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Abstract: We study the formation/dissolution of equilibrium droplets in finite systems at parame-
ters corresponding to phase coexistence. Specifically, we consider the 2D Ising model in volumes
of size L2, inverse temperature β > βc and overall magnetization conditioned to take the value
m�L2 − 2m�vL, where β−1

c is the critical temperature, m� = m�(β) is the spontaneous magneti-
zation and vL is a sequence of positive numbers. We find that the critical scaling for droplet forma-
tion/dissolution is when v

3/2
L L−2 tends to a definite limit. Specifically, we identify a dimensionless

parameter ∆, proportional to this limit, a non-trivial critical value ∆ c and a function λ∆ such that
the following holds: For ∆ < ∆c, there are no droplets beyond log L scale, while for ∆ > ∆ c,
there is a single, Wulff-shaped droplet containing a fraction λ∆ ≥ λc = 2/3 of the magnetization
deficit and there are no other droplets beyond the scale of log L. Moreover, λ ∆ and ∆ are related
via a universal equation that apparently is independent of the details of the system.
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1. INTRODUCTION

1.1 Motivation.

The connection between microscopic interactions and pure-phase (bulk) thermodynamics has been
understood at a mathematically sophisticated level for many years. However, an analysis of sys-
tems at phase coexistence which contain droplets has begun only recently. Over a century ago,
Curie [22], Gibbs [30] and Wulff [52] derived from surface-thermodynamical considerations that
a single droplet of a particular shape—the Wulff shape—will appear in systems that are forced
to exhibit a fixed excess of a minority phase. A mathematical proof of this fact starting from a
system defined on the microscopic scale has been given in the context of percolation and Ising
systems, first in dimension d = 2 [4, 24] and, more recently, in all dimensions d ≥ 3 [11, 18, 19].
Other topics related to the droplet shape have intensively been studied: Fluctuations of a con-
tour line [3, 15–17, 23, 34], wetting phenomena [47] and Gaussian fields near a “wall” [5, 13, 26].
See [12] for a summary of these results and comments on the (recent) history of these develop-
ments.

The initial stages of the rigorous “Wulff construction” program have focused on systems in
which the droplet subsumes a finite fraction of the available volume. Of no less interest is the situ-
ation when the excess represents only a vanishing fraction of the total volume. In [25], substantial
progress has been made on these questions in the context of the Ising model at low temperatures.
Subsequent developments [35, 36, 45, 46] have allowed the extension, in d = 2, of the aforemen-
tioned results up to the critical point [37]. Specifically, what has so far been shown is as follows:
For two-dimensional volumes ΛL of side L and δ > 0 arbitrarily small, if the magnetization deficit
exceeds L4/3+δ , then a Wulff droplet accounts, pretty much, for all the deficit, while if the magneti-
zation deficit is bounded by L4/3−δ , there are no droplets beyond the scale of log L. The preceding
are of course asymptotic statements that hold with probability tending to one as L →∞.

The focus of this paper is the intermediate regime, which has not yet received appropriate at-
tention. Assuming the magnetization deficit divided by L4/3 tends to a definite limit, we define a
dimensionless parameter, denoted by ∆, which is proportional to this limit. (A precise definition
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of ∆ is provided in (1.10).) Our principal result is as follows: There is a critical value ∆c such that
for ∆ < ∆c, there are no large droplets (again, nothing beyond log L scale), while for ∆ > ∆c,
there is a single, large droplet of a diameter of the order L2/3. However, in contrast to all situations
that have previously been analyzed, this large droplet only accounts for a finite fraction, λ∆ < 1,
of the magnetization deficit, which, in addition, does not tend to zero as ∆ ↓ ∆c! (Indeed, λ∆ ↓ λc,
with λc = 2/3.) Whenever the droplet appears, its interior is representative of the minus phase, its
shape is close to the optimal (Wulff) shape and its volume is tuned to contain the λ∆-fraction of the
deficit magnetization. Furthermore, for all values of ∆, there is at most one droplet of size L2/3 and
nothing else beyond the scale log L. At ∆ = ∆c the situation is not completely resolved. However,
there are only two possibilities: Either there is one droplet of linear size L2/3 or no droplet at all.

The above transition is the result of a competition between two mechanisms for coping with a
magnetization deficit in the system: Absorption of the deficit by the ambient fluctuations or the
formation of a droplet. The results obtained in [24, 25] and [37] deal with the situations when one
of the two mechanisms completely dominates the other. As is seen by a simple-minded compar-
ison of the exponential costs of the two mechanisms, L4/3 is the only conceivable scaling of the
magnetization deficit where these are able to coexist. (This is the core of the heuristic approach
outlined in [7, 8, 43].) However, at the point where the droplets first appear, one can envision al-
ternate scenarios involving complicated fluctuations and/or a multitude of droplets with effective
interactions ranging across many scales. To rule out such possibilities it is necessary to demon-
strate the absence of these “intermediate-sized” droplets and the insignificance—or absence—of
large fluctuations. This was argued on a heuristic level in [9] and will be proven rigorously here.

Thus, instead of blending into each other through a series of intermediate scales, the droplet-
dominated and the fluctuation-dominated regimes meet—literally—at a single point. Furthermore,
all essential system dependence is encoded into one dimensionless parameter ∆ and the transi-
tion between the Gaussian-dominated and the droplet-dominated regimes is thus characterized by
a universal constant ∆c. In addition, the relative fraction λ∆ of the deficit “stored” in the droplet
depends on ∆ via a universal equation which is apparently independent of the details of the sys-
tem [9]. At this point we would like to stress that, even though the rigorous results presented here
are restricted to the case of the two-dimensional Ising model, we expect that their validity can be
extended to a much larger class of models and the universality of the dependence on ∆ will become
the subject of a mathematical statement.

Notwithstanding the rigorous analysis, this universal setting offers the possibility of fitting ex-
perimental/numerical data from a variety of systems onto a single curve.

A practical understanding of how droplets disappear is by no means an esoteric issue. Aside
from the traditional, i.e., three-dimensional, setting, there are experimental realizations which are
effectively two-dimensional (see [39] and references therein). Moreover, there are purported ap-
plications of Ising systems undergoing “fragmentation” in such diverse areas as nuclear physics
and adatom formation [33]. From the perspective of statistical physics, perhaps more impor-
tant are the investigations of small systems at parameter values corresponding to a first order
transition in the bulk. In these situations, non-convexities appear in finite-volume thermody-
namic functions [33, 40, 41, 48], which naturally suggest the appearance of a droplet. Several
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papers have studied the disappearance of droplets and reported intriguing finite-size characteris-
tics [7,8,39,42,43,48,49]. It is hoped that the results established here will shed some light in these
situations.

1.2 The model.

The primary goal of this paper is a detailed description of the above droplet-formation phenomenon
in the Ising model. In general dimension, this system is defined by the formal Hamiltonian

H = −
∑
〈x,y〉

σxσy, (1.1)

where 〈x, y〉 denotes a nearest-neighbor pair on Zd and where σx ∈ {−1, +1} denotes an Ising
spin. To define the Hamitonian in a finite volume Λ ⊂ Zd, we use ∂Λ to denote the external
boundary of Λ, ∂Λ = {x /∈ Λ : there exists a bond 〈x, y〉 with y ∈ Λ}, fix a collection of bound-
ary spins σ∂Λ = (σx)x∈∂Λ and restrict the sum in (1.1) to bonds 〈x, y〉 such that {x, y} ∩ Λ �= ∅.
We denote this finite-volume Hamiltonian by HΛ(σΛ, σ∂Λ). The special choices of the boundary
configurations such that σx = +1, resp., σx = −1 for all x ∈ ∂Λ will be referred to as plus, resp.,
minus boundary conditions.

The Hamitonian gives rise to the concept of a finite-volume Gibbs measure (also known as Gibbs
state) which is a measure assigning each configuration σΛ = (σx)x∈Λ ∈ {−1, +1}Λ the probability

P σ∂Λ,β
Λ (σΛ) =

e−βHΛ(σΛ,σ∂Λ)

Zσ∂Λ
Λ (β)

. (1.2)

Here β ≥ 0 denotes the inverse temperature, σ∂Λ is an arbitrary boundary configuration and
Zσ∂Λ

Λ (β) is the partition function. Most of this work will concentrate on squares of L × L sites,
which we will denote by ΛL, and the plus boundary conditions. In this case we denote the above
probability by P +,β

L (−) and the associated expectation by 〈−〉+,β
L . As the choice of the signs in

(1.1–1.2) indicates, the measure P +,β
L with β > 0 tends to favor alignment of neighboring spins

with an excess of plus spins over minus spins.

Remark 1. As is well known, the Ising model is equivalent to a model of a lattice gas where at
most one particle is allowed to occupy each site. In our case, the sites occupied by a particle are
represented by minus spins, while the plus spins correspond to the sites with no particles. In the
particle distribution induced by P +,β

L , the total number of particles is not fixed; hence, we will
occasionally refer to this measure as the “grandcanonical” ensemble. On the other hand, if the
number of minus spins is fixed (by conditioning on the total magnetization, see Section 1.3), the
resulting measure will sometimes be referred to as the “canonical” ensemble.

The Ising model has been studied very extensively by mathematical physicists in the last 20-
30 years and a lot of interesting facts have been rigorously established. We proceed by listing
the properties of the two-dimensional model which will ultimately be needed in this paper. For
general overviews of various aspects mentioned below we refer to, e.g., [12,28,29,51]. The readers
familiar with the background (and the standard notation) should feel free to skip the remainder of
this section and go directly to Section 1.3 where we discuss the main results of the present paper.
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• Bulk properties. For all β ≥ 0, the measure P +,β
L has a unique infinite volume (weak)

limit P +,β which is a translation-invariant, ergodic, extremal Gibbs state for the interaction (1.1).
Let 〈−〉+,β denote the expectation with respect to P +,β. The persistence of the plus-bias in the
thermodynamic limit, characterized by the magnetization

m�(β) = 〈σ0〉+,β, (1.3)

marks the region of phase coexistence in this model. Indeed, there is a non-trivial critical value
βc ∈ (0,∞)—known [1,6,38,44] to satisfy e2βc = 1+

√
2—such that for β > βc, we have m�(β) >

0 and there are multiple infinite-volume Gibbs states, while for β ≤ βc, the magnetization vanishes
and there is a unique infinite-volume Gibbs state for the interaction (1.1). Further, using 〈A; B〉+,β

to denote the truncated correlation function 〈AB〉+,β − 〈A〉+,β〈B〉+,β, the magnetic susceptibility,
defined by

χ(β) =
∑
x∈Z2

〈σ0; σx〉+,β, (1.4)

is finite for all β > βc, see [21,50]. By the GHS or FKG inequalities, we have χ(β) ≥ 1−m�(β)2 >
0 for all β ∈ [0,∞).

• Peierls’ contours. Our next requisite item is a description of the Ising configurations in terms
of Peierls’ contours. Given an Ising configuration in Λ with plus boundary conditions, we consider
the set of dual bonds intersecting direct bonds that connect a plus spin with a minus spin. These
dual bonds will be assembled into contours as follows: First we note that only an even number
of dual bonds meet at each site of the dual lattice. When two bonds meet at a single dual site,
we simply connect them. When four bonds are incident with one dual lattice site, we apply the
rounding rule “south-east/north-west” to resolve the “cross” into two curves “bouncing” off each
other (see, e.g., [24,46] or Figure 1). Using these rules consistently, the aforementioned set of dual
bonds decomposes into a set of non self-intersecting polygons with rounded corners. These are
our contours.

Each contour γ is a boundary of a bounded subset of R2, which we denote by V (γ). We will also
need a symbol for the set of sites in the interior of γ; we let V(γ) = V (γ) ∩ Z2. The diameter of a
contour γ is defined as the diameter of the set V (γ) in the �2-metric on R

2. In the thermodynamic
interpretation used in Section 1.1, contours represent microscopic boundaries of droplets. The
advantage of the contour language is that it permits the identification of a sharp boundary between
two phases; the disadvantage is that, in order to study the typical shape (and other properties) of
large droplets, one has to first resum over small fluctuations of this boundary.

• Surface tension. In order to study droplet equilibrium, we need to introduce the concept
of microscopic surface tension. Following [4, 45], on Z2 we can conveniently use duality. Given
a β > βc, let β∗ = 1

2
log coth β denote the dual temperature. For any (k1, k2) ∈ Z2 and k =

(k2
1 + k2

2)
1/2, let n = (k1/k, k2/k) ∈ S1 = {x ∈ R2 : ‖x‖ = 1}. (Here ‖x‖ is the Euclidean norm

of x.) Then the limit

τβ(n) = lim
N→∞

1

Nk
log〈σ0σNkn〉+,β∗

, (1.5)

where Nkn = (k1N, k2N) ∈ Z2, exists independently of what integers k1 and k2 we chose to
represent n and defines a function on a dense subset of S1. It turns out that this function can be
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FIGURE 1. An example of an Ising spin configuration and its associated Peierls’ contours.
In general, a contour consists of a string of dual lattice bonds that bisect a direct bond
between a plus spin and a minus spin. When four such dual bonds meet at a single (dual)
lattice site, an ambiguity is resolved by applying the south-east/north-west rounding rule.
(The remaining corners are rounded just for æsthetic reasons.) The shaded areas correspond
to the part of V (γ) occupied by the minus spins.

continuously extended to all n ∈ S1. We call the resulting quantity τβ(n) the surface tension in di-
rection n at inverse temperature β. As is well known, n �→ τβ(n) is invariant under rotations of n
by integer multiples of π

2
and τmin = infn∈S1 τβ(n) > 0 for all β > βc [45]. Informally, the quan-

tity τβ(n)N represents the statistical-mechanical cost of a (fluctuating) contour line connecting
two sites at distance N on a straight line with direction (or normal vector) n.

Remark 2. Our definition of the surface tension differs from the standard definition by a factor
of β−1. In particular, the physical units of τβ is length−1 rather than energy×length−1. The present
definition eliminates the need for an explicit occurrence of β in many expressions throughout this
paper and, as such, is notationally more convenient.

• Surface properties. On the level of macroscopic thermodynamics, it is obvious that when a
droplet of the minority phase is present in the system, it is pertinent to minimize the total surface
cost. By our previous discussion, the cost per unit length is given by the surface tension τβ(n).
Thus, one is naturally led to the functional Wβ(γ) that assigns the number

Wβ(γ) =

∫
γ

τβ(nt)dt (1.6)

to each rectifiable, closed curve γ = (γt) in R2. Here nt denotes the normal vector at γt. The
goal of the resulting variational problem is to minimize Wβ(∂D) over all D ⊂ R

2 with rectifiable
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boundary subject to the constraint that the volume of D coincides with that of the droplet. The
classic solution, due to Wulff [52], is that Wβ(∂D) is minimized by the shape

DW =
{
r ∈ R

2 : r · n ≤ τβ(n), n ∈ S1

}
(1.7)

rescaled to contain the appropriate volume. (Here r · n denotes the dot product in R2.) We will
use W to denote the shape DW scaled to have a unit (Lebesgue) volume. It follows from (1.7)
that W is a convex set in R2. We define

w1(β) = Wβ(∂W ) (1.8)

and note that w1(β) > 0 once β > βc.

Our preliminary arsenal is now complete and we are prepared to discuss the main results.

1.3 Main results.

Recall the notation ΛL for a square of L × L sites in Z2. Consider the Ising model in volume ΛL

with plus boundary condition and inverse temperature β. Let us define the total magnetization (of
a configuration σ) in ΛL by the formula

ML =
∑
x∈ΛL

σx. (1.9)

Let (vL)L≥1 be a sequence of positive numbers, with vL → ∞ as L → ∞, such that m� |ΛL| −
2m� vL is an allowed value of ML for all L ≥ 1. Our first result concerns the decay rate of the
probability that ML = m� |ΛL| − 2m� vL in the “grandcanonical” ensemble P +,β

L :

Theorem 1.1 Let β > βc and let m� = m� (β), χ = χ(β), and w1 = w1(β) be as above. Suppose
that the limit

∆ = 2
(m�)2

χw1
lim

L→∞
v

3/2
L

|ΛL| (1.10)

exists with ∆ ∈ (0,∞). Then

lim
L→∞

1√
vL

log P+,β
L

(
ML = m� |ΛL| − 2m� vL

)
= −w1 inf

0≤λ≤1
Φ∆(λ), (1.11)

where

Φ∆(λ) =
√

λ + ∆(1 − λ)2, 0 ≤ λ ≤ 1. (1.12)

The proof of Theorem 1.1 is a direct consequence of Theorems 3.1 and 4.1; the actual proof
comes in Section 5. We proceed with some remarks:

Remark 3. Note that, by our choice of the deviation scale, the term m�(β)|ΛL| can be replaced by
the mean value 〈ML〉+,β

L in all formulas; see Lemma 2.9 below. The motivation for introducing the
factor “2m�” on the left-hand-side of (1.11) is that then vL represents the volume of a droplet that
must be created in order to achieve the required value of the overall magnetization (provided the
magnetization outside, resp., inside the droplet is m�, resp., −m�).
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Remark 4. The quantity λ that appears in (1.11–1.12) represents the trial fraction of the deficit
magnetization which might go into a large-scale droplet. (So, by our convention, the volume of
such a droplet is just λvL.) The core of the proof of Theorem 1.1, roughly speaking, is that the
probability of seeing a droplet of this size tends to zero as exp{−w1

√
vLΦ∆(λ)}. Evidently, a

large deviation principle for the size of such a droplet is satisfied with rate L2/3 and a rate function
proportional to Φ∆. However, we will not attempt to make this statement mathematically rigorous.

