing the unit vectors n =

3−
1
2 (1, 1, 1) ∈ C3 and u = (0, n) ∈ C6, we can write the first condition in (5.26) without

a partial trace as
UL Y

eff U−1
R u = 0 . (5.27)

In the vacuum, the mass matrix Y eff = Y is in the first sector strictly positive. A pertur-
bation argument yields that, at least for weak fields, the effective mass matrix is of the
form Y eff = diag(Y eff

1 , Y eff
2 ) with Y eff

1 > 0. Therefore, the condition (5.26) can only be
satisfied if U−1

R u vanishes in the first sector. Thus, using (5.8),(
v11 v12 W−1

c

v21 Wc v22

)(
0
n

)
=

(
0
∗

)

with v = u−1
R . This implies that v12 = 0 and thus UR ≡ 1. Using this result in (5.27),

we obtain that Y effu = 0, and since Y eff is a diagonal matrix with non-negative entries,
we conclude that Y eff

2 = 0. Finally, the relations UR = 11 and Y eff
2 = 0 imply that

I2URY
eff = 0, in contradiction to the rhs of (5.26).

In order to avoid the above contradiction, the vector U−1
R u must vanish identically in

the first sector without UR being trivial. The natural way to arrange this is to replace the
unitary matrix WR in (5.7) by a matrix which is zero on <n> and is unitary on <n>⊥.
In analogy to the procedure in the previous section, we first introduce the corresponding
effective potentials and determine UR afterwards. We let Π be the projector

Π = |n><n| with n =
1√
3

(1, 1, 1) . (5.28)

Def. 5.6 The effective potential Aeff
R has projected mixing if for every space-time point

there is a unitary matrix WR ∈ U(3) with

WR n = n

as well as real functions b1R and b2R and a U(2) potential aR such that at x,

Aeff
R =

(
b1R 0
0 b2R

)
+ (1−Π)

(
a11

R a12
R W−1

R

A21
R WR a22

R

)
. (5.29)

WR is the mixing matrix.

Lemma 5.7 The effective potential Aeff
R has projected mixing if and only if the unitary

transformation UR in (5.2) is for all x of the form

UR = Π
(
v1 0
0 v2

)
+ (11 −Π)

(
u11 u12 W−1

R

u21 WR u22

)
(5.30)

with v1/2 ∈ U(1) and u ∈ U(2). Furthermore, the matrix WR is constant.
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Proof. We consider the effective potential on <n> and <n>⊥ separately. On <n>⊥,
Aeff

R is of the form as in Def. 5.1, and so Lemma 5.3 applies. On <n>, on the other hand,
Aeff

R is a diagonal potential, and integrating the differential equation for UR as in the proof
of Lemma 5.2 shows that UR is also diagonal.

The effective potentials in the second summand in (5.29) have different properties than
usual gauge fields. First, one should keep in mind that the right-handed potential AR

eff does
not couple to the left-handed massless fermions, and therefore the off-diagonal elements
in (5.29) cannot be regarded as describing an interaction between the massive leptons and
the neutrinos. Indeed, one must be careful about associating any physical interaction to
the second summand in (5.29), because the factor (11−Π) gives zero when the partial trace
is taken, and also because some degrees of freedom of the corresponding potentials drop
out of the fermionic projector when t̃ is multiplied by the chiral asymmetry matrix (4.3).
For these reasons, we regard the off-diagonal elements in (5.29) as describing a new type of
interaction whose physical significance is not clear at the moment. We refer to an effective
potential which involves a factor (11 −Π) as a nil potential.

The next lemma is very useful because it allows us to compute the vectors a and b in
Theorem 4.16 without specifying UR. In this way, we can get around the detailed analysis
of the nil potential.

Lemma 5.8 Suppose that Aeff
L and Aeff

R have unitary and projected mixing, respectively.
Then UL and UR can be chosen such that

ỲL = UL Ỳ
eff .

Proof. Since (11 − Π)n = 0, the partial trace of the second summand in (5.4) is zero,
whereas in the first summand the factor Π drops out. Thus ỲL = ULY

effV̀ with V a di-
agonal U(2) matrix. This matrix commutes with Y eff and can thus be absorbed into UL.

5.3 Derivation of the Effective Gauge Group

We are now ready to prove the main result of this chapter.

Theorem 5.9 We consider the EL equations corresponding to the Lagrangian (2.59) un-
der the assumptions of Theorem 4.14. Assume furthermore that the right-handed effective
potentials in the lepton block have projected mixing, and that all other effective potentials
have unitary mixing (see Defs. 5.1 and 5.6). Imposing local relations between the effec-
tive potentials (see page 65), the right-handed chiral transformation is trivial in the quark
blocks, U q

R ≡ 11. The mixing matrices are constant and satisfy the relations

Ź Ẁ q
L = Ẃ q

L Z̀ = Ź Ẁ l
L = 0 (5.31)

|Z Ẁ q
L| = |Ẃ q

L Z| = |Z Ẁ l
L| = |Z̀| , (5.32)

where Z = 1
m diag(m1,m2,m3) is the mass matrix of the massive fermions. The effective

Dirac operator is of the following form,

i∂/ −m
(
Y eff

q ⊕ Y eff
q ⊕ Y eff

q ⊕ Y eff
l

)
(5.33)
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+ χR

(
A/effL ⊕ A/effL ⊕ A/effL ⊕ A/effL

)
+ χL A/R

(
σ3 ⊕ σ3 ⊕ σ3 ⊕ σ3

)
(5.34)

+ (A/q 11)⊕
(
A/l 11 + (11 −Π) A/nil

R

)
. (5.35)

Here Aeff
L is a 2× 2 matrix potential, Aq is a 3× 3 matrix potential, AR and Al are vector

fields, and Anil is a nil potential (see page 67). The effective gauge group is

Geff = SU(2)effL ⊗ U(1)R ⊗ U(3)q ⊗ U(1)l . (5.36)