Next we shall formulate our main result on the asymptotic form of typical configurations in the
“canonical” ensemble described by the conditional measure P +,β

L ( · |ML = m� |ΛL| − 2m� vL).
For any two sets A, B ⊂ R

2, let dH(A, B) denote the Hausdorff distance between A and B,

dH(A, B) = max
{
sup
x∈A

dist(x, B), sup
y∈B

dist(y, A)
}
, (1.13)

where dist(x, A) is the Euclidean distance of x and A.
Our second main theorem is then as follows:

Theorem 1.2 Let β > βc and suppose that the limit in (1.10) exists with ∆ ∈ (0,∞). Recall that W
denotes the Wulff shape of a unit volume. Given κ, s, L ∈ (0,∞), let Aκ,s,L be the event that any
external contour γ for which diam γ ≥ s must also satisfy diam γ ≥ κ

√
vL. Next, for each ε > 0,

let Bε,s,L be the event that there is at most one external contour γ0 in ΛL with diam γ0 ≥ s and,
whenever such a contour γ0 exists, it satisfies the conditions

inf
z∈R2

dH

(
V (γ0), z +

√
|V (γ0)|W

) ≤ √
εvL (1.14)

and
Φ∆

(
v−1

L |V (γ0)|
) ≤ inf

0≤λ′≤1
Φ∆(λ′) + ε. (1.15)

In addition, the event Bε,s,L also requires that the magnetization inside γ0 obeys the constraint∣∣∣∣ ∑
x∈V(γ0)

(σx + m�)

∣∣∣∣ ≤ εvL. (1.16)

There exists a constant κ0 > 0 such that for each ζ > 0 and each ε > 0 there exist numbers
K0 < 0 and L0 < ∞ such that

P+,β
L

(Aκ,s,L ∩ Bε,s,L

∣∣ML = m� |ΛL| − 2m� vL

) ≥ 1 − L−ζ (1.17)

holds provided κ ≤ κ0 and s = K log L with K ≥ K0 and L ≥ L0, .

Thus, simply put, whenever there is a large droplet in the system, its shape rarely deviates from
that of the Wulff shape and its volume (in units of vL) is almost always given by a value of λ nearly
minimizing Φ∆. Moreover, all other droplets in the system are at most of a logarithmic size.

Most of the physically interesting behavior of this system is simply a consequence of where Φ∆

achieves its minimum and how this minimum depends on ∆. The upshot, which is stated concisely
in Proposition 2.1 below, is that there is a critical value of ∆, given by

∆c =
1

2

(3

2

)3/2

, (1.18)
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such that if ∆ < ∆c, then Φ∆ has the unique minimizer at λ = 0, while for ∆ > ∆c, the unique
minimizer of Φ∆ is nontrivial. More explicitly, for ∆ �= ∆c, the function Φ∆ is minimized by

λ∆ =

{
0, if ∆ < ∆c,

λ+(∆), if ∆ > ∆c,
(1.19)

where λ+(∆) is the maximal positive solution to the equation

4∆
√

λ(1 − λ) = 1. (1.20)

The reason for the changeover is that, as ∆ increases through ∆c, a local minimum becomes a
global minimum, see the proof of Proposition 2.1. As a consequence, the minimizing fraction λ
does not tend to zero as ∆ ↓ ∆c; in particular, it tends to λc = 2/3.

Using the information about the unique minimizer of Φ∆ for ∆ �= ∆c, it is worthwhile to
reformulate Theorem 1.2 as follows:

Corollary 1.3 Let β > βc and suppose that the limit in (1.10) exists with ∆ ∈ (0,∞). Let ∆c

and λ∆ be as in (1.18) and (1.19), respectively. Let K ≥ K0, where K0 is as in Theorem 1.2.
Considering the conditional distribution P +,β

L ( · |ML = m� |ΛL| − 2m� vL), the following holds
with the probability tending to one as L →∞:

(1) If ∆ < ∆c, then all contours γ in ΛL satisfy diam γ ≤ K log L.
(2) If ∆ > ∆c, then there is exactly one external contour γ0 with diam γ0 > K log L and

all other external contours γ satisfy diam γ ≤ K log L. Moreover, the unique “large”
external contour γ0 asymptotically satisfies the bounds (1.14–1.16) for all ε > 0. In par-
ticular, |V (γ0)| = vL(λ∆ + o(1)) with probability tending to one as L →∞.

We remark that although the situation at ∆ = ∆c is not fully resolved, we must have either a
single large droplet or no droplet at all; i.e., the outcome must mimic the case ∆ > ∆c or ∆ < ∆c.
A better understanding of the case ∆ = ∆c will certainly require a more refined analysis; e.g., the
second-order large-deviation behavior of the measure P +,β

L (·).
Remark 5. We note that in the course of this work, the phrase “β > βc” appears in three disparate
meanings. First, for β > βc, the magnetization is positive, second, for β > βc, the surface tension
is positive and third, for β > βc, truncated correlations decay exponentially. The fact that the
transition temperatures associated with these properties all coincide and that βc is in fact given by
the self-dual condition plays no essential role in are arguments. Nor are any other particulars of
the square lattice really used. Thus, we believe that our results could be extended to other planar
lattices without much modification. However, in the cases where the coincidence has not yet been
(or cannot be) established, we would need to define “βc” so as to satisfy all three criteria.

1.4 Discussion and outline.

The mechanism which drives the droplet formation/dissolution phenomenon described in the above
theorems is not difficult to understand on a heuristic level. This heuristic derivation (which applies
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to all dimensions d ≥ 2) has been discussed in detail elsewhere [9], so we will be correspond-
ingly brief. The main ideas are best explained in the context of the large-deviation theory for the
“grandcanonical” distribution and, as a matter of fact, the actual proof also follows this path.

Consider the Ising model in the box ΛL and suppose we wish to observe a magnetization defi-
ciency δM = 2m�vL from the nominal value of m�|ΛL|. Of course, this can be achieved in one
shot by the formation of a Wulff droplet at the cost of about exp{−w1

√
vL}. Alternatively, if we

demand that this deficiency emerges out of the background fluctuations, we might guess on the
basis of fluctuation-dissipation arguments that the cost would be of the order

exp
{
− (δM)2

2Var(ML)

}
≈ exp

{
−2

(m� vL)2

χ|ΛL|
}
, (1.21)

where χ is the susceptibility and Var(ML) = (χ + o(1))|ΛL| is the variance of ML in distribu-
tion P +,β

L . Obviously, the former mechanism dominates when
√

vL � v2
L/|ΛL|, i.e., when vL �

L4/3, while the latter dominates under the opposite extreme conditions, i.e., when vL � L4/3.
(These are exactly the regions previously treated in [25, 37] where the corresponding statements
have been established in full rigor.) In the case when vL/L4/3 tends to a finite limit we now find
that the two terms are comparable. This is the basis of our parameter ∆ defined in (1.10).

Assuming v
3/2
L /|ΛL| is essentially at its limit, let us instead try a droplet of volume λvL, where 0 ≤

λ ≤ 1. The droplet cost is now reduced to

exp
{−w1

√
λ
√

vL

}
, (1.22)

but we still need to account for the remaining fraction of the deficiency. Assuming the fluctuation-
dissipation reasoning can still be applied, this is now

exp
{
−2

(m� vL)2

χ|ΛL| (1 − λ)2
}

= exp
{−w1

√
vL(1 − λ)2∆

}
. (1.23)

Putting these together we find that the total cost of achieving the deficiency δM = 2m�vL using a
droplet of volume λvL is given in the leading order by

exp
{−w1Φ∆(λ)

√
vL

}
. (1.24)

An optimal droplet size is then found by minimizing Φ∆(λ) over λ. This is exactly the content
of Theorem 1.1. We remark that even on the level of heuristic understanding, some justification
is required for the decoupling of these two mechanisms. In [9], we have argued this case on a
heuristic level; in the present work, we simply provide a complete proof.

The pathway of the proof is as follows: The approximate equalities (1.22–1.24) must be proved
in the form of upper and lower bounds which agree in the L → ∞ limit. (Of course, we never
actually have to go through the trouble of establishing the formulas involving Φ∆(λ) for non-
optimal values of λ.) For the lower bound (see Theorem 3.1) we simply shoot for the minimum
of Φ∆(λ): We produce a near-Wulff droplet of the desired area and, on the complementary region,
allow the background fluctuations to account for the rest. Here, as a bound, we are permitted to
use a contour ensemble with restriction to contours of logarithmic size which ensures the desired
Gaussian behavior.
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The upper bound requires considerably more effort. The key step is to show that, with probabil-
ity close to one, there are no droplets at any scale larger than log L or smaller than

√
vL. Notwith-

standing the technical difficulties, the result (Theorem 4.1) is of independent interest because it
applies for all ∆ ∈ (0,∞), including the case ∆ = ∆c. Once the absence of these “intermediate”
contour scales has been established, the proof of the main results directly follow.

We finish with a brief outline of the remainder of this paper. In the next section we collect the
necessary technical statements needed for the proof of both the upper and lower bound. Specif-
ically, in Section 2.1 we discuss in detail the minimizers of Φ∆, in Section 2.2 we introduce the
concept of skeletons and in Section 2.3 we list the needed properties of the logarithmic contour
ensemble. Section 3 contains the proof of the lower bound, while Section 4 establishes the absence
of contour on scales between log L and the anticipated droplet size. Section 5 assembles these
ingredients together into the proofs of the main results.

2. TECHNICAL INGREDIENTS

This section contains three subsections: Section 2.1 presents the solution of the variational problem
for function Φ∆ on the right-hand side of (1.12), while Sections 2.2 and 2.3 collect the necessary
technical lemmas concerning the skeleton calculus and the small-contour ensemble. Readers are
invited to skip the entire section on a preliminary run-through and return to it only after getting to
the proofs in Sections 3–5.

2.1 Variational problem.

Here we investigate the global minima of the function Φ∆ that was introduced in (1.12). Since
the general picture is presumably applicable in higher dimensions as well (certainly at the level
of heuristic arguments, see [9]), we might as well carry out the analysis in the case of a general
dimension d ≥ 2. For the purpose of this subsection, let

Φ∆(λ) = λ
d−1

d + ∆(1 − λ)2, 0 ≤ λ ≤ 1. (2.1)

We define
Φ�

∆ = inf
0≤λ≤1

Φ∆(λ) (2.2)

and note that Φ�
∆ > 0 once ∆ > 0. Let us introduce the d-dimensional version of (1.18),

∆c =
1

d

(d + 1

2

)d+1
d

. (2.3)

The minimizers of Φ∆ are then characterized as follows:

Proposition 2.1 Let d ≥ 2 and, for any ∆ ≥ 0, let M∆ denote the set of all global minimizers
of Φ∆ on [0, 1]. Then we have:

(1) If ∆ < ∆c, then M∆ = {0}.
(2) If ∆ = ∆c, then M∆ = {0, λc}, where

λc =
2

d + 1
. (2.4)
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(3) If ∆ > ∆c, then M∆ = {λ0}, where λ0 is the maximal positive solution to the equation

2d

d − 1
∆ λ

1
d (1 − λ) = 1. (2.5)

In particular, Λ0 > λc.

Proof. A simple calculation shows that λ = 0 is always a (one-sided) local minimum of λ �→
Φ∆(λ), while λ = 1 is always a (one-sided) local maximum. Moreover, the stationary points
of Φ∆ in (0, 1) have to satisfy (2.5). Consider the quantity

q(λ) =
1

∆

(
1 − d

d−1
λ1/dΦ′

∆(λ)
)

=
2d

d − 1
λ1/d(1 − λ), (2.6)

i.e., q(λ) is essentially the left-hand side of (2.5). A simple calculation shows that q(λ) achieves
its maximal value on [0, 1] at λ = λd = 1

d+1
, where it equals ∆−1

d = 2d2(d2 − 1)−1(d + 1)−1/d,
and is strictly increasing for λ < λd and strictly decreasing for λ > λd. On the basis of these
observations, it is easy to verify the following facts:

(1) For ∆ ≤ ∆d, we have ∆q(λ) < 1 for all λ ∈ [0, 1] (except perhaps at λ = λc when ∆
equals ∆d). Consequently, λ �→ Φ∆(λ) is strictly increasing throughout [0, 1]. In particu-
lar, λ = 0 is the unique global minimum of Φ∆(λ) in [0, 1].

(2) For ∆ > ∆d, (2.5), resp., ∆q(λ) = 1 has two distinct solutions in [0, 1]. Consequently, λ �→
Φ∆(λ) has two local extrema in (0, 1): A local maximum at λ = λ−(∆) and a local
minimum at λ = λ+(∆), where λ−(∆) and λ+(∆) are the minimal and maximal positive
solutions to (2.5), respectively.

As a simple calculation shows, the function ∆ �→ λ+(∆) is strictly increasing on its domain with
λ+(∆) ∼ 1 − d−1

2d
1
∆

as ∆ → ∞.
In order to decide which of the two previously described local minima (λ = 0 or λ = λ+(∆))

gives rise to the global minimum, we first note that, while Φ∆(0) = ∆ tends to infinity as ∆ →∞,
the above asymptotics of λ+(∆) shows that Φ∆(λ+(∆)) → 1 as ∆ → ∞. Hence, λ+(∆) is the
unique global minimum of Φ∆ once ∆ is sufficiently large. It remains to show that the two local
minima interchange their roles at ∆ = ∆c. To that end we compute

d
d∆

Φ∆

(
λ+(∆)

)
=

∂

∂∆
Φ∆

(
λ+(∆)

)
=

(
1− λ+(∆)

)2
> 0, (2.7)

where we used that λ+(∆) is a stationary point of Φ∆ to derive the first equality. Comparing this
with d

d∆Φ∆(0) = 1, we see that ∆ �→ Φ∆(λ+(∆)) increases with ∆ strictly slower than ∆ �→
Φ∆(0) on any finite interval of ∆’s. Hence, there must be a unique value of ∆ for which Φ∆(0)
and Φ∆(λ+(∆)) are exactly equal. An elementary computation shows that this happens at ∆ = ∆c,
where ∆c is given by (2.3). This finishes the proof of (1) and (3); in order to show that also (2)
holds, we just need to note that λ+(∆c) is exactly λc as given in (2.4). �

Proposition 2.1 allows us to define a quantity λ∆ by formula (1.19), where now λ+(∆) is the
maximal positive solution to (2.5). Since lim∆↓∆c λ∆ = λc > 0, ∆ �→ λ∆ undergoes a jump at ∆c.
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2.2 Skeleton estimates.

In this section we introduce coarse-grained versions of contours called skeletons. These objects
will be extremely useful whenever an upper bound on the probability of large contours is needed.
Indeed, the introduction of skeletons will permit us to effectively integrate out small fluctuations
of contour lines and thus express the contour weights directly in terms of the surface tension.
Skeletons were first introduced in [4,24]; here we use a modified version of the definition from [37].

2.2.1 Definition and geometric properties. Given a scale s > 0, an s-skeleton is an n-tuple
(x1, . . . , xn) of points on the dual lattice, xi ∈ (Z2)∗, such that n > 1 and

s ≤ ‖xi+1 − xi‖ ≤ 2s, i = 1, . . . , n. (2.8)

Here ‖·‖ denotes the �2-distance on R2 and xn+1 is identified with x1. Given a skeleton S, let P(S)
be the closed polygonal curve in R

2 induced by S. We will use |P(S)| to denote the total length
of P(S), in accord with our general notation for the length of curves.

A contour γ is called compatible with an s-skeleton S = (x1, . . . , xn), if
(1) Γ, viewed as a simple closed path on R2, passes through all sites xi, i = 1, . . . , n in the

corresponding order.
(2) dH(γ, P(S)) ≤ s, where dH is the Hausdorff distance (1.13).

We write γ ∼ S if γ and S are compatible. For each configuration σ, we let Γs(σ) be the set of
all s-large contours γ in σ; namely all γ in σ for which there is an s-skeleton S such that γ ∼ S.
Given a set of s-skeletons S = (S1, . . . , Sm), we say that a configuration σ is compatible with S,
if Γs(σ) = (γ1, . . . , γm) and γk ∼ Sk for all k = 1, . . . , m. We will write σ ∼ S to denote that σ
and S are compatible.

It is easy to see that Γs(σ) actually consists of all contours γ of the configuration σ such
that diam γ ≥ s. Indeed, diam γ ≥ s for every γ ∈ Γs(σ) by the conditions (1) and (2.8) above.
On the other hand, for any γ with diam γ ≥ s, we will construct an s-skeleton by the following pro-
cedure: Regard γ as a closed non-self-intersecting curve, γ = (γt)0≤t≤1, where γ0 is chosen so that
supx∈γ ‖x − γ0‖ ≥ s. Then we let x1 = γ0 and x2 = γt2 , where t2 = inf{t > 0: ‖γt − γ0‖ ≥ s}.
Similarly, if tj has been defined and xj = γtj , we let xj+1 = γtj+1

, where tj+1 = inf{t ∈
(tj , 1] : ‖γt − γtj‖ ≥ s}. Note that this definition ensures that (2.8) as well as the conditions (1)
and (2) hold. The consequence of this construction is that, via the equivalence relation σ ∼ S, the
set of all skeletons induces a covering of the set of all spin configurations.

Remark 6. The reader familiar with [24, 37] will notice that we explicitly keep the stronger condi-
tion (1) from [24]. Without the requirement that contours pass through the skeleton points in the
given order, Lemma 2.3 and, more importantly, Lemma 2.4 below would fail to hold.

Next we will discuss some subtleties of the geometry of the skeletons stemming from the fact
that the corresponding polygons (unlike contours) may have self-intersections. We will stay rather
brief; a detailed account of the topic can be found in [24].

We commence with a few geometric definitions: Let P = {P1, . . . , Pk} denote a finite collection
of polygonal curves. Consider a smooth self-avoiding path L from a point x to ∞ that is generic
with respect to the polygons from P (i.e., the path L has a finite number of intersections with
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each Pj and this number does not change under small perturbations of L). Let #(L ∩ Pj) be the
number of intersections of L with Pj . Then we define V (P) ⊂ R2 to be the set of points x ∈ R2

such that the total number of intersections,
∑n

j=1 #(L ∩ Pj), is odd for any path L from x to ∞
with the above properties. We will use |V (P)| to denote the area of V (P).

If P happens to be a collection of skeletons, P = S, the relevant set will be V (S). If P
happens to be a collection of Ising contours, P = Γ, the associated V (Γ) can be thought of as a
union of plaquettes centered at sites of Z2; we will use V(Γ) = V (Γ) ∩ Z2 to denote the relevant
set of sites. It is clear that if Γ are the contours associated with a spin configuration σ in Λ and
the plus boundary condition on ∂Λ, then V(Γ) are exactly the sites x ∈ Λ where σx = −1. We
proceed by listing a few important estimates concerning compatible collections of contours and
their associated skeletons:

Lemma 2.2 There is a finite geometric constant g1 such that if Γ is a collection of contours and S
is a collection of s-skeletons with Γ ∼ S, then∑

γ∈Γ

|γ| ≤ g1s
∑
S∈S

∣∣P(S)
∣∣. (2.9)

In particular, if diam γ ≤ κ for all γ ∈ Γ, then we also have, for some finite constant g2,∣∣V (Γ)
∣∣ ≤ g2κ

∑
S∈S

∣∣P(S)
∣∣. (2.10)

Proof. Immediate from the definition of s-skeletons. �
Lemma 2.2 will be useful because of the following observation: Let S be a collection of s-

skeletons and recall that the minimal value of the surface tension, τmin = infn∈S1 τβ(n) is strictly
positive, τmin > 0. Then ∑

S∈S

Wβ

(
P(S)

) ≥ τmin

∑
S∈S

∣∣P(S)
∣∣. (2.11)

Thus the bounds in (2.9–2.10) will allow us to convert a lower bound on the overall contour surface
area/volume into a lower bound on the Wulff functional of the associated skeletons.

A little less trivial is the estimate on the difference between the volumes of V (Γ) and V (S):

Lemma 2.3 There is a finite geometric constant g3 such that if Γ is a collection of contours and S
is a collection of s-skeletons with Γ ∼ S, then∣∣∣∣∣V (Γ)

∣∣− ∣∣V (S)
∣∣∣∣∣ ≤ ∣∣V (Γ)�V (S)

∣∣ ≤ g3s
∑
S∈S

∣∣P(S)
∣∣. (2.12)

Here V (Γ)�V (S) denotes the symmetric difference of V (Γ) and V (S).

Proof. We will just rephrase the proof of Theorem 5.13 in [24]. Let Γ = (γ1, . . . , γm) and fix γk ∈
Γ. Let Sk ∈ S with Sk = (x0, . . . , xn) be the skeleton compatible with γk and let Sk,j denote the
segment of the straight line between xj and xj+1. Since γ passes through the skeleton points in the
given order, for each j there is a corresponding piece, γk,j, of γ which connects xj and xj+1.
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Let Uk,j be the subset of R2 enclosed “between” Sk,j and γk,j (i.e., Uk,j is the union of all
bounded connected components of R2 \ (Sk,j ∪ γk,j)). We claim that

V (Γ)�V (S) ⊆
⋃
k,j

Uk,j. (2.13)

Indeed, let x ∈ V (Γ)�V (S) and let L be a path connecting x to infinity which is generic with
respect to both S and Γ. Then L has the same parity of the number of intersections with γk and Sk,
unless x ∈ Uk,j for some k and j. By inspecting the definitions of V (Γ) and V (S), (2.13) is
proved.

Let Us(P(Sk)) be the s-neighborhood of the polygonal curve P(Sk). Since ∂Uk,j ⊂ Us(P(Sk)),
by (2.13) we have that V (Γ)�V (S) ⊆ ⋃

k Us(P(Sk)). From here (2.12) directly follows. �

2.2.2 Probabilistic estimates. The main reason why skeletons are useful is the availability of the
so called skeleton upper bound, originally due to Pfister [45]. Recall that, for each A ⊂ Z2, we
use P +,β

A to denote the probability distribution on spins in A with plus boundary condition on the
boundary of A. Given a set of skeletons, we let P +,β

A (S) = P+,β
A ({σ : σ ∼ S}) be the probability

that S is a skeleton of some configuration in A. Then we have:

Lemma 2.4 (Skeleton upper bound) For all β > βc, all finite A ⊂ Z2, all scales s and all
collections S of s-skeletons in A, we have

P+,β
A (S) ≤ exp

{−Wβ(S)
}
, (2.14)

where
Wβ(S) =

∑
S∈S

Wβ

(
P(S)

)
. (2.15)

Proof. This is exactly Eq. (1.3.1) in [37]. The proof goes back to [45], Lemma 6.7. For our
purposes, the key “splitting” argument is provided in Lemma 5.4 of [46]. A special case of the
key estimate appears in Eq. (5.51) from Lemma 5.5 of [46] with the correct interpretation of the
left-hand side. �

The bound (2.14) will be used in several ways: First, to show that the K log L-large contours
in a box of side-length L are improbable, provided K is large enough; this is a consequence of
Lemma 2.5 below. The absence of such contours will be wielded to rule out the likelihood of other
improbable scenarios. Finally, after all atypical situations have been dispensed with, the skeleton
upper bound will deliver the contribution corresponding to the term

√
λ in (1.11).

An important consequence of the skeleton upper bound is the following generalization of the
Peierls estimate, which will be useful at several steps of the proof of our main theorems.

Lemma 2.5 Let s = K log L and let SL,K denote the set of all s-skeletons that arise from contours
in ΛL. For each β > βc and α > 0, there is a K0 = K0(α, β) < ∞, such that∑

S⊂SL,K

exp
{−αWβ(S)

} ≤ 1 (2.16)

for (all L and) all K ≥ K0.
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Proof. Let S0
L,K be the set of all K log L-skeletons S such that S = (x1, . . . , xk) with x1 = 0. By

translation invariance, ∑
S⊂SL,K

e−αWβ(S) ≤
∑
n≥1

(
L2

∑
S∈S0

L,K

e−αWβ(P(S))
)n

, (2.17)

where the prefactor L2 accounts for the translation entropy of each skeleton within ΛL. The lat-
ter sum can be estimated by mimicking the proof of Peierls’ bound, where contour entropy was
bounded by that of the simple random walk on Z2. Indeed, each skeleton can be thought of as a
sequence of steps with step-length entropy at most 32s2, where s = K log L, and with each step
weighted by a factor not exceeding e−τmins. This and (2.11) yield∑

S∈S0
L,K

e−αWβ(P(S)) ≤
∑
m≥1

(
32s2e−ατmins

)m
. (2.18)

By choosing K0 sufficiently large, the right-hand side is less than 1
2
L−2 for all K ≥ K0. Using

this in (2.17), the claim follows. �
Lemmas 2.4 and 2.5 will be used in the form of the following corollary:

Corollary 2.6 Let β > βc, L ≥ 1 and κ > 0 be fixed, and let A be the set of of configurations σ
such thatWβ(S) ≥ κ for at least one collection of s-skeletons S satisfying S ∼ σ. Let α ∈ (0, 1),
and let K0(α, β) be as in Lemma 2.5. If s = K log L with K ≥ K0(α, β), then

P+,β
L (A) ≤ e−(1−α)κ. (2.19)

Proof. By the assumptions of the Lemma, we have

P+,β
L (A) ≤

∑
S⊂SK,L

Wβ(S)≥κ

P+,β
L (S), (2.20)

where we used the notation P +,β
L (S) = P+,β

L ({σ : σ ∼ S}). Lemma 2.4 then implies

P+,β
L (A) ≤

∑
S⊂SK,L

Wβ(S)≥κ

e−Wβ(S) ≤ e−(1−α)κ
∑

S⊂SK,L

e−αWβ(S). (2.21)

Here we wrote e−Wβ(S) = e−αWβ(S)e−(1−α)Wβ (S) and then invoked to bound Wβ(S) ≥ κ to
estimate e−(1−α)Wβ (S) by e−(1−α)κ. Finally, we dropped the constraint to Wβ(S) ≥ κ in the last
sum. Since s = K log L with K ≥ K0(α, β), the last sum is less than one by Lemma 2.5. �

Ideas similar to those used in the proof of Lemma 2.5 can be used to estimate the probability of
the occurrence of an s-large contour:

Lemma 2.7 For each β > βc, there exist a constant α(β) > 0 such that

P+,β
A

(
Γs(σ) �= ∅) ≤ |A|e−α(β)s (2.22)

for any finite A ⊂ Z
2 and any scale s ≥ 1.
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Proof. Fix α > 0 and suppose without loss of generality that |A| > 1 and s ≥ α−1 log |A| for
some α > 0. If Γs(σ) �= ∅, the associated s-skeleton must satisfyWβ(S) ≥ τmins. Invoking (2.14)
a variant of the estimate (2.17–2.18) (here is where s ≥ α−1 log |A| enters into the play), we show
that P +,β

A (Γs(σ) �= ∅) ≤ C|A|s2e−
1
2
τmins, where C > 0 is a constant. From here the bound (2.22)

follows by absorbing the factor Cs2 into the exponential. �

2.2.3 Quantitative estimates around Wulff minimum. The existence of a minimum for the func-
tional (1.6) and a coarse-graining scheme supplemented with a bound of the type in (2.14) tell us
the following: Consider a collection Γ of contours, all of which are roughly of the same scale and
which enclose a fixed total volume, and suppose that the value of the Wulff functional on a S
with S ∼ Γ is close to the Wulff minimum. Then (1) it must be the case that Γ consists of a single
contour and (2) the shape of this contour must be close to the Wulff shape. A quantitative (and
mathematically precise) version of this statement is given in the forthcoming lemma:

Lemma 2.8 Let β > βc. Then there exist constants ε0 = ε0(β) ∈ (0, 1), c = c(β) > 0, and
C = C(β) < ∞ such that the following holds for all ε ∈ (0, ε0): Let Γ be a collection of contours
such that diam γ > cε

√|V (Γ)| for all γ ∈ Γ and let s be a scale function satisfying s ≤ ε
√|V (Γ)|.

Let S be a collection of s-skeletons compatible with Γ, S ∼ Γ, such that

Wβ(S) ≤ w1

√
|V (Γ)|(1 + ε). (2.23)

Then Γ consists of a single contour, Γ = {γ}, and there is an x ∈ R2 such that

dH

(
V (γ),

√
|V (γ)|W + x

) ≤ c
√

ε
√
|V (γ)|, (2.24)

where W is the Wulff shape of unit area centered at the origin. Moreover,∣∣|V (γ)| − |V (S)|∣∣ ≤ Cε|V (γ)|. (2.25)

Proof. We begin by noting that, by the assumptions of the present Lemma, |V (Γ)| and |V (S)|
have to be of the same order of magnitude. More precisely, we claim that∣∣|V (Γ)| − |V (S)|∣∣ ≤ Cε

∣∣V (Γ)
∣∣ (2.26)

holds with some C = C(β) < ∞ independent of Γ, S and ε. Indeed, from (2.11) and (2.23) we
have ∑

S∈S

∣∣P(S)
∣∣ ≤ τ−1

minWβ(S) ≤ w1(1 + ε)τ−1
min

√
|V (Γ)|, (2.27)

which, using Lemma 2.3 and the bounds s ≤ ε
√|V (Γ)| and ε ≤ 1, gives (2.26) with C =

2g3w1τ
−1
min.

The bound (2.26) essentially allows us to replace V (Γ) by V (S) in (2.23). Applying Theo-
rem 2.10 from [24] to the set of skeletons S rescaled by |V (S)|−1/2, we can conclude that there is
point x ∈ R2 and a skeleton S0 ∈ S such that

dH

(
P(S0),

√
|V (S)|∂W + x

) ≤ α
√

ε
√
|V (S)|, (2.28)

and ∑
S∈S\{S0}

∣∣P(S)
∣∣ ≤ αε

√
|V (S)|, (2.29)
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where α is a constant proportional to the ratio of the maximum and the minimum of the surface
tension. Using (2.26) once more, we can modify (2.28–2.29) by replacing V (S) on the right-hand
sides by V (Γ) at the cost of changing α to α(1 + C). Moreover, since (2.26) also implies that
|√|V (Γ)| − √|V (S)|| ≤ Cε

√|V (Γ)|, we have

dH

(√|V (Γ)|∂W,
√
|V (S)|∂W

) ≤ Cε diam W
√
|V (Γ)|. (2.30)

Let γ ∈ Γ be the contour corresponding to S0. By the definition of skeletons, dH(γ, P(S0)) ≤ s ≤
ε
√|V (Γ)|. Combining this with (2.30), the modified bound (2.28), and ε ≤ 1, we get

dH

(
γ,

√
|V (Γ)|∂W + x

) ≤ c
√

ε
√
|V (Γ)| (2.31)

for any c ≥ 1+α(1+C)+C diam W . (From the properties of W , it is easily shown that diam W
is of the order of unity.)

Let us proceed by proving that Γ = {γ}. For any γ ′ ∈ Γ\{γ}, let Sγ′ be the unique skeleton in S
such that γ ′ ∼ Sγ′ . Since diam γ′ ≤ |P(Sγ′)| + s and, since also |P(Sγ′)| ≥ s, we have diam γ′ ≤
2|P(Sγ′)|. Using the modified bound (2.29), we get

diam γ′ ≤ 2
∣∣P(Sγ′)

∣∣ ≤ 2α(1 + C)ε
√
|V (Γ)|. (2.32)

If c also satisfies the inequality c > 2α(1 + C), then this estimate contradicts the assumption that
diam γ′ ≥ cε

√|V (Γ)| for all γ′ ∈ Γ. Hence, Γ = {γ} as claimed.
Thus, V (Γ) = V (γ) and the bound (2.25) is directly implied by (2.26). Moreover, (2.31) holds

with V (Γ) replaced by V (γ) on both sides. To prove (2.24), it remains to show that the naked γ on
the left-hand side of (2.31) can be replaced by V (γ). But that is trivial because γ is the boundary
of V (γ) and the Hausdorff distance of two closed sets in R2 equals the Hausdorff distance of their
boundaries. �

2.3 Small-contour ensemble.

The goal of this section is to collect some estimates for the probability in P +,β
L conditioned on the

fact that all contours are s-small in the sense that Γs(σ) = ∅. Most of what is to follow appears,
in various guises, in the existing literature (cf Remark 7). For some of the estimates (Lemmas 2.9
and 2.10) we will actually provide a proof, while for others (Lemma 2.11) we can quote directly.

2.3.1 Estimates using the GHS inequality. The principal resource for what follows are two basic
properties of the correlation function of Ising spins. Specifically, let 〈σx; σy〉+,β

A,h denote the trun-
cated correlation function of the Ising model in a set A ⊂ Z2 with plus boundary condition, in
non-negative inhomogeneous external fields h = (hx) and inverse temperature β. Then:

(1) If β > βc, then the correlations in infinite volume decay exponentially, i.e., we have

〈σx; σy〉+,β
Z2,h ≤ e−‖x−y‖/ξ (2.33)

for some ξ = ξ(β) < ∞ and all x and y.
(2) The GHS inequality implies that the finite-volume correlation function, 〈σx; σy〉+,β

A,h, is
dominated by the infinite-volume correlation function at any pointwise-smaller field:

0 ≤ 〈σx; σy〉+,β
A,h ≤ 〈σx; σy〉+,β

Z2,h′ (2.34)
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for all A ⊂ Z2 and all h′ = (h′
x) with h′

x ∈ [0, hx] for all x.

Note that, via (2.34), the exponential decay (2.33) holds uniformly in A ⊂ Z2. Part (1) is a con-
sequence of the main result of [21], see [50]; the GHS inequality from part (2) dates back to [31].

Now we are ready to state the desired estimates. Let A ⊂ Z
2 be a finite set and let s be a

scale function. Let P +,β,s
A be the Gibbs measure of the Ising model in A ⊂ Z2 conditioned on the

event {Γs(σ) = ∅} and let us use 〈−〉+,β,s
A to denote the expectation with respect to P +,β,s

A . Then
we have the following bounds:

Lemma 2.9 For each β > βc, there exist constants α1(β) and α2(β) such that∣∣〈MA〉+,β,s
A − m�|A|∣∣ ≤ α1(β)

(|∂A| + |A|2e−α2(β) s
)

(2.35)

for each finite set A ⊂ Z2 and any scaling function s. Moreover, if A′ ⊂ A, then∣∣〈MA〉+,β,s
A − 〈MA�A′〉+,β,s

A�A′
∣∣ ≤ α1(β)

(|A′| + |A|2e−α2(β) s
)
. (2.36)

Proof. By Lemma 2.7, we have P +,β
A (Γs(σ) �= ∅) ≤ |A|e−α2s for some α2 > 0, independent of A.