The only constraint for the chiral potentials is that the field tensor corresponding to Aeff
L

must be simple (see Def. 5.4). The EL equations to degree 10 are satisfied for the same
effective potentials if the effective scalar potentials are set to zero,

Y eff = Y . (5.37)

Proof. We rewrite (4.91) and (4.92) in terms of the effective potentials. According
to Lemma 5.8, Ỳ l

L is independent of UR, and thus β and γ can be expressed in terms
of Y eff

l , the Abelian potentials AV , As in (4.78), and the non-Abelian effective potential
Aeff

L in the lepton block. Furthermore, (4.91) and (4.92) can be satisfied by local relations
between the effective potentials only if the non-Abelian effective gauge fields coincide in
the quark and lepton blocks. This yields the effective chiral gauge group (5.36) and the
form of the corresponding potentials in (5.34) and (5.35). Lemma 5.5 shows that the gauge
conditions (5.3) are satisfied if and only if the field tensor corresponding to Aeff

L is simple.
According to Lemmas 5.2 and 5.7, the mixing matrices are constant. Lemma 5.3

gives (5.31) and (5.32) in the quark blocks. The corresponding relations in the lepton
block are obtained similarly from (4.86) and (4.88). Finally, (5.37) follows immediately
from Lemma 5.3 and an analogous perturbation argument in the lepton block.

Note that (5.31) and (5.32) are not satisfied if WL is equal to the identity matrix.
Thus the EL equations imply that the off-diagonal components of the effective gauge
fields involve a non-trivial mixing of the generations. The fact that we may set Y eff equal
to Y , (5.37), means that the effective scalar potentials are irrelevant for the derivation of
the effective gauge group. But this does not answer the question whether effective scalar
potentials may occur in the system or not; to this end one must analyze the EL equations
to lower degree on the light cone [6].

We finally point out that Theorem 5.9 only gives necessary conditions for the effec-
tive potentials. But it is to be expected that the derivation of the field equations [6] will
give further constraints for the effective potentials. Taking this into account, the results
of Theorem 5.9 are in perfect agreement with physics: The SU(3)q and SU(2)effL can be
identified with the strong and weak gauge groups, respectively. The coupling of the corre-
sponding gauge potentials to the fermions is exactly as in the standard model. The SU(3)q

is a free gauge group (see page 23), and this implies that the corresponding gauge fields
are necessarily massless. However, the SU(2)effL is spontaneously broken. The electro-
magnetic potential corresponds to a linear combination of the potentials of the subgroup
SU(2)effL ⊗U(1)R⊗U(1)q⊗U(1)l ⊂ Geff, characterized by the property that it is a traceless
vector potential. In order to make the connection to the standard model more precise, it
remains to explain why only this particular linear combination occurs, and furthermore
one must analyze the masses of the spontaneously broken gauge fields in the resulting field
equations. This is precisely the aim of [6].
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A Perturbation Calculation for the Spectral Decomposition

of P (x, y) P (y, x)

In this appendix, we shall develop a convenient method for analyzing the eigenvalues and
spectral projectors of the matrix Axy ≡ P (x, y) P (y, x) and compute all contributions to
the eigenvalues needed for the derivation of the effective gauge group in Chapter 4. Our
strategy is as follows. We decompose the fermionic projector as

P = P0 + ∆P

with P0 according to (3.6). This gives rise to the decomposition of A

A = A0 + ∆A (A.1)

with

A0 = P0(x, y) P0(y, x) (A.2)
∆A = ∆P (x, y) P0(y, x) + P0(x, y) ∆P (y, x) + ∆P (x, y) ∆P (y, x) . (A.3)

The eigenvalues and spectral projectors of A0 were computed explicitly in Chapter 3,
see (3.14) and (3.15). On the light cone, P0(x, y) has singularities of the order O((y−x)−4),
whereas ∆P (x, y) = O((y − x)−2). Likewise, ∆A is compared to A0 of lower degree on
the light cone. For this reason, ∆A can be treated perturbatively in the sense that the
eigenvalues and spectral projectors of A can be expressed to any given degree on the light
cone by a finite order perturbation calculation. Apart from the purely computational
aspects, the main difficulty is that A0 may have degenerate eigenvalues, and in this case
we need to carefully analyze whether the degeneracy is removed by the perturbation.
Our method is to first compute projectors on invariant subspaces of A (Section A.1).
Considering the perturbation on these invariant subspaces will then give the spectral
decomposition of A (Section A.4).

A.1 Perturbation of Invariant Subspaces

We write the spectral decomposition of A0 as

A0 =
K∑

k=1

λk Fk

with distinct eigenvalues λk and corresponding spectral projectors Fk. As in Section 2.1,
we use the convention λ1 = 0. Clearly, the Fk are the sum of the spectral projectors
counting multiplicities,

Fk =
∑

n,c,s with λncs=λk

Fncs (A.4)

with λncs and Fncs according to (3.15). Since the perturbation ∆A will in general split
up the degenerate eigenvalues, we cannot expect that by perturbing Fk we obtain spectral
projectors of the matrix A. But we can form projectors Gk on the space spanned by
all eigenvectors of A whose eigenvalues are sufficiently close to λk. The Gk are most
conveniently introduced using contour integrals. We choose ε > 0 such that

|λi − λj | < 2ε for all i, j = 1, . . . ,K and i 
= j.
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Then we set
Gk =

1
2πi

∮
|z−λk|=ε

(z −A)−1 dz , (A.5)

The Cauchy integral formula shows that Gk is indeed a projector on the desired subspace.
The integral formula (A.5) is very useful for a perturbation expansion. To this end,

we substitute (A.1) into (A.5) and compute the inverse with the Neumann series,

Gk =
1

2πi

∮
|z−λk|=ε

(z −A0 −∆A)−1 dz

=
1

2πi

∮
|z−λk|=ε

(
11− (z −A0)−1 ∆A

)−1 (z −A0)−1 dz

=
1

2πi

∮
|z−λk|=ε

∞∑
n=0

(
(z −A0)−1 ∆A

)n (z −A0)−1 dz .

Interchanging the integral with the infinite sum gives the perturbation expansion,

Gk =
∞∑

n=0

1
2πi

∮
|z−λk|=ε

(
(z −A0)−1 ∆A

)n (z −A0)−1 dz , (A.6)

where n is the order in perturbation theory. After substituting in the spectral representa-
tion for (z −A0)−1,

(z −A0)−1 =
K∑

l=1

Fl

z − λl
, (A.7)

the contour integral in (A.6) can be carried out with residues. For example, we obtain to
second order,

Gk = Fk +
∑
l �=k

1
λk − λl

(Fk ∆A Fl + Fl ∆A Fk) + O((∆A)3)

+
∑

l,m�=k

1
(λk − λl)(λk − λm)

(Fk ∆A Fl ∆A Fm + Fl ∆A Fk ∆A Fm + Fl ∆A Fm ∆A Fk)

−
∑
l �=k

1
(λk − λl)2

(Fk ∆A Fk ∆A Fl + Fk ∆A Fl ∆A Fk + Fl ∆A Fk ∆A Fk) . (A.8)

To the order n > 2, the corresponding formulas are clearly more complicated, but even
then they involve matrix products which are all of the form

Fk1 ∆A Fk2 ∆A · · · Fkn ∆A Fkn+1 . (A.9)

Substituting in (A.4) and expanding, we can just as well consider matrix products of the
form (A.9) with the factors Fk replaced by Fncs. Furthermore, for the computation of the
eigenvalues we need to take the expectation values of Gk with certain matrix elements of
∆A. This leads us to traces of matrix products of the form

Tr (Fn1c1s1 ∆A1 Fn2c2s2 ∆A2 · · · Fnlclsl
∆Al) (A.10)

with l = n+ 1. We refer to a trace of the form (A.10) as a matrix trace. Our first task is
to develop an efficient method for computing matrix traces (Sections A.2 and A.3); after
that we will proceed with the calculation of the eigenvalues of A (Section A.4).

70



A.2 Factorization of Matrix Traces

If one attempts to calculate a matrix trace (A.10 directly by substituting in the formulas of
the light-cone expansion [3], the resulting expressions become so complicated and involve
so many Dirac matrices that they are almost impossible to handle. We shall now simplify
the situation by giving a procedure which allows us to factor matrix traces into a product
of so-called elementary traces, which are much easier to compute. According to (A.3), we
can assume that each factor ∆Aj in (A.10) is the product of a contribution to P (x, y) with
a contribution to P (y, x). Denoting the contributions to P (x, y) by Bj and using that the
corresponding contributions to P (y, x) are obtained by taking the adjoint with respect to
the spin scalar product, we can write each Aj in the form

∆Aj = Bj1 B
∗
j2 .

Inserting the completeness relation ∑
ncs

Fncs = 11

and expanding gives for (A.10) a sum of terms of the form

Tr
(
Fn1c1s1 B1 Fn2c2s2 B

∗
2 · · · Fnk−1ck−1sk−1

Bk−1 Fnkcksk
B∗

k

)
(A.11)

with indices (nj , sj, cj) (which are in general different from those in (A.10)) and k = 2l.
In order to handle the sector indices in (A.11), we introduce operators Kn1,n2 which

act on the sector index and map sector n2 to sector n1, i.e. in components

(Kn1n2)
n
n′ = δn

n1
δn′n2 . (A.12)

Then
Fncs = Kn1 F1cs K1n . (A.13)

If we substitute this relation into (A.11) and combine the operators K· and Bj to “new”
operators Bj , we obtain a matrix trace again of the form (A.11), but with all indices nj

equal to one. Therefore we can in what follows restrict attention to the case of one sector
and omit the sector indices. The generalization to several sectors will be straightforward
by inserting operators K· into the end formulas.

We choose a space-like unit vector u which is orthogonal to ξ and ξ. Then the imaginary
vector v = iu satisfies the relations

vj ξ
j = 0 = vj ξj , v2 = 1 , v = −v . (A.14)

An explicit calculation using (3.15) yields that

FR+ = v/ FL+ v/ , FL− =
1
z
ξ/ v/ FL+ v/ ξ/ , FR− =

1
z
ξ/ FL+ ξ/ . (A.15)

Substituting these formulas into (A.11), we obtain an expression involving only the spectral
projector FL+, namely

(A.11) = Tr (FL+ C1 FL+ C2 · · ·FL+ Ck) (A.16)

with suitable matrices Cj . Since the FL+ are projectors on one-dimensional subspaces,

FL+ C FL+ = Tr(FL+ C) FL+ .
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By iteratively applying this relation in (A.16), we get the product of traces

Tr (FL+ C1) Tr (FL+ C2) · · · Tr (FL+ Ck) .