An easy estimate then shows ∣∣〈MA〉+,β,s
A − 〈MA〉+,β

A

∣∣ ≤ |A|2e−α2s. (2.37)

Therefore, it suffices to prove the bounds (2.35–2.36) without the restriction to the ensemble of s-
small contours. Next we claim that, for any B ⊂ Z2 we have

0 ≤ 〈σx〉+,β
B − 〈σx〉+,β

B∪{y} ≤ e−‖x−y‖/ξ. (2.38)

Indeed, the difference of the two expectations can be written as an integral
∫ ∞

0
dh〈σx; σy〉+,β

B∪{y},h,
where h = (hz) is such that hz = hδy,z. By property (2) of the truncated correlation function,
we have that 〈σx; σy〉+,β

B∪{y},h is non-negative, which proves the left inequality in (2.38), while it is
bounded above by the same correlation function with B = Z2. The integral representation can be
used again for the correlation function in the infinite volume with the result

〈σx〉+,β
B − 〈σx〉+,β

B∪{y} ≤
〈
σx

1+σy

2

〉+,β〈1+σy

2

〉+,β
− 〈σx〉+,β ≤

〈
σx;

1+σy

2

〉+,β〈1+σy

2

〉+,β
≤ 〈σx; σy〉+,β, (2.39)

where we used that 〈1 + σy〉+,β ≥ 1 to derive the last inequality. Using the property (1) above, the
right-hand side is bounded by e−‖x−y‖/ξ .

The bound (2.38) immediately implies both (2.35) and (2.36). Indeed, using (2.38) for all x ∈ A
and y ∈ B \ A, we have for all A ⊆ B ⊆ Z2 that

0 ≤ 〈MA〉+,β
A − 〈MA〉+,β

B ≤
∑
x∈A

∑
y∈B\A

e−‖x−y‖/ξ ≤ α′
1|∂A|, (2.40)

where α′
1 = α′

1(β) < ∞. This and (2.37) directly imply (2.35). To get (2.36), we also need to note
that |MA −MA\A′ | ≤ |A′|. �

Our next claim concerns an upper bound on the probability that the magnetization in the plus
state deviates from its mean by a positive amount:
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Lemma 2.10 Let β > βc and let χ = χ(β) be the susceptibility. Then there exists a constant K =
K(β) such that

P+,β,s
A

(
MA ≥ 〈MA〉+,β

A + m� v
) ≤ 2e−

(vm�)2

2χ|A| (2.41)

for any finite A ⊂ Z2, any v ≥ 0, and any s ≥ K log |A|.
Proof. Let M denote the event M = {σ : MA ≥ 〈MA〉+,β

A + m� v}. By Lemma 2.7 we have
that P +,β,s

A (M) ≤ 2P+,β
A (M), so we just need to estimate P +,β

A (M). Consider the cumulant
generating function F +,β

A (h) = log〈ehMA〉+,β
A . The exponential Chebyshev inequality then gives

log P+,β
A (M) ≤ F+,β

A (h) − h〈MA〉+,β
A − hm� v, h ≥ 0. (2.42)

By the property (2) of the truncated correlation function, we get

d2F+,β
A

dh2
(h) = 〈MA; MA〉+,β

A,h ≤ 〈MA; MA〉+,β
A,0, (2.43)

where h = (hx) with hx = h for all x ∈ Z2 and where 0 is the zero field. Since F+,β
A (0) = 0

and d
dh

F+,β
A (0) = 〈MA〉+,β

A , we get the bound

F+,β
A (h) ≤ h〈MA〉+,β

A +
h2

2
〈MA; MA〉+,β

A,0. (2.44)

Now, once more by the property (2) above,

|A|−1〈MA; MA〉+,β
A,0 ≤ |A|−1〈MA; MA〉+,β

Z2,0 ≤ |A|−1
∑
x∈A

∑
y∈Z2

〈σx; σy〉+,β = χ, (2.45)

where the sums converge by the property (1). The claim follows by optimizing over h. �

Remark 7. The bound in Lemma 2.10 corresponds to Eq. (9.33) of Proposition 9.1 in [46] proved
with the help of Lemma 5.1 from [45]. Similarly, the estimates in Lemma 2.9 are closely related
to the bounds in Lemma 2.2.1 of [37]. We included the proofs of both statements to pinpoint the
exact formulation needed for our analysis as well as to reduce the number of extraneous references.

2.3.2 Gaussian control of negative deviations. Our last claim concerns the deviations of the plus
magnetization in the negative direction. Unlike in the previous Section, here the restriction to the
small contour is crucial because, obviously, if the deviation is too large, there is a possibility of
forming a droplet which cannot be controlled by bulk estimates.

Let β > βc and let v be such that 〈MA〉+,β,s
A − 2m� v is an allowed value of MA. Define Ωs

A(v)
by the expression

P+,β,s
A

(
MA = 〈MA〉+,β,s

A − 2vm�
)

=
1√

2πχ|A| exp
{
−2

(m�)2

χ|A| v2 + Ωs
A(v)

}
. (2.46)

Then we have:
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Lemma 2.11 (Gaussian estimate) For each β > βc and each set of positive constants a1, a2, a3,
there are constants C < ∞ and K < ∞ such that if s = K log L, then∣∣Ωs

A(v)
∣∣ ≤ C

(
K

v2

L3
log L ∨ v3

L4

)
(2.47)

for all allowed values of v such that

0 ≤ v ≤ a1
L2

log L
(2.48)

and all connected sets A ⊂ Z2 such that

a2L
2 ≤ |A| ≤ L2 and |∂A| ≤ a3L. (2.49)

Proof. This is a reformulation of Lemma 2.3.3 from [37]. �

3. LOWER BOUND

In this Section we establish a lower bound for the asymptotic stated in (1.11). In addition to its
contribution to the proof of Theorem 1.1, this lower bound will play an essential role in the proofs
of Theorem 1.2 and Corollary 1.3. A considerable part of the proof hinges on the Fortuin-Kasteleyn
representation of the Ising (and Potts) models, which makes the technical demands of this section
rather different from those of the following sections.

3.1 Large-deviation lower bound.

This section is devoted to the proof of the following theorem:

Theorem 3.1 (Lower bound) Let β > βc and let (vL) be a sequence of positive numbers such
that m� |ΛL| − 2m� vL is an allowed value of ML for all L. Suppose that the limit (1.10) exists
with ∆ ∈ (0,∞). Then there exists a sequence (εL) with εL → 0 such that

P+,β
L

(
ML = m� |ΛL| − 2m� vL

) ≥ exp
{−w1

√
vL

(
inf

0≤λ≤1
Φ∆(λ) + εL

)}
(3.1)

holds for all L.

Remark 8. It is worth noting that, unlike in the corresponding statements of the lower bounds
in [24, 37], we do not require any control over how fast the error εL tends to zero as L → ∞.
Indeed, it turns out that in the regime of finite ∆, the simple convergence εL → 0 will be enough
to prove our main results. However, in the cases when vL tends to infinity so fast that ∆ is infinite,
a proof would probably need also some information about the rate of the convergence εL → 0.

The strategy of the proof will simply be to produce a near-Wulff droplet that comprises a par-
ticular fraction of the volume vL. The droplet will account for its requisite share of the deficit
magnetization and we then force the exterior to absorb the rest. The probability of the latter event
is estimated by using the truncated contour ensemble.

Let us first attend to the production of the droplet. Consider the Wulff shape W of unit area
centered at the origin and a closed, self-avoiding polygonal curve P ⊂ W . We will assume that
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the vertices of P have rational coordinates and, if N denotes the number of vertices of P, that each
vertex is at most 1/N away from the boundary of W . Let Int P denote the set of points x ∈ R2

surrounded by P. For any t, r > 1, let P0, P1, P2, P3 be four magnified copies of P obtained
by rescaling P by factors t, t + r, t + 2r, and t + 3r, respectively. (Thus, for instance, P0 =
{x ∈ R

2 : x/t ∈ P}.) This yields three “coronas” K I
t,r = IntP1 \ IntP0, K II

t,r = IntP2 \ IntP1,
and K III

t,r = IntP3 \ Int P2 surrounding P0. Let KI
t,r = K I

t,r ∩ Z2, and similarly for KII
t,r and KIII

t,r.
Recall that a ∗-connected circuit in Z2 is a closed path on vertices of Z2 whose elementary

steps connect either nearest or next-nearest neighbors. Let Et,r be the set of configurations σ such
that KI

t,r contains a ∗-connected circuit of sites x ∈ Z2 with σx = −1 and KIII
t,r contains a ∗-

connected circuit of sites x ∈ Z2 with σx = +1. The essential part of our lower bound comes from
the following estimate:

Lemma 3.2 Let β > βc and let P be a polygonal curve as specified above. For any pair of
sequences (tL) and (rL) tending to infinity as L →∞ in such a way that

tLL−1 → 0, tLrLe−rLτmin/3 → 0 and rLt−1
L → 0, (3.2)

there is a sequence (ε′L) with ε′L → 0 such that

P+,β
L (EtL,rL

) ≥ exp
{−tLWβ(P)(1 + ε′L)

}
, (3.3)

for all L ≥ 1.

The proof of this lemma requires some substantial preparations and is therefore deferred to
Section 3.2. Using Lemma 3.2, we can prove Theorem 3.1.

Proof of Theorem 3.1. Let us introduce the abbreviation

ML =
{
σ : ML = m� |ΛL| − 2m� vL

}
(3.4)

for the central event in question. Suppose first that ∆ ≤ ∆c, where ∆c is as in (1.18). Propo-
sition 2.1 then guarantees that inf0≤λ≤1 Φ∆(λ) = Φ∆(0) = ∆. In particular, there is no need
to produce a droplet in the system. Let s = K log L. By restricting to the set of configurations
{σ : Γs(σ) = ∅} we get

P+,β
L (ML) ≥ P+,β,s

L (ML)P+,β
L

(
Γs(σ) = ∅). (3.5)

The resulting lower bound is then a consequence of (2.46), Lemma 2.11 and Lemma 2.7, pro-
vided K is sufficiently large.

To handle the remaining cases, ∆ > ∆c, we will have to produce a droplet. Fix a polygon P
with the above properties, let Vol(P) denote the two-dimensional Lebesgue volume of its interior,
and let |P| denote the size (i.e., length) of its boundary. Let λ = λ∆, where λ∆ is as defined in
(1.19), and recall that, for this choice of λ, we have Φ∆(λ) = inf0≤λ′≤1 Φ∆(λ′) and λ ≥ λc > 0.
Since the goal is to produce a droplet of volume λvL, we let tL =

√
λvL and pick rL be such that

(3.2) holds as L → ∞. Abbreviating EL = EtL,rL
, we let (ε′L) denote the corresponding sequence

from Lemma 3.2. (Note that ε′L may depend on P.)
For configurations in EL, let C+ be the innermost ∗-connected circuit of plus spins in K

III
t,r and

let C− denote the outermost ∗-connected circuit of minus spins in KI
t,r. Let INT be the set of sites

in the interior of C− and let EXT be the set of sites in ΛL that are in the exterior of C+. (Thus,
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FIGURE 2. An illustration of the “coronas” K
I
t,r, K

II
t,r, K

III
t,r, the sets INT and EXT, and

the ∗-connected circuits C+ and C− of plus and minus sites, respectively, which are used
in Lemma 3.2 and the proof of Theorem 3.1. Going from inside out, the four polygons
correspond to P0, P1, P2 and P3; the shaded region denotes the set A±.

we have INT ∩ C− = EXT ∩ C+ = ∅.) Further, let A± = ΛL \ (INT ∪ EXT) and use σ± to
denote the spin configuration on A±. Let MINT, MEXT and M± denote the overall magnetization
in INT, EXT and A±, respectively. Finally, let us abbreviate µINT = �〈MINT〉+,β,s

INT � and introduce the
event E ′

L = {σ ∈ EL : MINT = −µINT}.
The lower bound on P +,β

L (ML) will be derived by restricting to the event E ′
L, conditioning

on σ±, extracting the probability of having the correct magnetization in ΛL \ A±, and applying
Lemma 2.11 to retrieve the contribution from droplet surface tension. The first two steps of this
program give

P+,β
L (ML) ≥ P+,β

L (ML ∩ E ′
L) ≥

∑
σ±

P+,β
L (ML ∩ E ′

L|σ±)P+,β
L (σ±). (3.6)

Our next goal is to produce a lower bound of the type (3.1) on P +,β
L (ML ∩ E ′

L|σ±), uniformly
in σ±. The advantage of conditioning on a fixed configuration is that, if ML ∩ E ′

L ∩ {σ±} occurs,
the overall magnetizations in INT and EXT are fixed. Thus, on ML ∩ E ′

L ∩ {σ±} we get

MEXT = ML − M± −MINT = 〈MEXT〉+,β,s
EXT − 2m� vL

(
1− λVol(P)− δL

)
, (3.7)
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where δL = δL(σ±) is given by the equation 2m� vLδL = I + II + III + IV with I–IV defined by

I = µINT − m� |INT|, II = −〈MEXT〉+,β,s
EXT + m� |EXT|, (3.8)

III = −M± + m� |A±|, IV = 2m�
(|INT| − λVol(P)vL

)
. (3.9)

To estimate I–IV, we first notice the geometric bounds

t2LVol(P) − tL|P| ≤ |INT| ≤ (tL + rL)2Vol(P) + (tL + rL)|P|,
|A±| ≤ (tL + 3rL)2 − t2L + (tL + 3rL)|P|, (3.10)

and recall that, since both C+ and C− are contained in A±, we have |C−|, |C+| ≤ |A±|. Lemma 2.9
for s = K log L then allows us to estimate |I| ≤ α1(β)(|A±|+|INT|2L−α2(β)K) and, similarly, |II| ≤
α1(β)(|A±|+4L+L4−α2(β)K), while the remaining two quantities are bounded by invoking |III| ≤
2|A±| and |IV| ≤ 4rLtL + 2r2

L + 2(tL + rL)|P|. Using that rL = o(
√

vL) and tL = O(
√

vL), we
have |A±| = o(vL) as L → ∞. Moreover, if K is so large that 4 − α2(β)K < 4/3, we also
have |INT|2L−α2(β)K ≤ L4−α2(β)K = o(vL) as L → ∞. Combining these bounds, it is easy to
show that |δL(σ±)| ≤ δ̄L for all σ±, where δ̄L is a sequence such that limL→∞ δ̄L = 0.

Now we are ready to estimate the probability that both INT and EXT produce their share of
magnetization deficit. Note first that

P−,β
INT (MINT = −µINT) ≥ P−,β,s

INT (MINT = −µINT)P
−,β
INT

(
Γs(σ) = ∅). (3.11)

Using Lemmas 2.11 and 2.7, we get P −,β
INT (MINT = −µINT) ≥ CL−2/3 for some C = C(β) > 0. On

the other hand, letting MEXT = {σ : MEXT = 〈MEXT〉+,β,s
EXT − 2m� vL(1 − λVol(P) − δL)}, a bound

similar to (3.11) for P +,β
EXT combined with Lemmas 2.11 and 2.7 yields

P+,β
EXT (MEXT) ≥ C ′√|EXT| exp

{
−2

(m� vL)2

χ|EXT|
(
1 − λVol(P) − δL

)2
}
, (3.12)

where C ′ = C ′(β) > 0 is independent of σ± contributing to (3.6). Combining the previous
estimates, we can use Lemma 3.2 to extract the surface energy term. The result is

P+,β
L (ML) ≥ C ′′L−5/3 exp

{−w1

√
vL ΦL − ε′L

√
vL

}
, (3.13)

where C ′′ = C ′′(β) > 0 and where ΦL stands for the quantity

ΦL =
Wβ(P)

w1

√
λ +

2(m�)2χ−1w−1
1 v

3/2
L

L2 − (tL + rL)2

(
1− λVol(P) + δ̄L

)2
. (3.14)

As is clear from our previous reasoning, the quantity ΦL can be made arbitrary close to Φ∆(λ)
by letting L → ∞ and optimizing over P with the above properties. The existence of the desired
sequence (εL) then follows by the definition of the limit. �

3.2 Results using random-cluster representation.

In this section we establish some technical results necessary for the completion of the proof of
our lower bound. These results are stated mostly in terms of the random cluster counterpart of the
Ising model; the crowning achievement, which is Lemma 3.5, gives immediately in the proof of
Lemma 3.2. We remark that the latter is the sum total of what this section contributes to the proof
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of Theorem 3.1. The uninterested, or well-informed, readers are invited to skip the entire section,
provided they are prepared to accept Lemma 3.2 without a proof.

3.2.1 Preliminaries. The random cluster representation for the Ising (and Potts) ferromagnets is
by now a well established tool. The purpose of the following remarks is to define our notation; for
more background and details we refer the reader to, e.g., [10, 32] or the excellent review [29].

Let T ⊂ Z2 denote a finite graph. A bond configuration, generically denoted by ω, is the assign-
ment of a zero (vacant) or a one (occupied) to each bond in T. The weight of a configuration ω
is given, informally, by R|ω|qC(ω), where |ω| denotes the number of occupied bonds and C(ω)
denotes the number of connected components. For the Ising system at hand we have q = 2
and R = e2β − 1. The precise meaning of C(ω) depends on the boundary conditions; of concern
here are the so called free and wired boundary conditions. In the former, C(ω) is the usual number
of connected components including the isolated sites, while in the latter all clusters touching the
bond-complement of T are identified as a single component.

The free and wired random-cluster measures in ΛL, denoted by P free,β
L,FK and P w,β

L,FK, respectively,
correspond to the free and plus (or minus) boundary conditions in the Ising spin system. Both
random-cluster measures enjoy the FKG property and the wired measure stochastically dominates
the free measure. The infinite volume limits of these measures also exist; we denote these limiting
objects by P free,β

FK and P w,β
FK . The most important type of event we shall consider is the event that

sites are connected by paths of occupied bonds. Our notation is as follows: If x, y ∈ T, we
define {x ←→ y} to be the event that there is such a connection. If we demand the existence of a
path using only bonds with both ends in some subgraph A ⊂ T, we write {x ←→

A

y}.
The next concept we need to discuss is duality. For any T ⊂ Z2, the dual graph T∗ is defined

as follows: Each bond of T is transversal to a bond on (Z + 1
2
) × (Z + 1

2
) = (Z2)∗. These

bonds are the bonds of T∗; the sites of T∗ are the endpoints of these bonds. Each configuration ω
induces a configuration on the dual graph via the correspondence “direct occupied” with “dual
vacant” and vice versa. It turns out that, if we start with either free or wired boundary conditions
on T, the weights for the dual configurations are also random-cluster weights with parameters
(q∗, R∗) = (q, q/R), provided we also interchange the designation of “free” and “wired.” Of
course, the graph and its dual are not precisely the same. For example, if we examine the relevant
graph for the problem dual to the wired system in ΛL, this consists of an (L+1)×(L+1) rectangle
with the corners missing. Moreover, because the boundary conditions on the dual graph are free, all
dual edges touching the boundary sites are occupied independently of the rest of the configuration.
Thus, ignoring these decoupled degrees of freedom, the restricted measure is equivalent to a free
measure on ΛL−1.

In general, we will use β∗ to denote the inverse temperature dual to β, which, for q = 2 and the
normalization of the Hamiltonian (1.1), is related to β via β ∗ = 1

2
log coth β. The critical temper-

ature is self dual, i.e., βc = 1
2
log coth βc. For β > βc, the dual model is in the high-temperature

phase. Hence, the limiting free and wired measures at β∗ coincide and, using the well-known re-
lation between the spin-correlations and the connectivity functions in the FK representation, we
have

P free,β∗
FK (x ←→ y) = P w,β∗

FK (x ←→ y) = 〈σ0σx〉+,β∗
, (3.15)
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for all x, y ∈ Z2. Thus, the exponential decay of correlations in the spin system at high tem-
peratures, 〈σ0σx〉+,β∗ ≤ e−‖x−y‖/ξ where ξ = ξ(β∗) is the correlation length, corresponds to an
exponential decay of the connectivity probabilities. In particular, the surface tension at β > βc,
as defined in (1.5) for unit vectors n with rationally related components, is the inverse of the
correlation length for two point connectivity functions in the direction n at inverse temperature β ∗.

3.2.2 Decay estimates. Here we assemble two important ingredients for the proof of Lemma 3.2.
We begin by quantifying the decay of the point-to-boundary connectivity function:

Lemma 3.3 Consider the q = 2 random cluster model at β < βc (which corresponds to the
high-temperature phase of the Ising system). Then,

P w,β
�,FK

({0 ←→ ∂Λ�}
) ≤ 4�e−�/ξ (3.16)

for all � ≥ 1.

Proof. This is one portion of the proof of Proposition 4.1 in [20]. �
For the purposes of the next lemma, let n be a unit vector with rationally related components

and let C(n) be the set of all pairs (a, b) of positive real numbers such that the a× b rectangle with
side b perpendicular to n can be positioned in R2 in such a way that all its four corners are in Z2.
We will use Rn

a,b ⊂ Z2 to denote a generic a × b rectangle with the latter property. If x and y are
the two corners along the same b-side of Rn

a,b, we let Bn
a,b denote the event {x ←→

Rn
a,b

y}.

Lemma 3.4 Let β ∈ (0, βc) and let β∗ = 1
2
log coth β. Let n be a unit vector with rationally

related components and suppose that L, aL and bL, with (aL, bL) ∈ C(n), tend to infinity in such a
way that aL/L → 0, bL/L → 0 and dist(Rn

a,b, Z
2 \ ΛL)/(bL + log L) →∞ as L → ∞. Then

lim
L→∞

P free,β
L,FK

(Bn
aL,bL

)1/bL ≥ e−τβ∗(n). (3.17)

Proof. We will first establish the limit (3.17) for the measure in infinite volume and then show
that provided Rn

L are well separated from Z
2 \ ΛL as specified, the finite volume effects are not

important. Throughout the proof, we will omit the subscript β ∗ for the surface tension.
Fix n ∈ S1 with rationally related components and let β < βc. Let

θn
a,b = P w,β

FK

(Bn
a,b

)
, (a, b) ∈ C(n), (3.18)

and note that if (a, b1) ∈ C(n) and (a, b2) ∈ C(n) with b2 ≥ b1, then also (a, b1 + b2) ∈ C(n)
and (a, b2 − b1) ∈ C(n). We begin by the claim that the events in question enjoy a subadditive
property:

θn
a,b1+b2

≥ θn
a,b1

θn
a,b2

, (a, b1), (a, b2) ∈ C(n). (3.19)

Indeed, we let Rn
a,b2

be translated relative to Rn
a,b1

so that the “left” a-side of Rn
a,b2

coincides with
the “right” a-side of Rn

a,b1
. Let x1 and y1 be the “left” and “right” bottom corners of Rn

a,b1
and let x2

and y2 be similar corners of Rn
a,b2

. By our construction, y1 and x2 coincide. Let Rn
a,b1+b2

denote the
union Rn

a,b1
∪ Rn

a,b2
. Then{

x1 ←→
Rn

a,b1+b2

y2

} ⊃ {
x1 ←→

Rn
a,b1

y1

} ∩ {
x2 ←→

Rn
a,b2

y2

}
. (3.20)
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The inequality (3.19) then follows immediately from the FKG property of the measure P w,β
FK .

Let A(n) = {a > 0: ∃b > 0, (a, b) ∈ C(n)} be the set of allowed values of a. As a
consequence of subadditivity, for any a ∈ A(n) we have the existence of the limit e−�a(n) =
limb→∞(θn

a,b)
1/b. (Here b only takes values such that (a, b) ∈ C(n).) Further, if a1, a2 ∈ A(n)

with a1 ≥ a2, then there is a b such that both (a1, b) ∈ C(n) and (a2, b) ∈ C(n), and, for any such b,
we have θn

a1,b ≥ θn
a2,b. Thence �a1(n) ≤ �a2(n) whenever a1, a2 ∈ A(n) satisfy a1 ≥ a2. Let

�(n) = lima→∞ �a(n), where a’s are restricted to A(n). Now the quantity θ n
∞,b = lima→∞ θn

a,b,
where (a, b) ∈ C(n), still obeys the subadditivity relation (3.19) and, in particular, the half-space
surface tension τh(n) is well defined by the limit

e−τh(n) = lim
b→∞

lim
(a,b)∈C(n)

a→∞
(θn

a,b)
1/b. (3.21)

Moreover, θ n
∞,b ≥ θn

a,b for all a and b such that (a, b) ∈ C(n) and, therefore, τh(n) ≤ �(n). Our
goal is to demonstrate that τh(n) = �(n) and that the half-space surface tension τh(n) equals the
full space surface tension τ(n).

Let ε > 0. Then there is a b� such that θ n
∞,b� ≥ e−b�(τh(n)+ε). However, since θ n

∞,b� simply equals
the limit of θ n

a,b� as a → ∞, there is an a� such that θ n
a�,b� ≥ e−b�(τh(n)+2ε). Thence �(n) ≤ τh(n)

and the equality of τh(n) and �(n) follows. To remove the half-space constraint, consider the
analogue of the previously defined events. Let x and y be related to Rn

a,b as in the definition of
event Bn

a,b and let Dn
a,b denote the union of Rn

a,b and its reflection through the line joining x and y.
Let

ρn
a,b = P w,β

FK

({x ←→
Dn

a,b

y}). (3.22)

Reasoning identical to that employed thus far yields

e−τ(n) = lim
b→∞

lim
a→∞

(ρn
a,b)

1/b = lim
a→∞

lim
b→∞

(ρn
a,b)

1/b, (3.23)

where we tacitly assume (a, b) ∈ C(n) for the production of both limits. Now, obviously, ρ n
a,b ≥

θn
a,b and hence τ(n) ≤ τh(n). To derive the opposite inequality, we note that for each a ∈ A(n),

there is a g(a) > 0 such that

θn
2a,b ≥ g(a)ρn

a,b, (a, b) ∈ C(n). (3.24)

Indeed, the event giving rise to θ n
2a,b can certainly be achieved by connecting the bottom corners

of Rn
2a,b directly to the middle points and then connecting the middle points on the opposite a-

sides of Rn
2a,b. Then (3.24) follows by FKG. (To get that g(a) > 0, we also used that β > 0.)

Taking the 1/b-th power of both sides of (3.24) and letting b → ∞ followed by a → ∞ we arrive
at �(n) = τh(n) = τ(n) as promised.

To finish the proof, we must account for the effects of finite volume. Consider the event Fn
a,b =

{∂Rn
a,b ↔ ∂ΛL}. Should Fn

a,b not occur, a vacant ring separates Rn
a,b from ∂ΛL and, using fairly

standard arguments, we have

P free,β
L,FK (Bn

a,b) ≥ P w,β
FK

(Bn
a,b

∣∣(Fn
a,b)

c
)
. (3.25)

On the other hand, by Lemma 3.3, we have

P w,β
FK (Fn

a,b) ≤ P w,β
L,FK(Fn

a,b) ≤ 8L(a + b) e− dist(∂Rn
a,b,∂ΛL)/ξ. (3.26)
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Thus if the distance between ∂Rn
a,b and ∂ΛL exceeds a large multiple of bL + log L, the dominant

contribution to P w,β
FK (Bn

a,b) comes from P w,β
FK (Bn

a,b

∣∣(Fn
a,b)

c). Using (3.25), the claim follows. �

3.2.3 Corona estimates. We recall the “corona” regions K
I
t,r–K

III
t,r associated with some given

polygon P. In addition, we will also need to consider the collection of dual sites K∗II
t,r = K II

t,r∩(Z2)∗,
where (Z2)∗ is the lattice dual to Z2. (This differs slightly from the graph dual to KII

t,r by some
boundary sites.) In the context of the random cluster model (and its dual) we will consider three
events: The first event, to be denoted E I

t,r, takes place in KI
t,r and is defined by

E I
t,r =

{
ω ∈ Ω: there is a circuit of occupied bonds in K

I
t,r surrounding the origin

}
. (3.27)

The event E III
t,r is defined similarly except that the circuit takes place in the region KIII

t,r. Finally, one
more circuit, this time a dual circuit in the region KII∗

t,r. We define

E II∗
t,r =

{
ω ∈ Ω: there is a dual circuit of vacant bonds in K

∗II
t,r surrounding the origin

}
. (3.28)

As we will see in the proof of Lemma 3.2, the event E I
t,r∩E II∗

t,r ∩E III
t,r more or less implies the desired

event Et,r. The desired lower bound will then be an immediate consequence of the following
lemma:

Lemma 3.5 Let β > βc and let P be as in Lemma 3.2. For any sequences (tL) and (rL) satisfying
(3.2), there is a sequence (ε′′L) such that ε′′L → 0 and, for all L,

P w,β
L,FK

(E I
tL,rL

∩ E II∗
tL,rL

∩ E III
tL,rL

) ≥ exp
{−tLWβ(P)(1 + ε′′L)

}
. (3.29)

Proof. In the course of this proof, let us abbreviate E I
L = E I

tL,rL
, and similarly for E II∗

L and E III
L ,

as well as KI
L, K∗II

L , and KIII
L . We will start with an estimate for P w,β

L,FK(E II∗
L ), which is in any case

the central ingredient of this lemma. Let T be the smallest integer T ≥ 2 such that the polygon P
magnified by T has all vertices on Z2. Let uL = T �(tL + rL)/T � + T and let x1, . . . , xN be
the vertices of the polygon P magnified by uL. Let x∗

1, . . . , x
∗
N be the corresponding vertices of

the polygon P magnified by uL and translated by (− 1
2
,−1

2
). Notice that (once tL and rL are

large enough) the sites x∗
1, . . . , x

∗
N lie inside the “corona” K∗II

L . We use ni to denote the unit vector
constituting the outer normal to the side between x∗

i+1 and x∗
i (where x∗

N+1 is identified with x∗
1). By

our construction, x1, . . . , xN ∈ Z2, x∗
1, . . . , x

∗
N ∈ (Z2)∗ and ni have rationally related components.

For i = 1, . . . , N , let us consider the rectangles Rni
ai,bi

with the base coinciding with the line
between x∗

i and x∗
i+1. Here ai is the largest possible number such that (ai, bi) ∈ C(ni) and Rni

ai,bi
⊂

K∗II
L . We remark that all (ai) and (bi) have L-dependence which is notationally suppressed and that

these tend to infinity as L → ∞. In particular, the bi’s scale with uL. Let us denote

bi = lim
L→∞

bi

tL
, i = 1, . . . , N, (3.30)

where the limit exists by the construction of bi’s and where we noted that tL/uL → 1 as L →∞.
Let B∗

i be the event that there is a dual vacant connection x∗
i ←→ x∗

i+1 in the box Rni
ai,bi

and let Bi

be the corresponding “direct” event that there is a direct occupied path xi ←→ xi+1 contained
in (1

2
, 1

2
)-translate of Rni

ai,bi
. It is clear that the intersection

⋂N
i=1 B∗

i produces the event E II∗
L and that
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these events are FKG-correlated. Moreover, by duality, we have

P w,β
L,FK(B∗

i ) = P free,β∗
L−1,FK(Bi) (3.31)

(c.f., the paragraph before (3.15)). Now we are perfectly positioned to apply Lemma 3.4: Using
FKG, the scaling relation (3.30), and the fact that also the aj’s tend to infinity by our construction,
we have as a consequence of the above-mentioned lemma that

lim
L→∞

P w,β
L,FK

(E II∗
L

)1/tL = exp
{
−

N∑
j=1

bjτβ(nj)
}

. (3.32)

The remainder of the proof concerns the estimate of the probability P w,β
L,FK(E I

L ∩ E III
L |E II∗

L ). We
claim that this conditional probability tends to one as L → ∞. First, as a worst-case scenario,
consider the event V II∗

L that all bonds in K∗II
L are vacant. By monotonicity in boundary conditions

and the strong FKG property of P w,β
L,FK it is seen that

P w,β
L,FK

(E I
L ∩ E III

L

∣∣E II∗
L

) ≥ P w,β
L,FK

(E I
L ∩ E III

L

∣∣V II∗
L

)
. (3.33)

Under the condition that V II∗
L occurs, E I

L and E III
L are independent and we may treat them sepa-

rately. The arguments are virtually identical for both events, so we need only be explicit about
P w,β

L,FK(E I
L|V II∗

L ).
Let �L be a maximal integer such that there is a circuit of dual cites, z∗

1 , . . . , z
∗
m, separating the

boundaries of KI
L with the property that, if Λ∗

�L
(z∗j ) is the translate of Λ∗

�L
by (the vector) z∗j , then

Λ∗
�L

(z∗j ) ⊂ KI
L. Note that lim infL→∞ �L/rL > 1/3. Now, for the event E I

L not to occur, there must
be a dual occupied path connecting some dual site on the outer boundary of KI

L to another on the
inner boundary and hence at least one z∗

j has to be connected to the boundary of its Λ∗
�L

(z∗j ) by a
path of dual occupied bonds. Using subadditivity of the probability measure, we find

1 − P w,β
L,FK

(E I
L

∣∣V II∗
L

) ≤ m∑
j=1

P w,β
L,FK

(
z∗j ←→ ∂Λ∗

�L
(z∗j )

∣∣V II∗
L

)
. (3.34)

Now, again invoking monotonicity in the boundary conditions, the probability of the above con-
nection events may be estimated from above by placing dual wired (i.e., direct free) boundary
conditions on Λ∗

�L
(z∗j ). But then, by duality, we have exactly the event which is the subject of

Lemma 3.3. Explicitly,

P w,β
L,FK

(
z∗j ←→ ∂Λ∗

�L
(z∗j )

∣∣V II∗
L

) ≤ P w,β∗
�L,FK

(
0 ←→ ∂Λ�L

)
(3.35)

holds for all j = 1, . . . , m, and the bound in (3.16) can be applied. Now the number of sites z∗
j

which comprise the circuit does not exceed a multiple of tL. Thus, for some constant C indepen-
dent of L we have

P w,β
L,FK

(E I
L

∣∣V II∗
L

) ≥ 1 − C�LtLe−�L/ξ. (3.36)

By the condition stated in (3.2), the fact that rL ≥ �L ≥ rL/3 for sufficiently large L, and the
observation that ξ−1 = τmin, the desired result for E I

L follows. Similarly for E III
L . �

Proof of Lemma 3.2. We make liberal use of the correspondence between the graphical configura-
tions ω and (sets of) spin configurations as described, e.g., in [2, 10, 27]. Each connected cluster
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in ω represents the spin configurations in which all sites of the cluster have spins of the same type.
Thus, if E I

L ∩ E II∗
L ∩ E III

L occurs, then the inner circuit of occupied bonds in KI
L forces the spins on

these sites to be of the same type. Since these are disconnected from the boundary of ΛL by the
dual vacant circuit in K∗II

L , with probability one-half, all spins on the circuit are minus. Similarly,
the outer circuit of bonds in K

III
L is plus-type with probability one if it is connected to ∂ΛL and with

probability 1/2 otherwise. Thus, P +,β
L (EtL,rL

|E I
L ∩ E II∗

L ∩ E III
L ) is certainly bigger than 1/4, and the

claim follows using Lemma 3.5. �

4. ABSENCE OF INTERMEDIATE CONTOUR SIZES

4.1 Statement and outline.

The goal of this section is to prove that, with probability tending to one as L → ∞, there will be
no contours with a diameter between the scales of log L and

√
vL in the “canonical” ensemble of

the Ising model in volume ΛL. This result is by far the most difficult part of the proof of our main
results stated in Section 1.3.