If we express the matrices Cj explicitly in terms of Bj and B∗
j , we obtain the following

factorization formula,

Tr (Fc1s1 B1 Fc2s2 F
∗
2 · · · Bk−1 Fcksk

B∗
k)

= F c1c2
s1s2

(B1) F c2c3
s2s3

(B∗
2) · · · F ck−1ck

sk−1sk (Bk−1) F ckc1
sks1

(B∗
k) , (A.17)

where F cicj
sisj are the so-called elementary traces defined by

FLL
++(B) = Tr(F+ χL B) , FLR

++(B) = Tr(F+ v/ χL B)

FLL
+−(B) = Tr(ξ/ F+ v/ χL B) , FLR

+−(B) = Tr(ξ/ F+ χL B)

FLL−+(B) =
1
z

Tr(F+ v/ ξ/χL B) , FLR−+(B) =
1
z

Tr(F+ ξ/ χL B)

FLL−−(B) =
1
z

Tr(ξ/ F+ ξ/ χL B) , FLR−−(B) =
1
z

Tr(ξ/ F+ v/ ξ/ χL B) .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A.18)

These formulas are also valid for the opposite chirality after the replacements L↔ R. The
elementary traces of B∗ are obtained by taking the complex conjugate,

FLL
++(B∗) = FRR−− (B) , FLR

++(B∗) = FLR−−(B)

FLL
+−(B∗) = FRR

+− (B) , FLR
+−(B∗) = FLR

+−(B)

FRR−+ (B∗) = FLL−+(B) , FLR−+(B∗) = FLR−+(B)

FLL−−(B∗) = FRR
++ (B) , FLR−−(B∗) = FLR

++(B) .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A.19)

The relations (A.17)–(A.19) are verified by a straightforward calculation using (3.15),
(3.13), and (A.14).

To summarize, the above procedure reduces the calculation of the matrix trace (A.10)
to the computation of the elementary traces (A.18) for the contributions B to the light-cone
expansion of P (x, y). Taking the complex conjugate (A.19), one obtains the elementary
traces of the corresponding contributions to P (y, x). By applying (A.17) and, in the case
of several sectors, by suitably inserting the operators K·, every matrix trace can be written
as a linear combination of products of elementary traces.

A.3 Calculation of the Matrix Traces

We decompose ∆P (x, y) into its odd and even parts, denoted by Bo and Be,

∆P (x, y) = Bo(x, y) + Be(x, y) .

Explicit formulas for the fermionic projector in the presence of chiral and scalar potentials
are listed in the appendix of [3]. For the purpose of this paper, only the contributions
involving the mass matrices YL/R and their derivatives are of importance. But for com-
pleteness and for later use, we will also compute the contributions which contain the chiral
field strength and the chiral currents. However, we will omit all contributions quadratic
in the field strength. Namely, these contributions are related to the energy-momentum
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tensor of the chiral fields, and it is therefore reasonable to postpone their analysis until
when gravity is studied. Thus the phase-free contributions relevant here are

χL Be =
1
2
χL m T (0)(x, y) ξ/

∫ y

x
dz γj (DjYL)

+χL m T (0)(x, y) YL(x) + O(log |ξ2| ξ0)
χL Bo =

i

2
χL m

2 T (0)(x, y) ξ/
∫ y

x
dz YL YR

+iχL m
2 T (1)(x, y)

∫ y

x
dz [0, 1 | 0] YL γ

j(DjYR)

+iχL m
2 T (1)(x, y)

∫ y

x
dz [0, 1 | 0] γj(DjYL) YR

−iχL m
2 T (1)(x, y) YL

∫ y

x
dz γj(DjYR)

+χL T
(0)(x, y) ξi

∫ y

x
dz [0, 1 | 0] γlFL

li

+
1
4
χL T

(0)(x, y) ξ/
∫ y

x
dz γjγk FL

jk

−1
2
χL T

(0)(x, y) ξ/ ξi

∫ y

x
dz [0, 0 | 1] jLi

+χL T
(1)(x, y) ξi

∫ y

x
dz [0, 1 | 1] (∂/jLi )

+χL T
(1)(x, y)

∫ y

x
dz [0, 2 | 0] jLk γk

+ ξ/O(ξ−2) + γj FL
jkξ

k O(ξ−2) + O(F 2
L) + O(log |ξ2| ξ0) .

A straightforward calculation yields for the elementary traces

FLR
+−(P0) = (deg ≤ 1) =

i

2
XL (z T (−1)

[0] ) (A.20)

FLR
−+(P0) = (deg ≤ 2) =

i

2
XL T

(−1)
[0] (A.21)

FLL
++(Be) = (deg ≤ 1) = YL(x) T (0)

[1] + (deg < 1) (A.22)

FLL
+−(Be) = (deg ≤ 0) (A.23)
FLL
−+(Be) = (deg ≤ 1) (A.24)

FLL
−−(Be) = (deg ≤ 1) = YL(y) T (0)

[1] + (deg < 1) (A.25)

FLR
++(Bo) = (deg ≤ 1) (A.26)

= vjξk

∫ y

x
dz [0, 1 | 0] FL

jk T
(0)
[0] + (deg < 1) (A.27)

+
2i

z − z εijkl ξ
i ξ

j
vk

∫ y

x
dz [0, 1 | 0] F lm

L (ξm T
(0)
[0] ) (A.28)

+
i

z − z ε
ijkl (ξiξj + ξiξ

(0)
j − ξiξ(0)j ) vk

∫ y

x
dz ξnFL

nl T
(0)
[0] (A.29)

FLR
+−(Bo) = (deg ≤ 0)

=
i

2

∫ y

x
dz YL YR ((z T (0)

[2] ) + 4 T (1)
[2] ) + (deg < 0) (A.30)
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−2i YL(x) YR(y) T (1)
[2] (A.31)

−1
2
ξi

∫ y

x
dz [0, 0 | 1] jiL ((z T (0)

[0]
) + 8 T (1)

[0]
) (A.32)

+
i

2
εijkl

z ξ
i − z ξi

z − z
∫ y

x
F jk

L (ξl T
(0)
[0] ) (A.33)

FLR
−+(Bo) = (deg ≤ 1)

=
i

2

∫ y

x
dz YL YR T

(0)
[2] + (deg < 1) (A.34)

−1
2
ξi

∫ y

x
dz [0, 0 | 1] jiL T (0)

[0]
(A.35)