We start with a standard notion from contour theory. Let Γ(σ) denote the set of all contours of
a configuration σ in ΛL with plus boundary condition. Applying the rounding rule, contours are
self-avoiding simple curves in R2. Recall that Γs(σ) is the set of contours of σ that have a non-
trivial s-skeleton. We say that γ ∈ Γ(σ) is an external contour, if it is not surrounded by any other
contour from Γ. We will use Γext

s (σ) to denote the set of external contours of Γs(σ). (We remark
that Γext

s (σ), namely the external contours of Γ(σ) which are big enough to have an s-skeleton,
coincides exactly with the set of external contours of the collection Γs(σ).)

Using this notation, the event Aκ,s,L from Theorem 1.2 is best described via its complement:

Ac
κ,s,L =

{
σ : ∃γ ∈ Γext

s (σ), diam γ ≤ κ
√

vL

}
. (4.1)

The relevant claim is then restated as follows:

Theorem 4.1 Let β > βc and let (vL) be a sequence of positive numbers that make m�|ΛL| −
2m� vL an allowed value of ML for all L. Suppose the limit ∆ in (1.10) obeys ∆ ∈ (0,∞). For
each c0 > 0 there exist κ > 0, K0 < ∞ and L0 < ∞ such that if K ≥ K0, L ≥ L0 and
s = K log L, then

P+,β
L

(Ac
κ,s,L

∣∣ML = m�|ΛL| − 2m� vL

) ≤ L−c0 (4.2)

Let s = K log L be a scale function and recall that a contour γ is s-large if γ ∈ Γs(σ). For κ >
0, a contour γ large enough to be an s-large contour but satisfying diam γ ≤ κ

√
vL will be called

a κ-intermediate contour. Thus, Theorem 4.1 shows that, in the canonical ensemble with the
magnetization fixed to m�|ΛL| − 2m� vL, there are no κ-intermediate contours with probability
tending to one as L tends to infinity. This statement, which is of interest in its own right, reduces
the proof of our main result to a straightforward application of isoperimetric inequalities for the
Wulff functional as formulated in Lemma 2.8.
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Remark 9. The reason why a power of L appears on the right-hand side is because we only demand
the absence of contours with sizes over K log L. Indeed, for a general s, the right-hand side of
(4.2) could be replaced by e−αs for some constant α > 0. In particular, the decay can be made
substantially faster by easing the lower limit of what we chose to call an intermediate size contour.
Finally, we note that L0 in Theorem 4.1 depends not only on β, ∆, and c0, but also on how fast the
limit v

3/2
L /|ΛL| is achieved.

The proof of Theorem 4.1 will require some preparations. In particular, we will need to esti-
mate the (conditional) probability of five highly unprobable events that we would like to exclude
explicitly from the further considerations. All five events are defined with reference to a positive
number κ which, more or less, is the same κ that appears in Theorem 4.1.

The first event, R1
κ,s,L, collects the configurations for which the combined length of all s-large

contours in ΛL exceeds κ−1s
√

vL. These configurations need to be a priori excluded because all
of the crucial Gaussian estimates from Section 2.3 can only be applied to regions with a moderate
surface-to-volume ratio. Next, we show that one can ignore configurations whose large contours
occupy too big volume. This is the basis of the event R2

κ,s,L. The remaining three events concern
the magnetization deficit in two random subsets of ΛL: A set Int◦ ⊂ V(Γext

s (σ)) of sites enclosed
by an s-large contour and a set Ext◦ of sites outside all s-large contours. The precise definition of
these sets follows in Section 4.2. The respective events are:

(3) The event R3
κ,s,L that MInt◦ ≤ −m�|Int◦| − κ

−1sv
3/4
L .

(4) The event R4
κ,s,L that MExt◦ ≥ m�|Ext◦| − 2κm�vL.

(5) The event R5
κ,s,L that MExt◦ ≤ m�|Ext◦| − 2(1 + κ−1)m�vL.

By choosing κ sufficiently small, the events R1, . . . ,R5 will be shown to have a probability van-
ishing exponentially fast with

√
vL. These estimates are the content of Lemma 4.2 and Lem-

mas 4.6-4.8.
Once the preparatory statements have been proven, we consider a rather extreme version of the

restricted contour ensemble, namely, one in which no contour that is larger than κ-intermediate is
allowed to appear. We show, in a rather difficult Lemma 4.9, that despite this restriction, bounds
similar to those of (4.2) still hold. The final step—the proof of Theorem 4.1—is now achieved
by conditioning on the location(s) of the large contour(s), which by the “R-lemmas” are typically
not too big and not too rough. By definition, the exterior region is now in the restricted ensemble
featured in Lemma 4.9 and the result derived therein allows a relatively easy endgame.

Throughout Sections 4.2-4.4 we will let β > βc be fixed and let (vL) be a sequence of positive
numbers such that m�|ΛL|−2m� vL is an allowed value of ML for all L. Moreover, we will assume
that (vL) is such that the limit ∆ in (1.10) exists with ∆ ∈ (0,∞).

4.2 Contour length and volume.

In this section we will prepare the grounds for the proof of Theorem 4.1. In particular, we derive
rather crude estimates on the total length of large contours and the volume inside and outside large
external contours. These results come as Lemmas 4.2 and 4.4 below.
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4.2.1 Total contour length. We begin by estimating the combined length of large contours. Let s
be a scale function and, for any κ > 0, let R1

κ,s,L be the event

R1
κ,s,L =

{
σ :

∑
γ∈Γs(σ)

|γ| ≥ κ
−1s

√
vL

}
. (4.3)

The probability of event R1
κ,s,L is then estimated as follows:

Lemma 4.2 For each c1 > 0 there exist κ0 > 0, K0 < ∞ and L0 < ∞ such that

P+,β
L

(R1
κ,s,L

∣∣ML = m� |ΛL| − 2m� vL

) ≤ e−c1
√

vL (4.4)

holds for all κ ≤ κ0, K ≥ K0, L ≥ L0, and s = K log L.

Proof. Let K0 be the quantity K0(
1
2
, β) from Lemma 2.5 and let us recall that τmin denotes the

minimal value of the surface tension. We claim that it suffices to show that, for all c ′1 > 0 and an
appropriate choice of κ, the bound

P+,β
L (R1

κ,s,L) ≤ e−c′1
√

vL (4.5)

holds true once L is sufficiently large. Indeed, if (4.5) is established, we just choose c ′1 so large
that the difference c′1 − c1 exceeds the rate constant from the lower bound in Theorem 3.1 and the
estimate (4.4) immediately follows.

In order to prove (4.5), fix c′1 > 0 and let κ
−1
0 = 2g1c

′
1/τmin, where g1 is as in (2.9). Let K ≥ K0,

κ ≤ κ0 and s = K log L. We claim that if σ ∈ R1
κ,s,L and S is a collection of s-skeletons such

that S ∼ σ, then (2.9) and (2.11) force

κ
−1s

√
vL ≤

∑
γ∈Γs(σ)

|γ| ≤ g1s
∑
S∈S

∣∣P(S)
∣∣ ≤ g1sτ

−1
minWβ(S). (4.6)

Hence, for each σ ∈ R1
κ,s,L there is at least one S such that S ∼ σ and Wβ(S) ≥ 2c′1

√
vL. By

Corollary 2.6 with κ = 2c′1
√

vL and α = 1
2
, and our choice of K0, (4.5) follows. �

4.2.2 Interiors and exteriors. Given a scale function s and a configuration σ, let Γext
s (σ) be the

set of external contours in Γs(σ). (Note that these contours will also be external in the set of all
contours of σ.) Define Int = Ints,L(σ) to be the set of all sites in ΛL enclosed by some γ ∈ Γext

s (σ)
and let Ext = Exts,L(σ) be the complement of Int, i.e., Ext = ΛL \ Int.

Given a set of external contours Γ, we claim that under the condition that Γext
s (σ) = Γ, the

measure P +,β
L is a product of independent measures on Ext and Int. A coarse look might suggest

a product of plus-boundary condition measure on Ext and the minus measure on Int. Indeed, all
spins in Ext up against a piece of Γ are necessarily pluses and similarly all spins on the Int sides
of these contours are minuses. But this is not quite the end of the story, two small points are in
order: First, we have invoked a rounding rule. Thus, for example, certain spins in Ext (at some
corners but not up against the contours) are forced to be plus otherwise the rounding rule would
have drawn the contour differently. On the other hand, some corner spins are permitted either
sign because the rounding rule would separate any such resulting contour. Fortunately, the upshot
of these “rounding anomalies” is only to force a few additional minus spins in Int and plus spins
in Ext than would appear from a naive look at Γ.
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To make the aforementioned observations notationally apparent, we define Int◦ ⊂ Int to be the
set of sites that can be flipped without changing Γ and similarly for Ext. We thus have σx = −1
for all x ∈ Int \ Int◦ and σx = +1 for all x ∈ Ext \Ext◦. Explicitly, there are a few more boundary
spins than one might have thought, but they are always of the correct type. Thus, clearly, although
rather trivially, the measure P +,β

L (·|Γext
s (σ) = Γ) restricted to Int is simply the measure in Int with

minus boundary conditions. The same measure on Ext is not quite the corresponding plus-measure
due to the condition that Γ constitutes all the external contours visible on the scale s. Thus, beyond
the scale s in Ext, we must see. . . no contours. But this is precisely the definition of the restricted
ensemble.

We conclude that the conditional measure splits on Int and Ext into independent measures that
are well understood. Explicitly, if A is an event depending only on the spins in Int◦ and B is an
event depending only on the spins in Ext◦, then

P+,β
L

(A∩ B∣∣Γext
s (σ) = Γ

)
= P−,β

Int◦ (A)P+,β,s
Ext◦ (B). (4.7)

This observation will be crucial for our estimates in the next section.
Next we will notice that the number of sites associated with the contours can be easily bounded

in terms of the total length of Γ:

Lemma 4.3 There exists a geometrical constant g4 < ∞ such that the following is true: If Γ is a
set of external contours and Int◦ and Ext◦ are as defined above, then

|ΛL \ (Int◦ ∪ Ext◦)| ≤ g4

∑
γ∈Γ

|γ|. (4.8)

Proof. Each site from ΛL \ (Int◦∪Ext◦) is within some (Euclidean) distance from a dual lattice site
x∗ ∈ (Z2)∗ such that some contour γ ∈ Γ passes through x∗. On the other hand, the number of dual
lattice sites x∗ visited by contours from Γ does not exceed twice the total length of all contours in
Γ. From here the existence of a g4 satisfying (4.8) follows. �

The definition of the event R1
κ,s,L gives us the following easy bounds:

Lemma 4.4 Let g4 be as in Lemma 4.3. Let σ �∈ R1
κ,s,L and let the sets Int = Ints,L(σ) and Int◦ =

Int◦s,L(σ) be as above. Then we have the bounds

|∂Int◦| ≤ g4κ
−1s

√
vL and |∂Ext◦| ≤ g4κ

−1s
√

vL (4.9)

and
|Int◦| ≤ |Int| ≤ g2

4κ
−2s2vL. (4.10)

Proof. The bound (4.9) is an immediate consequence of the estimate |∂Int◦| ≤ g4

∑
γ∈Γs(σ) |γ| and

the fact that σ �∈ R1
κ,s,L. The other bound, (4.10), then follows by the inclusion ∂Int ∈ Ext \ Ext◦,

the inequality |Ext \ Ext◦| ≤ g4

∑
γ∈Γs(σ) |γ| and the isoperimetric inequality |Λ| ≤ 1

16
|∂Λ|2 valid

for any Λ ⊂ R2 that is a finite union of closed unit squares (see, e.g., Lemma A.1 in [14]). �

4.2.3 Volume of large contours. The preceding lemma asserts that, for typical configurations,
the interior of large contours is not too big. Actually, one can be a bit more precise. Namely,
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introducing
R2

κ,s,L =
{
σ : |V (Γext

s (σ))| ≥ (1 − κ)vL

}
, (4.11)

we will show in the next lemma that, whenever κ is sufficiently small, the conditional probabil-
ity of R2

κ,s,L given the ML’s of interest is still exponentially small in
√

vL. However, unlike in
Lemma 4.2 (and Lemma 4.6 below), here the constant multiplying

√
vL in the exponent can no

longer be made arbitrarily large.

Lemma 4.5 There exist constants c2 > 0, κ0 > 0, K0 < ∞, and L0 < ∞ such that

P+,β
L

(R2
κ,s,L

∣∣ML = m� |ΛL| − 2m� vL

) ≤ e−c2
√

vL (4.12)

holds for all K ≥ K0, κ ∈ (0, κ0], L ≥ L0, and s = K log L.

Proof. Let Φ�
∆ be as defined in in (2.2). Clearly, it suffices to prove the statement for some κ > 0,

so let κ ∈ (0, 1) be such that

c2 = w1

[
(1 − κ)2 − (Φ�

∆ + 2κ)
]

> 0. (4.13)

(This is possible because Φ�
∆ < 1 for all ∆ < ∞.) Let L0 be so large that εL from Theorem 3.1 sat-

isfies εL ≤ κ for all L ≥ L0. Let K0 be chosen to exceed the quantity K0(κ, β) from Lemma 2.5.
Fix K ≥ K0, L ≥ L0, and s = K log L. Let now σ ∈ R2

κ,s,L and let us temporarily abbrevi-
ate Γ = Γs(σ) and Γ′ = Γext

s (σ). Let S be any s-skeleton such that S ∼ Γ, and let S′ be the set
of skeletons in S corresponding to Γ′. First we note that we may as well assume that, for some
fixed B > 0 to be specified later ∑

S∈S′

∣∣P(S)
∣∣ ≤ B

τmin

√
vL. (4.14)

Indeed, the contribution of the configurations violating this bound can be directly estimated, com-
bining Corollary 2.6 with α = κ and (2.11), by e−(1−κ)B

√
vL . For configurations satisfying (4.14),

Lemma 2.3 in turn implies∣∣V (S′)
∣∣ ≥ ∣∣V (Γ′)

∣∣− g3s
∑
S∈S′

∣∣P(S)
∣∣ ≥ (1 − κ)2vL, (4.15)

provided L is sufficiently large to ensure that g3K
log L√

vL

B
τmin

� 1. As a consequence of this and the
Wulff variational problem,Wβ(S′) ≥ (1−κ)

√
vLw1. Since S ⊃ S′, we have Wβ(S) ≥ Wβ(S′)

and thus for every σ ∈ R2
κ,s,L satisfying (4.14) there is a collection S of s-skeletons such that

S ∼ σ and Wβ(S) ≥ (1 − κ)
√

vLw1. Using, once more, Corollary 2.6 with α = κ and our
choice of K0, we have

P+,β
L (R2

κ,s,L) ≤ e−(1−κ)2w1
√

vL + e−(1−κ)B
√

vL . (4.16)

Letting B = (1 − κ)w1, the right-hand side beats the lower bound P +,β
L (ML = m� |ΛL| −

2m� vL) ≥ exp{−w1
√

vL(Φ�
∆ + κ)} from Theorem 3.1 and our choice of L0 and κ by ex-

actly 2e−(c2+κw1)
√

vL . Using the leeway in the exponent to absorb the extra factor of 2 (which
may require that we further increase L0), the estimate (4.12) follows. �
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4.3 Magnetization deficit due to large contours.

In this section we will provide the necessary control over the magnetization deficit inside and
outside large contours. The relevant statements come as Lemmas 4.6-4.8.

4.3.1 Magnetization inside. Our next claim concerns the total magnetization inside the large
contours in ΛL. Recalling the definition of Int◦, we reintroduce the event

R3
κ,s,L =

{
σ : MInt◦ ≤ −m� |Int◦| − κ

−1sv
3/4
L

}
. (4.17)

For the probability of R3
κ,s,L we have the following bound:

Lemma 4.6 For each c3 > 0 there exist κ0 > 0, K0 < ∞ and L0 < ∞ such that

P+,β
L

(R3
κ,s,L

∣∣ML = m� |ΛL| − 2m� vL

) ≤ e−c3
√

vL (4.18)

for any κ ≤ κ0, K ≥ K0, L ≥ L0, and s = K log L.

Proof. Fix a c3 > 0. By Lemma 4.2, there are ϑ < ∞, K0 < ∞ and L0 < ∞ such that
P+,β

L (R1
ϑ,s,L|ML = m� |ΛL| − 2m� vL) ≤ e−2c3

√
vL whenever s = K log L and L ≥ L0. Let Γ =

{Γext
s (σ) : σ �∈ R1

ϑ,s,L}. Recalling the lower bound in Theorem 3.1, it is clearly sufficient to prove
that for some c′3 > 0 large enough,

P+,β
L

(R3
κ,s,L

∣∣Γext
s (σ) = Γ

) ≤ 2e−c′3
√

vL (4.19)

holds for all Γ ∈ Γ and all L sufficiently large provided κ is sufficiently small and that the K
in s = K log L is sufficiently large. (Note that, for (4.19) to imply (4.18), c′3 will have to exceed c3

by a β-dependent factor. The factor of “2” was put in for later convenience.)
Pick a Γ ∈ Γ. Since R3

κ,s,L depends only on the configuration in Int◦, (4.7) implies

P+,β
L

(R3
κ,s,L

∣∣Γext
s (σ) = Γ

)
= P−,β

Int◦
(R3

κ,s,L

)
. (4.20)

In order to apply Lemma 2.10, we need to compare −m�|Int◦| with the actual average magne-
tization of the Ising model in volume Int◦ with minus boundary condition. By (4.10) and (4.9),
we have |Int◦| ≤ g2

4ϑ
−2s2vL and |∂Int◦| ≤ g4ϑ

−1s
√

vL. Then Lemma 2.9 and (2.37) imply the
existence of constants α1 = α1(β) < ∞ and α2 = α2(β) > 0 such that∣∣〈MInt◦〉−,β

Int◦ + m�|Int◦|∣∣ ≤ α1

(
g4ϑ

−1s
√

vL + g2
4s

2ϑ−2vLe−α2s). (4.21)

Now, since s = K log L, for K sufficiently large the right-hand side does not exceed 2α1g4ϑ
−1s

√
vL.