− i
2
εijkl

ξ
i − ξi

z − z
∫ y

x
F jk

L (ξl T
(0)
[0] ) (A.36)

FLR
−−(Bo) = (deg ≤ 1)

= vjξk

∫ y

x
dz [1, 0 | 0] FL

jk T
(0)
[0] + (deg < 1) (A.37)

+
i

2
εijkl ξi vj

∫ y

x
FL

kl T
(0)
[0] (A.38)

+
2i

z − z εijkl ξ
i ξ

j
vk

∫ y

x
dz [0, 1 | 0] F lm

L (ξm T
(0)
[0] ) (A.39)

+
i

z − z ε
ijkl (ξiξj + ξiξ

(0)
j − ξiξ(0)j ) vk

∫ y

x
dz ξnFnl T

(0)
[0] . (A.40)

Here the totally anti-symmetric tensor εijkl appears because we applied the identity

Tr(χL/R a/ b/ c/ d/) = 2 ((ab)(cd) + (da)(bc) − (ac)(bd)) ∓ 2i εijkl a
ibjckdl .

Therefore, the corresponding formulas for the opposite chirality are now obtained by the
replacements

L ←→ R , εijkl −→ − εijkl . (A.41)

The elementary traces of the adjoints are computed via (A.19). All other elementary
traces vanish.

Applying (A.17) and the degree estimates for the elementary traces and omitting all
terms quadratic in the field strength, we can factorize and estimate the following matrix
traces,

Tr(FL+ ∆A) = FLR
+−(P0) FRL

−+(B∗
o) + FLR

+−(Bo) FRL
−+(P ∗

0 )
+ FLL

++(Be) FLL
++(B∗

e ) + (deg < 2) (A.42)
Tr(FL− ∆A) = FLR

−+(P0) FRL
+−(B∗

o) + FLR
−+(Bo) FRL

+−(P ∗
0 )

+ FLL
−−(Be) FLL

−−(B∗
e ) + (deg < 2) (A.43)

Tr(FLs ∆A FLs ∆A) = Tr(FLs ∆A) Tr(FLs ∆A) = (deg < 5) (A.44)
Tr(FLs ∆A FRs ∆A) = (deg < 5) (A.45)

Tr(FL+ ∆A FR− ∆A) = (FLL
++(Be) FLR

+−(P ∗
0 ) + FLR

+−(P0) FRR
−− (B∗

e ))
×(FRR

−− (Be) FRL
−+(P ∗

0 ) + FRL
−+(P0) FLL

++(B∗
e )) + (deg < 5) (A.46)

Tr(FL− ∆A FR+ ∆A) = (FLL
−−(Be) FLR

−+(P ∗
0 ) + FLR

−+(P0) FRR
++ (B∗

e ))
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×(FRR
++ (Be) FRL

+−(P ∗
0 ) + FRL

+−(P0) FLL
−−(B∗

e )) + (deg < 5) (A.47)
Tr(FL+ ∆A FL− ∆A) = 0 = Tr(FL− ∆A FL+ ∆A) . (A.48)

If we consider more generally the matrix trace of order l, factorization gives a linear
combination of products of elementary traces as in (A.17) (with k = 2l). Let us estimate
the degree of each of these products. Clearly, the number of factors F ·

+− equals the
number of factors F ·−+, we denote the number of such pairs by p. Furthermore, let q be
the number of factors F ·· (∆P ·) (where ∆P · stands for either ∆P or ∆P ∗). According
to (A.3), each ∆A contains at least one factor ∆P ·, hence q ≥ l. The number of factors
F ·

++ and F ·−− is 2(l − p), and we saw above that each of these factors must involve ∆P ·,
thus q ≥ 2(l−p). Adding our two upper bounds for q gives the inequality q+p ≥ 3l/2. To
estimate the degrees we first note that the degree of the pair F ·

+−(P ·
0) F

·−+(P ·
0) is three,

and is decreased at least by one each time a P ·
0 is replaced by ∆P ·. The total number of

factors F ·
+−(∆P ·) and F ·−+(∆P ·) is q − 2(l − p). On the other hand, the degree of each

factor F ·
++ and F ·−− is at most one. Hence the degree of the matrix is bounded from below

by 3p− (q − 2(l− p)) + 2(l− p) = 4l− (q + p). Substituting in our above lower bound for
q + p gives the degree estimate

Tr(Fc1s1 ∆A · · · Fclsl
∆A) =

(
deg <

5
2
l

)
= (deg < 3l − 1) for l ≥ 3. (A.49)

The above formulas are valid in the case N = 1 of one sector. The generalization
to several sectors is done by inserting suitable operators K· into the traces. This has
no effect on the degree on the light cone, and thus the estimates of the matrix traces
in (A.42)–(A.49) hold in the general case as well. We substitute the above results for the
elementary traces (A.20)–(A.40) into (A.42)–(A.47) and insert the operators K· to obtain
the following explicit formulas:

Tr(FnL+ ∆A) = (deg < 2)

+TrS
{
In ŶL(x) ŶL(y)

}
T

(0)
[1] T

(0)
[1] (A.50)

+
1
4

∫ y

x
dz TrS

{
In ÝL ỲR XR

}
((z T (0)

[2] ) + 4 T (1)
[2] ) T (−1)

[0] (A.51)

−TrS
{
In ÝL(x) ỲR(y) XR

}
T

(1)
[2] T

(−1)
[0] (A.52)

+
1
4

∫ x

y
dz TrS

{
In XL ÝR ỲL

}
(z T (−1)

[0] ) T (0)
[2] (A.53)

+
i

4
ξi

∫ y

x
dz [0, 0 | 1] TrS

{
In j

i
L XR

}
((z T (0)

[0] ) + 8 T (1)
[0] ) T (−1)

[0] (A.54)