Thus, if L is so large that the latter does not exceed 1
2
κ−1sv

3/4
L (i.e., if 4α1g4ϑ

−1s
√

vL ≤ κ−1sv
3/4
L ),

then σ ∈ R3
κ,s,L and Γext

s (σ) = Γ imply

MInt◦ ≤ 〈MInt◦〉−,β,s
Int◦ − 1

2
κ

−1sv
3/4
L . (4.22)

Let now κ0 > 0 be such that c′3 ≤ ϑ2(8κ2
0χ)−1, where χ = χ(β) is the susceptibility, and

let κ ≤ κ0. By Lemma 2.10, equation (2.41), and the fact that |Int◦| ≤ g2
4ϑ

−2s2vL, the right-hand
side of (4.20) is bounded by 2e−c′3

√
vL . The bound (4.19) is thus proved. �
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4.3.2 Magnetization outside. Recall the definition of Ext◦. Our first concern here is an upper
bound on the total magnetization in Ext◦. Let R4

κ,s,L be the event

R4
κ,s,L =

{
σ : MExt◦ ≥ m� |Ext◦| − 2κm� vL

}
. (4.23)

To bound the conditional probability of this event is easy; we will actually show that it can be
included into the preceding ones for configurations contained in ML = {σ : ML = m�|ΛL| −
2m� vL}.
Lemma 4.7 For any κ > 0 and s < ∞, we have

R4
κ/2,s,L ∩ML ⊂ (R1

κ,s,L ∪R2
κ,s,L ∪R3

κ,s,L

) ∩ML (4.24)

for any L large enough.

Proof. Let κ and K be fixed. Let us abbreviate Int◦ = Int◦(σ) and Ext◦ = Ext◦(σ) for a con-
figuration σ which we will take to be in (R1

κ,s,L)c ∩ (R2
κ,s,L)c ∩ (R3

κ,s,L)c. First, we note that
if σ �∈ R1

κ,s,L, we can use Lemmas 4.3 and 4.4 to get

|ΛL| −
(|Ext◦|+ |Int◦|) ≤ g4κ

−1s
√

vL (4.25)

and hence
|ML −MExt◦ − MInt◦| ≤ g4κ

−1s
√

vL. (4.26)

Now, since the total magnetization is held fixed, i.e., σ ∈ ML, we have ML = m� |ΛL| − 2m� vL

and by a simple calculation we get

MExt◦ ≤ ML − MInt◦ + g4κ
−1s

√
vL =

= m� (|ΛL| − |Int◦|) −MInt◦ + m� |Int◦| − 2m� vL + g4κ
−1s

√
vL. (4.27)

At the expense of another factor of g4κ
−1s

√
vL, we can replace |ΛL| − |Int◦| with |Ext◦|. Finally,

for σ �∈ R2
κ,s,L ∪R3

κ,s,L we will use the bounds

|Int◦| ≤ |V (Γext
s (σ))| ≤ (1 − κ)vL (4.28)

and
MInt◦ ≥ −m� |Int◦| − κ

−1sv
3/4
L (4.29)

in succession to arrive at

MExt◦ ≤ m� |Ext◦| − 2m�
κvL + 2g4κ

−1s
√

vL + κ
−1sv

3/4
L . (4.30)

From here we see that σ �∈ R4
κ/2,s,L once L is so large that the remaining terms on the right-hand

side are swamped by −m� κvL. �
Our second task concerning the magnetization outside the large external contours is to show

that MExt◦ − m�|Ext◦| will not get substantially below the deficit value forced in by the condition
on overall magnetization. (Note, however, that we have to allow for the possibility that Ext◦ = ΛL

in which case the exterior takes the entire deficit.) Let κ > 0 and consider the event

R5
κ,s,L =

{
σ : MExt◦ ≤ m� |Ext◦| − 2m� (1 + κ

−1)vL

}
. (4.31)

The probability of R5
κ,s,L is bounded as follows:
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Lemma 4.8 For any c5 > 0 there exist constants κ0 > 0 , K0 < ∞ and L0 < ∞ such that

P+,β
L

(R5
κ,s,L

∣∣ML = m� |ΛL| − 2m� vL

) ≤ e−c5
√

vL (4.32)

for all K ≥ K0, κ ≤ κ0 and L ≥ L0, and s = K log L.

Proof. With Φ�
∆ as in (2.2) and c5 fixed, choose κ0 so that

c5 ≤ w1

2

[
∆ +

∆

3κ0

− Φ�
∆

]
. (4.33)

For this κ0 > 0, let L0 be so large that for all L ≥ L0, the finite-L expression on the right-hand
side of (1.10) exceeds ∆(1+ 1

2κ0
)−1 and, at the same time, εL from Theorem 3.1 is bounded by ∆

6κ0
.

First, we can restrict ourselves to the complement of R1
ϑ,s,L with ϑ so small that the correspond-

ing c1 exceeds 2c5. Once again using Lemma 2.9, we get∣∣〈MExt◦〉+,β
Ext◦ − m�|Ext◦|∣∣ ≤ α1

(
g4ϑ

−1s
√

vL + 4L + L4e−α2s). (4.34)

Now, since s = K log L and vL ∼ L4/3, for K sufficiently large the right-hand side does not
exceed 8α1L. Thus, if L is so large that the latter does not exceed m� vLκ

−1
0 , it suffices to prove

the corresponding bound for the event

R =
{
σ : MExt◦ ≤ 〈MExt◦〉+,β

Ext◦ −m� (2 + κ
−1
0 )vL

}
. (4.35)

Clearly, R depends only on the configuration in Ext◦, and thus (4.7) makes the estimates in
Lemma 2.11 available. We get

P+,β
L

(R∣∣Γext
s (σ) = Γ

) ≤ C exp
{
−2

(m�vL)2

χ|Ext◦|
(
1 +

1

2κ0

)2}

≤ C exp
{
−w1∆

(
1 +

1

2κ0

)√
vL

}
.

(4.36)

Here C = C(β) < ∞ is independent of Γ and the second inequality follows from our assumption
about L0. Now, using (4.33) and the fact that εL ≤ ∆

6κ0
, we derive the bound

P+,β
L

(R∣∣Γext
s (σ) = Γ

) ≤ Ce−w1
√

vL(Φ�
∆+εL)−2c5

√
vL . (4.37)

The claim then follows by comparing the right-hand side with the lower bound in Theorem 3.1 and
summing over all Γ with the above properties. �

4.4 Proof of Theorem 4.1.

The ultimate goal of this section is to rule out the occurrence of intermediate contours. As a first
step we derive an upper bound on the probability of the occurrence of contours of intermediate
sizes in a contour ensemble constrained to not contain contours with diameters larger than κ

√
vL.

The relevant statement comes as Lemma 4.9. Once this lemma is established, we will give a proof
of Theorem 4.1.

4.4.1 A lemma for the restricted ensemble. Recall our notation P +,β,s′
Λ for the probability measure

in volume Λ ⊂ ΛL conditioned on the event that the contour diameters do not exceed s′. We will
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show that the occurrence of intermediate contours is improbable in P +,β,s′
Λ with s′ = κ

√
vL and

magnetization restricted to “reasonable” values. For any Λ ⊂ ΛL and any s > 0 and κ > 0, let

Ac
κ,s,Λ =

{
σ : there exists γ in Λ such that K log L ≤ diam γ ≤ κ

√
vL

}
. (4.38)

Then we have the following estimates:

Lemma 4.9 For any c6 > 0, ϕ0 > 1, and ϑ > 1, there exist κ0 ∈ (0, 1), K0 < ∞, and L0 < ∞,
such that for s = K log L, all κ ∈ (0, κ0], K ≥ K0, L ≥ L0, all Λ ⊂ ΛL satisfying the bounds

|Λ| ≥ ϑ−1L2 and |∂Λ| ≤ ϑL, (4.39)

and all ϕ ∈ [κ0, ϕ0] that make m� |Λ| − 2ϕm� vL an allowed value of MΛ, we have

P
+,β,κ

√
vL

Λ

(Ac
κ,s,Λ

∣∣MΛ = m� |Λ| − 2ϕm� vL

) ≤ L−c6. (4.40)

Proof. Notice that the event Ac
κ,s,Λ is monotone in s = K log L and thus it is sufficient to prove

the claim for only a fixed K (chosen suitably large). Fix a set Λ ⊂ Z2 satisfying (4.39) and let

MΛ(ϕ) =
{
σ : MΛ = m� |Λ| − 2ϕm� vL

}
. (4.41)

Let us define

δΛ = 〈MΛ〉+,β,s
Λ −m�|Λ| (4.42)

and note that, on MΛ(ϕ), we have MΛ = 〈MΛ〉+,β,s
Λ − δΛ − 2ϕm�vL.

The proof of (4.40) will be performed by writing the conditional probability as a quotient of
two probabilities with unconstrained contour sizes, and estimating separately the numerator and
the denominator. Let

E =
{
σ : ∀γ ∈ Γs(σ), diam γ ≤ κ

√
vL

}
(4.43)

and, using the shorthand A = Aκ,s,Λ, write

P
+,β,κ

√
vL

Λ

(Ac
∣∣MΛ(ϕ)

)
=

P+,β
Λ (Ac ∩MΛ(ϕ) ∩ E)

P+,β
Λ (MΛ(ϕ) ∩ E)

. (4.44)

As to the bound on the denominator, we restrict the contour sizes in Λ to s = K log L as in (3.5)
and apply Lemmas 2.11 and 2.7 with the result

P+,β
Λ (MΛ(ϕ) ∩ E) ≥ C1

L2
exp

{
−2

(m� vL)2

χ|Λ| ϕ2 + 2
m� ϕ vL

χ|Λ| δΛ

}
, (4.45)

where C1 = C1(β, ϑ, ϕ0) > 0. Here, we note that two distinct terms were incorporated into the
constant C1: First, a term proportional to δ2

Λ since, by Lemma 2.9 and (4.39), |δΛ| ≤ 2α1ϑL once K
is sufficiently large and thus |δΛ|2/|Λ| is bounded by a constant independent of L. Second, a term
that comes from the bound (2.47) yielding |Ωs

Λ(ϕvL + δΛ
2m� )| ≤ C2

(
K log L

L1/3 ∨ 1
)

with some C2 =
C2(β, ϑ, ϕ0) < ∞. (Notice that, to get a constant C1 independent of L, we have to choose L0 after
a choice of K is done.) Although the second term on the right-hand side of (4.45) is negligible
compared to the first one, its exact form will be needed to cancel an inconvenient contribution of
the complement of intermediate contours.
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In order to estimate the numerator, let Γ = {Γs(σ) : σ ∈ E , Γs(σ) �= ∅} be the set of all
collections of s-large contours that can possibly contribute to E . (We also demand that Γs(σ) �= ∅,
because on Ac there will be at least one s-large contour.) Then we have

P+,β
Λ

(Ac ∩MΛ(ϕ) ∩ E) ≤ ∑
Γ∈Γ

P+,β
Λ

(MΛ(ϕ)
∣∣Γs(σ) = Γ

)
P+,β

Λ

(
Γs(σ) = Γ

)
. (4.46)

Our strategy is to derive a bound on P +,β
Λ (MΛ(ϕ)|Γs(σ) = Γ) which is uniform in Γ ∈ Γ and to

estimate P +,β
Λ (Γs(σ) = Γ) using the skeleton upper bound.

Let Γ ∈ Γ and let S be an s-skeleton such that S ∼ Γ. We claim that, for some C ′ = C ′(β, ϑ) <
∞ and some η0 = η0(β, ϑ) < ∞, independent of Γ, S and L,

P+,β
Λ (MΛ(ϕ)|Γs(σ) = Γ)

P+,β
Λ (MΛ(ϕ) ∩ E)

≤ C ′L2eη0
√

κWβ(S) (4.47)

holds true. Indeed, let Γ′ be the abbreviation for the set of external contours in Γ and let S′

be the set of skeletons in S corresponding to Γ′. Recall the definition of Int and Int◦ and note
that V(Γ′) = Int and Wβ(S) ≥ Wβ(S′), since S ⊃ S′. Also note that, by (2.10) and (2.11) and
the fact that diam γ ≤ κ

√
vL for all γ ∈ Γ′, we have

|Int| ≤ g2κ
√

vL

∑
S∈S′

∣∣P(S)
∣∣ ≤ g2κτ−1

min

√
vL Wβ(S). (4.48)

This bound tells us that we might as well assume that |Int| ≤ √
κvL. Indeed, in the opposite

case, the bound (4.47) would directly follow by noting that (4.45) implies P +,β
L (MΛ(ϕ) ∩ E) ≥

CL−2e−η1
√

κWβ(S) with η1 given by

η1 = 2g2
(m� ϕ)2

χτmin

v
3/2
L

|Λ| . (4.49)

Notice that η1 is bounded uniformly in L by (4.39) and the fact that ∆ < ∞. A similar bound,
using (2.9) instead of (2.10), shows that also |∂Int| ≤ s

√
vL.

Thus, let us assume that |Int| ≤ √
κvL and |∂Int| ≤ s

√
vL hold true. In order for MΛ(ϕ) to

occur, the total magnetization in Λ should deviate from m� |Λ| by −2ϕm� vL, while the volume Int
can help the bulk only by at most −|Int|. More precisely, MExt◦ is forced to deviate from its mean
value 〈MExt◦〉+,β,s

Ext◦ by at least −2m�u where u is defined by

−2m�u = −2ϕm� vL − δExt◦ + 2|Int|, (4.50)

with δExt◦ as in (4.42). By the estimates |Int| ≤ √
κvL, |Ext◦| ≥ 1

2
ϑ−1L2, |∂Ext◦| ≤ 2ϑL, and u ≤

C3L
4/3 � L2/ log L, with C3 = C3(β, ϑ, ϕ0) (all these bounds hold for L sufficiently large—

in particular, to ensure that K
√

vL log L ≤ ϑL), we now have, once more, Lemma 2.11 at our
disposal. Thus,

P+,β
Λ

(MΛ(ϕ)
∣∣Γs(σ) = Γ

) ≤ C4 exp
{
−2

(m� vL)2

χ|Λ| ϕ2 + 2
m� ϕvL

χ|Λ|
(
δExt◦ − 2|Int|)}, (4.51)

where C4 = C4(β, ϑ, ϕ0) < ∞. Similarly as in (4.45), the constant C4 incorporates also the error
term Ωs

Ext◦(u). To compare the right-hand side of (4.51) and (4.45), we invoke the second part of
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Lemma 2.9 to note that, for K sufficiently large and some α1 = α1(β) < ∞,

δExt◦ − δΛ ≤ α1|Λ \ Ext◦|. (4.52)

Using (4.48) again, |Int| is bounded by a constant times κWβ(S) and the same holds for |Λ\Ext◦|.
Therefore, there is a constant η2 = η2(β, ϑ) < ∞ such that

2
m� ϕvL

χ|Λ|
(
δExt◦ − δΛ − 2|Int|) ≤ η2κWβ(S), (4.53)

holds true for all Γ ∈ Γ and their associated skeletons S. By combining this with (4.51) and
(4.45), the bound (4.47) is established with η0 = η1 ∨ η2, taking into account that κ ≤ 1.

With (4.47), the proof is easily concluded. Indeed, a straightforward application of the skeleton
bound to the second term on the right-hand side of (4.46) then shows that

P
+,β,κ

√
vL

Λ

(Ac
∣∣MΛ(ϕ)

) ≤ ∑
S�=∅

C ′L2e−(1−η0
√

κ)Wβ(S). (4.54)

Now, for κ sufficiently small, we have 1−η0

√
κ > 2/3. Then we can extract the term C ′e−

1
3
Wβ(S)

which, choosing the K in s = K log L sufficiently large, can be made less than L−2−c6 , for any c6

initially prescribed. Invoking Lemma 2.5, the remaining sum is then estimated by one. �

4.4.2 Absence of intermediate contours. Lemmas 4.2 and 4.5-4.9 finally put us in the position to
rule out the intermediate contours altogether.

Proof of Theorem 4.1. Recall that our goal is to prove (4.2), i.e., P +,β
L (Ac|ML) ≤ L−c0 . Pick

any c0 > 0 and κ0 < 1. Let K0 and L0 be chosen so that Lemmas 4.2, 4.5, 4.6, and 4.8 hold with
some c1, c2, c3, c5 > 0 for all κ ≤ 2κ0, K ≥ K0 and L ≥ L0. We also assume that L0 is chosen so
that Lemma 4.7 is valid for κ = 2κ0. We wish to restrict attention to configuration outside the sets
R1

κ0,s,L, R4
κ0,s,L and R5

κ0,s,L, but since R4
κ0,s,L is essentially included in R2

κ0,s,L and R3
κ0,s,L, we

might as well focus on the event Rc, where R =
⋃5

�=1 R�
κ0,s,L. Fix any κ ≤ κ0, let s = K log L

and let us introduce the shorthandA = Aκ,s,L. Appealing to the aforementioned lemmas, our goal
will be achieved if we establish the bound P +,β

L (Ac ∩Rc|ML) ≤ L−2c0 .
Let q = κ

√
vL and let Γ = {Γext

q (σ) : σ ∈ Rc} be the set of all collections of external contours
that can possibly arise from Rc. Fix Γ ∈ Γ and recall our notation Ext◦ for the exterior component
of ΛL induced by the contours in Γ. To prove (4.2), it suffices to show that, for all Γ ∈ Γ,

P+,β
L

(Ac ∩Rc ∩ML

∣∣Γext
q (σ) = Γ

) ≤ L−2c0P+,β
L

(ML

∣∣Γext
q (σ) = Γ

)
. (4.55)

Indeed, multiplying (4.55) by P +,β
L (Γq(σ) = Γ) and summing over all Γ ∈ Γ, we derive that

P+,β
L

(Ac ∩Rc ∩ML

) ≤ L−2c0P+,β
L (ML). (4.56)

Thence, P+,β
L (Ac ∩ Rc|ML) ≤ L−2c0 which, in the light of the bound P +,β

L (R|ML) ≤ 4e−c
√

vL

where c = min{c1, c2, c3, c5}, implies (4.2) once L is sufficiently large.
It remains to prove (4.55) for all Γ ∈ Γ. Let ϕ ≥ 0 be such that m� |Ext◦| − 2ϕm� vL is

an allowed value of MExt◦ and consider the corresponding event MExt◦(ϕ) (cf. (4.41)). Note
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that, by the restriction to the complements of R4
κ0,s,L and R5

κ0,s,L, we only need to consider ϕ ∈
[κ0, 1 + κ

−1
0 ]. We claim that, for all such allowed values of ϕ, we have

P+,β
L

(Ac
∣∣{Γext

q (σ) = Γ} ∩ML ∩MExt◦(ϕ)
)

= P
+,β,κ

√
vL

Ext◦
(Ac

∣∣MExt◦(ϕ)
)
. (4.57)

Indeed, given that Γext
q (σ) = Γ, the event A depends only on the configurations in Ext◦. More-

over, ML ∩MExt◦(ϕ) can be written as an intersection of MExt◦(ϕ), which also depend only on σ
in Ext◦, and the event {σ : MΛL\Ext◦ = m� (|ΛL| − |Ext◦|)− 2m� (1− ϕ)vL}, which depends only
on the configuration in Int◦. Thus, (4.57) follows from (4.7) and some elementary manipulations.

By the restriction to the complement of R1
κ0,s,L, we have |Ext◦| ≥ L2/2 and |∂Ext◦| ≤ 8L for

all Γ ∈ Γ. Choosing now c6 = 2c0 and then K0 and L0 (if necessary, even bigger than before)
so that Lemma 4.9 can be applied, the right-hand side of (4.57) can be bounded by L−c6 = L−2c0

uniformly in Γ ∈ Γ, provided κ is sufficiently small and L ≥ L0. Using (4.57), we thus have

P+,β
L

(Ac ∩Rc ∩ML ∩MExt◦(ϕ)
∣∣Γq(σ) = Γ

) ≤
≤ P +,β

L

(Ac
∣∣{Γext

q (σ) = Γ} ∩ML ∩MExt◦(ϕ)
)
P+,β

L

(ML ∩MExt◦(ϕ)
∣∣Γq(σ) = Γ

) ≤
≤ L−2c0P+,β

L

(ML ∩MExt◦(ϕ)
∣∣Γq(σ) = Γ

)
, (4.58)

for all ϕ for which m� |Ext◦| − 2ϕm� vL is an allowed value of MExt◦ . (In the cases when ϕ �∈
[κ0, 1 + κ

−1
0 ] we have Rc ∩MExt◦(ϕ) = ∅ and the left-hand side vanishes.) This implies (4.55) by

summing over all allowed values of ϕ. �

5. PROOF OF MAIN RESULTS

Having established the absence of intermediate-size contours, we are now in the position to prove
our main results.

Proof of Theorem 1.2. Fix a ζ > 0 and recall our notation ML = {σ : ML = m�|ΛL| − 2m� vL}.
Our goal is to estimate the conditional probability P +,β

L (Ac
κ,s,L ∪ Bc

ε,s,L|ML) by L−ζ . Let c0 > ζ
and note that, by Theorem 4.1, we have

P+,β
L (Ac

κ,s,L|ML) ≤ L−c0 , (5.1)

provided κ is sufficiently small and L sufficiently large. This means we can restrict our attention
to the event Bc

ε,s,L \ Ac
κ,s,L. Furthermore, we can use Lemmas 4.2, 4.5, 4.6, and 4.7 to exclude the

events R1
ϑ,s,L, R2

ϑ,s,L, R3
ϑ,s,L, and R4

ϑ,s,L, provided ϑ is sufficiently small. We therefore introduce
the event Eε,κ,ϑ defined by

Eε,κ,ϑ = Bc
ε,s,L \ (Ac

κ,s,L ∪R1
ϑ,s,L ∪R2

ϑ,s,L ∪R3
ϑ,s,L ∪R4

ϑ,s,L), (5.2)

where we have suppressed s = K log L and L from the notation.
On the basis of the aforementioned Lemmas, the proof of Theorem 1.2 will follow if we can

establish that for each κ > 0 and each ε > 0 there are K0 < ∞, ϑ > 0 and c7 > 0 such that

P+,β
L (Eε,κ,ϑ|ML) ≤ e−c7

√
vL (5.3)

whenever L is sufficiently large. The proof of (5.3) will be performed by conditioning on the
set of s-large exterior contours and applying separately the Gaussian estimates and the skeleton
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upper bound. The argument will be split into several cases, depending on which of the bounds
(1.14–1.16) constituting the event Bε,s,L fail to hold.

Let us write Eε,κ,ϑ as the disjoint union E 1
ε,κ,ϑ∪E2

ε,κ,ϑ, where E1
ε,κ,ϑ is the set of all configurations

on which one of (1.14) or (1.15) fail and where E 2
ε,κ,ϑ = Eε,κ,ϑ \ E1

ε,κ,ϑ. Let Γ = {Γext
s (σ) : σ ∈

Eε,κ,ϑ} be the set of all collections of exterior contours allowed by Eε,κ,ϑ. (Here s = K log L.)
Since Γs(σ) is non-empty for all σ contributing to Bc

ε,s,L, we have Γ �= ∅ for all Γ ∈ Γ. Let

λΓ = v−1
L |V (Γ)|. (5.4)

To apply the Gaussian estimate, we need the following upper bound on the magnetization in Ext◦.

Lemma 5.1 Let ε > 0, κ > 0 and ϑ > 0 and let the K in s = K log L be sufficiently large. Then
there exists a sequence (κL) with limL→∞ κL = 0 such that for both i = 1, 2, all Γ ∈ Γ and all
σ ∈ML ∩ E i

ε,κ,ϑ ∩ {Γext
s (σ) = Γ}, the magnetization MExt◦ = MExt◦s,L(σ)(σ) obeys the bound

MExt◦ ≤ 〈MExt◦〉+,β,s
Ext◦ − 2m� vL(1 − λΓ + εi − κL). (5.5)

Here ε1 = 0 and ε2 = ε/(2m�).

Proof. Recall the exact definition of Ext◦. The proof is similar in spirit to the reasoning (4.28–4.30).
First we will address the case of configurations in E 1

ε,κ,ϑ. Using the equality ML = m�|ΛL|−2m� vL

and our restriction to the complement of R1
ϑ,s,L, we have

ML ≤ m�|Ext◦| + m�|V (Γ)| − 2m�vL + g4ϑ
−1s

√
vL, (5.6)

where g4ϑ
−1s

√
vL bounds the volume of Ext \ Ext◦ according to Lemma 4.3. Next, in view of the

restriction to (R3
ϑ,s,L)c, we have

MV(Γ) ≥ −m�|V (Γ)| − ϑ−1sv
3/4
L − g4ϑ

−1s
√

vL. (5.7)

Finally, since MExt◦ ≤ ML − MV(Γ) + g4ϑ
−1s

√
vL and since (4.34) implies that m�|Ext◦| −

〈MExt◦〉+,β,s
Ext◦ can be bounded by 8α1L once K is sufficiently large, we have (5.5) with κL given

by

2m�κL = ϑ−1sv
−1/4
L + 3g4ϑ

−1sv
−1/2
L + 8α1Lv−1

L . (5.8)

Since vL ∼ L4/3, we have limL→∞ κL = 0 as claimed.
Next we will attend to the case of configurations from E 2

ε,κ,ϑ, for which the bound (1.16) must
fail. Since E2

ε,κ,ϑ is still a subset of (R3
ϑ,s,L)c, we still have the bound (5.7) at our disposal implying

that MV(Γ) ≥ −m�|V (Γ)| − εvL once L is sufficiently large. However, this means that the only
way (1.16) can fail is that, in fact, the lower bound

MV(Γ) ≥ −m�|V (Γ)|+ εvL (5.9)

holds. Substituting this stronger bound in the above derivation in the place of (5.7), the desired
estimate follows. �

With Lemma 5.1 in the hand, we are ready to start proving the bound (5.3). We begin with the
Gaussian estimate. By the restriction to the complement of R2

ϑ,s,L, we have the bound λΓ ≤ 1− ϑ

and thus 1−λΓ+εi−κL ≥ 0 once L is sufficiently large. Moreover, since we also discardedR1
ϑ,s,L,
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Lemma 2.11 for A = Ext◦ applies. Combining this with the observation (4.7) and the bound (5.5),
there exists a constant C < ∞ such that

P+,β
L

(ML ∩ E i
ε,κ,ϑ

∣∣Γext
s (σ) = Γ

) ≤ C exp

{
−2

(m� vL)2

χ|ΛL| (1 − λΓ + εi − κL)2

}
(5.10)

holds for all Γ ∈ Γ. Next we will estimate the probability that Γext
s (σ) = Γ. Let S be a collection

of skeletons corresponding to Γ. The skeleton upper bound in Lemma 2.4 along with the estimates
featured in Lemma 2.5 then yields

P+,β
L

(
Γext

s (σ) = Γ
) ≤ ∑

S′⊇S

e−Wβ(S′) ≤ C ′e−Wβ(S), (5.11)

where C ′ < ∞ and where S′ corresponds to the skeleton of a full set Γs(σ) with Γext
s (σ) = Γ.

To estimate the probability of ML ∩E i
ε,κ,ϑ ∩{Γext

s (σ) = Γ}, we will write Γ as the union of two
disjoint sets, Γ = Γ1 ∪ Γ2. Here

Γ1 =
{
Γ ∈ Γ : ∃S ∼ Γ, Wβ(S) ≤ w1

√
λΓvL(1 + εc−2)

}
, (5.12)

where c is the constant from Lemma 2.8, and Γ2 = Γ \ Γ1. First we will study the cases when
Γ ∈ Γ1. By the restriction to the event Aκ,s,L, we know that diam γ ≥ κ

√
vL for all γ ∈ Γ.

Using that λΓ ≤ 1 − ϑ—recall that we are in the complement of R2
ϑ,s,L—we have diam γ ≥

c(εc−2)
√|V (Γ)|whenever κ ≥ ε/c. Moreover, the upper bound onWβ(S) from (5.12) along with

the estimate Wβ(S) ≥ τminκ
√

vL imply that λΓ is bounded away from zero and thus ε
√|V (Γ)| =

ε
√

λΓvL ≥ s for L sufficiently large. This verifies the assumptions of Lemma 2.8 with ε replaced
by εc−2, which then guarantees that Γ is a singleton, Γ = {γ0}, and that

inf
z∈R2

dH

(
V (γ0),

√
|V (γ0)|W + z

) ≤ √
ε
√
|V (γ0)|. (5.13)

Now, |V (γ0)| = λΓvL ≤ vL (because, as before, λΓ ≤ 1), which means that the right-hand side is
less than

√
εvL and (1.14) holds. But on E i

ε,κ,ϑ the event Bε,s,L must fail, so we must have either
that Φ∆(λΓ) > Φ�

∆ + ε, which only applies when i = 1, or that (1.16) fails, which only applies
when i = 2.

We claim that, in both cases, there exists an ε′ > 0 and an α > 0—both proportional to ε—such
that for some S ∼ Γ, we have

(1 − α)Wβ(S) + 2
(m� vL)2

χ|ΛL| (1 − λΓ + εi − κL)2 ≥ w1

√
vL

(
Φ�

∆ + ε′
)
. (5.14)

Indeed, the Wulff variational problem in conjunction with Lemma 2.3, the restriction to (R1
ϑ,s,L)c

and the bound (1 − x)1/2 ≥ 1 − x for x ∈ [0, 1] imply that

Wβ(S) ≥ w1|V(S)|1/2 ≥ w1

(
|V (γ0)| − g3ϑ

−1s2√vL

)1/2

≥ w1

√
λΓvL − g3w1

(
ϑ
√

λΓ

)−1
s2.

(5.15)



44 M. BISKUP, L. CHAYES AND R. KOTECKÝ

Observing also that the difference (m�)2/(χ|ΛL|)v3/2
L − w1∆ → 0 as L → ∞, the left hand side

of (5.14) can be bounded from below by

w1

√
vLΦ∆(λΓ) − αw1

√
λΓvL − δL

√
vL + 2w1∆

√
vL(εi − κL)ϑ, (5.16)

where δL → 0 (as well as κL → 0) with L → ∞. (Here we again used that 1 − λΓ ≥ ϑ.) Now,
for i = 1 we have Φ∆(λΓ) > Φ�

∆ + ε from which (5.14) follows once α < ε and L is sufficiently
large. For i = 2, we use Φ∆(λΓ) ≥ Φ�

∆ and get the same conclusion since (5.16) now contains the
positive term 2w1∆ε2

√
vL ∝ ε

√
vL.

By putting (5.10) and (5.11) together, applying (5.14), choosing K ≥ K0(α, β) and invoking
Lemma 2.5 to bound the sum over all skeletons S, we find that

P+,β
L

(ML ∩ Eε,κ,ϑ ∩ {Γext
s (σ) ∈ Γ1}

) ≤ 2CC ′ exp
{−w1

√
vL

(
Φ�

∆ + ε′
)}

. (5.17)

whenever κ ≤ √
ε and L is sufficiently large. (Here the embarrassing factor “2” comes from

combining the corresponding estimates for i = 1 and i = 2.)
Thus, we are down to the cases Γ ∈ Γ2, which means that for every skeleton S ∼ Γ, we have

Wβ(S) > w1

√
λΓvL(1 + εc−2). Moreover, since Eε,ϑ,κ ⊂ Aκ,s,L, all s-large contours that we

have to consider actually satisfy that diam γ ≥ κ
√

vL. In particular, we also have that Wβ(S) ≥
τminκ

√
vL. Combining these bounds we derive that, for some c′ > 0 and regardless of the value of

λΓ,
Wβ(S) ≥ w1

(√
λΓ + c′

)√
vL. (5.18)

Disregarding the factor εi in (5.10) and performing similar estimates as in the derivation of (5.17),
we find that (5.14) holds again for some α > 0. Hence an analogue of (5.17) is valid also for all
Γ ∈ Γ2. A combination of these estimates in conjunction with Theorem 3.1 show that, indeed,
(5.3) is true with a c7 proportional to ε. This finishes the proof. �

The previous proof immediately provides us with the proof of the other main results:

Proof of Theorem 1.1. In light of Theorem 3.1, we need to prove an appropriate upper bound on
P+,β

L (ML), where ML = {σ : ML = m�|ΛL| − 2m� vL}. First we note that for L sufficiently
large, the probability P +,β

L (ML) is comparable with P +,β
L (FL), where FL is the event

FL = ML ∩Aκ,s,L ∩ Bε,s,L ∩
(R1

ϑ,s,L ∪R3
ϑ,s,L ∪R4

ϑ,s,L

)c
(5.19)

with ε, κ, ϑ as in the proof of Theorem 1.2. But on FL, we have at most one large contour and the
skeleton and Gaussian upper bounds readily give us that

P+,β
L (FL) ≤ Ce−w1

√
vL(Φ�

∆−ε′). (5.20)

for some C < ∞ and any ε′ > 0, provided L is sufficiently large. From here and Theorem 3.1, the
claim (1.11) directly follows. �

Our last task is to prove Corollary 1.3.

Proof of Corollary 1.3. By Proposition 2.1, if ∆ < ∆c, the unique minimizer of Φ∆(λ) is λ = 0.
Thus, for ε > 0 sufficiently small and L large enough, the contour volumes are restricted to a
small number times vL. Since (1.14) says that the contour volume is proportional to the square of
its diameter, this (eventually) forces diam γ < κ

√
vL for any fixed κ > 0. But that contradicts
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the fact that Aκ,s,L holds for a κ sufficiently small. Hence, no such intermediate γ exists and all
contours have a diameter smaller than K log L.

In the cases ∆ > ∆c, the function Φ∆(λ) is minimized by a non-zero λ (which is, in fact, larger
than 2/3). Since, again, diam γ ≥ κ

√
vL for all potential contours, Theorem 1.2 guarantees that

there is only one such contour and it obeys the bounds (1.14) and (1.15). All the other contours
have diameter less than K log L. �
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research of L.C. was supported by the NSF under the grant DMS-9971016 and by the NSA under
the grant NSA-MDA 904-00-1-0050. R.K. would also like to thank the UCLA Math Department
and the Max-Planck Institute for Mathematics in Leipzig for their hospitality as well as A. von
Humboldt Foundation whose Award made the stay in Leipzig possible.

REFERENCES
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