− i
4
ξi

∫ x

y
dz [0, 0 | 1] TrS

{
In XL j

i
R

}
(z T (−1)

[0] ) T (0)
[0] (A.55)

+
1
4
εijkl

z ξ
i − z ξi

z − z ξl

∫ y

x
TrS

{
In F

jk
L XR

}
T

(0)
[0] T

(−1)
[0] (A.56)

+
1
4
εijkl

ξ
i − ξi

z − z ξl

∫ x

y
Trx

{
In XL F

jk
R

}
(z T (−1)

[0] ) (T (0)
[0] ) (A.57)

Tr(FnL− ∆A) = (deg < 2)

+TrS
{
In ŶL(y) ŶL(x)

}
T

(0)
[1]

T
(0)
[1]

(A.58)
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+
1
4

∫ y

x
dz TrS

{
In ÝL ỲR XR

}
T

(0)
[2] (z T (−1)

[0] ) (A.59)

+
1
4

∫ x

y
dz TrS

{
In XL ÝR ỲL

}
T

(−1)
[0] ((z T (0)

[2] ) + 4 T (1)
[2] ) (A.60)

−TrS
{
In XL ÝR(y) ỲL(x)

}
T

(−1)
[0] T

(1)
[2] (A.61)

− i
4
ξi

∫ x

y
dz [0, 0 | 1] TrS

{
In XL j

i
R

}
T

(−1)
[0] ((z T (0)

[0] ) + 8 T (1)
[0] ) (A.62)

+
i

4
ξi

∫ y

x
dz [0, 0 | 1] TrS

{
In j

i
L XR

}
T

(0)
[0] (z T (−1)

[0] ) (A.63)

−1
4
εijkl

ξ
i − ξi

z − z ξl

∫ y

x
TrS

{
In F

jk
L XR

}
T

(0)
[0] (z T (−1)

[0] ) (A.64)

−1
4
εijkl

z ξ
i − z ξi

z − z ξl

∫ x

y
TrS

{
In XL F

jk
R

}
T

(−1)
[0] T

(0)
[0] (A.65)

Tr(FnL+ ∆A Fn′R− ∆A) = (deg < 5)

−1
4

TrS

{
In

(
ŶL(x)XL T

(0)
[1] (z T (−1)

[0] ) − XL ŶR(x)(z T (−1)
[0] ) T (0)

[1]

)

× In′

(
ŶR(y)XR T

(0)
[1] T

(−1)
[0] − XR ŶL(y) T (−1)

[0] T
(0)
[1]

)}
(A.66)

Tr(FnL− ∆A Fn′R+ ∆A) = (deg < 5)

−1
4

TrS

{
In

(
ŶL(y)XL T

(0)
[1] T

(−1)
[0] − XL ŶR(y) T (−1)

[0] T
(0)
[1]

)

× In′

(
ŶR(x)XR T

(0)
[1] (z T (−1)

[0] ) − XR ŶL(x) (z T (−1)
[0] ) T (0)

[1]

)}
(A.67)

A.4 Perturbation of the Non-Zero Eigenvalues

In Section 4 we calculated the eigenvalues λncs of A in the presence of chiral and scalar
potentials to the leading degree 3, (3.15). Now we shall compute the contributions to the
non-zero eigenvalues of degree two, denote by ∆λncs, n = 1, . . . , 7 (the kernel of A will be
considered in Section A.5). To this end, we need to analyze the matrix A on the invariant
subspaces ImGk. First, we choose for fixed k > 1 a convenient basis of ImGk as follows.
The degeneracy of the unperturbed eigenspace ImFk can be described by the index set I,

I = {(ncs) with λncs = λk} . (A.68)

Note that, according to (3.15), s is the same for all elements (ncs) ∈ I, provided that the
eigenvalue is non-zero. The index c, however, may take both values L and R, giving rise
to the partition of I into IL and IR,

IL/R = {(ncs) ∈ I with c = L/R} .
The set I can be used to index a basis of Fk; namely we choose

(φncs)(ncs)∈I with 0 
= φncs ∈ Im Fncs . (A.69)

It is convenient to assume that the basis vectors are related to each other by

φn′cs = Kn′n φncs , φn′c̄s = Kn′n v/ φncs ; (A.70)
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this can clearly arranged according to (A.13)–(A.15). Since Fk projects onto a null space,
the inner product of any two basis vectors φncs vanishes. Thus in order to be able to
evaluate vectors in ImFk using the scalar product, we choose a “dual basis” (φncs)(ncs)∈I

of ImF ∗
k given by

φncs ∈ Im F ∗
ncs , φn′cs = Kn′n φ

ncs , φn′c̄s = Kn′n v/ φ
ncs . (A.71)

The basis vectors and their duals are orthogonal in the sense that for (ncs) 
= (n′c′s),

<φncs | φn′c′s> = <F ∗
ncs φ

ncs | Fn′c′s φn′c′s> = <φncs | Fncs Fn′c′s φn′c′s> = 0 .

We normalize the basis vectors such that

<φncs | φn′c′s> = δn
n′ δc

c′ for all (ncs), (n′c′s) ∈ I. (A.72)

Next we introduce a basis (ψncs)(ncs)∈I of the invariant subspace ImGk by applying the
projector Pk to the φncs,

ψncs = Gk φncs . (A.73)

Finally, we introduce a basis (ψncs)(ncs)∈I which is dual to (ψncs). We must be careful
because projecting on ImGk and ImGk, respectively, does not preserve the orthonormality;
more precisely,

Sncs
n′c′s ≡ <G∗

k φ
ncs | ψn′c′s> = <G∗

k φ
ncs |Gk φn′c′s>

= < φncs |Gk | φn′c′s>
in general


= δn
n′ δc

c′ . (A.74)

But S is a perturbation of the identity, and thus it can be inverted within the perturbation
expansion by a Neumann series. This makes it possible to introduce (ψncs)(ncs)∈I by

ψncs =
∑

(n′c′s)∈I

(S−1)ncs
n′c′s G

∗
k φ

n′c′s . (A.75)

A short calculation shows that this basis of ImG∗
k is indeed dual to (ψncs) in the sense

that
<ψncs | ψn′c′s> = δn

n′ δc
c′ for all (ncs), (n′c′s) ∈ I. (A.76)

Using the basis (ψncs) and its dual (ψncs), we can write down matrix elements of A,

Ancs
n′c′s = <ψncs | A | ψn′c′s> for (ncs), (n′c′s) ∈ I. (A.77)

¿From the orthonormality (A.76) one sees that Ancs
n′c′s is indeed a matrix representation for

A in the basis (ψncs), and thus the eigenvalues of A on the invariant subspace ImGk are
obtained simply by diagonalizing this matrix. In the unperturbed case (i.e. if ∆A = 0),
the matrix Ancs

n′c′s simplifies to

Ancs
n′c′s = <φncs | A0 | phin′c′s> = <φncs | A0 Fn′c′s φn′c′s>

= λk <φ
ncs | φn′c′s> = λk δ

n
n′ δc

c′ ,

in agreement with the fact that ImFk is an eigenspace of A0 corresponding to the eigenvalue
λk. Thus we see that the matrix elements Ancs

n′c′s are to leading order on the light cone of
degree 3. In the following theorem we compute the matrix elements up to contributions
of degree < 2.
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Theorem A.1 We consider the fermionic projector in the presence of chiral and scalar
potentials (3.5) and in composite expressions disregard all terms quadratic in the field
strength. Then for all k = 2, . . . ,K and (ncs), (n′c′s) ∈ I,

Ancs
n′c′s = λk δ

n
n′ δc

c′ + δc
c′ Tr (Fncs ∆AKn′n)

+δc
c′

∑
l �=k

1
λk − λl

Tr (Fncs ∆A Fl ∆AKn′n) + (deg < 2). (A.78)

Proof. We begin by computing the matrix S, (A.74), and its inverse. This calculation will
also illustrate how the relations (A.70) and (A.71) make it possible to rewrite expectation
values as matrix traces and thus to apply the results of Sections A.2 and A.3. In the case
c = c′, we obtain from (A.74) and (A.70),

Sncs
n′cs = <φncs |Gk | φn′cs> = <φncs |Gk |Kn′n φncs>

(A.69),(A.71)
= <F ∗

ncs φ
ncs |Gk Kn′n | Fncs φncs>

= <φncs | Fncs Gk Kn′n Fncs | φncs>

(∗)
= Tr (Fncs Gk Kn′n) <φncs | Fncs | φncs>

= Tr (Fncs Gk Kn′n) <φncs | φncs>
(A.72)

= Tr (Fncs Gk Kn′n) ,

where in (*) we used that Fncs projects on a one-dimensional subspace. If we substitute the
perturbation expansion for Gk, (A.6), into the obtained matrix trace, the estimate (A.49)
shows that the orders n > 2 yield contributions to S of degree < −1. Thus it suffices to
consider for Gk the second order expansion (A.8). This gives

Sncs
n′cs = δn

n′ −
∑
l �=k

1
(λk − λl)2

Tr (Fncs ∆A Fl ∆AKn′n) + (deg < −1) . (A.79)

Note that of the matrix trace appearing here we need to take into account only the leading
contributions of degree 5; these are easily obtained from (A.66) and (A.67). In the case
c 
= c′, we obtain similarly

Sncs
n′c̄s = <φncs |Gk Kn′n v/ φncs> = Tr (Fncs Gk Kn′n v/) .

We again substitute in the expansion for Gk (A.8). As a consequence of the additional
factor v/, the contribution to zeroth order in ∆A now drops out. The first order contribution
to Sncs

n′c̄s is∑
l �=k

1
λk − λl

(Fncs ∆A Fl Kn′n v/) =
1

λncs − λn′c̄s
(Fncs ∆A Fn′ c̄s Kn′n v/)

=
1

λncs − λn′c̄s
(Fncs ∆AKn′n v/) = (deg < −1) ,

because according to (A.18) and (A.26) the last matrix trace has degree ≤ 1. Here we
implicitly assumed that λncs 
= λn′c̄s, because otherwise we clearly get zero. A straight-
forward calculation using the factorization formula (A.17) as well as the estimates for the
elementary traces following (A.20) shows that the second order contribution to Sncs

n′c̄s also
is of degree < −1. We conclude that

Sncs
n′c̄s = (deg < −1) . (A.80)
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Now we can take the inverse of the expansions (A.79) and (A.80). This gives

(S−1)ncs
n′c′s = δn

n′ δc
c′ + δc

c′
∑
l �=k

1
(λk − λl)2

Tr (Fncs ∆A Fl ∆AKn′n)+ (deg < −1) . (A.81)

We next compute the expectation values

<φncs | AGk | φn′c′s>

up to contributions of degree < 2. The method is the same as for the above calculation of
the matrix S. In the case c = c′, we obtain the following matrix trace,

<φncs |AGk | φn′cs> = <φncs |AGk Kn′n | φncs>

= <φncs | Fncs AGk Kn′n Fncs | φncs> = Tr (Fncs AGk Kn′n) .

Substituting in (A.1) and (A.6), the estimate (A.49) shows that it suffices to take into
account Gk to second order (A.8). We get

<φncs | AGk | φn′cs> = λk δ
n
n′ δc

c′ + Tr (Fncs ∆AKn′n)

+
∑
l �=k

1
λk − λl

Tr (Fncs ∆A Fl ∆AKn′n)

−
∑
l �=k

λk

(λk − λl)2
Tr (Fncs ∆A Fl ∆AKn′n) + (deg < 2). (A.82)

In the case c 
= c′, we can rewrite the expectation value as follows,

<φncs | AGk | φn′c̄s> = <φncs | AGk Kn′n v/ | φncs> = Tr (Fncs AGk Kn′n v/) .

If we substitute in (A.1) and (A.8), factor the resulting matrix traces, and use the estimates
of the elementary traces of Section A.3, we obtain that

<φncs |AGk | φn′c̄s> = (deg < 2) . (A.83)

In order to bring the matrix elements (A.77) into a suitable form, we substitute the
definitions (A.73) and (A.75) into (A.77) to obtain

Ancs
n′c′s =

∑
(ñc̃s)∈I

(S−1)ncs
ñc̃s <G

∗
k φ

ñc̃x |A |Gk φn′c′s>

=
∑

(ñc̃s)∈I

(S−1)ncs
ñc̃s <φ

ñc̃x | AGk | φn′c′s> ,

where in the last step we used that Gk commutes with A (as the projector on an invariant
subspace). Putting in the expansions (A.81) and (A.82),(A.83) gives the result.

If there are no degeneracies, the above theorem reduces to the well-known formula of
second order perturbation theory. The important result is that to the considered degree
on the light cone, the matrix elements Ancs

n′c′s are all zero if c 
= c′. In other words, the left-
and right-handed components are invariant subspaces of A. This fact immediately gives
rise to the following corollary.
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Corollary A.2 We consider the fermionic projector in the presence of chiral and scalar
potentials (3.5) and in composite expressions disregard all terms quadratic in the field
strength. Suppose that the matrix Ancs

n′c′s, (A.78), is diagonal in the sector indices n, n′ for
all k = 2, . . . ,K. Then for n = 1, . . . , 7, the contributions to the eigenvalues of degree two
are

∆λnL+ = Tr(FnL+ ∆A) +
8∑

n′=1

1
λnL+ − λn′R−

Tr(FnL+ ∆A Fn′R− ∆A) (A.84)

∆λnL− = Tr(FnL− ∆A) +
8∑

n′=1

1
λnL− − λn′R+

Tr(FnL− ∆A Fn′R+ ∆A) . (A.85)

The traces appearing here are given explicitly by (A.50)–(A.67), where the line integrals are
in phase-free form (εijkl is the totally antisymmetric tensor). The corresponding formulas
for the opposite chirality are obtained by the replacements (A.41).

Proof. The result is an immediate consequence of Theorem A.1 and the estimates (A.42)–
(A.48).

A.5 Perturbation of the Kernel

The results of the previous section do not apply to the kernel of A. The reason is that for
k = 1, the index set I, (A.68), is

I = {(ncs) with n = 8, c = L/R, s = ±} ,
and this index set contains both elements with s = + and s = −, giving rise to different
types of matrix elements. On the other hand, the situation for the kernel is easier because
the unperturbed spectral projector on the kernel satisfies the relations

X∗ F1 X = 0 (A.86)
χR F1 X = 0 = X∗ F1 χL , (A.87)

and furthermore we can simplify the calculations using that λ1 = 0. Using these relations,
we follows that, neglecting all contributions of degree < 2, the dimension of the kernel is
not affected by the perturbation.

Theorem A.3 We consider the fermionic projector in the presence of chiral and scalar
potentials (3.5) and assume that the fermionic projector is weakly causality compatible (see
Def. 4.1). In composite expressions we disregard all terms quadratic in the field strength.
Then

AG1 = (deg < 2) .

Proof. Using the definition (A.5),

AG1 =
1

2πi

∮
|z|=ε

A (z −A)−1 dz =
1

2πi

∮
|z|=ε

(
z (z −A)−1 − 11

)
dz

=
1

2πi

∮
|z|=ε

z (z −A)−1 dz .
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Performing the perturbation expansion gives similar to (A.6),

AG1 =
∞∑

n=0

1
2πi

∮
|z|=ε

z
(
(z −A0)−1 ∆A

)n (z −A0)−1 dz . (A.88)

When we substitute in (A.7) and carry out the contour integral with residues, we get
zero unless the factor z is differentiated. For this to occur, the pole at z = 0 must be at
least of order two, and thus we need to take into account only the orders in perturbation
theory n ≥ 2. If on the other hand n > 2, we can as in the previous section transform
the matrix products into matrix traces, and the estimate (A.49) yields that the resulting
contributions to AG1 are of degree < 2. Thus it suffices to consider the second order in
perturbation theory,

AG1 =
1

2πi

∮
|z|=ε

z (z −A0)−1 ∆A (z −A0)−1 ∆A (z −A0)−1 dz + (deg < 2)

= −
K∑

l=2

1
λl

(Fl ∆A F1 ∆A F1 + F1 ∆A F1 ∆A Fl + F1 ∆A Fl ∆A F1)

+ (deg < 2) (A.89)

The weak causality compatibility condition implies that

X P (x, y) = P (x, y) = P (x, y)X∗ , (A.90)

and similarly for composite expressions in the fermionic projector. As a consequence, the
first two matrix products in (A.89) vanish; namely,

∆A F1 ∆A = (∆AX∗) F1 (X ∆A) = ∆A (X∗ F1 X) ∆A
(A.86)

= 0 .

In the last matrix product in (A.89) we can apply (A.87),

F1 ∆A Fl ∆A F1 = F1 (X ∆A) Fl (∆AX∗) F1 = χL F1 ∆A Fl ∆A F1 χR . (A.91)

Next we substitute in (A.4), rewrite the resulting operator products as matrix traces,
factor these matrix traces into elementary traces, and apply the estimates of Section A.3.
This straightforward calculation shows that the matrix product (A.91) is on the light cone
of degree < 5. From (A.89) we conclude that AG1 is of degree < 2.
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